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It has been shown that gravitational fields produced by realistic classical-matter distributions can force
quantum vacuum fluctuations of some nonminimally coupled free scalar fields to undergo a phase of
exponential growth. The consequences of this unstable phase for the background spacetime have not been
addressed so far due to known difficulties concerning backreaction in semiclassical gravity. It seems
reasonable to believe, however, that the quantum fluctuations will “classicalize” when they become large
enough, after which backreaction can be treated in the general-relativistic context. Here we investigate the
emergence of a classical regime out of the quantum field evolution during the unstable phase. By studying the
appearance of classical correlations and loss of quantum coherence, we show that by the time backreaction
becomes important the system already behaves classically. Consequently, the gravity-induced instability
leads naturally to initial conditions for the eventual classical description of the backreaction. Our results give
support to previous analyses which treat classically the instability of scalar fields in the spacetime of
relativistic stars, regardless of whether the instability is triggered by classical or quantum perturbations.
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I. INTRODUCTION

The vacuum state of quantum fields harbors many
interesting physical phenomena. In particular, the vacuum
gravitates, meaning, according to general relativity, that it
affects and is affected by the spacetime geometry. Although
this fact leads to important consequences for cosmology
and black hole physics, it normally produces only feeble
effects at astrophysical scales. In contrast to this, it was
argued in Ref. [1] that well behaved spacetimes curved by
classical matter may induce vacuum fluctuations of some
nonminimally coupled free scalar fields to go through a
phase of exponential growth. This growth enhances the
expectation value of the field energy-momentum tensor,
eventually leading the vacuum to take over the system
evolution. A concrete realization of this claim was given in
Ref. [2], where the amplification of the vacuum fluctuations
was studied in the spacetime of a relativistic star. The
appearance of this instability in other astrophysically
inspired scenarios was explored in Refs. [3,4]. As the
system is driven to a new equilibrium state, a burst of free
scalar particles is expected, regardless of the details of the
final configuration [5]. Nevertheless, the final configuration
is important for astrophysical purposes. In order to deter-
mine it, one must take into account the backreaction of the

quantum field on the spacetime. This is a highly nontrivial
task due to the well known difficulties concerning the
backreaction in semiclassical gravity.
Notwithstanding, it seems reasonable to believe that

quantum fluctuations amplified enough to menace the
stability of relativistic stars cannot remain “quantum” for
too long. Thus, if the quantum phase ends before vacuum
fluctuations dominate the system, we expect backreaction
to be well described by the classical general-relativistic
equations. With this scenario in mind, we investigate the
quantum-to-classical transition of the quantum fluctuations
in the vacuum state, showing that the system does classic-
alize prior semiclassical backreaction becomes paramount.
The transition of a quantum system to a regime in which

its behavior is well approximated by classical physics is a
matter that has received attention in different areas—see,
e.g., Ref. [6]. For this quantum-to-classical transition to
happen, two ingredients, normally related, are necessary:
the appearance of certain classical correlations and the loss
of quantum coherence. By classical correlations we mean
that the corresponding Wigner function is peaked at the
classical trajectories, while the loss of quantum coherence
is necessary to forbid their superposition. The loss of
quantum coherence, in particular, results from the entan-
glement of the system with other “unobservable” degrees of
freedom which are eventually traced out. Thus, in order to
study the emergence of a given classical behavior from a
quantum system it is unavoidable to take into account its
interaction with some set of additional degrees of freedom,
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generally referred to as “environment” [7]. Both the
appearance of classical correlations and the process of
decoherence in this open system depend, in principle, on
the system internal dynamics and its interaction with the
environment. The form of the interaction is particularly
important: it defines according to what observable the
system will be regarded as classical [8].
Here, we are interested in the behavior of the unstable

modes of the scalar field, since they dominate the vacuum
fluctuations. We will show that for these modes the internal
dynamics will be enough to produce classical correlations.
The decoherence process needed to ensure the quantum-to-
classical transition, as defined above, will depend on the
interaction of the scalar field with gravity. The most natural
environment to consider is the one formed by the quantum
fluctuations of the background metric—gravitons. These
will not be the only degrees of freedom of our environment,
though. The coupling of the scalar field with gravity
induces an interaction between the unstable and stable
modes of the scalar field, making the latter ones also part of
the environment. From this analysis we can estimate the
time scale for the unstable modes to become classical with
respect to their amplitude and canonically conjugate
momentum. This time scale is of fundamental importance
to determine whether backreaction may be treated in the
classical rather than semiclassical realm.
The paper is organized as follows. In Sec. II we briefly

revisit the quantization of an unstable free scalar field
nonminimally coupled to gravity in the spacetime of a
relativistic star. In Sec. III we focus on the sector of the
Fock space related to the unstable modes and describe the
evolution of the corresponding vacuum state through its
Wigner function representation. It is shown that the field
amplitude and its canonically conjugate momentum
become classically correlated in a time scale comparable
to the one set by when backreaction becomes important.
Next, in Sec. IV we discuss the loss of coherence of the
vacuum fluctuations. By integrating out the degrees of
freedom of the gravitons and of the stable modes of the
scalar field, we obtain a master equation for the density
matrix describing the state of the unstable modes. The
analysis of this master equation shows that by the time
backreaction becomes important the initially pure vacuum
state has already evolved into a mixture of localized states
in field amplitude and momentum. We close the discussion
and make our final remarks in Sec. V. Throughout the
text we shall assume that ℏ ¼ c ¼ 1, and the signature
ð−þþþÞ for the spacetime metric.

II. GRAVITY-INDUCED INSTABILITY

We start by considering a real scalar field ϕ evolving
over a globally hyperbolic spacetime background ðM; gabÞ
curved by some classical-matter distribution. The field
obeys the Klein-Gordon equation,

−∇a∇aϕþ ðm2 þ ξRÞϕ ¼ 0; ð1Þ

where m ≥ 0 is the field mass, ξ ∈ R is the nonminimal
coupling parameter, and R stands for the scalar curvature.
The associated energy-momentum tensor is given by

Tab ¼ ð1 − 2ξÞ∇aϕ∇bϕþ ξRabϕ
2 − 2ξϕ∇a∇bϕ

þ
�
2ξ −

1

2

�
gab½∇cϕ∇cϕþ ðm2 þ ξRÞϕ2�; ð2Þ

where Rab stands for the Ricci tensor.
We quantize the field ϕ according to the canonical

procedure. Then, the field operator ϕ̂ can be expanded
in terms of a complete set of positive- and negative-norm

solutions fuðþÞ
α ; uð−Þα gα∈I ,

ϕ̂ ¼
Z

dϑðαÞ½âαuðþÞ
α þ âα†u

ð−Þ
α �; ð3Þ

with uðþÞ
α and uð−Þα ≡ uðþÞ�

α orthonormalized according to
the Klein-Gordon inner product. Here, I stands for some
set of good quantum numbers, while ϑ denotes some
measure over this set. As usual, the canonical commutation
relations combined with the completeness of the modes
imply that the creation and annihilation operators âα† and
âα, respectively, satisfy

½âα; âβ†� ¼ δϑðα; βÞ; ð4Þ

while other commutators vanish. The δϑ denotes the delta
distribution according to the measure ϑ, i.e.,R
dϑðαÞfðαÞδϑðα; βÞ ¼ fðβÞ. Finally, the vacuum state asso-

ciated with the selected set of modes is defined by
demanding âαj0i ¼ 0 for all α ∈ I .
Assuming that the background spacetime is curved by

the presence of a static, spherically symmetric compact
object, its metric can be written as

ds2 ¼ −fðdt2 − dχ2Þ þ r2ðdθ2 þ sin2 θdφ2Þ; ð5Þ

where f ¼ fðχÞ > 0 and r ¼ rðχÞ ≥ 0 are functions of the
radial coordinate χ such that limχ→þ∞fðχÞ ¼ 1,
limχ→þ∞rðχÞ=χ ¼ 1, and dr=dχ > 0. The last requirement
prevents the existence of trapped surfaces. By using the
symmetries of the underlying spacetime, it is possible to
find a set of time-oscillating positive-norm solutions of
Eq. (1) with the form

vðþÞ
ϖlμðt;xÞ ¼

e−iϖtffiffiffiffiffiffiffi
2ϖ

p ψϖlðχÞ
rðχÞ Ylμðθ;φÞ; ð6Þ

where x denotes the spatial coordinates, while Ylμ stands
for the spherical harmonics, with l ¼ 0; 1; 2;… and

μ ¼ −l;−lþ 1;…; l, and ϖ > 0. The radial part of vðþÞ
ϖlμ

satisfies
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−
d2

dχ2
ψϖl þ VðlÞ

effψϖl ¼ ϖ2ψϖl; ð7Þ

vanishing at the origin and being well behaved at spatial
infinity. For a star composed of perfect fluid, one can use

Einstein equations to cast the effective potential VðlÞ
eff in

Eq. (7) as

VðlÞ
eff ¼ f

�
m2 þ lðlþ 1Þ

r2
þ
�
ξ −

1

6

�
Rþ 8πG

3
ðρ̄ − ρÞ

�
;

ð8Þ

where ρ ¼ ρðχÞ denotes the energy density of the stellar
fluid and

ρ̄ðχÞ≡ 3MðχÞ
4πr3ðχÞ ð9Þ

is the average density of the star up to the radial coordinate
rðχÞ, which encompasses a mass MðχÞ.
Depending on (i) the values of the nonminimal coupling

parameter ξ, (ii) the mass-radius ratio of the star, and (iii) its
equation of state, the time-oscillating modes (6) may not be
the only ones complying with the boundary conditions
mentioned above. Indeed, the effective potential (8) allows
the existence of “bound states” [2]. These solutions give
rise to exponentially growing modes,

wðþÞ
Ωlμðt;xÞ¼

eΩt−iπ=4þe−Ωtþiπ=4ffiffiffiffiffiffi
4Ω

p ψΩlðχÞ
rðχÞ Ylμðθ;φÞ; ð10Þ

for which the radial part obeys

−
d2

dχ2
ψΩl þ VðlÞ

effψΩl ¼ −Ω2ψΩl; ð11Þ

withΩ > 0 and the form of the temporal part was chosen to

ensure the positivity of the wðþÞ
Ωlμ norm [9].

For the sake of simplicity, we shall assume hereafter the
existence of a single unstable mode. Since the centrifugal
term in Eq. (8) contributes positively to the effective
potential, this mode will have angular momentum quantum

numbers l ¼ μ ¼ 0 and will be denoted simply by wðþÞ
Ω and

its radial part by ψΩ=r. The spatial part of the stable and
unstable modes will be denoted by Fϖlμ and FΩ, respec-
tively, i.e., FϖlμðxÞ≡ ψϖlYlμ=r and FΩðxÞ≡ ψΩY00=r.
We shall denote by âϖlμ

† and âϖlμ the creation and

annihilation operators defined by the modes vðþÞ
ϖlμ and by

âΩ† and âΩ the same operators defined by the mode wðþÞ
Ω .

Let us consider the situation in which the system begins
in a stationary stable phase in the past and evolves into an
unstable one in a time scale much smaller than any other
present in the problem. Assuming that the quantum field is

in the vacuum state with respect to the stationary past
observers, it is possible to show that the initially quiescent
quantum vacuum fluctuations will grow as hϕ̂2i ∝ e2Ωt

during the unstable phase. The exponential enhancement of
the quantum fluctuations impacts on the (renormalized)
expectation value of the energy-momentum tensor operator,
hT̂abi, eventually leading the quantum field to backreact on
the spacetime [1]. In order to estimate how long it takes for
the quantum fluctuations to threaten the star stability, we
first note that the existence of the unstable (bound) solutions

typically requires potentials satisfying sup jVð0Þ
eff jR2 ∼ 1, in

which case Ω2 ∼ sup jVð0Þ
eff j ∼ R−2, where R denotes the

radial coordinate r of the star surface—see discussion in
Sec. III of Ref. [5]. By calculating, e.g., the ratio between
the vacuum and stellar energy densities,

ρv
ρ
∼
�
lP

R

�
2

× exp ð2t=RÞ; ð12Þ

with lP denoting the Planck length, one concludes that the
backreaction time scale dictated by the semiclassical
Einstein equations is tbr ∼ R lnðR=lPÞ, which is of the
order of a few milliseconds for a neutron star [2]—for a
more comprehensive account on this vacuum awakening
effect, see Ref. [5], and Refs. [10,11] for a rigorous
discussion on the quantization of unstable linear fields in
globally hyperbolic spacetimes.

III. FREE FIELD EVOLUTION AND THE
APPEARANCE OF CLASSICAL CORRELATIONS

In a static spacetime, like the one engendered by the
relativistic star considered above, the Hamiltonian operator
canbe formally defined from the energy-momentum tensor as

Ĥ ≡
Z
Σ
dΣnaϰbT̂ab: ð13Þ

Here, ϰa ¼ ð∂tÞa is the Killing vector field generating the
time isometry, na is a future-pointing unit vector field
orthogonal to the Cauchy surface Σ, and dΣ≡ ffiffiffi

h
p

d3x is the
volume element with respect to the spatial metric tensor
hab, with h≡ det hab. Using the expansion (3) in terms of
the modes vðþÞ

ϖlμ and wðþÞ
Ω , we obtain from Eq. (13) that

Ĥ ¼ Ĥs þ Ĥu: ð14Þ
In Eq. (14) the Hamiltonian operator associated to the
unstable mode wðþÞ

Ω is given by

Ĥu ¼ −
Ω
2
ðâΩâΩ þ âΩ†âΩ†Þ; ð15Þ

which corresponds to the Hamiltonian of an upside-down
harmonic oscillator, while Ĥs is the Hamiltonian operator

related to the stable modes vðþÞ
ϖlμ and consists of a collection
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of harmonic oscillators. Hence, we shall revisit the quan-
tum upside-down harmonic oscillator in the light of our
problem.
By defining the operators

q̂Ω ≡ 1ffiffiffiffiffiffi
2Ω

p ðâΩ þ âΩ†Þ ð16Þ

and

p̂Ω ≡ −i
ffiffiffiffi
Ω
2

r
ðâΩ − âΩ†Þ; ð17Þ

Eq. (15) can be cast as

Ĥu ¼
1

2
p̂2
Ω −

Ω2

2
q̂2Ω:

The operators (16) and (17) are related to the field operator
ϕ̂ and its time derivative according to

q̂Ω ¼ 1ffiffiffiffiffiffi
4π

p
Z þ∞

0

rdχ
Z

π

0

sin θdθ
Z

2π

0

dφϕ̂ð0;xÞψΩðχÞ

and

p̂Ω ¼ 1ffiffiffiffiffiffi
4π

p
Z þ∞

0

rdχ
Z

π

0

sin θdθ
Z

2π

0

dφ∂tϕ̂ð0;xÞψΩðχÞ:

In order to obtain these expressions, we have used that ψΩ
can be chosen to be a real function satisfying

Z þ∞

0

dχψΩðχÞ2 ¼ 1

and
Z þ∞

0

dχψΩðχÞψϖ00ðχÞ ¼ 0;

for all ϖ > 0, and the orthogonality between the spherical
harmonics. It will be with respect to the observables p̂Ω and
q̂Ω that we shall investigate the classicalization of the
unstable mode.
Next, we note that in this fixed-background regime the

modes are decoupled and evolve independently. Thus, it is
possible to write the vacuum state of the unstable quantum
field as the following tensor product:

j0i ¼ j0si ⊗ j0ui; ð18Þ
where j0si and j0ui are defined by âϖlμj0si ¼ 0, for allϖ, l
and μ, and âΩj0ui ¼ 0. Therefore, one can separate the
Fock space in its stable and unstable sectors and study their
time evolution separately—see, e.g., Ref. [10].
In what follows we will focus the discussion on the

evolution of the state j0ui. For this end, let us define
jηðtÞi≡ ÛðtÞj0ui, with the evolution operator

ÛðtÞ≡ e−itĤu : ð19Þ

Thus, the fact that âΩj0ui ¼ 0 implies

ÛðtÞâΩÛ†ðtÞjηðtÞi ¼ 0:

Then, by using the identity

ÛðtÞâΩÛ†ðtÞ ¼ âΩ coshΩt − iâΩ† sinhΩt

and the definitions given in Eqs. (16) and (17), one
arrives at

p̂ΩjηðtÞi ¼ αðtÞq̂ΩjηðtÞi; ð20Þ

where the function αðtÞ is conveniently written as αðtÞ ¼
i½aðtÞ þ ibðtÞ� with

aðtÞ≡ Ω
cosh 2Ωt

ð21Þ

and

bðtÞ≡ −Ω tanh 2Ωt: ð22Þ

Finally, by solving Eq. (20) in the representation of the
eigenstates of q̂Ω, i.e., solving for ηðt; qÞ≡ hqjηðtÞi, one
has

ηðt; qÞ ¼
�
aðtÞ
π

�
1=4

eiαðtÞq2=2: ð23Þ

The wave function (23) is known in the literature
as the squeezed vacuum state. The evolution operator
defined in Eq. (19) is the squeeze operator Ŝðs; βÞ≡
exp f−sðe−i2βâΩâΩ − ei2βâΩ†âΩ†Þ=2g, with the squeezing
parameter s ¼ Ωt and the squeezing angle β ¼ −π=4. For a
detailed account on the properties of these states, see, e.g.,
Refs. [12,13].
A useful tool to analyze the classicalization of a quantum

system is the Wigner function. Given a general state
represented by the density matrix ϱ̂, the associated
Wigner function is defined by [14]

Wðt; q; pÞ≡ 1

2π

Z þ∞

−∞
dyϱðt; q − y=2; qþ y=2Þeipy;

ð24Þ

with ϱðt; q; q0Þ≡ hqjϱ̂ðtÞjq0i. From Eq. (24), one sees that
W is a real function, but not necessarily positive. Moreover,
if ϱ̂ ¼ jψihψ j, then

Z þ∞

−∞
dpWðq; pÞ ¼ jψðqÞj2

and
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Z þ∞

−∞
dqWðq; pÞ ¼ j ~ψðpÞj2;

with ~ψðpÞ being the Fourier transform of ψðqÞ≡ hqjψi.
In the case of an upside-down harmonic oscillator, W

obeys

∂tWðt; q; pÞ ¼ fHðq; pÞ;Wðt; q; pÞg; ð25Þ

where f·; ·g denotes the Poisson bracket and Hðq; pÞ is the
classical Hamiltonian

Hðq; pÞ≡ 1

2
p2 −

Ω2

2
q2: ð26Þ

We remark that Eq. (25) coincides with the Liouville
equation for the classical system defined by the
Hamiltonian (26). (We emphasize that this result holds
only for quadratic potentials.) In order to analyze Eq. (25),
it is useful to rewrite it in terms of the variables

u≡ p −Ωq
2

and v≡ pþ Ωq
2

; ð27Þ

which leads to

∂tW ¼ Ωðu∂u − v∂vÞW: ð28Þ

For localized states, Eq. (28) tends to exponentially stretch
the Wigner function along the v direction and exponentially
squeeze it along the u direction. This behavior just reflects
the structure of the classical phase space of the upside-
down harmonic oscillator. The orbits of the Hamiltonian
(26) are hyperbolas with asymptotes at the lines u ¼ 0 and
v ¼ 0, while u ¼ v ¼ 0 is a saddle point. Physically, this
means that the particles are generally pushed away from the
origin by the potential.
In our particular case, we have from Eq. (23) that the

density matrix of the squeezed vacuum is

ϱðt; q; q0Þ ¼
ffiffiffiffiffiffiffiffi
aðtÞ
π

r
e−

1
2
aðtÞðq2þq02Þ−i

2
bðtÞðq2−q02Þ; ð29Þ

and, thus, the corresponding Wigner function gives

Wðt; q; pÞ ¼ 1

π
exp

�
−aðtÞq2 − ½pþ bðtÞq�2

aðtÞ
�
: ð30Þ

In the limit Ωt ≫ 1, one has from Eqs. (21) and (22) that
a ≈ 2Ωe−2Ωt and b ≈ −Ω. Hence, the state j0ui evolves into
a highly squeezed state and Eq. (30) reduces to

Wðt; q; pÞ ≈
Ωt≫1 jηðt; qÞj2δðp −ΩqÞ; ð31Þ

where δ denotes the usual delta distribution. As time goes
by, the Wigner function (30) becomes negligibly small

away from the classical trajectory u ¼ 0. This shows that
when Ωt ≫ 1, the possible values for the amplitude
(proportional to q) and momentum (proportional to p) of
the unstable mode are correlated along a classical trajectory
in the phase space.
The expression forW given in Eq. (30) is positive, a fact

that holds for any Wigner function associated with a
Gaussian state. Moreover, from Eq. (24), W also satisfiesRþ∞
−∞ dqdpW ¼ 1. Thus, it can be seen as a probability
distribution over the classical phase space of the system.
This interpretation, combined with the appearance of
classical correlations, is sometimes regarded as a kind of
quantum-to-classical transition. In cosmology, for instance,
it can account for some of the features of the cosmic
microwave background inhomogeneities [15–17], which
can be traced back to the quantum fluctuations present in
the inflationary epoch [18,19].
Notwithstanding, there are some reasons why one should

regard this kind of quantum-to-classical transition as being
incomplete. For instance, looking at Eq. (29) one sees that
while W becomes peaked at a classical trajectory, the pure
state ϱ̂ turns more delocalized in both q and p representa-
tions. Besides, W cannot be interpreted as a probability
distribution in general. (As remarked above, the Wigner
function can assume negative values, a fact directly related
to interference.) Fortunately, these difficulties can be over-
come if one takes into account decoherence effects. In
inflationary cosmology, a more comprehensive understand-
ing of the quantum-to-classical transition including
decoherence was tackled, e.g., in Refs. [20–25].

IV. DECOHERENCE AND THE EMERGENCE OF
CLASSICAL INITIAL CONDITIONS

In order to complete the picture of the quantum-to-
classical transition, we shall analyze the loss of quantum
coherence by the scalar field during the unstable phase.
As anticipated, we shall study the decoherence process
induced by the interaction between the quantum scalar field
and quantum fluctuations of the gravitational field. To do
so, we will apply standard perturbative quantum field
theory techniques to gravity from the perspective of an
effective field theory [26–28].

A. Environment

We start by considering the classical action

S ¼ SEH þ SΦ þ SM: ð32Þ
The Einstein-Hilbert action is given by

SEH½gab�≡ 2

κ2

Z
M

d4x
ffiffiffiffiffiffi
−g

p
R;

with κ ≡ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
and g≡ det gab, the scalar field action is

defined through
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SΦ½Φ; gab�≡ −
1

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ½∇aΦ∇aΦþ ðm2 þ ξRÞΦ2�;

and SM½Ψ; gab� stands for the classical-matter action. We
perturb this system by taking gab → gab þ κγab and
Φ → Φþ ϕ, while keeping the classical matter unper-
turbed, and expand the total action (32) up to second order
in both γab and ϕ. In what follows it will be assumed
Φ ¼ 0. (Thus, ϕ is small in the sense that it can only induce
small perturbations on the background metric.)
The expansion of the Einstein-Hilbert action gives

SEH½gab þ κγab�

¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ Lð1Þ

EH þ Lð2Þ
EH þ � � �

�
;

with

Lð1Þ
EH ≡ −

2

κ

�
Rab −

1

2
Rgab

�
γab

and

Lð2Þ
EH ≡ −

1

2

�
∇cγab∇cγab −∇cγ∇cγ þ 2∇aγ

ab∇bγ

− 2∇cγab∇aγbc þ R

�
γabγab −

1

2
γ2
�

−4Rab

�
γa

cγbc −
1

2
γγab

��
; ð33Þ

where we have defined γ ≡ gabγab. For the scalar field, one
obtains

SΦ½ϕ; gab þ κγab� ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½Lð2Þ
Φ þLð3Þ

Φ þLð4Þ
Φ þ � � ��;

with

Lð2Þ
Φ ≡ −

1

2
½∇aϕ∇aϕþ ðm2 þ ξRÞϕ2�; ð34Þ

Lð3Þ
Φ ≡ κ

2
Tabγ

ab; ð35Þ

and

Lð4Þ
Φ ≡ κ2

4
½Uabcdγ

abγcd þ ξðVabcdeγ
ab∇cγde

þWabcdef∇aγbc∇dγefÞ�: ð36Þ

The tensor Tab appearing in Eq. (35) was defined in Eq. (2),
while the expressions for the tensors Uabcd, Vabcde, and
Wabcdef are presented in Eqs. (A1)–(A3) of the Appendix,
respectively [29]. Similarly, the expansion of the classical-
matter action can be written as

SM½Ψ; gab þ κγab�

¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½Lð0Þ
M þ Lð1Þ

M þ Lð2Þ
M þ � � ��;

where the specific form of the terms inside the square
brackets depends on the Lagrangian assumed for the
system. The background spacetime in which the perturba-
tions are defined will be given by the Einstein equations

Rab −
1

2
Rgab ¼

κ2

4
TM
ab ð37Þ

obtained from the zeroth-order action, where TM
ab denotes

the energy-momentum tensor of the classical matter. As for
the perturbations, it is more convenient to write them in
terms of the free scalar field, free graviton, and interaction
actions Sϕ, Sγ , and Sint, respectively:

Sϕ½ϕ�≡
Z
M

d4x
ffiffiffiffiffiffi
−g

p
Lð2Þ
Φ ; ð38Þ

Sγ½γab�≡
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½Lð2Þ
EH þ Lð2Þ

M �; ð39Þ

and

Sint½ϕ; γab�≡
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½Lð3Þ
Φ þ Lð4Þ

Φ �: ð40Þ

For the gravitational perturbations, one would need also to
specify a gauge to fix the dynamics. However, the analysis
which we will undertake in the next sections dispenses a
particular gauge choice. All we have to assume is that there
is a gauge in which the graviton field equation admits
stationary oscillatory modes. This assumption holds, for
instance, in the case of a background spacetime curved by a
static spherically symmetric star—see, e.g., Ref. [30].
If the nonminimally coupled free scalar field is desta-

bilized by the curvature of the background spacetime—like
in the case of the compact object discussed in Sec. II—the
perturbation ϕ can be split into its stable and unstable parts,

ϕ ¼ ϕs þ ϕu; ð41Þ

which are defined by

ϕsðt;xÞ≡
X
lμ

Z
dϖϕϖðtÞFϖlμðxÞ þ c:c: ð42Þ

and

ϕuðt;xÞ≡ ϕΩðtÞFΩðxÞ: ð43Þ

By using the orthogonality relations
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Z
Σ
dΣFΩðxÞ2 ¼ 1;

Z
Σ
dΣFϖlμðxÞFϖ0l0μ0 ðxÞ� ¼ δll0δμμ0δðϖ −ϖ0Þ;

and

Z
Σ
dΣFΩðxÞFϖlμðxÞ� ¼ 0;

the free scalar field action (38) can be cast as

Sϕ½ϕ� ¼ Sϕ½ϕs� þ Sϕ½ϕu�: ð44Þ

For the interaction action, Eq. (40), we observe that the
tensors Tab, Uabcd, Vabcde, and Wabcdef depend quadrati-
cally on ϕ and its derivatives. Hence, by employing the
decomposition (41), the energy-momentum tensor can be
written as

Tab ¼ TðsÞ
ab þ TðuÞ

ab þ tab; ð45Þ

where Tðs=uÞ
ab corresponds to the tensor given in Eq. (2)

calculated for ϕs=u and

tab ≡ ð1 − 2ξÞð∇aϕs∇bϕu þ∇aϕu∇bϕsÞ
þ 2ξRabϕsϕu − 2ξðϕs∇a∇bϕu

þ ϕu∇a∇bϕsÞ þ ð4ξ − 1Þ½∇cϕs∇cϕu

þ ðm2 þ ξRÞϕsϕu�gab: ð46Þ

We note that, in contrast to the tensor TðuÞ
ab , the expression

given in Eq. (46) depends linearly on the amplitude of the
field ϕu and its derivatives. As for the other three tensors,
one has

Uabcd ¼ UðsÞ
abcd þ UðuÞ

abcd þ uabcd;

Vabcde ¼ VðsÞ
abcde þ VðuÞ

abcde þ vabcde;

and

Wabcdef ¼ WðsÞ
abcdef þWðuÞ

abcdef þ wabcdef:

In these expressions,Uðs=uÞ
abcd , V

ðs=uÞ
abcde, andW

ðs=uÞ
abcdef are tensors

obtained from Eqs. (A1)–(A3) when one replaces ϕ by ϕs=u,
while the form of uabcd, vabcde, and wabcdef can be easily
deduced from these equations and depend linearly on ϕs
and on ϕu and its derivatives. We omit the expressions for
these tensors, since they are long and will not contribute in
the calculations that follow. This approach of splitting the
quantum field into two sets of modes according to some
scale was employed in Ref. [31] to study the decoherence
of modes above a certain wavelength in a λϕ4 model, and it

is a useful strategy to tackle the issue of the emergence of a
classical order parameter in phase transitions [32–34].
In our setting, one does not expect quantum fluctuations

of the metric and the stable modes of ϕ to have any relevant
influence on the background spacetime during the unstable
phase. They, however, are perceived by the unstable mode,
becoming entangled with it due to the interaction (40) in the
course of the time evolution.

B. Derivation of the master equation

Once one has defined the environment, it is possible to
construct the master equation for the reduced density
matrix. We start by assuming that at t ¼ 0 the total density
matrix of the system formed by the scalar perturbations and
gravitons can be written as

ϱ̂ð0Þ ¼ ϱ̂sð0Þ ⊗ ϱ̂uð0Þ ⊗ ϱ̂γð0Þ;

with ϱ̂sð0Þ, ϱ̂uð0Þ, and ϱ̂γð0Þ denoting the initial states of the
stable modes, unstable mode, and gravitons, respectively.
Thus, initially these subsystems are uncorrelated. In the
field amplitude representation, the reduced density matrix
for the unstable sector of the field at t > 0 is defined by
tracing out the gravitons and stable degrees of freedom
according to

ϱredðt;φu;φu
0Þ≡

Z
dφsdςabhφu;φs; ςabjϱ̂ðtÞjφu

0;φs; ςabi:
ð47Þ

Above, we have denoted by jφsi, jφui, and jςabi the
eigenstates of the field operators ϕ̂s, ϕ̂u, and γ̂ab, respec-
tively, at t ¼ 0. The time evolution of the reduced density
matrix can be written as

ϱredðt;φu;φu
0Þ ¼

Z
dψudψu

0ϱuð0;ψu;ψu
0Þ

× Jredðt;φu;φu
0; 0;ψu;ψu

0Þ; ð48Þ

wherein ϱuð0;ψu;ψu
0Þ≡ hψujϱ̂uð0Þjψu

0i and Jred stands for
the reduced propagator. Here, the reduced propagator is
defined in terms of the following functional integral:

Jredðt;φu;φu
0; 0;ψu;ψu

0Þ

≡
Z

φu

ψu

Dϕu

Z
φu

0

ψu
0
Dϕu

0eifSϕ½ϕu�−Sϕ½ϕu
0�gF½ϕu;ϕu

0�: ð49Þ

In Eq. (49), F stands for the Feynman-Vernon influence
functional [35] and is given by

FROM QUANTUM TO CLASSICAL INSTABILITY IN … PHYSICAL REVIEW D 91, 024011 (2015)

024011-7



F½ϕu;ϕu
0�≡

Z
dφs

Z
dψ sdψ s

0ϱsð0;ψ s;ψ s
0Þ

×
Z

φs¼φs
0

ψ s;ψ s
0

DϕsDϕs
0eifSϕ½ϕs�−Sϕ½ϕs

0�g

× ~F½ϕs þ ϕu;ϕs
0 þ ϕu

0�; ð50Þ

where we have defined

~F½ϕ;ϕ0�≡
Z

dςab

Z
dξabdξab0ϱγð0; ξab; ξab0Þ

×
Z

ςab¼ςab
0

ξab;ξab 0
DγabDγab

0eifSγ ½γab�−Sγ ½γab 0�g

× eifSint½ϕ;γab�−Sint½ϕ0;γab 0 �g: ð51Þ

The assumption that initially the stable and unstable
sectors of the quantum field are uncorrelated is necessary if
one desires to employ the influence functional formalism.

This absence of initial correlations would not be the case
if the field, say, had evolved from the vacuum state defined
by stationary observers in a previous stable phase.
Nevertheless, initial correlations between the system and
its environment are known to affect the dynamics set by the
master equation only in its early stages—see, e.g.,
Refs. [36,37]. This will not be an issue here since in what
follows we will be concerned only with the system in its
long-time regime.
Next, we assume that the density matrix ϱ̂γð0Þ corre-

sponds to a thermal state at temperature T and that ϱ̂sð0Þ ¼
j0sih0sj [38]. By using the closed time path integral
formalism [40,41], we evaluate ~F up to quadratic order
in κ and obtain the following formal expression:

~F½ϕ;ϕ0� ¼ 1 −
κ2

4
ðI1½ϕ;ϕ0� þ iI2½ϕ;ϕ0�Þ; ð52Þ

where

I1½ϕ;ϕ0�≡
Z

t

0

dτ
Z

τ

0

dτ0
Z
Σ
dΣdΣ0fðxÞfðx0ÞfRehγ̂abðxÞγ̂cdðx0Þiβ½TabðxÞ − T 0

abðxÞ�

× ½Tcdðx0Þ − T 0
cdðx0Þ� þ iImhγ̂abðxÞγ̂cdðx0Þiβ½TabðxÞ − T 0

abðxÞ�½Tcdðx0Þ þ T 0
cdðx0Þ�g; ð53Þ

and

I2½ϕ;ϕ0�≡ −
Z

t

0

dτ
Z
Σ
dΣfðxÞfhγ̂abðxÞγ̂cdðxÞiβ½UabcdðxÞ −U0

abcdðxÞ� þ ξhγ̂abðxÞ∇cγ̂deðxÞiβ½VabcdeðxÞ − V 0
abcdeðxÞ�

þ ξh∇aγ̂bcðxÞ∇dγ̂efðxÞiβ½WabcdefðxÞ −W0
abcdefðxÞ�g: ð54Þ

In Eqs. (53) and (54), h…iβ ≡ trfϱ̂γð0Þ…g is the thermal
average and the tensors Tab, Uabcd, Vabcde, and Wabcdef—
given in Eqs. (2) and (A1)–(A3)—are calculated for ϕ,
while T 0

ab, U0
abcd, V 0

abcde, and W0
abcdef are calculated for

ϕ0. The functional I2 is clearly divergent and must be
absorbed into the bare parameters of the free scalar field
action, Eq. (38). We shall not delve into the question
of what corrections this procedure may introduce here,
since it does not contribute to decoherence effects—for a

discussion on the quantum corrections induced by a
thermal bath of gravitons in flat spacetime, see, e.g.,
Ref. [27]. Thus, we are left with

~F½ϕ;ϕ0� ¼ 1 −
κ2

4
I1½ϕ;ϕ0�: ð55Þ

Then, by substituting Eq. (55) into Eq. (50) and using
Eq. (45), one obtains

F½ϕu;ϕu
0� ¼ 1 −

κ2

4
ðG1½ϕu;ϕu

0� þ G2½ϕu;ϕu
0� þG3½ϕu;ϕu

0�Þ; ð56Þ

with

G1½ϕu;ϕu
0�≡ 2i

Z
t

0

dτ
Z

τ

0

dτ0
Z
Σ
dΣdΣ0fðxÞfðx0ÞImhγ̂abðxÞγ̂cdðx0ÞiβhT̂ðsÞ

cd ðx0Þi0½TðuÞ
ab ðxÞ − TðuÞ0

ab ðxÞ�; ð57Þ
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G2½ϕu;ϕu
0�≡

Z
t

0

dτ
Z

τ

0

dτ0
Z
Σ
dΣdΣ0fðxÞfðx0ÞfRehγ̂abðxÞγ̂cdðx0Þiβ½TðuÞ

ab ðxÞ − TðuÞ0
ab ðxÞ�½TðuÞ

cd ðx0Þ − TðuÞ0
cd ðx0Þ�

þ iImhγ̂abðxÞγ̂cdðx0Þiβ½TðuÞ
ab ðxÞ − TðuÞ0

ab ðxÞ�½TðuÞ
cd ðx0Þ þ TðuÞ0

cd ðx0Þ�g; ð58Þ

and

G3½ϕu;ϕu
0�≡

Z
dφs

Z
dψ sdψ s

0ϱsð0;ψ s;ψ s
0Þ
Z

φs¼φs
0

ψ s;ψ s
0

DϕsDϕs
0eifSϕ½ϕs�−Sϕ½ϕs

0�g
Z

t

0

dτ
Z

τ

0

dτ0
Z
Σ
dΣdΣ0fðxÞfðx0Þ

× fRehγ̂abðxÞγ̂cdðx0Þiβ½tabðxÞ − t0abðxÞ�½tcdðx0Þ − t0cdðx0Þ� þ iImhγ̂abðxÞγ̂cdðx0Þiβ½tabðxÞ − t0abðxÞ�
× ½tcdðx0Þ þ t0cdðx0Þ�g: ð59Þ

In Eq. (57), hT̂ðsÞ
abi0 stands for the renormalized expectation

value in the state j0si of the energy-momentum tensor
operator associated with ϕ̂s. As for the tensors T

ðuÞ
ab and tab

in Eqs. (57)–(59), they are constructed from ϕu and ϕs,
while TðuÞ0

ab and t0ab are constructed from ϕu
0 and ϕs

0.
The terms in the influence functional (56) responsible for

decoherence effects and damping are those given in
Eqs. (58) and (59). (Of course, these functionals depend
on the specific interaction of the unstable mode with its
environment.) While the former comes from the interaction
of the unstable mode with gravitons through its energy-
momentum tensor, the latter is a consequence of the
interaction of the unstable mode with the whole environ-
ment via its amplitude and derivatives. Consequently, one
expects that under the influence of the functional (58), the
density matrix will tend to evolve into a mixture of states
which bear some relation with the energy-momentum tensor
operator. The functional (59), on the other hand, will tend to
diagonalize the density matrix in the basis of localized states
in amplitude and momentum of the unstable mode. The set
of states in which the density matrix becomes diagonal is
known in the literature as “pointer states.” Pointer states are
those states less affected by the environment; i.e., they are
the states less willing to evolve into an entangled state with
the environment [6,8]. The implications of the terms in
Eq. (58) were recently investigated in Ref. [39] for the case
of a flat spacetime background. There it was shown that in
the nonrelativistic regime the density matrix tends to
become diagonal in the energy basis—see also Ref. [42].
Here, however, we will be concerned with the decoherence
effects introduced by terms in Eq. (59) in the full relativistic
curved spacetime regime.
In order to obtain the master equation for the density

matrix (47), we need to calculate the time derivative of the
reduced propagator Jred. The form of the propagator can be
computed by applying the saddle point approximation to
the functional integral in Eq. (49). In this approximation,
one has for Jred that

Jredðt;φu;φu
0; 0;ψu;ψu

0Þ ≈ expfiA½ϕcl
u ;ϕcl0

u �g; ð60Þ

with the total effective action

A½ϕu;ϕu
0�≡ Sϕ½ϕu� − Sϕ½ϕu

0� þ SIF½ϕu;ϕu
0�;

and the influence action SIF being implicitly defined
through F½ϕu;ϕu

0� ¼ expfiSIF½ϕu;ϕu
0�g. Above, ϕcl

u and
ϕcl0
u are solutions of the equation of motion,

δReA
δϕu

				
ϕu

0¼ϕu

¼ 0;

satisfying the conditions ϕcl
u ð0;xÞ ¼ ψuðxÞ, ϕcl

u ðt;xÞ ¼
φuðxÞ, ϕcl0

u ð0;xÞ ¼ ψu
0ðxÞ, and ϕcl0

u ðt;xÞ ¼ φu
0ðxÞ.

At this point, it is clear that decoherence will be induced
by terms in the propagator Jred which are of order κ2.
Consequently, one can approximate ϕcl

u and ϕcl0
u by unstable

solutions of the free scalar field equation with the appro-
priate conditions at the initial and final instants. Thus, the
classical solutions will have the form

ϕcl
u ðτ;xÞ ¼ ϕcl

ΩðτÞFΩðxÞ; ð61Þ

with

ϕcl
ΩðτÞ≡ q0

sinhΩðt − τÞ
sinhΩt

þ q
sinhΩτ
sinhΩt

: ð62Þ

Now, inserting Eq. (61) into the action (38), one obtains

Sϕ½ϕcl
u � ¼

1

2

Z
t

0

dτ½ð _ϕcl
ΩÞ2 þΩ2ðϕcl

ΩÞ2�

¼ Ω
2 sinhΩt

½ðq20 þ q2Þ coshΩt − 2q0q�; ð63Þ

with the second equality above coming from Eq. (62). As
for the tensors appearing in Eqs. (57)–(59), we shall denote
by Tcl

ab and tclab the field energy-momentum tensor and the
tensor given in Eq. (46), respectively, when calculated for
ϕcl
u . By employing Eq. (61), the expression for tclab can be

cast as
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tclab ¼ rð1Þab
_ϕcl
Ω þ rð2Þabϕ

cl
Ω; ð64Þ

where

rð1Þab ≡ FΩffiffiffi
f

p f½nanb þ ð1 − 4ξÞhab�nc∇cϕs þ 2ð2ξ − 1ÞnðaDbÞϕs − 4ξnðaabÞϕsg þ 4ξ
ϕsffiffiffi
f

p nðaDbÞFΩ; ð65Þ

rð2Þab ≡ nanbfð1 − 4ξÞDcFΩDcϕs þ ðm2 þ ξRÞFΩϕs þ 2ξðDcac þ acacÞFΩϕs − 2ξFΩDcDcϕs − 2ξDcDcFΩϕsg
− 2ð1 − 2ξÞnðaDbÞFΩnc∇cϕs þ 4ξFΩnðaDbÞðnc∇cϕsÞ þ 2ð1 − 2ξÞDðaFΩDbÞϕs

− ð1 − 4ξÞhab½DcFΩDcϕs þ ðm2 þ ξRÞFΩϕs� − 2ξðFΩDaDbϕs þDaDbFΩϕsÞ
þ 2ξ½ð3ÞRab − ðDaab þ aaabÞ�FΩϕs; ð66Þ

and we recall that f was defined in Eq. (5) and
na ¼ f−1=2ð∂tÞa. In Eqs. (65) and (66), aa ≡ nc∇cna is
the acceleration of the observers following the orbits of the
timelike Killing vector field, Da is the derivative operator
associated with the spatial metric hab, and ð3ÞRab denotes
the Ricci tensor of the spatial section. Finally, by combin-
ing Eqs. (56) and (60) and then using Eqs. (63) and (64),
one obtains an expression for Jred.
For the calculation of the reduced propagator time

derivative in the saddle point approximation, it is useful
to define the operators P̂ and Q̂ as

P̂ðτÞ≡
Z
Σ
dΣfðxÞγ̂abðτ;xÞr̂ð1Þab ðτ;xÞ ð67Þ

and

Q̂ðτÞ≡
Z
Σ
dΣfðxÞγ̂abðτ;xÞr̂ð2Þab ðτ;xÞ; ð68Þ

where r̂ð1Þab and r̂ð2Þab are obtained from Eqs. (65) and (66) by
replacing ϕs by the field operator ϕ̂s. Then, the time
derivative of the reduced propagator can be written as

∂tJred ¼ ∂tJ0 þ
�
2i
Z

t

0

dτ0
Z
Σ
dΣdΣ0fðxÞfðx0ÞDabcdðt;x; τ0;x0ÞhT̂ðsÞ

cd ðτ0;x0Þi0½Tcl
abðt;xÞ − Tcl0

abðt;xÞ�

−
Z

t

0

dτ0
Z
Σ
dΣdΣ0fðxÞfðx0ÞfNabcdðt;x; τ0;x0Þ½Tcl

abðt;xÞ − Tcl0
abðt;xÞ�½Tcl

cdðτ0;x0Þ − Tcl0
cdðτ0;x0Þ�

− iDabcdðt;x; τ0;x0Þ½Tcl
abðt;xÞ − Tcl0

abðt;xÞ�½Tcl
cdðτ0;x0Þ þ Tcl0

cdðτ0;x0Þ�g − κ2

4

Z
t

0

dτ0fRehQ̂ðtÞQ̂ðτ0Þi

× ½ϕcl
ΩðtÞ − ϕcl0

Ω ðtÞ�½ϕcl
Ωðτ0Þ − ϕcl0

Ω ðτ0Þ� þ RehP̂ðtÞP̂ðτ0Þi½ _ϕcl
ΩðtÞ − _ϕcl0

Ω ðtÞ�½ _ϕcl
Ωðτ0Þ − _ϕcl0

Ω ðτ0Þ�
þ RehQ̂ðtÞP̂ðτ0Þi½ϕcl

ΩðtÞ − ϕcl0
Ω ðtÞ�½ _ϕcl

Ωðτ0Þ − _ϕcl0
Ω ðτ0Þ� þ RehP̂ðtÞQ̂ðτ0Þi½ _ϕcl

ΩðtÞ − _ϕcl0
Ω ðtÞ�½ϕcl

Ωðτ0Þ − ϕcl0
Ω ðτ0Þ�

þ iImhQ̂ðtÞQ̂ðτ0Þi½ϕcl
ΩðtÞ − ϕcl0

Ω ðtÞ�½ϕcl
Ωðτ0Þ þ ϕcl0

Ω ðτ0Þ� þ iImhP̂ðtÞP̂ðτ0Þi½ _ϕcl
ΩðtÞ − _ϕcl0

Ω ðtÞ�½ _ϕcl
Ωðτ0Þ þ _ϕcl0

Ω ðτ0Þ�

þ iImhQ̂ðtÞP̂ðτ0Þi½ϕcl
ΩðtÞ − ϕcl0

Ω ðtÞ�½ _ϕcl
Ωðτ0Þ þ _ϕcl0

Ω ðτ0Þ� þ iImhP̂ðtÞQ̂ðτ0Þi½ _ϕcl
ΩðtÞ − _ϕcl0

Ω ðtÞ�½ϕcl
Ωðτ0Þ þ ϕcl0

Ω ðτ0Þ�g
�
J0;

ð69Þ

with

Nabcdðτ;x; τ0;xÞ≡ κ2

4
Rehγ̂abðτ;xÞγ̂cdðτ0;x0Þiβ

and

Dabcdðτ;x; τ0;xÞ≡ −
κ2

4
Imhγ̂abðτ;xÞγ̂cdðτ0;x0Þiβ;
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while h…i≡ trfϱ̂sð0Þ ⊗ ϱ̂γð0Þ…g and J0 denotes the free propagator for the unstable mode. The free propagator is
defined by

J0ðt;φu;φu
0; 0;ψu;ψu

0Þ≡
Z

φu

ψu

Dϕu

Z
φu

0

ψu
0
Dϕu

0eifSϕ½ϕu�−Sϕ½ϕu
0�g; ð70Þ

and in terms of the initial and final amplitudes of the unstable mode, it can be cast as

J0 ∝ exp

�
iΩ

2 sinhΩt
½ðq2 − q02 þ q20 − q020 Þ coshΩt − 2ðq0q − q00q

0Þ�
�
:

The last expression implies that J0 satisfies the following relations:

ϕcl
ΩðτÞJ0 ¼

�
coshΩðt − τÞqþ sinhΩðt − τÞ

Ω
i∂q

�
J0 ð71Þ

and

ϕcl0
Ω ðτÞJ0 ¼

�
coshΩðt − τÞq0 − sinhΩðt − τÞ

Ω
i∂q0

�
J0: ð72Þ

Consequently, one can employ Eqs. (71) and (72) to obtain the master equation for ϱred:

∂tϱred ¼ −i
�
1

2
ð−∂2

q þ ∂2
q0 Þ −

Ω2

2
ðq2 − q02Þ

�
ϱred

−
κ2

4

Z
t

0

dτ½RehQ̂ðτÞQ̂ð0Þi coshΩτ −ΩRehQ̂ðτÞP̂ð0Þi sinhΩτ�ðq − q0Þ2ϱred

−
κ2

4

Z
t

0

dτ½RehP̂ðτÞP̂ð0Þi coshΩτ −Ω−1RehP̂ðτÞQ̂ð0Þi sinhΩτ�ð−i∂q − i∂q0 Þ2ϱred

þ κ2

4

Z
t

0

dτf½Ω−1RehQ̂ðτÞQ̂ð0Þi þ ΩRehP̂ðτÞP̂ð0Þi� sinhΩτ

− ½RehP̂ðτÞQ̂ð0Þi þ RehQ̂ðτÞP̂ð0Þi� coshΩτgðq − q0Þð−i∂q − i∂q0 Þϱred þ � � � : ð73Þ

The temporal arguments of the factors inside the integrals above were rearranged using the fact that both ϱ̂sð0Þ and ϱ̂γð0Þ are
stationary states. As for the Wigner functionWred associated with the state ϱ̂red, one obtains from the master equation above
that it satisfies

∂tWred ¼ fHðq; pÞ;Wredg þ
κ2

4

Z
t

0

dτ½RehQ̂ðτÞQ̂ð0Þi coshΩτ −ΩRehQ̂ðτÞP̂ð0Þi sinhΩτ�∂2
pWred

þ κ2

4

Z
t

0

dτ½RehP̂ðτÞP̂ð0Þi coshΩτ − Ω−1RehP̂ðτÞQ̂ð0Þi sinhΩτ�∂2
qWred

þ κ2

4

Z
t

0

dτf½Ω−1RehQ̂ðτÞQ̂ð0Þi þΩRehP̂ðτÞP̂ð0Þi� sinhΩτ

− ½RehP̂ðτÞQ̂ð0Þi þ RehQ̂ðτÞP̂ð0Þi� coshΩτg∂p∂qWred þ � � � : ð74Þ

In the master equation (73), we present only its free
dynamics term and the members engendered by the
interaction between the stable modes and the unstable
one which are able to cause loss of quantum coherence,
while the ellipsis encloses all the other terms. The terms
written explicitly in the right-hand side of Eq. (73) tend to

localize the state of the unstable mode both in amplitude
and momentum representations. This resembles the prob-
lem of localization of particles [43] and the analysis of
the quantum Brownian motion problem [44–46]. As for the
terms originated by the direct interaction between the
unstable mode and gravitons, they depend quadratically
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on the amplitude and momentum and, thus, are not
expected to localize the state in these representations.
We note that, even though it was assumed that the

background is curved by a compact spherical object, the
analysis we carried out so far applies for more general static
spacetimes.

C. Long-time regime

Our next task is to show that Eq. (73) does localize the
state of the unstable mode in the amplitude and momentum
representations. To do so, let us assume that initially the
unstable mode is in the state j0ui. We emphasize that this
choice only serves to simplify the calculations. Due to the
feebleness of the gravitational interaction, the evolution
dictated by the master equation (73) is dominated by the
free field evolution. As discussed in Sec. III, the free
dynamics acts as a squeeze operator. Thus, in the long-time
regime (Ωt ≫ 1) the initial state becomes highly squeezed.
In this case Eq. (20) leads to

−i∂qϱred ≈ Ωqϱred ð75Þ

and

i∂q0ϱred ≈Ωq0ϱred: ð76Þ

Then, by substituting Eqs. (75) and (76) into Eq. (73), the
master equation reduces to

∂tϱred ≈ −i
�
1

2
ð−∂2

q þ ∂2
q0 Þ −

Ω2

2
ðq2 − q02Þ

�
ϱred

−Dðq − q0Þ2ϱred þ � � � ; ð77Þ

with the diffusion coefficient D > 0 given by

D≡ κ2

4

Z þ∞

0

dτKðτÞe−Ωτ ð78Þ

and

Kðτ−τ0Þ≡Reh½Q̂ðτÞþΩP̂ðτÞ�½Q̂ðτ0ÞþΩP̂ðτ0Þ�i: ð79Þ

As for Wred, one has the following equation:

∂tWred ≈ fHðq; pÞ;Wredg þD∂2
pWred þ � � � : ð80Þ

The second term in Eq. (77) ensures the localization of ϱ̂red
in both amplitude and momentum representations, due to
the relation between q and p set by Eqs. (75) and (76).
One can estimate the magnitude of the diffusion coef-

ficient in the following manner. As mentioned earlier, we
assume the existence of a gauge in which the graviton field
admits the following decomposition:

γ̂abðt;xÞ ¼
X
j

Z
dϑðαÞffiffiffiffiffiffiffiffi
2ωα

p b̂ðjÞα e−iωαtεðjÞαabðxÞ þ H:c: ð81Þ

Here, α denotes all the pertinent quantum numbers, j labels

the graviton polarizations, b̂ðjÞα denotes the graviton anni-

hilation operator, εðjÞαab is the spatial part of the mode, and
ωα > 0. As for the field operator ϕ̂s, one has

ϕ̂sðt;xÞ ¼
X
lμ

Z
dϖâϖlμv

ðþÞ
ϖlμðt;xÞ þ H:c:; ð82Þ

with vðþÞ
ϖlμ given in Eq. (6). Thus, by substituting Eqs. (81)

and (82) into the expressions for the operators P̂ and Q̂,
Eqs. (67) and (68), with the aid of Eqs. (65) and (66),
Eq. (79) can be cast as

Kðτ − τ0Þ ¼ Re
X
jlμ

Z
dϑðαÞ
2ωα

dϖ
2ϖ

�
e−iðωαþϖÞðτ−τ0Þ

×
eβωα

eβωα − 1
j
1
ΓðjÞ
lμ ðα;ϖÞj2

þ eiðωα−ϖÞðτ−τ0Þ

eβωα − 1
j
2
ΓðjÞ
lμ ðα;ϖÞj2

�
: ð83Þ

In Eq. (83), β≡ ðkBTÞ−1,

1
ΓðjÞ
lμ ðα;ϖÞ≡

Z
Σ
dΣfεðjÞαab½Ωsð1Þabϖlμ þ sð2Þabϖlμ � ð84Þ

and

2
ΓðjÞ
lμ ðα;ϖÞ≡

Z
Σ
dΣfεðjÞ�αab ½Ωsð1Þabϖlμ þ sð2Þabϖlμ �; ð85Þ

where sð1Þabϖlμ and sð2Þabϖlμ come from Eqs. (65) and (66),

respectively, after we replace ϕs by vðþÞ
ϖlμ and factorize

e−iϖτ. The tensors sð1Þabϖlμ and sð2Þabϖlμ are weighted by the
spatial part of the unstable mode, FΩ ¼ ψΩY00=r, with ψΩ
as a “bound solution” of Eq. (11) with width of order Ω−1.

As a result,
1
ΓðjÞ
lμ and

2
ΓðjÞ
lμ can be neglected for α and ϖ

such that ωα;ϖ ≫ Ω. Thus, the main contribution for the
integrals in Eq. (83) comes from gravitons and stable
modes with frequency up to orderΩ. Consequently, one can
define the high-temperature regime here as kBT ≫ Ω. In
the spacetime of a neutron star, this regime is achieved at
temperatures T ∼ 1 K, in which case the diffusion coef-
ficient given in Eq. (78) reduces to

D ¼ κ2

4
ΩkBT

X
jlμ

Z
dϑðαÞ
2ω2

α

dϖ
2ϖ

� j
1
ΓðjÞ
lμ ðα;ϖÞj2

ðωα þϖÞ2 þΩ2

þ j
2
ΓðjÞ
lμ ðα;ϖÞj2

ðωα −ϖÞ2 þ Ω2

�
: ð86Þ
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Then, by factorizing all the dimensional terms above,D can
be simply written as

D ¼ 8πΔ
�
lP

R

�
2
�
kBT
Ω

�
Ω2: ð87Þ

In Eq. (87), Δ is a dimensionless quantity whose precise
value will not be relevant to estimate the decoherence time
scale, although it is expected to be of order unity.

D. Estimation of the decoherence time scale and the
width of the pointer states

Here, we are interested only in the decoherence effects
produced by the localization term in Eq. (77), the master
equation describing the unstable mode in its long-time
regime. As already mentioned—see discussion below
Eq. (74)—the other terms appearing in that master equation
are essentially of two types: either they also produce
decoherence but are not able to localize the state in the
amplitude and momentum representations or they are
responsible for damping effects. While the former only
reinforce the consequences of the localization term in
Eq. (77), the latter are not important when the coupling
with the environment is weak. Therefore, in order to
estimate the decoherence rate in the long-time regime,
one can drop these terms and consider the following
equations:

∂tϱred ¼ −i
�
1

2
ð−∂2

q þ ∂2
q0 Þ −

Ω2

2
ðq2 − q02Þ

�
ϱred

−Dðq − q0Þ2ϱred ð88Þ

and

∂tWred ¼ fHðq; pÞ;Wredg þD∂2
pWred; ð89Þ

with Hðq; pÞ given in Eq. (26).
A possible route to estimate the decoherence time scale

is to investigate the temporal behavior of the Wigner
function sign. As mentioned earlier, the Wigner function
is not positive in general. Nevertheless, decoherence should
suppress any negative region in the course of time. Indeed,
it was shown in Ref. [47] that for a nonrelativistic free
quantum particle, the presence of a localization term in
position in the master equation makes the corresponding
Wigner function positive after a certain time td, regardless
of the initial state of the system. This result was extended in
Ref. [48] for systems defined by quadratic Hamiltonians
and with more general couplings with the environment.
Following Refs. [47,48], the time td after which the

Wigner function Wred becomes positive is the solution of
the equation

det½Mð−tdÞ� ¼
1

4
; ð90Þ

where, in the case of our Eq. (89),

det½Mð−tÞ� ¼ D2

Ω4

�
cosh 2Ωt − 1

2
− ðΩtÞ2

�
: ð91Þ

The feebleness of the gravitational interaction implies in
our case that D ≪ Ω2 and, thus, from Eqs. (90) and (91)
one obtains

2D2

Ω4
cosh 2Ωtd ≈ 1:

Then, by using Eq. (87), one concludes that

td ∼
1

Ω
ln

�
1

8πΔ

�
R
lP

�
2 Ω
kBT

�
; ð92Þ

which gives us an estimate for the decoherence time scale.
The logarithm in Eq. (92) shows that the decoherence
process depends weakly on the magnitude of the interaction
with the environment, codified in the diffusion coefficient—
see Eq. (87). This logarithmic dependence results from the
combination of the squeezing caused by the time evolution
and the weak coupling between the unstable mode and its
environment. In particular, td does not depend much on the
value ofΔ. For the case of a neutron star (R ∼ 10 km), if one
assumesΔ ∼ 1 and a cosmic gravitational wave background
with temperature T ∼ 1 K, then td ∼ 160 ×Ω−1 ∼ 160 × R,
which is of the order of the backreaction time scale
tbr ∼ 10−3 s, when the vacuum and ordinary star energy
densities rival each other. We note thatΩtd ≫ 1, complying
with the long-time approximation.
The investigation we have undertaken so far suggests

that by the time backreaction becomes important, both the
appearance of classical correlations and decoherence have
been effective to turn the unstable sector of the initial
vacuum state into a classically correlated statistical mixture
of localized states in the amplitude and momentum repre-
sentations. The form of these pointer states depends on both
the internal dynamics of the open quantum system and its
interaction with the environment, and it has been derived in
just a few examples [49,50]. However, within the simpli-
fications made in this section, it is possible to estimate the
width of these pointer states. To do so, we shall again make
use of the variables u and v defined in Eq. (27) to cast
Eq. (89) as

∂tWred ¼ Ωðu∂u − v∂vÞWred

þD
4
ð∂2

u þ ∂2
v þ 2∂uvÞWred: ð93Þ

By assuming the weak-coupling limit, the state is squeezed
along the u direction and stretched along the v direction, as
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concluded in Sec. III for free fields. Consequently, in the
long-time regime, the u and v derivatives grow and fade
exponentially, respectively, and Eq. (93) can be cast as

∂tWred ¼ Ωðu∂u − v∂vÞWred þΩσ2∂2
uWred; ð94Þ

with σ2 ≡D=4Ω.
Following the analysis of Ref. [51], a general solution of

Eq. (94) can be expanded as

Wred ¼
Xþ∞

m≥0
n≥1

amne−ΩðmþnÞtvme−
u2

2σ2Hn−1

�
uffiffiffi
2

p
σ

�
;

where HnðxÞ denotes the nth Hermite polynomial. In the
long-time regime, the sum above is dominated by the term
with m ¼ 0 and n ¼ 1 and is given approximately by

Wredðt; q; pÞ ≈
e−Ωtffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
u2

2σ2

Z þ∞

−∞
du0 ~Wredð0; u0; ve−ΩtÞ;

ð95Þ
with ~Wredðt; u; vÞ≡Wred½t; ðv − uÞ=Ω; vþ u�. Hence,
when Ωt ≫ 1 the effect of decoherence on the Wigner
function in the weak-coupling limit is to make Wred
approach a Gaussian in the u direction with width σ.
This results from the competition between the free evolu-
tion, which tends to squeeze the state in the u direction, and
the diffusive term in Eq. (94). Then, the width of the density
matrix in the q representation can be obtained from Eq. (95)
if we note that

ϱredðt; q; q0Þ ¼
Z þ∞

−∞
dpeipðq−q0ÞWred½t; ðqþ q0Þ=2; p�

≈ 2e−2σ
2ðq−q0Þ2−iΩðq2−q02Þ=2e−Ωt

×
Z þ∞

−∞
du0 ~Wredð0; u0; 0Þ: ð96Þ

Thus, asymptotically, the initially pure density matrix
becomes a statistical mixture of localized states with width
ð2σÞ−1 ¼ ffiffiffiffiffiffiffiffiffiffi

Ω=D
p

. By using Eq. (87) with Δ ∼ 1, we obtain

ð2σÞ−1 ∼ 1ffiffiffiffiffiffiffiffi
kBT

p R
lP

ð97Þ

in the case of our model.
In the classical regime, one would like to regard each

pointer state peaked at some amplitude and conjugate
momentum as a point in the phase space. This is possible
only if the background spacetime is insensitive to quantum
fluctuations present in these states, i.e., if the pointer states
are narrow enough. We can estimate how narrow these
states are through the energy-momentum tensor operator
associated with the unstable mode. Thus, let us consider
the contribution from the quantum fluctuations to the

expectation value of this operator in some pointer state.
Taking, for instance, the energy density, the contribution
from a localized state with width σ is ρqf ∼ σ−2Ω2=R3.
Then, the ratio between this contribution and the energy
density ρ of the relativistic star curving the background is

ρqf
ρ

∼
Ω
kBT

:

Assuming T ∼ 1 K and R ∼ 104 m—the typical radius of a
neutron star—the ratio above is of order 10−7. This last
result shows that the pointer states of the unstable mode are
narrow enough in the long-time regime to be approximated
by classical states.
In conclusion, by the time backreaction becomes ineluc-

table, the (unstable sector of the) initially pure vacuum state
has evolved into a statistical mixture of localized states in
amplitude andmomentum representations. The exact formof
these states and of the statistical weights can be calculated, in
principle, from Eq. (73). Since the pointer states are narrow
enough, one can regard these weights as a statistical
distribution over the unstable mode classical phase space,
providing the initial conditions for the classical general-
relativistic equations at the onset of the backreaction.
We remark that the calculations assuming a graviton

environment with temperature T ¼ 0 lead to the same
master equation as in the case with T ≠ 0, namely, Eq. (73).
For a graviton environment in its vacuum state, we have
found that the decoherence time scale is of the same order
as in Eq. (92), assuming T ∼ 1 K. As for the width of the
pointer states, however, we have obtained ρqf=ρ ∼ 1.
Hence, even though decoherence diagonalizes the density
matrix when T ¼ 0, it is not sufficiently effective to
produce pointer states which are narrow enough to be well
approximated by points in the unstable-mode classical
phase space.

V. CONCLUSIONS AND FINAL REMARKS

In conclusion, after the scalar field instability is triggered
by the background spacetime, the interaction of the fieldwith
gravity forces its quantum fluctuations to behave classically
in a time scale of the same order of the one set by
backreaction. During this time, the appearance of classical
correlations and decoherence are effective enough to turn the
vacuumstate of the quantum field into a classically correlated
statistical mixture of localized states in the amplitude and
momentum representations of the unstable mode.
Then, we have argued how the gravity-induced vacuum

dominance effect [1,2] gives rise to classical initial con-
ditions for the general-relativistic equations. This leads us
to Ref. [52], where the authors discussed the possible final
states for the instability in the spacetime of a relativistic star
based on a classical analysis. There it was shown that, at
least for negative values of the nonminimally coupling
parameter ξ, the system can be stabilized by the presence of a
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non-null, static scalar field profile. As for positive values of
this parameter, the final state remains an open issue. The
appearance of a nontrivial classical field in the spacetime of
dense enough relativistic stars is analogous to the sponta-
neous magnetization of ferromagnets below the Curie
temperature and is known in the literature as “spontaneous
scalarization” [53,54]. Typically, this phenomenon changes
the gravitational mass of the star by a few percent and may
have important consequences for astrophysics [55].
Although the previous scalarization analyses do not consider
quantummechanics to fix the initial conditions, the fact that
their results seem to be robust with respect to the initial
conditions choice suggests that their conclusions should be
preserved even when the instability is triggered by quantum
fluctuations. Formore on the relation between the instability
and the scalarization process, see, e.g., Refs. [56–59].
The interest in scalar fields nonminimally coupled to

gravity relies on the fact that most matter in the Universe
cannot be accommodated within the standard model of
particle physics. Nonminimally coupled scalar fields have
not been ruled out by either astrophysical or cosmological
observations so far, even though it is possible to put

constraints on the values of the nonminimally coupling
parameter—see, e.g., Ref. [60].
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APPENDIX: EXPRESSIONS FOR THE TENSORS
Uabcd, Vabcde, AND Wabcdef .

In this appendix we present the expressions for the
tensorsUabcd, Vabcde, andWabcdef appearing in Sec. IV. By
defining the tensor Iabcd ≡ 1

2
ðgacgbd þ gadgbcÞ, one has

Uabcd ≡ −ð1 − 2ξÞðgad∇bϕ∇cϕþ gbc∇aϕ∇dϕÞ þ
1 − 4ξ

2
ðgab∇cϕ∇dϕþ gcd∇aϕ∇bϕÞ

þ 1 − 4ξ

2

�
Iabcd −

1

2
gabgcd

�
∇eϕ∇eϕþ

�
1

2
Iabcd −

1

4
gabgcd

�
ðm2 þ ξRÞϕ2

− ξ

�
ð2Iabcd − gabgcdÞϕ∇e∇eϕþ

�
gadRbc þ gbcRad −

1

2
gabRcd −

1

2
gcdRab

�

þ 2ðgabϕ∇c∇dϕþ gcdϕ∇a∇bϕ − gadϕ∇b∇cϕ − gbcϕ∇a∇dϕÞ
�
; ðA1Þ

Vabcde ≡ −gabðgcdϕ∇eϕþ gceϕ∇dϕÞ; ðA2Þ
and

Wabcdef ≡ 1

2

�
gadIbcef þ 2gefIadbc − gadgbcgef −

1

2
ðgaegbdgcf þ gaegcdgbf þ gafgbdgce þ gafgcdgbeÞ

�
ϕ2: ðA3Þ

[1] W. C. C. Lima and D. A. T. Vanzella, Phys. Rev. Lett. 104,
161102 (2010).

[2] W. C. C. Lima, G. E. A. Matsas, and D. A. T. Vanzella,
Phys. Rev. Lett. 105, 151102 (2010).

[3] W. C. C. Lima, R. F. P. Mendes, G. E. A. Matsas, and
D. A. T. Vanzella, Phys. Rev. D 87, 104039 (2013).

[4] R. F. P. Mendes, G. E. A. Matsas, and D. A. T. Vanzella,
Phys. Rev. D 90, 044053 (2014).

[5] A. G. S. Landulfo, W. C. C. Lima, G. E. A. Matsas,
and D. A. T. Vanzella, Phys. Rev. D 86, 104025 (2012).

[6] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu,
and H. D. Zeh, Decoherence and the Appearance of a
Classical World in Quantum Theory (Springer-Verlag,
Berlin, 1996).

[7] W. H. Zurek, Phys. Today 44, 36 (1991).
[8] W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862

(1982).
[9] The reader may note the distinct convention that we have

adopted here for the phase difference between the expo-
nentials in Eq. (10) with respect to the one in Refs. [1,2].

FROM QUANTUM TO CLASSICAL INSTABILITY IN … PHYSICAL REVIEW D 91, 024011 (2015)

024011-15

http://dx.doi.org/10.1103/PhysRevLett.104.161102
http://dx.doi.org/10.1103/PhysRevLett.104.161102
http://dx.doi.org/10.1103/PhysRevLett.105.151102
http://dx.doi.org/10.1103/PhysRevD.87.104039
http://dx.doi.org/10.1103/PhysRevD.90.044053
http://dx.doi.org/10.1103/PhysRevD.86.104025
http://dx.doi.org/10.1063/1.881293
http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevD.26.1862
http://dx.doi.org/10.1103/PhysRevD.26.1862


As noted in Ref. [5], this phase difference can take any value
in the interval �0; π

2
� and different choices lead to unitarily

equivalent representations for the quantum field. The phase
difference adopted in this paper serves to simplify the form
of the Hamiltonian operator discussed in Sec. III and to
adhere to standard literature conventions on squeezed states.

[10] W. C. C. Lima, Phys. Rev. D 88, 124005 (2013).
[11] B. Schroer and J. A. Swieca, Phys. Rev. D 2, 2938 (1970).
[12] W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys.

62, 867 (1990).
[13] V. V. Dodonov, J. Opt. B 4, R1 (2002).
[14] E. Wigner, Phys. Rev. 40, 749 (1932).
[15] A. H. Guth and S.-Y. Pi, Phys. Rev. D 32, 1899 (1985).
[16] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, Phys.

Rev. D 50, 4807 (1994).
[17] D. Polarski and A. A. Starobinsky, Classical Quantum

Gravity 13, 377 (1996).
[18] A. D. Linde, Inflation and Quantum Cosmology (Academic,

New York, 1990).
[19] L. Parker and D. J. Toms, Quantum Field Theory in Curved

Spacetime: Quantized Fields and Gravity (Cambridge
University Press, Cambridge, England, 2009).

[20] C. Kiefer, D. Polarski, and A. A. Starobinsky, Int. J. Mod.
Phys. D 07, 455 (1998).

[21] C. Kiefer, J. Lesgourgues, D. Polarski, and A. A. Starobinsky,
Classical Quantum Gravity 15, L67 (1998).

[22] F. C. Lombardo and D. L. Nacir, Phys. Rev. D 72, 063506
(2005).

[23] C. Kiefer, I. Lohmar, D. Polarski, and A. A. Starobinsky,
Classical Quantum Gravity 24, 1699 (2007).

[24] P. Martineau, Classical Quantum Gravity 24, 5817 (2007).
[25] C. Kiefer and D. Polarski, Adv. Sci. Lett. 2, 164 (2009).
[26] J. F. Donoghue, Phys. Rev. D 50, 3874 (1994).
[27] D. Arteaga, R. Parentani, and E. Verdaguer, Phys. Rev. D

70, 044019 (2004).
[28] C. Kiefer, Quantum Gravity (Oxford University, New York,

2007).
[29] We note that the second term in Eq. (36) can be absorbed

into the first one if one uses the de Donder gauge. The gauge
choice in this paper is discussed below Eq. (40).

[30] K. D. Kokkotas and B. G. Schmdit, Living Rev. Relativity 2,
2 (1999).

[31] F. Lombardo and F. D. Mazzitelli, Phys. Rev. D 53, 2001
(1996).

[32] F. C. Lombardo, F. D. Mazzitelli, and D. Monteoliva, Phys.
Rev. D 62, 045016 (2000).

[33] F. Lombardo, F. D. Mazzitelli, and R. J. Rivers, Phys. Lett.
B 523, 317 (2001).

[34] R. J. Rivers and F. Lombardo, Int. J. Theor. Phys. 44, 1855
(2005).

[35] R. P. Feynman and F. L. Vernon, Ann. Phys. (Berlin) 24, 118
(1963).

[36] L. D. Romero and J. P. Paz, Phys. Rev. A 55, 4070 (1997).
[37] J. P. Paz and W. H. Zurek, in Coherent Matter Waves, Les

Houches Session LXXII, EDP Sciences, edited by R.
Kaiser, C. Westbrook, and F. David, (Springer-Verlag,
Berlin, 2001), p. 533.

[38] The assumption of a graviton thermal bath is motivated by
the cosmic gravitational wave background, which is be-
lieved to be present in our Universe. A thermal gravitational
environment was assumed, for instance, in Ref. [39].

[39] M. P. Blencowe, Phys. Rev. Lett. 111, 021302 (2013).
[40] A. Das, Finite Temperature Field Theory (World Scientific,

Singapore, 1997).
[41] E. A. Calzetta and B. L. Hu, Nonequilibrium Quantum Field

Theory (Cambridge University Press, Cambridge, England,
2008).

[42] C. Anastopoulos and B. L. Hu, Classical Quantum Gravity
30, 165007 (2013).

[43] E. Joos and H. D. Zeh, Z. Phys. B 59, 223 (1985).
[44] A. O. Caldeira and A. J. Leggett, Physica (Amsterdam)

121A, 587 (1983).
[45] W. G. Unruh andW. H. Zurek, Phys. Rev. D 40, 1071 (1989).
[46] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843

(1992); 47, 1576 (1993).
[47] L. Diósi and C. Kiefer, J. Phys. A 35, 2675 (2002).
[48] O. Brodier and A. M. Ozorio de Almeida, Phys. Rev. E 69,

016204 (2004).
[49] W. H. Zurek, S. Habib, and J. P. Paz, Phys. Rev. Lett. 70,

1187 (1993).
[50] L. Diósi and C. Kiefer, Phys. Rev. Lett. 85, 3552 (2000).
[51] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508

(1994).
[52] P. Pani, V. Cardoso, E. Berti, J. Read, and M. Salgado, Phys.

Rev. D 83, 081501 (2011).
[53] T. Damour and G. Esposito-Farèse, Phys. Rev. Lett. 70,

2220 (1993).
[54] T. Damour and G. Esposito-Farèse, Phys. Rev. D 54, 1474

(1996).
[55] E. Berti, Braz. J. Phys. 43, 341 (2013).
[56] R. F. P. Mendes, G. E. A. Matsas, and D. A. T. Vanzella,

Phys. Rev. D 89, 047503 (2014).
[57] T. Harada, Prog. Theor. Phys. 98, 359 (1997).
[58] J. Novak, Phys. Rev. D 58, 064019 (1998).
[59] M. Ruiz, J. C. Degollado, M. Alcubierre, D. Núñes, and

M. Salgado, Phys. Rev. D 86, 104044 (2012).
[60] P. C. C. Freire, N. Wex, G. Esposito-Farèse, J. P. W.

Verbiest, M. Bailes, B. A. Jacoby, M. Kramer, I. H. Stairs,
J. Antoniadis, and G. H. Janssen, Mon. Not. R. Astron. Soc.
423, 3328 (2012).

LANDULFO et al. PHYSICAL REVIEW D 91, 024011 (2015)

024011-16

http://dx.doi.org/10.1103/PhysRevD.88.124005
http://dx.doi.org/10.1103/PhysRevD.2.2938
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1088/1464-4266/4/1/201
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/PhysRevD.32.1899
http://dx.doi.org/10.1103/PhysRevD.50.4807
http://dx.doi.org/10.1103/PhysRevD.50.4807
http://dx.doi.org/10.1088/0264-9381/13/3/006
http://dx.doi.org/10.1088/0264-9381/13/3/006
http://dx.doi.org/10.1142/S0218271898000292
http://dx.doi.org/10.1142/S0218271898000292
http://dx.doi.org/10.1088/0264-9381/15/10/002
http://dx.doi.org/10.1103/PhysRevD.72.063506
http://dx.doi.org/10.1103/PhysRevD.72.063506
http://dx.doi.org/10.1088/0264-9381/24/7/002
http://dx.doi.org/10.1088/0264-9381/24/23/006
http://dx.doi.org/10.1166/asl.2009.1023
http://dx.doi.org/10.1103/PhysRevD.50.3874
http://dx.doi.org/10.1103/PhysRevD.70.044019
http://dx.doi.org/10.1103/PhysRevD.70.044019
http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.1103/PhysRevD.53.2001
http://dx.doi.org/10.1103/PhysRevD.53.2001
http://dx.doi.org/10.1103/PhysRevD.62.045016
http://dx.doi.org/10.1103/PhysRevD.62.045016
http://dx.doi.org/10.1016/S0370-2693(01)01358-2
http://dx.doi.org/10.1016/S0370-2693(01)01358-2
http://dx.doi.org/10.1007/s10773-005-8899-6
http://dx.doi.org/10.1007/s10773-005-8899-6
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1103/PhysRevA.55.4070
http://dx.doi.org/10.1103/PhysRevLett.111.021302
http://dx.doi.org/10.1088/0264-9381/30/16/165007
http://dx.doi.org/10.1088/0264-9381/30/16/165007
http://dx.doi.org/10.1007/BF01725541
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1103/PhysRevD.40.1071
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1103/PhysRevD.47.1576
http://dx.doi.org/10.1088/0305-4470/35/11/312
http://dx.doi.org/10.1103/PhysRevE.69.016204
http://dx.doi.org/10.1103/PhysRevE.69.016204
http://dx.doi.org/10.1103/PhysRevLett.70.1187
http://dx.doi.org/10.1103/PhysRevLett.70.1187
http://dx.doi.org/10.1103/PhysRevLett.85.3552
http://dx.doi.org/10.1103/PhysRevLett.72.2508
http://dx.doi.org/10.1103/PhysRevLett.72.2508
http://dx.doi.org/10.1103/PhysRevD.83.081501
http://dx.doi.org/10.1103/PhysRevD.83.081501
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/10.1103/PhysRevD.54.1474
http://dx.doi.org/10.1103/PhysRevD.54.1474
http://dx.doi.org/10.1007/s13538-013-0128-z
http://dx.doi.org/10.1103/PhysRevD.89.047503
http://dx.doi.org/10.1143/PTP.98.359
http://dx.doi.org/10.1103/PhysRevD.58.064019
http://dx.doi.org/10.1103/PhysRevD.86.104044
http://dx.doi.org/10.1111/j.1365-2966.2012.21253.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21253.x

