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From quantum to classical instability in relativistic stars
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It has been shown that gravitational fields produced by realistic classical-matter distributions can force
quantum vacuum fluctuations of some nonminimally coupled free scalar fields to undergo a phase of
exponential growth. The consequences of this unstable phase for the background spacetime have not been
addressed so far due to known difficulties concerning backreaction in semiclassical gravity. It seems
reasonable to believe, however, that the quantum fluctuations will “classicalize” when they become large
enough, after which backreaction can be treated in the general-relativistic context. Here we investigate the
emergence of a classical regime out of the quantum field evolution during the unstable phase. By studying the
appearance of classical correlations and loss of quantum coherence, we show that by the time backreaction
becomes important the system already behaves classically. Consequently, the gravity-induced instability
leads naturally to initial conditions for the eventual classical description of the backreaction. Our results give
support to previous analyses which treat classically the instability of scalar fields in the spacetime of
relativistic stars, regardless of whether the instability is triggered by classical or quantum perturbations.
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I. INTRODUCTION

The vacuum state of quantum fields harbors many
interesting physical phenomena. In particular, the vacuum
gravitates, meaning, according to general relativity, that it
affects and is affected by the spacetime geometry. Although
this fact leads to important consequences for cosmology
and black hole physics, it normally produces only feeble
effects at astrophysical scales. In contrast to this, it was
argued in Ref. [1] that well behaved spacetimes curved by
classical matter may induce vacuum fluctuations of some
nonminimally coupled free scalar fields to go through a
phase of exponential growth. This growth enhances the
expectation value of the field energy-momentum tensor,
eventually leading the vacuum to take over the system
evolution. A concrete realization of this claim was given in
Ref. [2], where the amplification of the vacuum fluctuations
was studied in the spacetime of a relativistic star. The
appearance of this instability in other astrophysically
inspired scenarios was explored in Refs. [3,4]. As the
system is driven to a new equilibrium state, a burst of free
scalar particles is expected, regardless of the details of the
final configuration [5]. Nevertheless, the final configuration
is important for astrophysical purposes. In order to deter-
mine it, one must take into account the backreaction of the

andre.landulfo @ufabc.edu.br
‘weel@ ift.unesp.br
“matsas @ift.unesp.br
Svanzella@ifsc.usp.br

*
3

1550-7998,/2015/91(2)/024011(16)

024011-1

PACS numbers: 04.40.Dg, 03.65.Yz, 04.62.4+v

quantum field on the spacetime. This is a highly nontrivial
task due to the well known difficulties concerning the
backreaction in semiclassical gravity.

Notwithstanding, it seems reasonable to believe that
quantum fluctuations amplified enough to menace the
stability of relativistic stars cannot remain “quantum” for
too long. Thus, if the quantum phase ends before vacuum
fluctuations dominate the system, we expect backreaction
to be well described by the classical general-relativistic
equations. With this scenario in mind, we investigate the
quantum-to-classical transition of the quantum fluctuations
in the vacuum state, showing that the system does classic-
alize prior semiclassical backreaction becomes paramount.

The transition of a quantum system to a regime in which
its behavior is well approximated by classical physics is a
matter that has received attention in different areas—see,
e.g., Ref. [6]. For this quantum-to-classical transition to
happen, two ingredients, normally related, are necessary:
the appearance of certain classical correlations and the loss
of quantum coherence. By classical correlations we mean
that the corresponding Wigner function is peaked at the
classical trajectories, while the loss of quantum coherence
is necessary to forbid their superposition. The loss of
quantum coherence, in particular, results from the entan-
glement of the system with other “unobservable” degrees of
freedom which are eventually traced out. Thus, in order to
study the emergence of a given classical behavior from a
quantum system it is unavoidable to take into account its
interaction with some set of additional degrees of freedom,
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generally referred to as “environment” [7]. Both the
appearance of classical correlations and the process of
decoherence in this open system depend, in principle, on
the system internal dynamics and its interaction with the
environment. The form of the interaction is particularly
important: it defines according to what observable the
system will be regarded as classical [8].

Here, we are interested in the behavior of the unstable
modes of the scalar field, since they dominate the vacuum
fluctuations. We will show that for these modes the internal
dynamics will be enough to produce classical correlations.
The decoherence process needed to ensure the quantum-to-
classical transition, as defined above, will depend on the
interaction of the scalar field with gravity. The most natural
environment to consider is the one formed by the quantum
fluctuations of the background metric—gravitons. These
will not be the only degrees of freedom of our environment,
though. The coupling of the scalar field with gravity
induces an interaction between the unstable and stable
modes of the scalar field, making the latter ones also part of
the environment. From this analysis we can estimate the
time scale for the unstable modes to become classical with
respect to their amplitude and canonically conjugate
momentum. This time scale is of fundamental importance
to determine whether backreaction may be treated in the
classical rather than semiclassical realm.

The paper is organized as follows. In Sec. II we briefly
revisit the quantization of an unstable free scalar field
nonminimally coupled to gravity in the spacetime of a
relativistic star. In Sec. III we focus on the sector of the
Fock space related to the unstable modes and describe the
evolution of the corresponding vacuum state through its
Wigner function representation. It is shown that the field
amplitude and its canonically conjugate momentum
become classically correlated in a time scale comparable
to the one set by when backreaction becomes important.
Next, in Sec. IV we discuss the loss of coherence of the
vacuum fluctuations. By integrating out the degrees of
freedom of the gravitons and of the stable modes of the
scalar field, we obtain a master equation for the density
matrix describing the state of the unstable modes. The
analysis of this master equation shows that by the time
backreaction becomes important the initially pure vacuum
state has already evolved into a mixture of localized states
in field amplitude and momentum. We close the discussion
and make our final remarks in Sec. V. Throughout the
text we shall assume that 72 = c =1, and the signature
(= + ++) for the spacetime metric.

II. GRAVITY-INDUCED INSTABILITY

We start by considering a real scalar field ¢ evolving
over a globally hyperbolic spacetime background (M, g,;)
curved by some classical-matter distribution. The field
obeys the Klein-Gordon equation,
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-V, Vi + (m* + ER)¢p = 0, (1)

where m > 0 is the field mass, £ € R is the nonminimal
coupling parameter, and R stands for the scalar curvature.
The associated energy-momentum tensor is given by

Tah = (1 - 2§)Vaq’)vh¢ + é‘Rabqﬁz - 2§¢vavb¢

+ (263 )al V0 + 02+ eRPL @)

where R, stands for the Ricci tensor.

We quantize the field ¢ according to the canonical
procedure. Then, the field operator q’AJ can be expanded
in terms of a complete set of positive- and negative-norm

solutions {u((;), ul” }aet>

¢ = / d9(a)laus” + a, ug). (3)
with u((f) and u(_) = ugf)* orthonormalized according to

the Klein-Gordon inner product. Here, Z stands for some
set of good quantum numbers, while d denotes some
measure over this set. As usual, the canonical commutation
relations combined with the completeness of the modes
imply that the creation and annihilation operators @," and
a,, respectively, satisfy

(@4 a5"] = 8y (ax. ). (4)

while other commutators vanish. The 6y denotes the delta
distribution according to the measure 9, i.e.,
J d9(a)f(a)8y(a, ) = §(p). Finally, the vacuum state asso-
ciated with the selected set of modes is defined by
demanding a@,|0) = 0 for all @ € Z.

Assuming that the background spacetime is curved by
the presence of a static, spherically symmetric compact
object, its metric can be written as

ds* = —f(dr* — dy*) + r*(d6* + sin* 0dg*),  (5)

where f = f(y) > 0 and r = r(y) > 0 are functions of the
radial coordinate y such that lim,_, . f(y) =1,
lim,_ . 7(y)/x = 1, and dr/dy > 0. The last requirement
prevents the existence of trapped surfaces. By using the
symmetries of the underlying spacetime, it is possible to
find a set of time-oscillating positive-norm solutions of
Eq. (1) with the form

e—imt l//ml()()

" V2o )

where x denotes the spatial coordinates, while Y;, stands

o) (t,x)

wlu

Y10, 9). (6)

for the spherical harmonics, with [ =0,1,2,... and
p=~—l~l+1,...1, and @ > 0. The radial part of v,
satisfies
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!
_Wle + V.(sf)fl//wz = T Yo, (7)
vanishing at the origin and being well behaved at spatial

infinity. For a star composed of perfect fluid, one can use
(

Einstein equations to cast the effective potential Ve?f in

Eq. (7) as
(I+1 1 872G _
e G LAl
(8)

where p = p(y) denotes the energy density of the stellar
fluid and

_ 3M(y)
~Anr(y)

is the average density of the star up to the radial coordinate
r(x), which encompasses a mass M(y).

Depending on (i) the values of the nonminimal coupling
parameter &, (ii) the mass-radius ratio of the star, and (iii) its
equation of state, the time-oscillating modes (6) may not be
the only ones complying with the boundary conditions
mentioned above. Indeed, the effective potential (8) allows
the existence of “bound states” [2]. These solutions give
rise to exponentially growing modes,

px) )

th—m/4 + e—Qt+i7r/4 Wal (){)

VAQ r(x)

for which the radial part obeys

wo (1.X) = Y, (6.0), (10)

1) _
_WWQI + Verwar = —Qway, (11)

with Q > 0 and the form of the temporal part was chosen to
(+)

ensure the positivity of the Wy, horm [9].

For the sake of simplicity, we shall assume hereafter the
existence of a single unstable mode. Since the centrifugal
term in Eq. (8) contributes positively to the effective
potential, this mode will have angular momentum quantum

numbers / = p = 0 and will be denoted simply by wg) and
its radial part by wq/r. The spatial part of the stable and
unstable modes will be denoted by F,;, and Fgq, respec-
tively, i.e., Fpy(X) =yoYy,/r and Fo(x) =woYoo/r.
We shall denote by Ezwlj and a the creation and

(+)
wly

wly
annihilation operators defined by the modes »_, and by

4o and ag the same operators defined by the mode wg).

Let us consider the situation in which the system begins
in a stationary stable phase in the past and evolves into an
unstable one in a time scale much smaller than any other
present in the problem. Assuming that the quantum field is

PHYSICAL REVIEW D 91, 024011 (2015)

in the vacuum state with respect to the stationary past

observers, it is possible to show that the initially quiescent

quantum vacuum fluctuations will grow as (¢*) o €2

during the unstable phase. The exponential enhancement of
the quantum fluctuations impacts on the (renormalized)
expectation value of the energy-momentum tensor operator,
(T,), eventually leading the quantum field to backreact on
the spacetime [1]. In order to estimate how long it takes for
the quantum fluctuations to threaten the star stability, we
first note that the existence of the unstable (bound) solutions
typically requires potentials satisfying sup |V§(f)f> |IR? ~ 1, in

which case Q2 ~sup [V\%| ~ R, where R denotes the

radial coordinate r of the star surface—see discussion in
Sec. III of Ref. [5]. By calculating, e.g., the ratio between
the vacuum and stellar energy densities,

2
%N <%) x exp (2t/R), (12)

with Zp denoting the Planck length, one concludes that the
backreaction time scale dictated by the semiclassical
Einstein equations is #,, ~ RIn(R/#p), which is of the
order of a few milliseconds for a neutron star [2]—for a
more comprehensive account on this vacuum awakening
effect, see Ref. [5], and Refs. [10,11] for a rigorous
discussion on the quantization of unstable linear fields in
globally hyperbolic spacetimes.

III. FREE FIELD EVOLUTION AND THE
APPEARANCE OF CLASSICAL CORRELATIONS

In a static spacetime, like the one engendered by the
relativistic star considered above, the Hamiltonian operator
can be formally defined from the energy-momentum tensor as

H= / dZnebT . (13)
z

Here, %% = (9,)* is the Killing vector field generating the
time isometry, n is a future-pointing unit vector field
orthogonal to the Cauchy surface X, and dX = v/hd>x is the
volume element with respect to the spatial metric tensor
hay, With h = det h,;,. Using the expansion (3) in terms of

the modes vf;,,)l and wg), we obtain from Eq. (13) that

H=H,+H,. (14)

In Eq. (14) the Hamiltonian operator associated to the
unstable mode wg is given by

A

Q
H, = ) (agaq + ag'ag"), (15)

which corresponds to the Hamiltonian of an upside-down

harmonic oscillator, while A is the Hamiltonian operator
(+)

w1, and consists of a collection

related to the stable modes v
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of harmonic oscillators. Hence, we shall revisit the quan-
tum upside-down harmonic oscillator in the light of our
problem.

By defining the operators

1

o = ag + ag’ 16
qo m( Q Q ) ( )
and
R 1,
Pa = —l\/;(ag - aQT)’ (17)

Eq. (15) can be cast as

N 1., Q2
v =35Po—5 G

The operators (16) and (17) are related to the field operator
¢ and its time derivative according to

1 +00 T 2r N
o = —— rd sinedﬁ/ dop(0, x
o= = | | [ dpi0.x)wal2)

and

1 +oo ka 2r n
Do = —— rd sinQdH/ ded,¢ (0, x .
ba=—7= /O b4 A e (0, x)ya(x)

In order to obtain these expressions, we have used that yq
can be chosen to be a real function satisfying

+o0
/0 dyyo(r)* =1

and

AHm dywo(X)Wwoo(r) =0,

for all @ > 0, and the orthogonality between the spherical
harmonics. It will be with respect to the observables p¢, and
go that we shall investigate the classicalization of the
unstable mode.

Next, we note that in this fixed-background regime the
modes are decoupled and evolve independently. Thus, it is
possible to write the vacuum state of the unstable quantum
field as the following tensor product:

10) = 105) ® [0u), (18)

where |0;) and [0,) are defined by d, |0;) = 0, for all @, [
and p, and agl0,) = 0. Therefore, one can separate the
Fock space in its stable and unstable sectors and study their
time evolution separately—see, e.g., Ref. [10].

In what follows we will focus the discussion on the
evolution of the state |0,). For this end, let us define
In(1)) = U(1)|0,), with the evolution operator

PHYSICAL REVIEW D 91, 024011 (2015)
U(1) = et (19)
Thus, the fact that d|0,) = 0 implies
U(naU' (1)ln(1) = 0.
Then, by using the identity
U(1)aqU' (1) = ag cosh Qr — iag" sinh Qr

and the definitions given in Egs. (16) and (17), one
arrives at

Paln(1)) = a(t)galn(2)), (20)

where the function a(r) is conveniently written as a(t) =
ila(t) + ib(r)] with

Q
) =—— 21
al?) cosh 2Q¢ (21)
and
b(r) = —Qtanh 2Qz. (22)

Finally, by solving Eq. (20) in the representation of the
eigenstates of gq, i.e., solving for (7, q) = (¢|n(t)), one
has

i) = (A0) ey

T

The wave function (23) is known in the literature
as the squeezed vacuum state. The evolution operator
defined in Eq. (19) is the squeeze operator S(s,f)=
exp {—s(e " agag — e?ag ag")/2}, with the squeezing
parameter s = Qf and the squeezing angle f = —z/4. For a
detailed account on the properties of these states, see, e.g.,
Refs. [12,13].

A useful tool to analyze the classicalization of a quantum
system is the Wigner function. Given a general state
represented by the density matrix ¢, the associated
Wigner function is defined by [14]

1 +00 )
W(t.q.p) = 2;;/ dyo(t.q—y/2.q +y/2)e'",
(24)

with ¢(7, ¢, ¢') = (q|0(¢)|¢’). From Eq. (24), one sees that
W is a real function, but not necessarily positive. Moreover,

if ¢ = [w)(y/|, then

/_  apW(g. p) = w(q)P

[es]

and
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/_ = dqW(q. p) = 15 ()

(Se]

with w(p) being the Fourier transform of y(q) = (q|y).
In the case of an upside-down harmonic oscillator, W
obeys

oW(t,q,p) ={H(q,p).W(t,q,p)}, (25)

where {-, -} denotes the Poisson bracket and H(q, p) is the
classical Hamiltonian

_1, @ 2
Hlq.p)=5p" =54 (26)
We remark that Eq. (25) coincides with the Liouville
equation for the classical system defined by the
Hamiltonian (26). (We emphasize that this result holds
only for quadratic potentials.) In order to analyze Eq. (25),
it is useful to rewrite it in terms of the variables

-Q Q
p2 el and vz—p+2 q’

(27)

which leads to
oW =Q(ud, —vd,)W. (28)

For localized states, Eq. (28) tends to exponentially stretch
the Wigner function along the v direction and exponentially
squeeze it along the u direction. This behavior just reflects
the structure of the classical phase space of the upside-
down harmonic oscillator. The orbits of the Hamiltonian
(26) are hyperbolas with asymptotes at the lines # = 0 and
v = 0, while u = v = 0 is a saddle point. Physically, this
means that the particles are generally pushed away from the
origin by the potential.

In our particular case, we have from Eq. (23) that the
density matrix of the squeezed vacuum is

o(t,q.q") = @e—%a(f)(qzw’z)—%b(t)(qz—q’z)’ (29)
P

and, thus, the corresponding Wigner function gives

b(1)q)?
a(r)
In the limit Q7 > 1, one has from Egs. (21) and (22) that

a~2Qe > and b ~ —Q. Hence, the state |0,) evolves into
a highly squeezed state and Eq. (30) reduces to

1
W(t.q.p) = ;exp{—a(t)q2 -

)R I @Ps(p - Qq),  (31)

where § denotes the usual delta distribution. As time goes
by, the Wigner function (30) becomes negligibly small

W(t.q.p
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away from the classical trajectory u = 0. This shows that
when Qf> 1, the possible values for the amplitude
(proportional to g) and momentum (proportional to p) of
the unstable mode are correlated along a classical trajectory
in the phase space.

The expression for W given in Eq. (30) is positive, a fact
that holds for any Wigner function associated with a
Gaussian state. Moreover, from Eq. (24), W also satisfies
J72 dgdpW = 1. Thus, it can be seen as a probability
distribution over the classical phase space of the system.
This interpretation, combined with the appearance of
classical correlations, is sometimes regarded as a kind of
quantum-to-classical transition. In cosmology, for instance,
it can account for some of the features of the cosmic
microwave background inhomogeneities [15—-17], which
can be traced back to the quantum fluctuations present in
the inflationary epoch [18,19].

Notwithstanding, there are some reasons why one should
regard this kind of quantum-to-classical transition as being
incomplete. For instance, looking at Eq. (29) one sees that
while W becomes peaked at a classical trajectory, the pure
state ¢ turns more delocalized in both ¢ and p representa-
tions. Besides, W cannot be interpreted as a probability
distribution in general. (As remarked above, the Wigner
function can assume negative values, a fact directly related
to interference.) Fortunately, these difficulties can be over-
come if one takes into account decoherence effects. In
inflationary cosmology, a more comprehensive understand-
ing of the quantum-to-classical transition including
decoherence was tackled, e.g., in Refs. [20-25].

IV. DECOHERENCE AND THE EMERGENCE OF
CLASSICAL INITTIAL CONDITIONS

In order to complete the picture of the quantum-to-
classical transition, we shall analyze the loss of quantum
coherence by the scalar field during the unstable phase.
As anticipated, we shall study the decoherence process
induced by the interaction between the quantum scalar field
and quantum fluctuations of the gravitational field. To do
so, we will apply standard perturbative quantum field
theory techniques to gravity from the perspective of an
effective field theory [26-28].

A. Environment

We start by considering the classical action
The Einstein-Hilbert action is given by
2 4
Senlgas] =— | d*x/=9gR,
K= Jm

with k = /327G and g = det g,;,, the scalar field action is
defined through
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1
ol 0u1] = 5 /M dxy =GV, BVD + (m? + ER)D?,

and Sy[¥P, g,,] stands for the classical-matter action. We
perturb this system by taking g,, = 9., + k7. and
® —» & + ¢, while keeping the classical matter unper-
turbed, and expand the total action (32) up to second order
in both y,, and ¢. In what follows it will be assumed
® = 0. (Thus, ¢ is small in the sense that it can only induce
small perturbations on the background metric.)
The expansion of the Einstein-Hilbert action gives

Seu[9ap + KV ab)
2
= / d4x\/:§{gR+£g2,+cgﬂ+---],
M

with

and

1
L=~ 3 [W“bvcm - V9YV,y +2V,y"V,y

1
—2VyV iy + R <r”” Yab — 53/2)

1
—4Rab (n“ybc - Eﬂ’ab):| . (33)

where we have defined y = ¢*?y,,,. For the scalar field, one
obtains

So [ ap + kv ap] = /M dx/=glL% + Y + 8+,
with
1
L5 = =3 [VupVid+ (m* + RGP (34)

'C((I?) = Tabyab7 (35)

K
2

2

4 K a. C a C e
Ly = 7 [Uavcar yed + E(V upeaer Ve

+ Wabcdefvaybcvdch)]' (36)

The tensor T ,;, appearing in Eq. (35) was defined in Eq. (2),
while the expressions for the tensors U ,pcq> Vapede» and
W apeaer are presented in Egs. (A1)-(A3) of the Appendix,
respectively [29]. Similarly, the expansion of the classical-
matter action can be written as

PHYSICAL REVIEW D 91, 024011 (2015)

SM[\P? Gab T+ K}/ab]
= / dxy/=glLy + L) + LG+,
M

where the specific form of the terms inside the square
brackets depends on the Lagrangian assumed for the
system. The background spacetime in which the perturba-
tions are defined will be given by the Einstein equations

Ry -2 Rgyy = 7 (37)
ab D) gab*4 ab

obtained from the zeroth-order action, where Tg’}, denotes
the energy-momentum tensor of the classical matter. As for
the perturbations, it is more convenient to write them in
terms of the free scalar field, free graviton, and interaction
actions Sy, S,, and Sj, respectively:

%Mz&wwqﬁk (38)

&WEA¢Wﬁ$Hﬁm (39)

and

&@¢ww1zjxdﬁwcac§*+cgw (40)

For the gravitational perturbations, one would need also to
specify a gauge to fix the dynamics. However, the analysis
which we will undertake in the next sections dispenses a
particular gauge choice. All we have to assume is that there
is a gauge in which the graviton field equation admits
stationary oscillatory modes. This assumption holds, for
instance, in the case of a background spacetime curved by a
static spherically symmetric star—see, e.g., Ref. [30].

If the nonminimally coupled free scalar field is desta-
bilized by the curvature of the background spacetime—Ilike
in the case of the compact object discussed in Sec. [I—the
perturbation ¢ can be split into its stable and unstable parts,

b=+ du, (41)

which are defined by
ptx)=Y / Ao () Fop(x) + e (42)
lu

and

Pu(1.X) = o (1) Fo(X). (43)

By using the orthogonality relations

024011-6



FROM QUANTUM TO CLASSICAL INSTABILITY IN ...
/ dSFo(x)? = 1,
>
/2 AF 1y (X) F e (X)* = 88,00 8(e — 7).

and

[ aZFa()F o) = 0
b
the free scalar field action (38) can be cast as

Spldl = Sylds] + Syl (44)

For the interaction action, Eq. (40), we observe that the
tensors Ty, Uapear Vabedes a0d Wypeqor depend quadrati-
cally on ¢ and its derivatives. Hence, by employing the
decomposition (41), the energy-momentum tensor can be
written as

Tup =TS + T + 1, (45)
where T%") corresponds to the tensor given in Eq. (2)
calculated for ¢, and

tay = (1 =28)(Vidp Vb + VupuVyibs)
+ 28R iy bsu — 26(DVuVihy
+ ¢ VaVig) + (4 - 1) [V Vo,
+ (m* + ER)psbulgup- (40)
‘We note that, in contrast to the tensor TS;), the expression
given in Eq. (46) depends linearly on the amplitude of the

field ¢, and its derivatives. As for the other three tensors,
one has

Uabcd = USb)cd + U(l;y)cd + Uabeds

a

Vabcde = Vflslzcde + VEll;;)cde + Vabede:
and
abedef abcdef + abcdef + Wabcdef-

a

obtained from Eqs. (A1)~(A3) when one replaces ¢ by ¢y,
while the form of u,pcq, Vapedes a0d Wypeqer can be easily
deduced from these equations and depend linearly on ¢,
and on ¢, and its derivatives. We omit the expressions for
these tensors, since they are long and will not contribute in
the calculations that follow. This approach of splitting the
quantum field into two sets of modes according to some
scale was employed in Ref. [31] to study the decoherence
of modes above a certain wavelength in a /1454 model, and it

In these expressions, U E;/:;, Vng/: (38, and W(‘b/ Cu 36  are tensors
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is a useful strategy to tackle the issue of the emergence of a
classical order parameter in phase transitions [32—34].

In our setting, one does not expect quantum fluctuations
of the metric and the stable modes of ¢ to have any relevant
influence on the background spacetime during the unstable
phase. They, however, are perceived by the unstable mode,
becoming entangled with it due to the interaction (40) in the
course of the time evolution.

B. Derivation of the master equation

Once one has defined the environment, it is possible to
construct the master equation for the reduced density
matrix. We start by assuming that at t = 0 the total density
matrix of the system formed by the scalar perturbations and
gravitons can be written as

with ¢,(0), 0,(0), and ¢, (0) denoting the initial states of the
stable modes, unstable mode, and gravitons, respectively.
Thus, initially these subsystems are uncorrelated. In the
field amplitude representation, the reduced density matrix
for the unstable sector of the field at # > 0 is defined by
tracing out the gravitons and stable degrees of freedom
according to

Qred(tvqouv(pu/)E/d¢sd€ah<(pu’(ps’gab|@(t)|¢u/a(psvgab>'
(47)

Above, we have denoted by |¢.), |@,), and |¢,,) the
eigenstates of the field operators &Ss, (}u, and 7,,, respec-
tively, at t = 0. The time evolution of the reduced density
matrix can be written as

Ored(t, Qo 0) = / dyrdy' 04 (0w )

X Jred (1, Qo 050,90, 9/), (48)

wherein ¢, (0’ Yus l//u/) = <l//u|@u (0) |Wu/> and J .4 stands for
the reduced propagator. Here, the reduced propagator is
defined in terms of the following functional integral:

Jred<t7 (e (/’u/§ 0, Y, l//u/)

= /gau D¢u " D¢u/ei{s¢[{/’u]_s</’ [(/)“I]}F[¢uv ¢u/] . (49)
. v

In Eq. (49), F stands for the Feynman-Vernon influence
functional [35] and is given by
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Flpy. ¢,/ = / de / dydy 0,0,y w)

(ﬂ5=§05’
X
W'

X Flps + dus b + 4. (50)

D Db e {5sl01-5,l9.)

where we have defined

Flp o] = / du / Ay dEar' 0,0, Eup. £y

Sab=Sab' ) )
X / ’ ’ DyabDyab/el{SV[7ab]_sy[7ab]}
Savlap’

x e {Smldval=Sinld"va'1} (51)

The assumption that initially the stable and unstable

sectors of the quantum field are uncorrelated is necessary if
one desires to employ the influence functional formalism.

|
Lip.¢] = /dr/ dr/dZdE’

Teq(¥') = T'ca(x')] + ilm(p*

and

qﬁ(p’:—/dr/de

+5 va/\bc x)vd Ef(x» [ abcdef(x) -

In Eqgs. (53) and (54), (...); = tr{g,(0)...} is the thermal
average and the tensors 7'y, Uapeas Vavedes a0 W gpeger—
given in Egs. (2) and (Al)-(A3)—are calculated for ¢,
while T’ o, U upeas V' abedes and W g4, are calculated for
¢’. The functional I, is clearly divergent and must be
absorbed into the bare parameters of the free scalar field
action, Eq. (38). We shall not delve into the question
of what corrections this procedure may introduce here,
since it does not contribute to decoherence effects—for a

|

2

'\ab X)}/ ( )>ﬁ[Uabcd(x> - U/abcd(x)] + 5<?ab(x)vc}?de(x)>/}[Vabcde(x) -

Wlabcdef(x)]}' (54)

PHYSICAL REVIEW D 91, 024011 (2015)

This absence of initial correlations would not be the case
if the field, say, had evolved from the vacuum state defined
by stationary observers in a previous stable phase.
Nevertheless, initial correlations between the system and
its environment are known to affect the dynamics set by the
master equation only in its early stages—see, e.g.,
Refs. [36,37]. This will not be an issue here since in what
follows we will be concerned only with the system in its
long-time regime.

Next, we assume that the density matrix ¢,(0) corre-
sponds to a thermal state at temperature 7 and that 9,(0) =
|05)(05| [38]. By using the closed time path integral
formalism [40,41], we evaluate F up to quadratic order
in k and obtain the following formal expression:

Fip. ) =1 =S 010+ 00D, (52)

where

() {Re(7* (x)7°4 (")) gl T ap (x) = T" a1 (x)]

()7 ()l Tap (x)

— T (T ea(x) + T'ca(x)]}, (53)

V/abcde (X)]

discussion on the quantum corrections induced by a
thermal bath of gravitons in flat spacetime, see, e.g.,
Ref. [27]. Thus, we are left with

Flp.d) = 1 =" Lig.¢). (55)

Then, by substituting Eq. (55) into Eq. (50) and using
Eq. (45), one obtains

Flpw ') = 1= 5 (Gi v ) + Galihu 1+ Gl 4. (56)

with

Gilpu. ¢ = /d’r/ dT/dZdZ’f

Im (7% (x)7 (&) (TS ([T () = T8 (), (57)
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Go s 4] / dt / dr / dzdy' f(x)f (x'){Re(p*
+ im0 (x)7° (¢ >>ﬁ[TSB (x) - T

and

Y o)

PHYSICAL REVIEW D 91, 024011 (2015)
X)) T () = T )T () = T ()]

)+ T ()]}, (58)

o=, . , t T
G3[¢u7 ¢u/] E/d(ps/dWdes/Qs(ov Vs, Ws/)/ﬂb ’ D¢SD¢S/el{S¢[¢>]_S¢[¢>]}/ dT/ dT//dZdZ/f(X)f(X/)
v, 0 0 z

!
ss¥s

< {Re(7* (x)7°4(x')) ylta
X [tea(¥) + 7 ca(¥)]}.

In Eq. (57), (T b>0 stands for the renormalized expectation
value in the state |0,) of the energy-momentum tensor
operator associated with gbg As for the tensors 7' h) and 7,
in Egs. (57)-(59), they are constructed from ¢, and ¢,
while 7. and ¢, are constructed from ¢, and ¢,’.

The terms in the influence functional (56) responsible for
decoherence effects and damping are those given in
Egs. (58) and (59). (Of course, these functionals depend
on the specific interaction of the unstable mode with its
environment.) While the former comes from the interaction
of the unstable mode with gravitons through its energy-
momentum tensor, the latter is a consequence of the
interaction of the unstable mode with the whole environ-
ment via its amplitude and derivatives. Consequently, one
expects that under the influence of the functional (58), the
density matrix will tend to evolve into a mixture of states
which bear some relation with the energy-momentum tensor
operator. The functional (59), on the other hand, will tend to
diagonalize the density matrix in the basis of localized states
in amplitude and momentum of the unstable mode. The set
of states in which the density matrix becomes diagonal is
known in the literature as “pointer states.” Pointer states are
those states less affected by the environment; i.e., they are
the states less willing to evolve into an entangled state with
the environment [6,8]. The implications of the terms in
Eq. (58) were recently investigated in Ref. [39] for the case
of a flat spacetime background. There it was shown that in
the nonrelativistic regime the density matrix tends to
become diagonal in the energy basis—see also Ref. [42].
Here, however, we will be concerned with the decoherence
effects introduced by terms in Eq. (59) in the full relativistic
curved spacetime regime.

In order to obtain the master equation for the density
matrix (47), we need to calculate the time derivative of the
reduced propagator J 4. The form of the propagator can be
computed by applying the saddle point approximation to
the functional integral in Eq. (49). In this approximation,
one has for J 4 that

Jred(1. 0o 00w w)) mexp{iA[p. @3]}, (60)

p(X) = 1 ap (O)][tea(x') = ¥ ca ()] + iIm (7 ()7 (x")) pltar (%)

- t/ab (X)]
(59)

|
with the total effective action

A[¢u’ ¢u/] = S¢[¢u] - S¢[¢u/] + SIF[¢u’ ¢u/],

and the influence action Sy being implicitly defined

through F[a,, ¢,'] = exp{iSi[hu. ¢.']}. Above, ¢f and
@< are solutions of the equation of motion,

O0ReA
6¢u ¢u/=¢u

=0,

satisfying the conditions ¢(0,x) = w,(x), ¢5(t,x) =
pu(x). ¢7(0,%) = y,'(x), and ¢/ (1, %) = ,(x).

At this point, it is clear that decoherence will be induced
by terms in the propagator J,q which are of order 2.
Consequently, one can approximate ¢<' and ¢¢” by unstable
solutions of the free scalar field equation with the appro-
priate conditions at the initial and final instants. Thus, the
classical solutions will have the form

P (7. %) = ¢ (7)Fa(x), (61)
with
d/y_  SinhQ(z—1) sinh Qz
#o7) = a0 sinh Qr ta sinh Qt (62)

Now, inserting Eq. (61) into the action (38), one obtains
1 .
SyR) = [ el + 2 o)

= Senhor (g5 + ¢*) cosh Q1 — 2¢4q],  (63)

with the second equality above coming from Eq. (62). As
for the tensors appearing in Egs. (57)—(59), we shall denote
by T b and ¢ the field energy-momentum tensor and the
tensor given in Eq. (46), respectively, when calculated for
#<. By employing Eq. (61), the expression for ¢} can be
cast as
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S, = g+ e, (64)

where

[nanp, + (1

Ef,,’—f{

%) = nany{(1 - 48D FoD b, +
—-2(1=2&n
— (1 = 48)hp D FQD by + (m* + ER)Foip,]
+ 28[9Ry, — (Dyay, + a,ap)|Fads.

and we recall that f was defined in Eq. (5) and
n = f~12(9,)%. In Egs. (65) and (66), a® = n‘V,.n? is
the acceleration of the observers following the orbits of the
timelike Killing vector field, D, is the derivative operator
associated with the spatial metric A, and )R, denotes
the Ricci tensor of the spatial section. Finally, by combin-
ing Egs. (56) and (60) and then using Egs. (63) and (64),
one obtains an expression for J 4.

For the calculation of the reduced propagator time
derivative in the saddle point approximation, it is useful
to define the operators P and 0 as

Ol = Dy + {m / "ar / dSdS!£(x) f(x) D (1, x: 7/ x') () (2. %)) [T (1. %)

/ dr’ / dd> f(x

— D1, x; 7, x") [T, (2, %)

< [#a(1) = b5 (D][Pa(7') -
+Re(Q(P(@)) 93 (1) — 93 (1)][¢a(7') -
+im(Q(N (7)) [#5(1) — o3 (DNHA() +

+iIm(Q()P() (1) - b (1) %

with

— 4 hap|nV ops + 2(26 = 1) Dy by

(m? + ER)Fads + 25(Dea + aca®)Fod
(an)FQnCvc¢s + 4§an(an)(n°'VC¢s) + 2(1 - 2§)D

— dengand) +45j}n DyFo.  (65)

—26FoD D ¢ps — 26D D Fods}
@FaDyp) s

—28(FoD Dys + DDy Fogy)

(66)

(XN (e, x: 7/ X [T, (1. %) —

6(7) + 98 ()] + ilm(P(1) O(z)))[¢

P(e) = /2 a0 ()i (e x)  (67)

and

0(c) = / S (%7 (2. X)) (.x).  (68)

where i’fllh) and ?22,7) are obtained from Egs. (65) and (66) by

replacing ¢, by the field operator ¢,. Then, the time
derivative of the reduced propagator can be written as

= Tgp(t.x)]

Toy (. X)][T (7. x") = Tg (7. x')]

K.2

~ T ) + T = [ (Re@(00(2)

& ()] + Re(P()P(2)) [9a (1) — 93 (D)[a(7) — ¢ (¢))]
b3 (7)] + Re(P(1)O() ¢
5 ()] + im(P(0) P(2')) [ (1) —

a(1) — 98 (N]lea(7) - 93 (7)]
pa (D)D) + 45 ()]

(0 = 98 (D3 () + 93 (z )]}}Jo,
(69)

2

Nebed (e, x: 7, x) = 7 Re( (2. %) (2. X))}

and

2
Daht‘d(r’ X;T” X) = —KZ Im<77 b(T X)y d(T X )>ﬂ
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while (...) =tr{¢,(0) ® ¢,(0)...
defined by

PHYSICAL REVIEW D 91, 024011 (2015)

} and J, denotes the free propagator for the unstable mode. The free propagator is

Jo(t, pu, 030,y w) = / " Dp, / R Y XPCIASATN (70)

and in terms of the initial and final amplitudes of the unstable mode, it can be cast as

iQ

Jo & exp {m [(¢* = 4% + q§ — q§) cosh Q1 — 2(qoq — 61661’)]}-

The last expression implies that J, satisfies the following relations:

() = {cosh Q(r—1)g + Smhggﬁ iaq} Jo (71)
and
P (1)Jy = [cosh Ot — 1)q =S Qgg’ —7) iaq} Jo. (72)

Consequently, one can employ Eqgs. (71) and (72) to obtain the master equation for @,.q:

1
8thed =~ |:§ (_812] + 8121’)

~

’_‘ -l>|x.\; 4;|>§m A|KI\)

Q2
> (4> - q/z)] Ored

dt[Re(Q(7)Q(0)) cosh Qr — QRe(Q(7) P(0)) sinh Q7] (g —

q/)zgred

dt[Re(P(7)P(0)) cosh Qr — Q~'Re(P(2)Q(0)) sinh Q7] (—id, — i0 ) 0red

dr{[Q'Re(Q(7)Q(0)) + QRe(P(7)P(0))] sinh Qr

(T)A( )) +Re(0(7) P(0))] cosh Qz}(q — ¢') (=i, = i0y)@rea + -+ (73)

The temporal arguments of the factors inside the integrals above were rearranged using the fact that both ¢,(0) and ¢,(0) are
stationary states. As for the Wigner function W 4 associated with the state 9.4, one obtains from the master equation above
that it satisfies

2t
OWiea = {H(q. p), Wyea} + KZ /0 dr[Re(Q(7)0(0)) cosh Qz — QRe(Q(7)P(0)) sinh Q7|02 W,y

* KZ2 / ' de[Re(P(r)P(0)) cosh @z — QTRe(P()0(0)) sinh Q)03 Wy
0
+ Kzz 0’ dr{[Q'Re(Q(7)0(0)) + QRe(P(7)P(0))] sinh Qz

~ [Re(P(2)0(0)) + Re(Q(2)P(0))] cosh @} 8,0, Wrea + - - (74)

In the master equation (73), we present only its free
dynamics term and the members engendered by the
interaction between the stable modes and the unstable
one which are able to cause loss of quantum coherence,
while the ellipsis encloses all the other terms. The terms
written explicitly in the right-hand side of Eq. (73) tend to

[

localize the state of the unstable mode both in amplitude
and momentum representations. This resembles the prob-
lem of localization of particles [43] and the analysis of
the quantum Brownian motion problem [44—46]. As for the
terms originated by the direct interaction between the
unstable mode and gravitons, they depend quadratically
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on the amplitude and momentum and, thus, are not
expected to localize the state in these representations.

We note that, even though it was assumed that the
background is curved by a compact spherical object, the
analysis we carried out so far applies for more general static
spacetimes.

C. Long-time regime

Our next task is to show that Eq. (73) does localize the
state of the unstable mode in the amplitude and momentum
representations. To do so, let us assume that initially the
unstable mode is in the state |0,). We emphasize that this
choice only serves to simplify the calculations. Due to the
feebleness of the gravitational interaction, the evolution
dictated by the master equation (73) is dominated by the
free field evolution. As discussed in Sec. III, the free
dynamics acts as a squeeze operator. Thus, in the long-time
regime (€2f > 1) the initial state becomes highly squeezed.
In this case Eq. (20) leads to

_ianred ~ Qg@red (75)

and
i040red X 24 Orea- (76)

Then, by substituting Egs. (75) and (76) into Eq. (73), the
master equation reduces to

: 1 2 2 QZ 2 2
athed ~ 5 (_8(1 + aq’) - 7 (q -q ) Ored
- D(q - q/)QQred +- (77)

with the diffusion coefficient D > 0 given by
2 +o0
p="C / K (2)e-9 (78)
4 Jo

and

K(z=7)=Re([0(2) + QP(1)][0(7) +QP(7)]).  (79)

As for W4, one has the following equation:
atvvred ~ {H(qv p)’ Wred} + D8127Wred + e (80)

The second term in Eq. (77) ensures the localization of Qg
in both amplitude and momentum representations, due to
the relation between ¢ and p set by Eqgs. (75) and (76).

One can estimate the magnitude of the diffusion coef-
ficient in the following manner. As mentioned earlier, we
assume the existence of a gauge in which the graviton field
admits the following decomposition:

PHYSICAL REVIEW D 91, 024011 (2015)

Pan(t Z/m

Here, a denotes all the pertinent quantum numbers, j labels

—1wat8( )b( )—‘rHC (81)

the graviton polarizations, lAJ((,j ) denotes the graviton anni-
()

hilation operator, &,

is the spatial part of the mode, and
w, > 0. As for the field operator ¢, one has

d(t.x) = Z/dwawlﬂvfﬂﬁ;(r,x)+H.c., (82)

with »") given in Eq. (6). Thus, by substituting Egs. (81)

wlu
and (82) into the expressions for the operators P and 0,
Egs. (67) and (68), with the aid of Egs. (65) and (66),
Eq. (79) can be cast as

T—T

T @, w>|2} (83)
In Eq. (83), f = (kgT)™,
) (a, ) = / dsfed), Qs 520 (s4)

and

j ) 1)ab 2)ab
Tam) = [apelios « 00 (s9)
where s( )2 and s lab come from Egs. (65) and (66),

wly
respectlvely, after we replace ¢, by 1;1(;1/)4

e~ The tensors sg;:b and sgg;'b are weighted by the

spatial part of the unstable mode, Fg = wqY /7, with yq
as a “bound solution” of Eq. (11) with width of order Q™.
As a result,

and factorize

(If) and F( /) can be neglected for @ and w

such that a)a, w > Q. Thus the main contribution for the
integrals in Eq. (83) comes from gravitons and stable
modes with frequency up to order Q. Consequently, one can
define the high-temperature regime here as kg7 > Q. In
the spacetime of a neutron star, this regime is achieved at
temperatures 7 ~ 1 K, in which case the diffusion coef-
ficient given in Eq. (78) reduces to

__Qk TZ/d'9 (@) dwr [ 1Ty (@ )P
B B 202 2w | (0, + @)2 + Q2

|2rzﬂ (a, @)[?
(w, —w)* + Q2|

(86)
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Then, by factorizing all the dimensional terms above, D can
be simply written as

D = 8zA <%’> ’ <ICBET> Q2. (87)

In Eq. (87), A is a dimensionless quantity whose precise
value will not be relevant to estimate the decoherence time
scale, although it is expected to be of order unity.

D. Estimation of the decoherence time scale and the
width of the pointer states

Here, we are interested only in the decoherence effects
produced by the localization term in Eq. (77), the master
equation describing the unstable mode in its long-time
regime. As already mentioned—see discussion below
Eq. (74)—the other terms appearing in that master equation
are essentially of two types: either they also produce
decoherence but are not able to localize the state in the
amplitude and momentum representations or they are
responsible for damping effects. While the former only
reinforce the consequences of the localization term in
Eq. (77), the latter are not important when the coupling
with the environment is weak. Therefore, in order to
estimate the decoherence rate in the long-time regime,
one can drop these terms and consider the following
equations:

2

|1 Q
athed =1 5 (_85 + 83’) - 7 (q2 - q/Z) Ored

~D(q = q')*0rea (88)
and
8t‘/vred = {H(qv p)v Wred} + Da% Wieds (89)

with H(g, p) given in Eq. (26).

A possible route to estimate the decoherence time scale
is to investigate the temporal behavior of the Wigner
function sign. As mentioned earlier, the Wigner function
is not positive in general. Nevertheless, decoherence should
suppress any negative region in the course of time. Indeed,
it was shown in Ref. [47] that for a nonrelativistic free
quantum particle, the presence of a localization term in
position in the master equation makes the corresponding
Wigner function positive after a certain time 7,4, regardless
of the initial state of the system. This result was extended in
Ref. [48] for systems defined by quadratic Hamiltonians
and with more general couplings with the environment.

Following Refs. [47,48], the time t4 after which the
Wigner function W4 becomes positive is the solution of
the equation

PHYSICAL REVIEW D 91, 024011 (2015)

1
detiM(—14)] = 7 (90)
where, in the case of our Eq. (89),

_ D? [cosh2Qr — 1

det[M(-1)] = o 5

Q2. 1)

The feebleness of the gravitational interaction implies in
our case that D < Q? and, thus, from Egs. (90) and (91)
one obtains

2D?
o cosh2Qry ~ 1.

Then, by using Eq. (87), one concludes that

1 1 R\2z Q
i ghn [&,—A (7) k—T} 92)

which gives us an estimate for the decoherence time scale.
The logarithm in Eq. (92) shows that the decoherence
process depends weakly on the magnitude of the interaction
with the environment, codified in the diffusion coefficient—
see Eq. (87). This logarithmic dependence results from the
combination of the squeezing caused by the time evolution
and the weak coupling between the unstable mode and its
environment. In particular, #; does not depend much on the
value of A. For the case of a neutron star (R ~ 10 km), if one
assumes A ~ 1 and a cosmic gravitational wave background
with temperature 7 ~ 1 K, then t; ~ 160 x Q™! ~ 160 x R,
which is of the order of the backreaction time scale
tye ~ 1073 s, when the vacuum and ordinary star energy
densities rival each other. We note that Q¢4 > 1, complying
with the long-time approximation.

The investigation we have undertaken so far suggests
that by the time backreaction becomes important, both the
appearance of classical correlations and decoherence have
been effective to turn the unstable sector of the initial
vacuum state into a classically correlated statistical mixture
of localized states in the amplitude and momentum repre-
sentations. The form of these pointer states depends on both
the internal dynamics of the open quantum system and its
interaction with the environment, and it has been derived in
just a few examples [49,50]. However, within the simpli-
fications made in this section, it is possible to estimate the
width of these pointer states. To do so, we shall again make
use of the variables u and » defined in Eq. (27) to cast
Eq. (89) as

atVVred = Q(uau - vaf))wred

D
+t7 (02 4 0% +20,,) Wiea- (93)

By assuming the weak-coupling limit, the state is squeezed
along the u direction and stretched along the v direction, as

024011-13



LANDULFO et al.

concluded in Sec. III for free fields. Consequently, in the
long-time regime, the u and v derivatives grow and fade
exponentially, respectively, and Eq. (93) can be cast as

atWred = Q’(uau - vau)Wred + 95285 Wred’ (94)

with 6?> = D/4Q.
Following the analysis of Ref. [51], a general solution of
Eq. (94) can be expanded as

+oo 2 u
— E —Q(m+n)t,m , 53
Wred - Ann€ vve 2 Hn—l (\/z )’
(o}

m>0
n>1

where H,(x) denotes the nth Hermite polynomial. In the
long-time regime, the sum above is dominated by the term
with m = 0 and n = 1 and is given approximately by

e_2u7
V27x6? —

e—Ql 2 +00 o
/ !/ =Lt
du'Wq(0, u', ve™™),

Wred(t’ q, p) ~
(95)

with  Woeq(t, 1, ) = Wiea[t, (v — u)/Q, v+ u].  Hence,
when Qr > 1 the effect of decoherence on the Wigner
function in the weak-coupling limit is to make W, 4
approach a Gaussian in the u direction with width o.
This results from the competition between the free evolu-
tion, which tends to squeeze the state in the u direction, and
the diffusive term in Eq. (94). Then, the width of the density
matrix in the g representation can be obtained from Eq. (95)
if we note that

40 ) ,
0rea(1.q.4') = / dpe? =W 4t (q + q')/2. p]

—00

~ 2e~ 20 (g4 ) -iQ(q*—4) /2 p =St

+o0 ~
X / du'Wq(0,1/,0). (96)

o0

Thus, asymptotically, the initially pure density matrix
becomes a statistical mixture of localized states with width
(20)~! = \/Q/D. By using Eq. (87) with A ~ 1, we obtain

R

_ 1
(20)7" ~ N (97)

in the case of our model.

In the classical regime, one would like to regard each
pointer state peaked at some amplitude and conjugate
momentum as a point in the phase space. This is possible
only if the background spacetime is insensitive to quantum
fluctuations present in these states, i.e., if the pointer states
are narrow enough. We can estimate how narrow these
states are through the energy-momentum tensor operator
associated with the unstable mode. Thus, let us consider
the contribution from the quantum fluctuations to the
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expectation value of this operator in some pointer state.
Taking, for instance, the energy density, the contribution
from a localized state with width o is pg ~ 672Q%/R3.
Then, the ratio between this contribution and the energy
density p of the relativistic star curving the background is

Pai , 2
P kBT

Assuming T ~ 1 K and R ~ 10* m—the typical radius of a
neutron star—the ratio above is of order 10~7. This last
result shows that the pointer states of the unstable mode are
narrow enough in the long-time regime to be approximated
by classical states.

In conclusion, by the time backreaction becomes ineluc-
table, the (unstable sector of the) initially pure vacuum state
has evolved into a statistical mixture of localized states in
amplitude and momentum representations. The exact form of
these states and of the statistical weights can be calculated, in
principle, from Eq. (73). Since the pointer states are narrow
enough, one can regard these weights as a statistical
distribution over the unstable mode classical phase space,
providing the initial conditions for the classical general-
relativistic equations at the onset of the backreaction.

We remark that the calculations assuming a graviton
environment with temperature 7 =0 lead to the same
master equation as in the case with 7' # 0, namely, Eq. (73).
For a graviton environment in its vacuum state, we have
found that the decoherence time scale is of the same order
as in Eq. (92), assuming 7'~ 1 K. As for the width of the
pointer states, however, we have obtained pqe/p ~ 1.
Hence, even though decoherence diagonalizes the density
matrix when 7 =0, it is not sufficiently effective to
produce pointer states which are narrow enough to be well
approximated by points in the unstable-mode classical
phase space.

V. CONCLUSIONS AND FINAL REMARKS

In conclusion, after the scalar field instability is triggered
by the background spacetime, the interaction of the field with
gravity forces its quantum fluctuations to behave classically
in a time scale of the same order of the one set by
backreaction. During this time, the appearance of classical
correlations and decoherence are effective enough to turn the
vacuum state of the quantum field into a classically correlated
statistical mixture of localized states in the amplitude and
momentum representations of the unstable mode.

Then, we have argued how the gravity-induced vacuum
dominance effect [1,2] gives rise to classical initial con-
ditions for the general-relativistic equations. This leads us
to Ref. [52], where the authors discussed the possible final
states for the instability in the spacetime of a relativistic star
based on a classical analysis. There it was shown that, at
least for negative values of the nonminimally coupling
parameter &, the system can be stabilized by the presence of a
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non-null, static scalar field profile. As for positive values of
this parameter, the final state remains an open issue. The
appearance of a nontrivial classical field in the spacetime of
dense enough relativistic stars is analogous to the sponta-
neous magnetization of ferromagnets below the Curie
temperature and is known in the literature as “spontaneous
scalarization” [53,54]. Typically, this phenomenon changes
the gravitational mass of the star by a few percent and may
have important consequences for astrophysics [55].
Although the previous scalarization analyses do not consider
quantum mechanics to fix the initial conditions, the fact that
their results seem to be robust with respect to the initial
conditions choice suggests that their conclusions should be
preserved even when the instability is triggered by quantum
fluctuations. For more on the relation between the instability
and the scalarization process, see, e.g., Refs. [56-59].

The interest in scalar fields nonminimally coupled to
gravity relies on the fact that most matter in the Universe
cannot be accommodated within the standard model of
particle physics. Nonminimally coupled scalar fields have
not been ruled out by either astrophysical or cosmological
observations so far, even though it is possible to put
|

PHYSICAL REVIEW D 91, 024011 (2015)

constraints on the values of the nonminimally coupling
parameter—see, e.g., Ref. [60].
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APPENDIX: EXPRESSIONS FOR THE TENSORS
Uabcd’ Vabcde’ AND Wabcdef .

In this appendix we present the expressions for the
tensors U ypeds Vabedes ad W ypcq0 appearing in Sec. IV. By
defining the tensor /., = % (9acYpa + Gaa9pe ), one has

1 —4¢

Uabcd = _(1 - 25) (gadvb¢vc¢ + gbcva¢vd¢> T (gabvc¢vd¢ + gcdva¢vb¢)

2

1-4 1 1 1
+ —5 (Iahcd - _gubgcd> ve¢ve¢ + <_ Iabcd - _gahgcd) (m2 + §R)¢2

2 2

- 5 |:(2Iabcd - gabgcd)¢veve¢ + (

GV s+ GeadV Vo — GuaV Vo gbcasvavdqs)} |

and

2 4

1 1
9aaRpe + gpeRaa — EgabRcd - EgcdRab>

(A1)

Vahcde = _gab(gcd¢ve¢ + gce¢vd¢)’ (AZ)
1

- (A3)

2

1
Wabcder = = |Gaalbeer + 29erlaave = Gaa9pcer — = (Gaepader + GaeGea9ps + JarIpa9ee + 9a fgcdgbe):| .
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