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Gauss-Bonnet boson stars with a single Killing vector
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We construct asymptotically anti—de Sitter boson stars in Einstein-Gauss-Bonnet gravity coupled to a
DT‘I-tuplet of complex massless scalar fields both perturbatively and numerically in D =5,7,9, 11
dimensions. These solutions possess just a single helical Killing symmetry due to the choice of scalar
fields. The energy density at the center of the star characterizes the solutions, and for each choice of the
Gauss-Bonnet coupling @ we obtain a one parameter family of solutions. All solutions respect the first law
of thermodynamics, in the numerical case to within 1 part in 10°. We describe the dependence of the
angular velocity, mass, and angular momentum of the boson stars on @ and on the dimensionality. For
D > 7 these quantities reach maximum values and then decrease to eventually approach finite values as the
central energy density tends to infinity. In the limit of diverging central energy density, the Kretschmann
invariant at the center of the boson star also diverges. This is in contrast to the D = 5 case, where the

Kretschmann invariant diverges at a finite value of the central energy density.
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I. INTRODUCTION

The discovery of the Higgs boson has given a clear
indication of the existence of at least one scalar field in
nature. In addition to the fact that scalar fields are pervasive
in many versions of quantum gravity, this has generated
renewed interest in obtaining solutions to quantum-inspired
effective theories of gravitation coupled to scalar fields.

Prominent amongst such solutions are boson stars: these
are smooth, horizonless geometries composed of self-
gravitating and (possibly) self-interacting bosonic matter
[1,2]. Unlike ordinary stars and planets, they typically do
not have a sharp edge (though solutions with such edges
have recently been found [3]) but instead are bundles of
field energy that decay at large distances from their cores.
Their astrophysical relevance is not clear at this point in
time but they may be possible dark matter halo candidates
[4]. In an excited state they typically produce a more
physically realistic, flatter rotation curve than in the ground
state. However, such excited states decay to the ground
state unless they are in rather specific mixed states [5].
Furthermore, boson stars can provide dark alternatives to
astrophysical black hole candidates, which could poten-
tially be discerned by gravitational wave astronomy [6,7].

From a theoretical perspective, asymptotically anti—de
Sitter (AdS) boson stars may play an important role in
holographic gauge theories through the AdS/CFT corre-
spondence [8]. All such solutions are zero-temperature
objects without horizons and, as such, they describe finite

fl7hender@ uwaterloo.ca
.l_rbmann@ sciborg.uwaterloo.ca
’Lsstotyn @phas.ubc.ca

1550-7998,/2015/91(2)/024009(31)

024009-1

PACS numbers: 04.50.-h

energy excitations above the vacuum state. If AdS boun-
dary conditions are present, their (nonlinear) stability is of
key import, as it determines whether or not the correspond-
ing state in the holographic dual CFT thermalizes and on
what time scale. While recent work indicates that asymp-
totically AdS space-times suffer from a gravitational
turbulent instability [9—12], which might lead one to expect
that AdS boson stars are nonlinearly unstable to black hole
formation, it has also been shown that there exists a wide
range of initial data that are immune to this instability [13].
Furthermore, the turbulent instability of global AdS has
been shown to be due to a high level of symmetry [14]: the
normal mode frequencies are all integer multiples of the
AdS frequency, leading to a large number of resonances
responsible for the nonlinear instability. These results
suggest that on the gauge theory side there is a family
of strongly coupled CFT states that do not thermalize in
finite time.

A natural question to ask is how generic this feature of
the initial data considered in Ref. [13] is. In that respect,
one of the immediate ongoing tasks is to map out the
territory of boson star solutions. Quite a wide range of
solutions has been obtained for various forms of scalar
matter. These include a complex doublet of massive [15,16]
and massless [17,18] scalar fields, self-interacting scalar
fields [19,20], scalars with gauge charges [21,22], scalars in
space-times with de Sitter [23,24], flat [19,25], or anti—de
Sitter [15,26] boundary conditions, solutions in (2 + 1)
dimensions [15,27,28], and rotating doublets [18] and
multiplets [17,29] of scalars.

In this paper we obtain both perturbative and numerical
solutions for asymptotically AdS boson stars in D =
5,7,9,11 dimensions in Einstein-Gauss-Bonnet (EGB)
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gravity in the special case that the boson stars only possess
a single Killing vector (SKV). EGB gravity is a special case
of Lovelock gravity [30], a class of higher curvature
theories of gravity that are distinguished by having their
field equations not containing terms with more than two
derivatives of the metric. They are of interest in quantum
gravity insofar as one expects the Einstein action to be
an effective gravitational action, valid for small curvature
(or low energies), that will be modified by higher-curvature
terms. A given contribution to the action in D dimensions
consists of a product of the Euler density £*) of a 2k
dimensional manifold and an arbitrary constant &, and so
contributes to the equations of motion only if D > 2k. The
simplest case beyond Einstein gravity is EGB gravity for
which k = 2, implying D > 5.

EGB gravity is an incredibly rich theory with entirely
new branches of solutions arising that have no counterpart
in Einstein gravity. Most notably, for a given Gauss-Bonnet
coupling constant «, there are two distinct vacua of the
theory, assuming all matter sources present are appropri-
ately bounded. In the absence of a cosmological constant,
one of the vacua is the expected Minkowski vacuum while
the other has an effective negative cosmological constant
and is hence the AdS vacuum.' In Ref. [31] the authors
considered the stability of linear gravitational perturbations
about both vacua and concluded that the Minkowski
vacuum is stable while the AdS vacuum exhibits ghostlike
perturbations and is hence unstable.

When a negative cosmological constant is present, as in
the present paper, there are still two distinct vacua, both of
which are now AdS. However, one of these continuously
deforms to the AdS vacuum of Einstein gravity as a — 0
while the other does not. In analogy with the analysis of
[31] one expects the former to be stable and the latter to be
unstable. Interestingly, there is a critical value, a.,, where
the two vacua degenerate and the corresponding EGB
theory belongs to a class of quadratic curvature theories that
have different properties than those of the standard EGB
type [32]. Locally maximally symmetric solutions admit
only one fixed radius of curvature, and while they admit
spherically symmetric black hole solutions, these solutions
do not obey the falloff boundary conditions that solutions
in a # a, theories require. Indeed, this class of theories
admits Banados-Teitelboim-Zanelli (BTZ)-like solutions,
in which there is a mass gap between the zero mass black
hole and AdS space-time. While we shall not consider these
theories here, analysis of boson star solutions in this case
would be interesting, and require an approach similar to
that recently employed for D = 3 rotating boson stars [29].

In the present paper, for any given value of the Gauss-
Bonnet coupling constant a # a, we obtain a one para-
meter family of solutions parametrized by the central

"This assumes a > 0 as is required by string theory, thereby
eliminating the possibility of a de Sitter vacuum.

PHYSICAL REVIEW D 91, 024009 (2015)

energy density of the boson star. For D > 5, in the limit
that this central energy density tends to infinity, the mass,
angular momentum, and angular velocity all limit to finite
values, while the Kretschmann scalar at the center of the
boson star diverges. We find that as the space-time
dimension increases, the maximum value reached by these
quantities decreases, and for D > 7 it also decreases with
increasing values of a. For D =35 we find markedly
different behavior: the Kretschmann scalar at the center
diverges for a finite value of the central energy density, with
this critical value decreasing as « increases. All of the
solutions constructed in this paper for a < a., both
perturbative and numerical, limit to the Einstein case
[17,27] as a — 0; we do not consider alternate 2possible
branches of solutions that do not have this limit,” though
such branches may indeed exist with the addition of the
Gauss-Bonnet term in the gravitational action.

Numerically we are unable to explore values of « in the
range 0.99a., < a < a, when D >7 and 0.90q, < a <
a., when D =5 due to numerical complications and the
increase in computer time required to find solutions in this
range. However it is possible to examine boson star
solutions for a > a,, which correspond to boson stars
immersed in the unstable AdS vacuum. Although we find
that such solutions have positive Arnowitt-Deser-Misner
(ADM) mass, we further find that such solutions are
ghostlike as expected. We shall briefly comment on these
solutions near the end of the paper.

The remainder of this paper is structured as follows: in
Sec. I we present the metric and scalar field Ansdtze and
obtain the constraint equations and ordinary differential
equations (ODEs) that must be solved. We describe the
boundary conditions and the basic physical properties of
the boson stars in Sec. III. We then analytically construct
perturbative solutions in Sec. IV. In Sec. V we describe the
numerical methods used to construct the full nonperturba-
tive solutions, which are presented in Sec. VI along with a
discussion about their salient features. In Sec. VII we
discuss a preliminary investigation of the region of param-
eter space corresponding to the unstable AdS vacuum.
Finally, in Sec. VIII we provide some concluding remarks.

II. SETUP

We begin with D = n + 2 dimensional Einstein-Gauss-
Bonnet gravity with negative cosmological constant min-
imally coupled to an "—;l—tuplet of complex massless scalar
fields

S dPx\/=g(R =2\ + aLgp —2|VI]?)  (2.1)

" l6n

*This is controlled by requiring AdS boundary conditions. If
these boundary conditions are relaxed, exotic branches may
emerge but this is beyond the scope of the present paper.
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where

Lop = RupeaR* = 4R,R + B> (2.2)

and where A is the cosmological constant. The equations of
motion resulting from this action are

Gab + Agab - 2a<_RacdeRdee + 2RacbdRCd

i 1
+ 2RacRZ - RRah + ZgahLGB> = Tab (23)
V2 =0 (2.4)
where
Top = (00T 0,01 + 0,110, TT°) — g, (0. MOTI")  (2.5)

is the stress-energy tensor of the scalar fields. We will only
be interested in solutions that asymptote to AdS and we
thus require global AdS to be a solution to Eq. (2.3) with
IT=0. This requirement fixes the bare cosmological
constant A to

A nn+1)((n=1)(n-2)a-7£?)
- 204 ’
where 7 is the effective AdS length.

We shall employ the following Ansditze for the metric and
scalar fields [17]:

(2.6)

dr?
ds* = —f(r)g(r )dferm
+ r2(h(r)(dy + Aidx' — Q(r)dt)? + g;;dx'dx’)
(2.7)
I1; = (r)e 'z, i=1.. n—;— ! (2.8)

where z; are complex coordinates such that ), dz;dz; is the
metric of a unit n-sphere. It is straightforward to show using
the choice

!t cos 6, ]_[‘ sinf;, i=1.2%"

J<t (2.9)
e 2 2 sind;, 1

==

2

;=

that Y.dz;dz; = (dy + A;dx')? + g;;dx'dx’/ is the Hopf
fibration of the unit n-sphere, where

711

Adx' = Z cos’0; [Hsm29 }dqb,

J<i

(2.10)

and g;; is the metric on a unit complex projective space
CP'Z". In these coordinates, y and the ¢; all have period 2z
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while the ¢; take values in the range [0, 5]. This construction
only works in odd dimensions, so we shall restrict our
attention to n =3,5,7,9 (though our results can be
extended to any odd value of n > 3).

The n = 3 form of this construction was first used in
Ref. [33] to construct boson star solutions in 5-dimensional
Einstein gravity coupled to a doublet of self-interacting
scalars. The construction above is crucial in obtaining
rotating boson star solutions in any odd dimension. The

scalar fields can be regarded as coordinates on C*+, with IT
tracing out a round n-sphere (for any value of r) with a
time-varying but otherwise constant phase. Constant r
surfaces in the metric (2.7) correspond to squashed rotating
n-spheres. The first term in the stress-energy tensor 7', is
the pull-back of the round metric on the n-sphere and the
second term is proportional to g,;,. Hence T ,;, has the same
symmetries as the metric (2.7).

Note that while the matter stress tensor has the same
symmetries as the metric, the scalar fields themselves do
not. The scalar field multiplet (2.8) is only invariant under
the combination

k=0, + w0, (2.11)
whereas the metric (2.7) is 1ndeed invariant under 9,, 0, as
well as the rotations of CP*3". Any solution with nontr1v1a1
scalar field content will only be invariant under the single
Killing vector field « given by (2.11).

The equations of motion yield a system of five coupled
second-order ODEs. These are rather cumbersome to write
down and so we have relegated them to Appendix A.

III. BOUNDARY CONDITIONS AND
PHYSICAL CHARGES

In this section, we write down the boundary conditions
that boson stars in EGB gravity must satisfy; we shall
employ the same boundary conditions as in the Einstein
case [29], both at the origin and asymptotically.

A. Boundary conditions at the origin

Since a boson star geometry must be smooth and
horizonless, all metric functions must be regular at the
origin. Furthermore, surfaces of constant ¢ in the vicinity of
the origin are described by round n-spheres (with r the
proper radial distance). Multiplying (A5) by r?, we note
that IT must vanish at the origin in order to yield consistent
equations of motion. Thus, the boundary conditions at the
center of the boson star take the form

9lr—o = 9(0) + O(r),
Q|r—>0 = Q(O) + O(I"),

flimo =1+0(2),
hl,o =14 0(),

i
M = q0 %5 + O, (1)
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for all n, where g, is a dimensionless parameter such that
the energy density of the scalar field, 7%, at the origin
(hereafter called the central energy density) is proportional
to g3. In fact for a given value of @, g, uniquely para-
metrizes the one-parameter family of boson star solutions
in each dimension. Formally, it is defined by ¢, = ZIT'(0).

B. Asymptotic boundary conditions

In order to simplify the asymptotic boundary conditions,
we first make note of a residual gauge freedom. It is
straightforward to show that the transformation
x=r+ia QrN=Qr) +irs o=d+i (32
for some arbitrary constant 4, leaves both the metric (2.7)
and scalar field (2.8) unchanged. We find it convenient in
our numerical analysis to set 1 = @ so that we can set
@ = 0: in this frame, the coordinates are rigidly rotating
asymptotically so that Q(r) - —@ as r — co. In what
follows, we use %, Q(r), and @ but we drop the tildes for
notational convenience.

As r — oo, the boson stars asymptote to AdS with
corrections for mass and angular momentum. This deter-
mines the metric functions up to constants Cy, Cj, and Cg.
The boundary condition for the scalar field is set by
requiring I to be normalizable. Explicitly we obtain

flrseo = 722 +1+ - +O(r™),

g|,_,oo - 1= thf”Jrl ZhT O( (n+2) >’

Bl e =14+ C”ﬂm + O(r~(n+2)),

Q.= w+cgfn+(’)( (n+2)),

M, = ei’:l + O ), (3.3)

where € is a dimensionless measure of the amplitude of the
scalar field at infinity. The constants C, Cj, and Cq are
determined from solving the equations; note that the
leading order corrections to g(r) and h(r) are not inde-
pendent. In the next section we shall solve the equations
perturbatively, and will find (as in the Einstein case [17])
that ¢ uniquely parametrizes the boson star solutions.
Nonperturbatively the situation is different, as we shall
explore in Sec. VI.

At this point, it is important to note that we are using £ to
define the asymptotic behavior of f(r), and as long as
£? > 0, the space-time will be asymptotically AdS. By
defining the AdS length in this way, the relation (2.6) for
the cosmological constant follows from the field equations.
Note that Eq. (2.6) can also be written as a quadratic
equation for £, which has solutions

PHYSICAL REVIEW D 91, 024009 (2015)

n(n+1) 8Aa(n—1)(n—-2)
(i, [ )

nn+1)

where the -+ sign reduces to the Einstein relation,
A = =D iy the limit @ — 0 while the — sign implies
> -0 as a — 0. The — sign thus corresponds to the
unstable AdS vacuum of EGB theory while the 4 sign
corresponds to the stable AdS vacuum, in analogy with the
work of Ref. [31]. Note that there is a critical value of a in
terms of A where > becomes degenerate:

£ =

(3.4)

nn+1)
8A(n—1)(n-2)’

(3.5)

Qe = —

where A < 0 to ensure a > 0. For this value of a, the EGB
theory has a unique AdS vacuum and becomes part of a
class of theories dubbed Lovelock unique vacuum (LUV)
theories, as first studied in [32], and has very different
properties from theories with a # a,.

The convention used here differs from another common
convention [32,34], which sets

nn+1)

A=-—
212

(3.6)
(where L is the would-be AdS length in the absence

of the Gauss-Bonnet term) and leads to an upper bound
on a,

L2
a< D=2 (3.7)

in order to satisfy AdS boundary conditions [34]. In terms
of the convention used here, this inequality can be
expressed as

2(n=1)(n=2)a-17£*)? >0, (3.8)
which immediately implies
f2
—_— =0 39
aaéz(n_])(n_z) Aer (3.9)

Note that this is the same «,, found in Eq. (3.5) that makes
the EGB theory a LUV theory [32]. This critical value of «
also naturally appears in the perturbative boson star
solutions, as will be seen shortly.

C. Physical charges

The SKV boson stars are invariant under the single
Killing field (2.11). However since the scalar fields vanish
at infinity with sufficient falloff, both 0, and 0, are each
asymptotic Killing fields (the metric alone being invariant
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under them for the full solution). Consequently conserved
charges can be defined where 0, and 0, are readily
associated with a conserved energy and angular momentum
respectively. We use the definitions proposed in Ref. [35],
given by

_(n+ 't ¢! a
(3.10)
(n+ 1277 " a
J=—"T-"—~r—|1-——|C 3.11
16(220)! o) G

where C¢, Cj, and Cgq are the constants appearing in the
asymptotic boundary conditions (3.3). This prescription
emerges from a semiclassical treatment whereby the actions
are calculated using the boundary counterterms found in
[35], and agrees with the Ashtekar/Das definition [36,37] of
mass in the @ — 0 limit. The above definitions ensure that
the first law of thermodynamics is satisfied for black holes
in EGB theory, at least in the spherically symmetric case
where an explicit solution is known.

The existence of these asymptotic Killing symmetries
also guarantees that the boson stars satisfy the first law of
thermodynamics. They have vanishing temperature and
entropy, so the first law takes the form

dM = wdJ. (3.12)
This relation provides a useful and important numerical
tool: by requiring the solutions to respect the first law (3.12)
to at least one part in 10°, we obtain a primary cross-check
on the validity of the numerical methods used.

IV. PERTURBATIVE SOLUTIONS

In this section, we consider perturbative solutions to the
Einstein-Gauss-Bonnet equations that satisfy the boundary
conditions of Sec. III. These solutions are horizonless and
are constructed as perturbations around AdS; they general-
ize those found previously for Einstein gravity in [17]. We
take the scalar field condensate parameter, €, as the
perturbative expansion parameter and we give results up
to order €® for the space-time dimensions of interest in
string theory, namely D =5,7,9,11. As a perturbative
construction, these results will only be valid for small
energies and angular momenta. They will provide another
useful check on the numeric solutions we present later in
the paper.

A. Perturbative boson star

Since we require global AdS to be a solution when the
scalar field amplitude vanishes, we employ the expansion

PHYSICAL REVIEW D 91, 024009 (2015)
m ~ .
F(r.e) = Zin(r)GZI
flzm (”)62[“
(7)21'62!' (41)

where F € {f, g, h, Q} is shorthand for each of the metric
functions in (2.7). Note that the scalar fields are expanded in
odd powers of € whereas the metric functions are expanded
in even powers. The perturbative solution to the equations is
thus obtained by starting with global AdS—the zeroth terms
in the metric function expansions above.

The scalar equation (AS) is then solved in this back-
ground, yielding IT, (r). The full set of equations of motion
(A1)—(A6) are then satisfied up to order e. The stress-energy
for these scalars is then of order €2, which induces source
corrections to the gravitational fields F,(r) (the i = 1 terms
in the metric functions). These in turn backreact on the scalar
fields, and the next-order solution to (A5) yields II5(r),
thereby satisfying the equations of motion up to order ¢°.

This bootstrapping procedure can be carried out to
arbitrary order in €. The angular frequency must also be
expanded in even powers of ¢ because the scalar fields
backreact on the metric, inducing nontrivial frame-
dragging effects, which in turn affect the rotation of the
scalar fields. These corrections to @ are found by imposing
the boundary conditions.

Global AdS is given by
2

f0=1+ﬂ,

go=1, hy=1, Qz=0. (4.2)

The most general massless scalar field solution to (A5) in
this background that is consistent with the asymptotic
boundary conditions (3.3) is

rf”“
n+2-wl n+2+wl n+3 2
2 ’ 2 T2 42
(4.3)

I (r) =

Y

where ,F, is the hypergeometric function. Note that the
Gauss-Bonnet parameter o does not enter at this order. In
order to satisfy the boundary conditions at the origin (3.1)
we must require

ol =n+2+ 2k, k=0,1,2,... (4.4)
where the non-negative integer, k, describes the various
possible radial modes of the scalar field. While any radial
profile for the scalars is possible, it must be built up from a
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linear combination of the radial modes that necessitate the
inclusion of multiple frequency parameters, w;. This is
inconsistent with the existence of the Killing vector field
(2.11). These higher modes represent excited states,
whereas the kK =0 mode is the ground state. In what
follows, we only consider the ground state, in which case
(4.3) simplifies to

I’f"Jrl

Hl(l") :m

(4.5)

Next, we insert (4.5) and the expansion (4.1) into the
equations of motion (A1)—(A6), expand in ¢ and solve at
order €. Using the boundary conditions to fix the two
constants of integration that emerge, the order €% correc-
tions to the metric functions, F,(r), are then inserted into
the equation of motion for Il(r) to find its order €
correction. This procedure, carried out up to but not
including order €°, yields

2 Pt
L n; 2
f(r) + 2 (P + 22 =2n—1)(n—2)a) ¢
r2fn+3f”;4 4
- (PR 4+ 2232 =2(n—1)(n—2)a)? ¢
+0(e) 0
2074 ((n + 1)1 + %)
) = T A 2= Din =20
_ fnJrSgn;éL €4
(P 1 P32 20— 1) (n = 2)a)
+0(e°) 47
P25 “
h(r) =1 " '
(r) + (P + 2232 =2(n—1)(n—-2)a) ¢
+0(e°) )
fnJrZQ s
Q(r) = . 2
(r) (P4 2" (2 =2(n=1)(n-2)a) ‘
N f”+4Qn;4 et
(42232 =2(n—1)(n—-2)a)
+ O (4.9)
n+1
nr=—""__
(P + 27
. rbpn+5nn;3 63
(% A 2= 1)n - 2)
rl/ﬂn+7nn;5
+ 2 22082 o 3 ¢
(P + A2V (2 =2(n—1)(n-2)a)
L) (4.10)
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where the fields {f,., gns: My, Qs I} are simple
polynomials in r; in this notation s labels the order in €
and n = D — 2 labels the space-time dimension.” These
fields are cataloged in Appendix B for n = 3,5,7,9 up to
order €%, with the associated energies and angular momenta
in Appendix C. It is straightforward to check that these
latter quantities obey the first law (3.12) to order €°.

The perturbative solutions all reduce to those of the
Einstein case [17] in the limit @ — 0. Perturbative boson
star solutions obeying the boundary conditions (3.3) do not
exist for @ = a,, in any dimension.

V. NUMERICAL CONSTRUCTION

We numerically construct boson star solutions by
approximating the metric and scalar field functions
{f(r),g(r),h(r),Q(r),II(r)} as Chebyshev polynomials
and using a relaxation method on a Chebyshev grid. A
detailed review of this procedure can be found in [38].

Before the Chebyshev grid can be constructed, we must
first compactify the infinite domain r € [0, o) to the finite
domain y € [0, 1], which is done via the simple coordinate
transformation

}"2

“Eia (5-1)

y

The grid then consists of the set of points y, = (cos(kz/

N)+1)/2,k=0,...,N, which are the N 4 1 extrema of
the Nth-order Chebyshev polynomial, Ty(2y — 1).

Next, we define auxiliary functions {g g Qs ds qn}ts

which are analytic over the entire domain y € [0, 1], by
taking into account the boundary conditions (3.1) and (3.3):

fO) =5+ 1+ A=0Tg0). (52)
9(y) =1+ (1= y)Tq,(). (5.3)
h(y) =1+ (1-y)Fq,(y). (5.4)

_qo(y)
Qy) = —7 (5.5)
(y) = 3(1 =)= qu(y). (5.6)

The remaining discussion will use the coordinate y, with a
prime ’ denoting a derivative with respect to y.

The boundary conditions for the ¢ functions are found by
first converting the field equations (A6)—(A3) into func-
tions of y, then Taylor expanding them around the two end
points yy = 0,1 and requiring that they vanish order by
order. The lowest-order terms give nontrivial relationships

3The notation is the same as that of Ref. [17], except that
an additional “0” index (relevant for perturbative black hole
solutions) is dropped.
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between the ¢ functions and their first derivatives. At
vo = 1 we obtain

PHYSICAL REVIEW D 91, 024009 (2015)
At yp = 0 we find

I q5(0) =0,
qp(1) +——aq;(1) +a,(1) =0, 7,(0) = 0,
q,(1) + g,(1) =0, qu(0) — g0 =0, (5.9)
do(1) =0, (5.7)
2f261(2)619(0)
g,(1) + " ;L Lo =0, (n+3)(2a(n = 1)((n = 2)(¢;(0) + 1) + 3¢,,(0)) = %)
+45(0) =0, (5.10)
an(1) + CE)] ((n+2)* = gq(1)*)gn(1) =0.  (5.8)
|
(0) + :
15 T 2a(n =2)(n = 1)(n(q/,(0) + 1) + 3¢,(0)) — #*n
i« (00)(atn =200 = VB0 = 1{g,(0) + 1ah(0) -+ D) = 3o+ Dl 0) +1))
+ %a(n —2)(n = Dn(n + 1)(q,(0) + 1)(¢7(0))* = £*(n = 1)q5(q,(0) + 1)
0= 1)g4(0) ot =2)300 = 1) = 69,0) =3 2(0,0) + 1)
2
2 a(n = 3)(n = 1)(g,(0) + 1)(gh(0)) + n(n + 1)g,(0) <’% —a(n-2)(n - 1))) o, (5.11)
where ¢/;(0) is given by
q7(0) = Sa(n = 2§(n “ Ty [(—24a*(n = 2)(n = 1)*(n + 3)q},(0)* + £*n* — 4at*(n — 2)(n — 1)n?
+8at?(n—2)(n—1)ng3 + 4a*(n —2)*(n — 1)2n2)'/2 + 6a(n —2)(n - 1)g;,(0)
+2(=n) +2a(n = 2)(n - 1)n]. (5.12)

We generate solutions to the equations of motion by
approximating each of the ¢ functions as an order N
Chebyshev expansion, using the method described in [38].
These expansions are substituted into the equations of
motion (A1)-(A6) at the N — 1 interior grid points and into
the boundary conditions (5.9) and (5.7) at the two boundary
points. In so doing, the numerical integration is reduced to a
set of 5(N + 1) algebraic equations in the spectral coef-
ficients of the Chebyshev expansions. These equations are
then linearized with respect to each spectral coefficient and
a standard Newton-Raphson method is used to solve the
resulting system of linear equations, with convergence
defined as a change in the spectral coefficients less than
1073° between iterations.

A one parameter family of solutions, parametrized
by g, is built up using a step size of Agy = 0.01; along
this chain of discrete solutions, the previous numeric
solution is used as the seed for the next one. The initial
seed we use to start the procedure has gy = 0.01 and is

|
given by the perturbative solution (4.6)—(4.10), where the
numeric parameter ¢ is related to the perturbative param-
eter e through the equality

A
0 = lig i)

and II(r) is taken to be the perturbative solution
of Eq. (4.10).

To ensure the numeric solutions are physical, we demand
that they obey the first law of thermodynamics (3.12) to one
part in 10%. When this limit is no longer satisfied, this is
taken as an indication that the Chebyshev grid is too coarse;
at this juncture we increase NV, refining the grid, and continue
the procedure. This provides a useful cross-check on the
validity of the solutions, but not the only one. Due to the
exponential convergence of the Chebyshev approximation
(for example, see Ref. [38]), the truncation error in the
approximations of the g functions can be easily estimated via
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] 0 ) C —kN
|error| < Z CjN/N Coe‘kfdj:% (5.13)

J=N+1

for some real number k, characteristic of the Chebyshev
expansion. Here we have used the property that —1 <

T;(x) <1 and that C; ~ Coe™ . Using the % error ~ %’g
to quantify the truncation error, we impose that it must be
less than 1077 for all solutions.

The numerical integration method requires that the
equations of motion be satisfied only on the grid points.
This does not demand that they be solved everywhere. We

find that, in general, the largest interpolation error occurs at

PHYSICAL REVIEW D 91, 024009 (2015)

necessitating a corresponding increase in the number of
grid points and thus the computational processing time;
above a certain value of a this becomes intractable. We
have not been able to obtain solutions for 0.99«,, < a <
a.; in any dimension.

VI. RESULTS

We find it convenient to write the expressions for the
physical quantities of the boson star in terms of the
boundary values of the ¢ functions and their derivatives.
For example, the thermodynamic quantities are given
by [35]

the midpoint between grid points, i.e. the zeros of the Nth T
Chebyshev polynomial. As long as the grid is dense enough = 8(*=1)1 1 N ((n+ 1)gu(1) —=ngp(1)), (6.1)
to satisfy the constraint on the first law, this error is less 2
thaq 1075, N ) (_1>"ziﬂ%f" a (1)
Finally, we note that the critical value of @ imposes J= (=012 1—— g5 (1), (6.2)
constraints on the efficiency of our numerical work: in (b e
seeking to obtain solutions for « less than but close to a,,
we find that significantly larger resolution is required, ® = —4qq(1) (6.3)
M
M
041 030;
0.255»
03 :
0.20F
02; 0.15?
- 0.10;
0.1F .
0.05F
0.0 0.00% €
M M
0.141 i
0.12F 0.04 k
0.10F
[ 0.03F
0.08F i
0.06 ; 0.02 [
0.04f i
r 0.01F
0.02F [
0.00" € 0005 €
0.0 0.0

FIG. 1 (color online).

The boson star mass plotted against the perturbative parameter € in (a) 5, (b) 7, (c) 9, and (d) 11 dimensions for

various values of a. In the nonperturbative regime, € no longer uniquely parametrizes the boson star family. The spirals tighten with
increasing dimension and the truncated behavior for D =5 is associated with diverging curvature at finite g,. The dashed lines

correspond to the perturbative solutions.
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FIG. 2 (color online). The boson star angular momentum plotted against the perturbative parameter € in (a) 5, (b) 7, (¢) 9, and (d) 11
dimensions for various values of a. In the nonperturbative regime, € no longer uniquely parametrizes the boson star family. As with the
mass, the spirals tighten with increasing dimension and the truncated behavior for D = 5 is associated with diverging curvature at finite
qo- The dashed lines correspond to the perturbative solutions.

M J
0.06 S 0012 o
7 / / 7/
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=9 =9
0.00 e 0000 e S
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
(a) (b)

FIG. 3 (color online).

Detail plots of mass (a) and angular momentum (b) against the perturbative parameter € in 5 dimensions for

a= % anda = 19—0. Perturbative results are plotted as dashed lines. The truncation, which is associated with diverging curvature, occurs at
smaller values of ¢ as « increases.
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The angular frequency @ plotted against the perturbative parameter € in (a) 5, (b) 7, (¢) 9, and (d) 11 dimensions

which can be easily calculated using (3.10) and (5.2)—(5.6). The Kretschmann scalar K = R;,.,R*? at the center of the

boson star is given by

_ 24)(0)((n = 1)g(0) =2)

I/ﬂ4

K, — 2(n+1) <2Q}(0)(261§;(0) +3(g4(0) + 1)g3,(0) + ¢,(0) + n +2)

+ (n+2)q;(0)?

24,(0)? ,
@0 117 +3(n +2)q,(0)> +

which further simplifies using the boundary conditions
(5.9), yielding an expression in terms of just g}, (0). The
resulting expressions are rather cumbersome, and so we
have placed them in Appendix D.

We use these quantities to study the behavior of boson
stars as a function of the Gauss-Bonnet parameter o for
n = 3,5,7,9. In order to easily make comparisons between
the different dimensions, we have chosen to look at values

of a in fractions of the critical value: a=_*=
(0,1]—0,%,%,17—0,%). The a = 0 case yields results that are

commensurate with those obtained for the Einstein case in

q,(0) +1 (g,(0) + 1)?
A=)t )+ Dg0F  nt2 , 241(0)
(@(0) + 12 @@+ 12 O 0T 1>2>’
(6.4)

Ref. [29]. This provides a useful cross-check on our
analysis, since the form of the field equations used here
(A1)—(A6) differs significantly from the form in Ref. [29].

The most noteworthy feature to emerge from our study is
the distinction between the D = 5 (n = 3) case and that of
higher dimensions. We shall first discuss the D > 5 cases.

The M and J curves as functions of € have the familiar
spirallike behavior that was seen in the Einstein case
[29], evident in Figs. 1 and 2, with better resolution given
for the D = 5 values in Fig. 3. As a increases, the spirals
become larger. The spirals also tighten with increasing
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FIG. 5 (color online).
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The boson star mass plotted against the parameter g, in (a) 5, (b) 7, (c) 9, and (d) 11 dimensions for various

values of @. The maximum mass decreases nonlinearly with the space-time dimension. For D = 5 (n = 3), except for a = 0, the
curves all terminate at their end points, at which the Kretschmann scalar diverges.

dimension—they are barely visible for D =11 (n =9).
Similar spiral-type behavior is also present for w plotted as
a function of ¢, as seen in Fig. 4.

Plotting both M, J and w as functions of g, we see from
Figs. 5, 6 and 8 (with detail for D = 5 given in Fig. 7) that
for the n = 5,7, 9 cases the behavior of the Einstein case
[29] is still present. For all dimensions, the mass and
angular momentum of the solutions have a shallower initial
slope and, except for D = 7, reach a smaller maximum with
increasing a.

We find notably different behavior for the n =3
(D =5) case. A perusal of Figs. 1 and 2 indicates that
even for a = 0.1 the spiral behavior is eliminated. The
curves terminate at finite values of (M, J), with our code

|

breaking down at critical values of g,. This behavior is
seen in more striking terms in Figs. 5, 6 and 7: as a
increases, the curves terminate at such small values of ¢
that for @ > 0.3 the curves no longer decrease after the
maxima are reached.

The underlying reason for this behavior can be traced to
the Kretschmann scalar, as delineated in Fig. 9 (with detail
given in Fig. 10). For all values of n we find numerically
that the Kretschmann scalar initially decreases to a mini-
mum and then becomes a strictly increasing function of ¢.
However for n = 5,7,9 we find that it remains finite for
finite values of ¢, whereas for n = 3 it diverges at a critical
value ¢}’ of ¢},(0), where

4]

—+
= =51

V144a? + 9% — T2at* + 48al% ¢

240

6(n+3)(n-2)

1 \/4n2(n —12(n = 2)%a? + n2* + dn(n — 1)(n — 2)at? (22 — n)
o

forn=3 and a<a,. (6.5)
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The boson star angular momentum plotted against the parameter ¢, in (a) 5, (b) 7, (¢) 9, and (d) 11 dimensions

for various values of a. As with the mass, the maximum angular momentum decreases nonlinearly with the space-time dimension. For
D =5 (n = 3), except for a = 0, the curves all terminate at their end points, at which the Kretschmann scalar diverges.

The sign of ¢)" is chosen so that it matches the sign of

q},(0), which is negative for all space-time dimensions
when a < a,,.. Although there is a critical value g} in
any dimension, we find numerically that as ¢, increases
q},(0) departs further from this critical value, implying
that the Kretschmann scalar remains finite for all finite
qo- This pattern can be seen in Figs. 11(c) and 11(d).
However, for n = 3 we find that ¢},(0) — ¢/ at finite ¢,
signaling a divergence in the Kretschmann scalar. Fur-
thermore, this critical value of ¢, decreases as a
increases; to estimate the critical value of ¢, in Figs. 11(a)
and 11(b) we plot ¢} (0) — g} and employ a ninth-order
polynomial fit to interpolate the curve. The specific values
are shown in Table L.

This behavior is present neither in the Einstein case nor
in the perturbative solutions. It suggests the existence of a
critical central energy density in D = 5 at or before which
the behavior of the boson star must radically change. This
situation is reminiscent of the numerical boson star solution
obtained in D =3 [28] insofar as the mass, angular
momentum, and angular velocity all approach finite ter-
minal values at a critical value of the central energy density,

whereas in higher dimensions the central energy density is
unbounded and the corresponding physical quantities
approach finite limiting values. However numerical evi-
dence for the D = 3 case indicates the formation of an
extremal BTZ black hole at the critical value, with
vanishing scalar field in the exterior, whereas in the present
case we do not find the scalar field to vanish and we find no
indication of the formation of a horizon. Nevertheless,
since the curvature at the center is so high, we expect that
for some ¢, sufficiently close to gqgica that a finite size
perturbation will eventually concentrate enough energy at
the center so as to form a horizon. We therefore expect that
these solutions will become dynamically unstable to hairy
black hole formation for some ¢y < Gocritical-

In D = 3 the Ricci scalar is the highest-curvature term that
can appear in that dimension; in D = 5 itis the Gauss-Bonnet
term that fulfills this criterion. It is tempting to conjecture that
such critical energies appear in all odd dimensions in which
the gravitational theory includes its highest-possible curva-
ture term. While this would be challenging to numerically
check, it is conceivably feasible for the D = 7 third-order
Lovelock and D = 9 fourth-order Lovelock cases.

024009-12



GAUSS-BONNET BOSON STARS WITH A SINGLE ...

M
0.05F
[ =7
0.04
0.03f
0.02f
0.01f
[ @=9
S S S S S IS S S S SN T SN SO S S N ST U ST S S S N— qO
005 010 015 020 025 030
()

FIG. 7 (color online).

PHYSICAL REVIEW D 91, 024009 (2015)

0.010} G=71
0.008}
0.006}
0.004f
0.002f i
r a=.9
1 1 n n n n 1 n n n n 1 n n n 1 n n 1 n n 1 n qo
005 010 015 020 025 030
(b)

Detail plots of (a) mass and (b) angular momentum against the perturbative parameter ¢, in 5 dimensions for

various values of a. The truncation, which is a result of the divergent curvature, occurs at smaller values of g, for as a increases.

To conclude our analysis, in Fig. 12 we plot M vs J for
each dimension and the values of & indicated. The most
striking feature is that for each dimension, all of the
solutions lie on almost the same line in the energy vs

490

FIG. 8 (color online).

angular momentum graph regardless of the value of a, at
least for sufficiently small values of (M,J). For a given
value of @ these curves “turn back,” making a zigzag pattern
familiar from the Einstein case [29], albeit much tighter.

4o
w
11.0
10.95
10.8
10.7
10.66
* 90

The angular velocity @ plotted against the perturbative parameter ¢ in (a) 5, (b) 7, (c) 9, and (d) 11 dimensions

for various values of a. The termination of the curves in D = 5 is due to the divergence of the Kretschmann scalar at the end points,

except for @ = 0 which is immune to this divergence.
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FIG. 9 (color online).
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The Kretschmann scalar K = R**“?R ., plotted against the perturbative parameter g, in (a) 5, (b) 7, (c) 9, and

(d) 11 dimensions for various values of @. The divergent behavior of K in D = 5 is drastically different than in higher dimensions for

reasons explained in the text.

As a increases, the turnaround point for the zigzag pattern is
closer to the beginning of the curve [at smaller values of
(M,J)] for D #7. As the dimensionality increases the
effect of the zigzag is also suppressed. It is most pronounced
in D = 5; for this dimension we found no numerical evi-
dence for a zigzag pattern for & > 0.3, as the Kretschmann
scalar diverges before this pattern can emerge.

VIL. BEYOND a.,

It is possible to numerically analyze solutions for which
a > a.. While a full analysis is beyond the scope of this
paper, we present some preliminary results. We find for all
boson star solutions that the combinations of the quantities
Cy, Cj and Cgq in (3.10) become negative in this regime,
seemingly indicating they have negative ADM mass.
However the factor of (1 —a/a,,) in (3.10) also becomes
negative, ensuring that the overall signs of M and J do not
change in going from a < a to a > a,.

As before, in order to easily make comparisons between
different space-time dimensions, we choose a fixed value of
a= %. Boson star solutions in this parameter range are

qualitatively very different. Unlike for a < a,,, the spiral
behavior in the M and J curves as functions of € is not
present in any dimension but these quantities instead
increase monotonically, as can be seen in Fig. 13.
Similarly, as is seen in Fig. 14, when the M and J curves
are plotted as functions of g, they also increase monoton-
ically, and plotting the natural log of M and J against g, as
shown in Fig. 15, reveals that the curves approach expo-
nential growth as g increases. At first glance it appears that
the growth rate is universal for D > 7; however closer
inspection reveals that the growth rate increases slightly
with increasing space-time dimension. It is clear from these
plots that the physical quantities will not approach a finite
limiting value. We omit w plotted as a function of € since it
also increases monotonically with increasing € and lacks the
characteristic spiral behavior seen for a < a,,.

We again find a difference between boson star behavior
in D=5 and D > 5, namely that there seems to be a
maximum value of g, beyond which the numerics break
down. At first, when looking at Fig. 16, the Kretschmann
scalar appears to remain finite for all values of ¢g,; however,
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Detail of the Kretschmann scalar K plotted against the perturbative parameter g, in (a) 5, (b) 7, (c) 9, and (d) 11

dimensions for various values of &. Except for the scale on the K axis, dimensions D = 7,9, 11 behave qualitatively the same as @

increases, whereas D = 5 exhibits distinct behavior.

for D = 5 Fig. 17 reveals that ¢} — ¢,,(0) does indeed have
a root at some finite Goiica- We again use a ninth-order
polynomial best-fit curve to estimate ¢gigea at 0.172.
Similar to the a < a, case for D >5, we find the
Kretschmann scalar does not diverge and the difference
q;, —q,(0) is nowhere vanishing and monotonically
increasing ¢,, which can be seen in Fig. 17(b).

Finally, in Fig. 18 we plot M vs J. Note that in each
dimension the a > a, solutions are nearly collinear with
the a < a,, solutions. However, for a > a,, these lines do
not zigzag and “turn back™ at any value of g, due to the lack
of spiral behavior in M and J. We choose a = 0.70 to be
representative of the @ < a, solutions, but any value could
have been chosen as they all lie on the same curve (see
Fig. 12). It appears that for a specified dimension, the M vs
J curve is universal to all values of a # a,.

Our brief exploration of the @ > a, parameter space has
shown that these boson star solutions have properties that are
significantly different from a < a,, solutions. This regime is
numerically difficult to explore since a large number of
Chebyshev points are needed to find solutions for relatively
small values of g,. The reason behind this need for increased
resolution is not fully understood in the D > 5 case, as the

Kretschmann scalar remains relatively small compared with
the o < a; case. A full exploration of the reason behind
these surprising results will be left for future work.

VIII. CONCLUSIONS

We have obtained asymptotically AdS rotating SKV
boson star solutions in Einstein-Gauss-Bonnet gravity
coupled to a multiplet of massless scalar fields in all
odd space-time dimensions of interest in string theory,
ie. D=15,7,9,11, both perturbatively in powers of the
scalar field amplitude and numerically. For the latter, our
approach was to employ the same relaxation procedure on a
Chebyshev grid used in the Einstein case [28,29]. In all
space-time dimensions, the perturbative solutions match
the numerical solutions for sufficiently small values of ¢,
as expected. Furthermore, each dimension exhibits a
critical value of the Gauss-Bonnet coupling constant, o,
for which the solutions no longer have the asymptotic
behavior in (3.3).

The most striking result of the present work is the
distinction between the D = 5 case and its higher dimen-
sional counterparts. For D > 5, the physical quantities
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Plots of ¢;,/* — ¢, against the perturbative parameter g, in 5 dimensions for (a) @ = 0.1 and for (b) @ = 0.9 and

in7,9, and 11 dimensions for (¢) @ = 0.1 and for (d) @ = 0.9. The solid curves in panels (a), (b) are the best-fit ninth-order polynomials

to the points used to obtain Gortical-

(M, J, w) reach maximum values and then decrease to
eventually approach finite limiting values as g, increases
without bound. However, for D = 5 and for values of « as
small as @ = 0.1a,,, M, J, and @ each terminate at a finite
critical value ggca> at Which point the Kretschmann scalar
diverges. This situation is redolent of the AdS boson star
solutions recently obtained in D = 3 [28]. In that case the
boson star mass, angular momentum, and angular velocity
all monotonically increase with the central energy density
up to a critical value, at which point the boson star branch of

solutions smoothly connects with the extremal BTZ black

TABLE 1. Estimate of the critical value of g, at which the
Kretschmann scalar diverges in D = 5 for various values of &
using the best fit polynomials in Fig. 11.

a 9 0critical
0.1 2.54
0.3 1.15
0.5 0.648
0.7 0.329
0.9 0.0950

hole. In the present case for D = 5 there is no evidence that
a black hole forms at the critical value of ¢, although the
diverging Kretschmann scalar indicates the formation of a
singularity; this boson star branch is likely dynamically
unstable to forming a black hole at some value gy < gocritical-

Recall that demanding the field equations to have
derivatives no higher than second order, the Ricci scalar
is the highest-curvature term that can appear in 3 space-
time dimensions, while the Gauss-Bonnet term is the
highest-curvature term in 5 dimensions. We conjecture
that critical values of g, will appear in all odd dimensions in
which the gravitational theory includes its highest possible
curvature term that maintains second-order field equations.
It is conceivably feasible to numerically check this for the
D =7 third-order Lovelock and D =9 fourth-order
Lovelock cases. It would also be interesting to extend
our work to that of massive scalar fields and scalar fields
with potential terms to see what effect the scalar field mass
has on the critical value of g.

As with the Einstein case [9], one might expect asymp-
totically AdS space-times in Einstein-Gauss-Bonnet
gravity to be nonperturbatively unstable to the formation
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FIG. 12 (color online).

(d)

M vs Jin (a) 5, (b) 7, (c) 9, and (d) 11 dimensions for various values of a. The black dots correspond to the

point at which these curves turn back for a particular value of a. The insets are close-ups of the zigzag patterns for @ = 0.1 (top left

corner) and a = 0.9 (bottom right corner) for each dimension.

of black holes. Heuristically, global AdS is nonperturba-
tively unstable to black hole formation because its reflect-
ing boundary conditions imply that finite energy
perturbations, given enough time, will come together in

sufficient concentration to form a black hole. Since
Gauss-Bonnet gravity tends to increase gravitational attrac-
tion, we expect such an effect to be enhanced, though a
proper study remains to be carried out. Indeed, since it has
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FIG. 13 (color online).

(a) The boson star mass M and (b) angular momentum J plotted against the perturbative parameter e for

a=120inD =5,7,9,11 (n = 3,5,7,9). Perturbative results are plotted as dashed lines. Both M and J increase monotonically with

increasing €.
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FIG. 14 (color online). (a) The boson star mass M and (b) angular momentum J plotted against the parameter ¢, for @ = 1.20 in
D =5,7,9,11 (n =3,5,7,9). Both M and J increase monotonically with increasing g.

(a) (b)

FIG. 15 (color online). (a) The natural log of the boson star mass M and (b) angular momentum J plotted against the parameter ¢, for
a=120in D=5,7,9,11 (n =3,5,7,9). Both M and J approach exponential growth with increasing ¢.
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FIG. 16 (color online). The Kretschmann scalar K plotted against the parameter g, fora = 1.20in (a) D = 5,7,9,11, (n = 3,5,7,9)
and (b) D =5 (n = 3) to show detail.

024009-18



GAUSS-BONNET BOSON STARS WITH A SINGLE ...

PHYSICAL REVIEW D 91, 024009 (2015)

= , - an
+ 1.0F
0.08F '
| 0.8+
0.06 5 : |
. 0.4 k )
V l.uuo.ncc.o" D:7
| 0.2 Iy
0.05 0.10 0.15 T 40 . i ) 0.8 qo

FIG. 17 (color online).

(b)

Plots of g} — ¢},(0) against the perturbative parameter ¢, in (a) 5 and (b) 7,9, and 11 dimensions for @ = 1.20.

The solid curve in part (a) is the best-fit ninth-order polynomials to the points used to obtain Gogiical-

been shown that the AdS instability is really due to the high
level of symmetry present in global AdS (the normal mode
frequencies are all resonant with the AdS frequency [14])
we expect the boson star solutions constructed in this paper
to be nonperturbatively stable, although verifying this
explicitly is beyond the scope of the present work.

Further work includes a proper analysis of the a > a,,
and a = a,, cases. We have given a brief discussion of the
former case. It is straightforward to show that transverse
traceless excitations of the metric about an AdS vacuum
obey the equation

a 2
<1 - a—ﬂ) (V2hab + ﬁhab> = SﬂGTab

indicating that for @ > ., such excitations are ghostlike
[39]. This is congruent with the analysis of [31] in which
the authors found ghostlike metric perturbations in the
vacuum that does not limit to the Einstein vacuum in the
absence of a Gauss-Bonnet term. Just as matter sources in

(8.1)

M
0.4
[ D=9, G=1.2
03F
D=7,
ool a=12
I D=11,
[ 1o D=7, 3=0.7
' D=9,
0.1+ | D=11, a=07
@=07 D=5, 3=0.7
D=5, 3=1.2
1 n n 1 I 1 n n 1 n n ] J
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FIG. 18 (color online). M vs J for a = 0.70 and @ = 1.20 in
D =5,7,9,11 (n = 3,5,7,9). The black dots correspond to the
maximum (M, J) value reached on each curve.

their analysis still carry positive energy, the boson stars we
obtain here have positive mass, although the ghostlike
excitations imply an instability of the vacuum. The o = a,,
case requires a separate analysis due to the different
boundary conditions that must be employed. It will be
interesting to see what features solutions in this class have
in common with the D = 3 case [29].
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Note added.—Recently, we became aware of similar work
in D =5 [40], in which rotating EGB boson stars were
studied for scalar fields in a potential. The zero-potential
case corresponds to the one we study, though they evidently
discuss only the @ = 0 case when rotation is present and the
potential vanishes. For nonzero potential they also find in
EGB gravity that rotating solutions exist up to some
maximal value of the central energy density, though they
claim the limiting solutions for this case are regular, in
contrast to the massless case that we consider here.

APPENDIX A: FIELD EQUATIONS

Here we record the field equations we employ in
obtaining both our perturbative and numerical solutions.
While it is possible to rewrite these so that the second-
derivative terms are isolated, this produces expressions
even more cumbersome than those presented here, and so
we do not carry out this step. There are five coupled
second-order ODEs for the five metric and scalar field
functions as follows:
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r?29(f*gh(n —2)(n — 1) = 2hI1?r* (0 — Q)?)
+ fhr(gr2af" +20¢" + Afg(ITY = 3h2(R)) + gf (3rg +4g(n — 1)) + 2fg(n — 1) — fr(g')?)
+2f P (h(3h(n—1) —n® + 2Ar* + 1) + 211 (h(n — 1) — 1))]
+2afh(l —n)[@#(n=3)(f2(n—=4)(n=2) +2f(n—4)Bh—n—1) +3h(5h=2(n+ 1)) + n*> - 1)
+r(gr(gf” + fd)(f(n=2)+3h—n—1) =3hr*(Q)(f(n—=2) +5h—n —1))
+2¢3(n=2)r(f')? + gf'(rg (5f(n =2) + 9h = 3(n + 1)) +4g(n = 3)(f(n = 2) + 3h —n—1))
+ (@) (=f(n=2) =3h+n+1) +2fg(n=3)g(f(n=2) +3h—n—1))] =0 (A1)

F2hrtQ(g)? + fPr*(r(Rhr(fQ" — Qf") + fQ (3rh’' 4+ 2h(n +2))) — 4h(n — 1)rQf’
=2Q(h(n = 1)(f(n=2) +3h—n—1) + 211 (h(n — 1) + 1) + 2hAr?) — 4fhr?Q(IT)? + 81°w)
+ ghr? (rQ(=2f2¢" + 3fhr*(Q)? + 411 (w — Q)?) — £¢ BrQf’ + 2f(n — 1)Q + frQ))
+2af(n—1){@h(n—-3)Q(f*(n—4)(n-2) +2f(n—4)Bh—n—1) + 15h> —=6h(n + 1) + n> — 1)
+ rlghr((f — Dn=2f +3h—1)(gQf" + fQg" — f9Q")
F (F(=n) +2f = Sh+n+ 1)(3fgri'Q + 3n2PQQ)?)) + 2g2h(n — 2)rQ(f')?
+ ghf'(rQd(5f(n—=2)+9% —=3n-3)+49(n -3)Q((f = 1)n—=2f+3h—1) = 2fg(n —2)rQ)
2 RS (f(=n) +2f = 3h +n+ 1) + fghg (F(n —2) +3h —n — 1)(2(n - 3)Q + rQY)
+ fhrQ(g) (—=f(n=2)=3h+n+1)]} =0 (A2)

r?{2gh(=2R°T1* (0 — Q)?Q%r* + fgh(2(—@* — 2Qw + (h(n — 1) + 2)Q*)IT?
+h(=n?+3h(n—1) +2rPA+ 1)Q?)r? — f2¢?h(n —1)n
+ f29(=2g9(h(n = 1) + DI + h?(n = 2)(n — 1)r?Q* + gh(n®> — h(n — 1) = 2r*A — 1)))
— frifrQ(¢) e = 2fgrrQg ((n — )Q + rQ)w’
+9f'(92h(fgn = 2h(n = 1)r*Q?) + fgrh') = 30*r*Q%g)h
+ g(=f2FPr(h)? + 2fgh(3hQQ' + fg(n + 1))I + hr(2f2h"¢* + 4fh(fg — hr*Q?)(I1')%g
+4fh*(n+2)rQQ g + h*r* (3hr*Q* + fg)(Q)* — 2h*r*Q(gQf" + fQg" —2fgQ")))]}
+2f(n = a{=2¢*h*(n = 2)Q*(f")*r* + fR*(3h + f(n — 2) —n — 1)Q*(¢)*r*
=2fgh*Bh+ f(n=2)—n—-1)Qg¢((n-3)Q+ rQ')r’
+ ghf'[h*(=9h = 5f(n —2) +3n + 3)Q%¢r + g(fg(3h + 3f(n = 2) —n — 1)rk’
+2h(2fh(n = 2)QQ'r3 = 2h(n = 3)(=2f + 3h + (f = 1)n = 1)Q2P + fg(n = 2)(h + (f = 1)n = 1)))]r
+glgln =3)(Fg((f = 1V2n2 +2(F = 1) = Fyn+ (h = 1)(=4f + 3+ 1))
—h(n=4)(n=2)f>+2Bh—n—1)(n—4)f + 15h> + n*> = 6h(n + 1) — 1)r*Q?) h?
+r(f2¢*Bh — f(n=2) +n+ 1)r(n')?
+2£gh(3h(=2f + 5h+ (f = Dn = DQQF + fg(n —1)(=2f + 3h + (f = n = 1)K
+ hr(rP(3h(Sh+ f(n—=2) —n—1)r*Q> + fgBh+ f(n—2) —n—1))(Q')?h?
+4fgBh + f(n—2) —n—1)nrQQ'h?
+20h+ f(n=2) =n=1)(f(fH"g + F*rQ(29Q" - Q¢")) — gh*r*Q*f")))]} = 0 (A3)
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r{2fh(2I? + h(2Ar* +2(n = 3)> + h(n =5) + 3 —n)(n + 1)))g?

+2h(f*gh(n —2)(n — 1) = 2hr? 1% (0w — Q)?)g

+ fri=fh*r(g)* + fgh(Qh(n — 1) + rk')g + ghf'(4gh(n — 1) + 3hrg + 2grh’)

+g(=fgr(h')* + 2fghnh' + hr(h(4fg(IV)* = hr*(Q')* + 291" + 2f ") + 2fgh"))]}
—2fa{@((n=4)(n=2)(n=1)(f = 1)* +2(h = 1)(n=5)(n = 4)(f = 1) + 3(h = 1)*(n = 9))(n - 3)?
+r[2g°h(n = 2)r(h(n — 1) + rh')(f')* + g(4g(n = 3)(h(n = 5) + f(n = 2)(n = 1) + (3 = n)(n + 1)) ?
+ r(=fg(n = 2)r(')* +2gh(3h(n = 3) + (-n—1)(n = 3) + f(n = 2)(3n = 7)1’ + hg

+2(n =2)(R(Q)*r + fghh"r)))f’

— fhr(g)*(h(h(n=5)+ f(n=2)(n=1)+ B =n)(n+ 1)) + f(n = 2)rh’)

+ [ 2g(h(n =5) + (=n = 1)(n=3) + f(n = 2)(n = 1))(n = 3)1?

+r(=h(n=2)(Q)*r = fg(n = 2)(W)*r + 2fgh(n — 2)h"r + gh(3h(n = 3) + 3 —n)(n + 1)
+f(n=2)(3n=5))k))

+9(fg(n=3)Bh—f(n—=2)+n+1)r(h')?

+ fh(n =2)(Bh(Q)r* + 2(gf" + f¢")r* +29(3h + f(n=2) —n—1)(n=3))I

+ hr(d4fh?(n =2)QQQ"r + h*>(=3h(n =5) + (n=3)(n+ 1) + f(n = 2)(n + 3))(Q)*r?

+2h(h(n=5)+ f(n=2)(n—=1)+ B =n)(n+ 1)) (gf" + fg") + fg(n —3)(6h + 2f(n - 2)
—2(n+1)h"))]} =0 (A4)

v , L M(@-Q)2 (1+(n—1)h)
T +E(2nf9h+2rghf + rf(gh)) + (a}zg ) —( (}lhrz) ) =0 (A5)

where a ’ denotes differentiation with respect to r. In addition to these second-order ODEs, there is a first-order ODE in the
form of a constraint equation, given by

r2[4<%f2gh(n—1)n+fg<h<%(n—1)(h—n+2H2—1 +Ar>+H2> WP (o - 9)>

)
+fr((fg) (rh' 4+ 2hn) +4fg< (n— 1)1 — hr(IT) )) + fh2rH(Q) }
(

—2af(n=1)[r(fg)'(rW(3f(n—=2)+3h—n—1)4+2h(n=2)(fn+h—n—-1))
+9(n=3)2frh'(f(n— )+3h—”—1) h2(f=1)(h=1)(n=2)+ (f = 1)*(n=2)n +3(h = 1)*))
+ Q) (3f(n=2)+3h—-n-1)] = (A6)

APPENDIX B: PERTURBATIVE FIELDS

In this appendix we catalog all of the perturbative gravitational and scalar field solutions to the field equa-
tions in space-time dimension D = n + 2 for n = 3,5,7,9. The fields are labeled as F - where p denotes the order

in €.
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1. n = 3 results

6% + 206%r% 4+ 514
f3;2 =

9
604 + 4072 + r*
= 12
_ 1540£° + 5548247 + 393542 r* + 9007
= 2016
2
34 = | 7370080 (1315860 + 11249595¢'2r% + 361548397107+ 4- 519547987810 + 40913902¢° 7%
+ 1851228374110 + 4631027£%r'% + 514952r!4)
— % (380809802 + 165606315¢121% + 5640588877107 + 809407494¢5 16
4762800
+ 616096806£° % 4 272183829¢4r'° 4 676208617212 + 7535096r')
2
T34 (872290£1'° + 7971520£'4r% + 2593915542 r* + 34403186£'°r° + 160994758

~ 11270080
+ 305244020110 4 14905564712 + 3541042714 + 3541716)

— Ssgrcop (589165071 4+ 47634040/141% 4- 173336925¢121* + 217174806¢1°r°

+ 9888742581 + 215492405110 4 29470954 r12 + 650010¢2r'* + 65001716)

£%(22260£'% + 183645¢1%7% + 31166181 + 260694¢° 15 + 1230664 r® + 31869¢2r10 + 3541r12)
1270080
a(1604820£1'% + 29497651012 + 2921877¢8r* + 1877358¢5r° + 787362418 + 1950037710 + 21667r'%)
529200

h3;4 = |:

KZ
Q34 = {m (159845571 + 8795055121 + 19004760¢10r* + 20982192816 + 1413904858

+ 60207122470 + 150517842 r!2 + 167242r'4)
a
635040

(21965357 + 11355375£'2 12 + 22425240¢'07* 4 22910832486 + 14668248518

+ 60795124710 + 15051787 r!2 + 167242r14)

bﬂZ

Moe = |—
357 1853493760
1+ 1157943929807'°/8 + 983202987068 710 + 555863938700 12 4- 2039586689074 114

+ 4416801537216 4 428716940r'8)
>
152562009600
1 71249955470946£'2r6 + 92323311236940£1°18 + 7828103543563878 10 + 44381025035130£° 712

(1128452101£'8 + 1067888015067 + 41756607180¢'4r* + 8887205618226

(9287222174238 + 88194012250907'67% + 33780454205940¢ 1

+ 163753053646704r'* + 3570276679411£%r'° + 3491268225007'%)
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2. n = 5 results

2070 + 1056412 + 42627 + 7r°

f5;2 = 50
O 2020 + 154 + 6671 4 1°
52 60
_152581¢10 4 767826812 + 103589175 * 4 7735984415 + 31302628 + 5397070
53 257400
fZ
= |——— (2955576624002 18,2 16,4
Fs5a= |eig77760000 22 720 4 3682611572640£'8 12 + 17103932986140£16
1 364981315584607'4/0 + 47555951613885£121% 4 41236810544215£'0710 + 24529389790620£% 1!
+ 10021950443882£5 714 + 2733953554501£4r16 + 4557608098 117218 + 35065241462720)
a
T (5730125681280£%° + 54710235259680£'8 1% + 261420130519548716 /4
360720360000 + rt 8
1 542618701892124/'47° 1 6833707296311612'2r% + 5819796092814997'0710 1 343653106261036£8 12
+ 140092289643826£° 114 + 38200555296657£* 16 + 6369004169047£2 '8 + 49007141649420)
2
s (198795488864£2 + 2586519623296£2°r> + 11564746522784¢'8 1

~ 618377760000
1 229324049132367'9/5 + 215399531501444418 4 12564927910535£'2710 1 4244040931130£10712

+ 6776588468658 14 + 31598878220£5 716 4 7946956745¢* 18 + 1222608730£2r%° + 87329195122)
a
360720360000 (
1 363929580852292£16r° + 3190637569570887 1418 + 180755354654875712r10 + 61031317677330£10!2

3517759244608£% + 44211086834432£%°r2 + 2003055838026887 '8+

+ 10223405437245¢8r1* 4 7003050763800 r'® + 1751063291254 r'8 + 2693943525042 r*° + 1924245375r%2)

fz
hsy = |———
3% 7 1123675552000
+21295887327¢1018 4 122776546758 110 + 4978052794072 + 136233544244 114

(769728960¢' + 9390693312£16r2 + 2098379883614+ + 25938182556£12r6

+ 22705590742 ' + 17465839r18) — (159327168078 + 3122255136¢'6r2 + 3848592748741

_
369969600
+ 3585574564£'2r° + 2592129969018 + 1419459613810 4 565061926¢°r'2 + 153939630 14

+ 2565660522 r'® 4+ 1973585r18)

LpZ
Qo = |—°8
54 7 146378332000
1 5053257946884 16 + 547149789758712r8 + 420702504651£10710 4 234379619045£8 12

+ 9359308329874 + 2552538635446 + 42542310597 '8 4 327248543r%)

(15058082990£%° + 1061761594408 1> + 311179210446¢'6r*

h W.;osoo (1952164609420 + 1317376473928 1% + 353356087188£16

+537690140702£'47° + 5620063154422 8 + 424922932863¢10r10 + 2350830237478 r12

+93647191352£°r'% + 2552538635446 + 42542310597 '8 + 327248543r%)
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52
~ |453635740958400000
+23112600885726752792£%% r* + 72350175319616674844£0r6 4 151159034180233581556£'8 18
+ 228077768805842399885710r10 + 258620332265962810395¢'4 712 4 2238715641943309482487'12 114
+ 1479200378314165129147'0r1° + 73557029936994344181/8r'8 + 2669894 1169899723207°r2°

+ 6684077146010747418¢4r* + 1032668691070620996£2r** + 7425300057495642072°)
a

© 4498554431170800000

+6023372115583107270188£%2r* + 18720948444225766469276£2°

+38914019934303990489424¢'8 8 + 58601438194884845712305¢ 1610

+ 66469446985987754507715¢14 12 4 57615205604166626638152¢12 14
+381290986621429369183867'°r1¢ 4 18989139612729591541089£% r!®

+ 6901386814262466690003£°r2° + 1729600335134757290322¢* 1

I (337633104499816268£%6 + 4271077136958547132£%4r?

(88843628024978738912£2° + 1122507865343630559388£4 1>

+267442276275622329084¢r** + 19242295861536333180r%°)

3. n = 7 results

7088 + 504012 4+ 25264 r% + 726210 + 918
245
7068 + 56012 + 2844 + 84210 + /8
280

(283012607 + 18164832812 1% + 342224260¢'0r* + 415360056816 + 3315528397078

f7;2 =

£27;2 =

M=
737 62375040
+ 16801332044 110 + 48974940£% 1'% + 6252120r'4)

22
~ |371502619488000
+25965374820716045£2°r° + 45556296988624565¢'8r% + 56539135502871164£'6710
+ 51618427799679364¢ 147! + 35302266172890626£ "2 r1* + 18211924445078266¢ 01
+ 7062641146585640£8r'8 + 2018090265782824£°r%0 + 403651927726529¢* r?
+50460227131621£%r** + 2968444009876r%%)

a
~ 835880893848000
+3716883650942351175¢%°r5 4 6304111318629442175¢'8r% + 7700650359344929844 16710

+69865910211407672447'r12 + 47678254428820868067'2r'* + 2458034340313267006£'°r!6
+953081702075970200¢8 '8 + 272332684743145624£°r% + 54472333166578679£r*

f74 (96780316472840£%6 + 1589105610832740¢%4 1> + 9521410725967140£%

(16866537231824280£2° + 232049118692571180£%*r% + 1414110709187636460£%2r*

+ 6809680934566771£%r** + 400602893601676r%%)
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g7;4

h7;4

97;4

H7;5

22
371502619488000
+ 15807036948862760£7%r° + 21693866896535335£2°r% + 20860826548147390£8 10
+ 13769626720091151£'°712 + 5953776409345128414r14 + 1535551141626138£'2r!6
+ 1938670293813967'°r!1% 4 10157293967310£8r%° + 2709965597136£°r%2 + 5081185494634 r**

+ 5977865287842 r*° + 3321036271r°%)
a

~ 835880893848000

+2361158122174494840£%2r5 + 3036925736949961845£2°r% + 2850729294425536090¢'8 10

+ 1868492713518324621£'6r12 4 807995702469461688¢'#r1* 4 209605974589864398¢ 216
+27209163001515516£'°7'8 + 1738728305273610¢% 120 + 463697435964336¢°r2 + 86943269243313¢4r

(63735166423850£%8 + 1080779423604460£%0r> + 6104455301649630£4 r*

(10750577761041750¢% + 178690917717167220£%6r> 4+ 1006526355431407410£%4 r

+ 10228619910978£2r%¢ + 568256661721r%8)
I/ﬂz
53071802784000

+ 108844880136857'°r8 + 9029812070708 4710 4 5829937982596/ '2r'2 + 2930312879858710r!4
+ 1128813864010£8r'¢ + 3226149520400 78 + 6452299040844r%° + 8065373801£7 122 + 474433753r%4)

a
~ 17058793752000
+301178906390505£'8r + 289138698210505£67% + 2274508746035247 4710 + 143878222471828¢'%r!2

+ 718032082229547'0r1* + 27603213721570¢8 !0 + 7886010815720¢° '8 + 1577202163144£4r%°

(153269396280 + 2477855239860¢%2r% + 6500468085540£2°r* + 9976953706005 16
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GAUSS-BONNET BOSON STARS WITH A SINGLE ...
APPENDIX C: CONSERVED CHARGES AND THERMODYNAMIC QUANTITIES

Here we catalog the thermodynamic charges and potentials entering the first law of thermodynamics in spacetime
dimension D = n + 2, for n = 3,5,7,9. As the boson star temperature is zero, the first law reads dM = wdJ.
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APPENDIX D: KRETSCHMANN SCALAR
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