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The objective of the present paper is to analyze the phase transition of asymptotically anti–de Sitter
(AdS) black-hole solutions in Lovelock gravity in the presence of nonlinear electrodynamics. First, we
present the asymptotically AdS black-hole solutions for two classes of the Born-Infeld type of nonlinear
electrodynamics coupled (separately) with Einstein, Gauss-Bonnet, and third-order Lovelock gravity.
Then, in order to discuss the phase transition, we calculate both the heat capacity and the Ricci scalar of the
thermodynamical line element. We present a comparison between the singular points of the Ricci scalar
using the geometrothermodynamics method and the corresponding vanishing points of the heat capacity in
the canonical ensemble. In addition, we discuss the effects of both Lovelock and nonlinear electrodynamics
on the phase transition points.
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I. INTRODUCTION

One of the more interesting tools for studying a
thermodynamical system are phase transitions. In order
to investigate phase transitions, one may use the micro-
canonical, canonical, and/or grand canonical ensembles.
On the other hand, phase transitions of a thermodynam-

ical systems may be investigated by using the concept of
geometry in thermodynamics—the so-called geometrother-
modynamics (GTD). In this method one may define a
thermodynamical line element, and curvature can be
interpreted as a system interaction. One can study the
phase transitions by obtaining the curvature singularities of
the thermodynamical metric. Although the equivalence of
these two methods—i.e., the roots of the heat capacity
in the canonical ensemble (computed by using standard
black-hole thermodynamics) and the curvature singularities
of the thermodynamical metric (calculated using the GTD
approach)—has been checked for asymptotically anti–de
Sitter (AdS) black holes [1], it is not in general on firm
ground [2] and so an investigation of the validity of such an
equivalence may be worthwhile, especially in cases with
nonlinear electrodynamics (NLED) sources.
At first, Weinhold defined the second derivatives of the

internal energy with respect to entropy and other extensive
quantities (such as the electric charge) of a thermodynam-
ical system to introduce a Riemannian metric [3,4],

gW ¼ ∂2M
∂Xi∂Xj dX

idXj; Xi ¼ XiðS;QÞ: ð1Þ

Then, Ruppeiner introduced another metric, in which
the Riemannian metric was defined as the negative
Hessian of the entropy with respect to the internal
energy and other extensive quantities of a thermodynamical
system [5,6],

gR ¼ ∂2S
∂Yi∂Yj dY

idYj; Yi ¼ YiðM;QÞ: ð2Þ

It was shown that both the Ruppeiner andWeinhold metrics
are conformally related to each other, where temperature is
the conformal factor [7]. Recently, it was shown that the
phase transition points of the heat capacity do not match
those in the Weinhold and Ruppeiner metrics. Quevedo has
established a new Legendre-invariant thermodynamical
line element to overcome this problem [1,8–13].
Although there is more than one Legendre-invariant metric,
in this paper we use the simplest Legendre-invariant
generalization of the Weinhold metric, gW , which can be
written as

g ¼ MgW ¼ M
∂2M

∂Xa∂Xb dX
adXb; ð3Þ

where Xa ¼ fS;Qg and its Legendre-invariant metric can
be written in terms of the Ruppeiner metric, gR, as

g ¼ MTgR ¼ −
M

ð ∂S∂MÞ
∂2S

∂Ya∂Yb dY
adYb; ð4Þ

where Ya ¼ fM;Qg.
In this paper, we follow the Quevedo method to study

GTD in Einstein, Gauss-Bonnet (GB), and third-order
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Lovelock (TOL) gravities [14]. In addition, we consider the
recently proposed Born-Infeld (BI)-type models of NLED
as a source [15] (motivations for the Lovelock and BI-type
models can be found in Refs. [16–19]). We should note that
although one can study the constant-curvature spacetimes
with positive, zero, or negative values for Λ, the case of a
negative cosmological constant is of interest for studies of
the AdS/CFT correspondence [20]. Besides, the Hawking-
Page phase transition can be interpreted using the AdS/CFT
correspondence. So, hereafter we are interested only in
asymptotically AdS solutions.
The plan of the paper is as follows. In Sec. II, we give a

brief discussion of the asymptotically AdS black-hole
solutions of Einstein, GB, and TOL gravities in the
presence of NLED. Section III is devoted to the
calculation of conserved and thermodynamic quantities
and a check of the first law of thermodynamics. Then,
we discuss the thermal stability of the solutions by
calculating the heat capacity. We use the concept of
geometry in thermodynamics to study the phase transi-
tion. We also compare GTD results with the canonical
ensemble stability criterion. Finally, we end with some
conclusions.

II. ASYMPTOTICALLY AdS BLACK-HOLE
SOLUTIONS OF LOVELOCK GRAVITY

WITH BI-TYPE NLED

The Lagrangian of Lovelock gravity coupled with a
NLED source is written as [14]

£ ¼ LLovelock þ LðF Þ; ð5Þ

LLovelock ¼
X
i¼0

αiLi; ð6Þ

where αi and Li indicate the coefficients and Lagrangians
of Lovelock gravity, respectively, and LðF Þ is the
Lagrangian of NLED. In this paper, we regard Lovelock
gravity up to the fourth term. More explicitly,L0 ¼ −2Λ, in
which Λ is the negative cosmological constant, L1 ¼ R
denotes the Ricci scalar, L2 ¼ RμνγδRμνγδ − 4RμνRμν þ R2

is the Lagrangian of Gauss-Bonnet gravity, and the
Lagrangian of third-order Lovelock gravity, L3, is

FIG. 1. Einstein case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 3, Λ ¼ −1, Q ¼ 1, and β ¼ 0.5 (solid line), β ¼ 1 (bold line), and β ¼ 2 (dashed line).
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L3 ¼ 2RμνσκRσκρτRρτ
μν þ 8Rμν

σρRσκ
ντRρτ

μκ

þ 24RμνσκRσκνρRρ
μ þ 3RRμνσκRσκμν þ 24RμνσκRσμRκν

þ 16RμνRνσRσ
μ − 12RRμνRμν þ R3: ð7Þ

In order to consider an appropriate model of NLED, we
take into account the recently proposed BI-type models of
NLED which were introduced by Hendi (exponential form
of nonlinear electromagnetic field or ENEF) [15] and
Soleng (logarithmic form of nonlinear electromagnetic
field or LNEF) [21] with the following explicit forms:

LðF Þ ¼
(
β2ðexpð− F

β2
Þ − 1Þ; ðENEFÞ

−8β2 ln ð1þ F
8β2

Þ; ðLNEFÞ ð8Þ

where β denotes the nonlinearity parameter and the
Maxwell invariant is F ¼ FabFab, in which Fab ¼ ∂aAb −∂bAa is the electromagnetic field tensor and Aa is the gauge
potential. We should note that for large values of β, the
Lagrangians of Eq. (8) reduce to the linear Maxwell
Lagrangian.
Taking into account both gravitational (gab) and electro-

magnetic (Aa) fields, and using the Euler-Lagrange

equation, the field equations of Lovelock gravity in the
presence of NLED are described by [22]

α0G
ð0Þ
μν þ α1G

ð1Þ
μν þ α2G

ð2Þ
μν þ α3G

ð3Þ
μν

¼ 1

2
gμνLðF Þ − 2FμλFλ

νLF ð9Þ

and

∂μð
ffiffiffiffiffiffi
−g

p
LFFμνÞ ¼ 0; ð10Þ

where α0 ¼ α1 ¼ 1, the arbitrary coefficients α2 and α3 are
related to GB and TOL gravity, and

Gð0Þ
μν ¼ −

1

2
gμνL0; ð11Þ

Gð1Þ
μν ¼ Rμν −

1

2
gμνL1; ð12Þ

Gð2Þ
μν ¼ 2ðRμσκτRν

σκτ − 2RμρνσRρσ − 2RμσRσ
ν þ RRμνÞ

−
1

2
gμνL2; ð13Þ

FIG. 2. Einstein case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 4, Λ ¼ −1, Q ¼ 1, and β ¼ 0.5 (solid line), β ¼ 1 (bold line), and β ¼ 2 (dashed line).
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Gð3Þ
μν ¼ −3ð4RτρσκRσκλρRλ

ντμ − 8Rτρ
λσRσκ

τμRλ
νρκ þ 2Rν

τσκRσκλρRλρ
τμ − RτρσκRσκτρRνμ þ 8Rτ

νσρRσκ
τμRρ

κ þ 8Rσ
ντκRτρ

σμRκ
ρ

þ 4Rν
τσκRσκμρRρ

τ − 4Rν
τσκRσκτρRρ

μ þ 4RτρσκRσκτμRνρ þ 2RRν
κτρRτρκμ þ 8Rτ

νμρRρ
σRσ

τ − 8Rσ
ντρRτ

σR
ρ
μ

− 8Rτρ
σμRσ

τRνρ − 4RRτ
νμρRρ

τ þ 4RτρRρτRνμ − 8Rτ
νRτρRρ

μ þ 4RRνρRρ
μ − R2RνμÞ −

1

2
L3gμν; ð14Þ

and LF ¼ dLðF Þ
dF .

Now, we should consider a suitable metric and study the
effects of both the Lovelock and NLED terms. The (nþ 1)-
dimensional line element of a spherically symmetric
spacetime may be written as

ds2¼−NðrÞfðrÞdt2þ dr2

fðrÞþr2
�
dθ21þ

Xn−1
i¼2

Yi−1
j¼1

sin2θjdθ2i

�
;

ð15Þ

and hereafter we suppose that the volume of a (n − 1)-
dimensional, t ¼ const, and r ¼ const hypersurface is
Vn−1. The nonzero components of the electromagnetic
field tensor in arbitrary (nþ 1) dimensions may be written
as [18,19]

Ftr ¼ −Frt ¼
q

rn−1
×

�
exp ð− LW

2
Þ ; ðENEFÞ

2
1þΓ ; ðLNEFÞ ð16Þ

where

LW ¼ LambertW

�
4q2

β2r2n−2

�
;

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2r2n−2

s
;

and q is an integration constant related to the electric
charge. The metric function of Einstein gravity that satisfies
the gravitational field equation (α2 ¼ α3 ¼ 0) is [18,19]

FIG. 3. Einstein case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 6, Λ ¼ −1, Q ¼ 1, and β ¼ 0.5 (solid line), β ¼ 1 (bold line), and β ¼ 2 (dashed line).
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fEðrÞ ¼ 1 −
2Λr2

nðn − 1Þ −
m
rn−2

þ Σ; ð17Þ

where

Σ ¼
8<
:

− β2r2

nðn−1Þ þ 2qβ
ðn−1Þrn−2

R
1−LWffiffiffiffiffi
LW

p dr; ðENEFÞ

− 16β2r2

nðn−1Þ −
8β2 lnð2Þ
nðn−1Þ þ 8

ðn−1Þrn−2
R q2

Γ−1−β
2 lnðβ2r2n−2ðΓ−1Þ

q2
Þ

rn−1 dr; ðLNEFÞ
ð18Þ

and m is an integration constant related to the finite mass.
Looking at last the term of Eq. (18), one may think that, for
some specific limits, this term behaves like a mass term
(proportional to r2−n); however, this is not true. We should
note that the only integration constant of the field equation
was labeled with m in Eq. (17) and we cannot adjust q and
β to obtain a constant value for the integration part of the
last term in Eq. (18) for arbitrary r [18,19].
The metric function for GB gravity (α2 ≠ 0, α3 ¼ 0) can

be written as [16]

fGBðrÞ ¼ 1þ r2

2α
ð1 −

ffiffiffiffiffiffiffiffiffi
ΨGB

p
Þ; ð19Þ

where

ΨGB ¼ 1þ 8αΛ
nðn − 1Þ þ

4αm
rn

þ 4αβ2ϒn

nðn − 1Þ ; ð20Þ

ϒn ¼
8<
:
1þ 2nq

βrn
R LW−1ffiffiffiffiffi

LW
p dr; ðENEFÞ

8ðn−1Þ
n

h
ð2n−1ÞðΓ−1Þ

n−1 − n lnð1þΓ
2
Þ

n−1 þðn−1Þð1−Γ2ÞH
n−2

i
; ðLNEFÞ

ð21Þ

FIG. 4. GB case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 4, Λ ¼ −1, Q ¼ 1, β ¼ 1, and α ¼ 0.001 (solid line), α ¼ 0.1 (bold line), and α ¼ 1 (dashed line).
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H ¼ 2F1

�
1

2
;
n − 2

2n − 2
;
3n − 4

2n − 2
; ð1 − Γ2Þ

�
; ð22Þ

in which pFqða; b; c; dÞ is the hypergeometric function.
Since the inclusion of the mentioned NLED models in the
Lagrangian of third-order Lovelock gravity with two free
parameters α2 and α3 makes calculations considerably
more complicated, we use a subclass of Lovelock gravity
with a relation between the various Lovelock coefficients.
In other words, in our model one can choose a special case
in which α3 is a function of α2 to simplify the complicated
TOL field equation and its solutions. Thus, the metric
function for TOL gravity may be obtained as [17]

fTOLðrÞ ¼ 1þ r2

α
½1 −Ψ1=3

TOL�; ð23Þ

where

ΨTOL ¼ 1þ 3αm
rn

þ 6αΛ
nðn − 1Þ þ

3αβ2ϒn

nðn − 1Þ ; ð24Þ

and NðrÞ ¼ C for all the mentioned branches of Lovelock
gravity. Hereafter, we choose NðrÞ ¼ C ¼ 1 without
loss of generality. In the above equations, we have set
α2 ¼ α

ðn−2Þðn−3Þ and α3 ¼ α2

3ðn−2Þðn−3Þðn−4Þðn−5Þ for further

simplification. It has been shown that these solutions
may be interpreted as black-hole solutions with various
horizon properties depending on the values of the non-
linearity parameter β (see Refs. [15,18] for more details).
Using the series expansion for large distances (r ≫ 1), one
can show that these solutions are asymptotically AdS (with
an effective cosmological constant). Besides, we should
note that in general there are no restrictions on the Lovelock
coefficient α. Although there are a limited number of
published papers covering Lovelock gravity (one of
which considered negative values for the Lovelock
coefficient [23]), in this paper we restrict ourselves to
positive α. In addition, in order to obtain physical solutions
with real asymptotical behavior, we should regard
α ≤ −nðn − 1Þ=ð8ΛÞ for negative Λ. Since the geometric
properties of the solutions were discussed before
[15–17,19], in this paper we focus on the thermodynamic
stability conditions using the GTD method.

FIG. 5. GB case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 4, Λ ¼ −1, Q ¼ 1, α ¼ 0.1, and β ¼ 0.5 (solid line), β ¼ 1 (bold line), and β ¼ 2 (dashed line).
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III. THERMODYNAMIC STABILITY

A. Thermodynamic properties

Taking into account third-order Lovelock gravity, it has
been shown that the entropy of the asymptotically flat
solutions can be written as the Wald formula [24],

S ¼ 1

4

Z
dn−1x

ffiffiffi
~g

p
ð1þ 2α2 ~Rþ 3α3 ~L2Þ; ð25Þ

where ~g is the determinant of the induced metric ~gμν, and ~R

and ~L2 are, respectively, the Ricci scalar and the
Lagrangian of GB gravity for the metric ~gab on the
ðn − 1Þ-dimensional spacelike hypersurface. Calculations
show that for our black-hole solutions the entropy may be
simplified as [16,17,19]

S ¼ Vn−1rn−1þ
4

8>>><
>>>:

1; ðEinsteinÞ
1þ 2ðn−1Þα

ðn−3Þr2þ ; ðGBÞ
1þ 2ðn−1Þ

ðn−3Þ
α
r2þ
þ ðn−1Þ

ðn−5Þ
α2

r4þ
; ðTOLÞ

ð26Þ

where for α ⟶ 0 the area law is recovered, as is expected.
In Eq. (26), rþ is the event-horizon radius of the black-hole
solutions. It is notable that one can obtain Eq. (26) from the
Gibbs-Duhem relation [25].
Now, we calculate the flux of the electric field at infinity

to obtain the electric charge of the black holes. For the
mentioned BI-type NLED theories, we find [16,17,19]

Q ¼ Vn−1

4π
q; ð27Þ

which is the same as that in the linear Maxwell theory.
Regarding the temporal Killing null generator χ ¼ ∂=∂t,
the electric potential U, measured at infinity with respect to
the event horizon, is [26,27]

U ¼ Aμχ
μjr→∞ − Aμχ

μjr¼rþ

¼
( βrþ

ffiffiffiffiffiffiffi
LWþ

p
2ðn−2Þð3n−4Þ ½ðn − 1ÞLWþζþ þ 3n − 4�; ðENEFÞ
− 2β2rnþ

nq ðηþ − 1Þ; ðLNEFÞ
ð28Þ

FIG. 6. GB case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 6, Λ ¼ −1, Q ¼ 1, β ¼ 1, and α ¼ 0.001 (solid line), α ¼ 0.1 (bold line), and α ¼ 1 (dashed line).
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where

ζþ ¼ 1F1

�
1;

5n − 6

2ðn − 1Þ ;
LWþ

2ðn − 1Þ
�
; ð29Þ

ηþ ¼ 2F1

�
−
1

2
;

−n
2ðn − 1Þ ;

n − 2

2ðn − 1Þ ; ð1 − Γ2þÞ
�
; ð30Þ

and

LWþ ¼ LambertW

�
4q2

β2r2n−2þ

�
;

Γþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2r2n−2þ

s
:

In addition, the Hawking temperature of the black hole
may be obtained by the use of the surface-gravity inter-
pretation, yielding

TE ¼
−2Λr2þ þ ðn − 1Þðn − 2Þ − Φ

rþ

4πðn − 1Þrþ
; ð31Þ

TGB ¼
−2Λr4þþðn−1Þðn−2Þr2þþðn−1Þðn−4Þα−Φrþ

4πrþðn−1Þðr2þþ2αÞ ;

ð32Þ

TTOL ¼ −6Λr6þ þ 3ðn − 1Þðn − 2Þr4þ þ 3ðn − 1Þðn − 4Þαr2þ þ ðn − 1Þðn − 6Þα2 − 3Φr3þ
12πrþðn − 1Þðr2þ þ αÞ2 ; ð33Þ

FIG. 7. GB case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 6, Λ ¼ −1, Q ¼ 1, α ¼ 0.1, and β ¼ 0.5 (solid line), β ¼ 1 (bold line), and β ¼ 2 (dashed line).
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where

Φ ¼
8<
:

β2r3þ
�
½1þ ð2Eβ Þ2�e

−2E2

β2 − 1
�
; ðENEFÞ

8r3þβ2 ln
h
1 − ðE

2βÞ2
i
þ 4r3þE

2

1−ðE
2βÞ2

; ðLNEFÞ

and

E ¼ q
rn−1þ

×

(
exp ð− LWþ

2
Þ; ðENEFÞ

2
1þΓþ

: ðLNEFÞ ð34Þ

Following the method of Ref. [15], one can find that
there is a critical nonlinearity parameter, βc, in which the
Hawking temperature is positive definite for β < βc. For
β > βc, there is a minimum value for the horizon radius of
physical black holes, r0, in which T is positive for rþ > r0.
Regarding the Arnowitt-Deser-Misner approach, we find

that the finite mass of a black hole is [28]

M ¼ Vn−1

16π
mðn − 1Þ; ð35Þ

where m can be calculated from fðrÞjr¼rþ ¼ 0 and, there-
fore, in general the finite mass depends on both the
Lovelock coefficients and the nonlinearity parameter.
It has been shown that the obtained conserved and

thermodynamic quantities satisfy the first law of thermo-
dynamics [16,17,19],

dM ¼ TdSþ UdQ: ð36Þ
In other words, by combining Eq. (36) with Eqs. (17) [or
other metric functions of GB and TOL branches, i.e.,
Eqs. (19) and (23)], (26), (27), and (35), we find that ð∂M∂QÞS
and ð∂M∂S ÞQ are the same as those calculated in Eqs. (28) and
(31) [or other temperatures of GB and TOL branches, i.e.,
Eqs. (32) and (33)], respectively.

B. Thermal stability and geometrothermodynamics

Now, we investigate the thermal stability in the canonical
ensemble by calculating the heat capacity of the black-hole
solutions,

CQ ≡ T

�∂S
∂T

�
Q
¼ T

�∂2M
∂S2

�−1

Q
: ð37Þ

FIG. 8. TOL case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 6, Λ ¼ −1, Q ¼ 1, β ¼ 1 and α ¼ 0.001 (solid line), α ¼ 0.1 (bold line) and α ¼ 1 (dashed line).
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The root of the heat capacity corresponds to the phase
transition, and the positivity of CQ is a sufficient condition
for the system to be locally stable [29,30].
Another new method of describing the phase transitions

of a thermodynamical systems is the concept of geometry
in thermodynamics. In this method one may regard the
curvature singularities as the phase transition, and so the
curvature can be interpreted as a system interaction. In
order to calculate the heat capacity and the curvature
singularity using the GTD method, we calculate the finite
mass as a function of entropy and electric charge,MðS;QÞ.
One may use Eqs. (26), (31), (32) or (33), and (37) to obtain

CQ ¼ T

ð∂2M∂S2 ÞQ
¼

Tð ∂S∂rþÞQ
ð ∂T∂rþÞQ

:

Although an analytical expression for CQ is too large and
thus we cannot evaluate its sign analytically, numerical
analysis helps us overcome this problem. In addition, we
include Figs. 1–9 to provide additional clarification.
Numerical calculations show that there is a lower limit
on the horizon radius for the stable AdS solutions. This
means that in order to have a stable solution, we should set

the horizon radius higher than a lower bound (rþ > rmin)
[17]. (We should note that this statement is valid for
asymptotically AdS solutions with spherical horizons.)
Now we would like to study the phase transition,

which occurs at rþ ¼ rmin. The top panels in Figs. 1–9
show that—regardless of the value of α—rmin increases as
the nonlinearity parameter β increases.
Considering the effects of higher orders of Lovelock

gravity, we find that the behavior of Fig. 4 is different from
that in Figs. 6 and 8. By examining these figures, we find
that—regardless of the values of q, Λ, and β—the root of
the heat capacity does not change for various choices of α
in five-dimensional GB gravity. However, for higher-
dimensional solutions of GB gravity, an increase of α
leads to a decrease of rmin. One can check that for
independent Lovelock coefficients (α2 and α3), the behav-
ior of seven-dimensional TOL gravity is the same as that in
five-dimensional GB gravity. Here, we note that this
unusual behavior may be expected for five-dimensional
GB gravity, seven-dimensional TOL gravity, nine-
dimensional fourth-order Lovelock (FOL) gravity, and so
on. Considering an ðnþ 1Þ-dimensional spacetime, the
contribution of the GB term (TOL term) of Lovelock
gravity can be seen for n ≥ 4 (n ≥ 6). It has been shown

FIG. 9. TOL case: ENEF (left) and LNEF (right) branches. The heat capacity (top) and geometric Ricci scalar (bottom) are shown
versus rþ for n ¼ 6, Λ ¼ −1, Q ¼ 1, α ¼ 0.1 and β ¼ 0.5 (solid line), β ¼ 1 (bold line) and β ¼ 2 (dashed line).
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that the properties of five-dimensional GB solutions are
slightly different from higher-dimensional solutions (see
Ref. [31] and the geometrical mass interpretation). In
addition, one can obtain the same specific behavior for
seven-dimensional TOL gravity [32] (by choosing a con-
stant GB parameter α2 and varying the TOL parameter α3),
nine-dimensional FOL gravity (by choosing constant GB
and TOL parameters α2 and α3 and varying the FOL
parameter α4), and so on. In other words, it is expected that
the GB parameter in five dimensions, the TOL parameter in
seven dimensions, and the FOL parameter in nine dimen-
sions have unusual properties, and it may be expected that
(unlike higher-dimensional cases) they do not change the
location of the vanishing heat capacity. (As we mentioned
before, this property is independent of the nonlinearity
parameter β, and numerical calculations for β ≠ 1 confirm
this point.) In this paper, since we are using a special case in
which α2 is related to α3, changing α3 leads to a change in
α2. Therefore, for seven dimensions (n ¼ 6), we cannot fix
α2 and vary α3 to check the effect of α3, and hence we do
not see the unusual behavior of seven-dimensional TOL
gravity.
In order to study the phase transition using the GTD

approach, we follow the method of Quevedo [1,8–13]. We
calculate the Ricci scalar of the Legendre invariant of the
Ruppeiner metric and look for its singularities to compare
them with the zeros of the heat capacity. Although the
Quevedo method is straightforward, analytically calculated
results are too large. So, for the sake of brevity we do not
write the long equations of the Ricci scalars; instead, we
use numerical analysis and some plots to investigate the
Ricci scalar’s behavior. We plot RðS;QÞ as a function of rþ
(rþ ¼ rþðSÞ) and compare it with the corresponding heat
capacity. Comparing the top and bottom diagrams of
Figs. 1–9, we find that the singularities of the Ricci scalar
(bottom diagrams) take place at those points where the heat
capacity vanishes (top diagrams). Hence, both the GTD
method and the usual thermodynamic approach in the
canonical ensemble are in agreement with each other,
which confirms that the black holes undergo a phase
transition.

IV. CONCLUSIONS

In this paper, we considered black-hole solutions of the
Einstein, GB, and TOL gravities with two classes of
BI-type NLED models. The main goal of this paper was
to discuss the phase transition using the GTD method and
to compare its consequences with the usual heat capacity in

the canonical ensemble. We obtained the thermodynamic
quantities and adopted the method of Quevedo to obtain the
Ricci scalar of the Legendre invariant of the Ruppeiner
metric.
Since the analytical calculations and their corresponding

relations were too large, we performed a numerical analy-
sis. Numerical calculations showed that the singularities of
the Ricci scalar using the GTD method take place at those
points where the heat capacity vanishes in the canonical
ensemble. In other words, we (interestingly) found that
both the GTD method and the usual thermodynamic
stability criterion in the canonical ensemble are in agree-
ment with each other, which confirms that the black holes
undergo a phase transition.
Moreover, we studied the effects of the nonlinearity

parameter β and the Lovelock coefficient on the location of
the critical points. We found that—regardless of the metric
parameters—the location of the critical points increases as
the nonlinearity parameter β increases. In addition, we
showed that although in general increasing the Lovelock
coefficient leads to a decrease in the location of the critical
points of the phase transition, there are some anomaly
cases. We found that this anomaly takes place for five-
dimensional GB gravity and may be generalized to seven-
dimensional TOL gravity, nine-dimensional FOL gravity,
and so on. In other words, the location of the vanishing heat
capacity does not change when changing the GB parameter
in five dimensions, when changing the TOL parameter in
seven dimensions, when changing the FOL parameter in
nine dimensions, and so on.
As we mentioned, the asymptotically AdS solutions

investigated here (the third-order case) contain only one
fundamental constant. An investigation of the third-order
case with two independent constants and a generalization of
our results to higher orders of Lovelock gravity with one
(or more) fundamental constant(s) are interesting subjects
for future analysis. Finally, we should note that it is
worthwhile to study the phase transition in an extended
phase space [33], and this interesting work will appear in a
forthcoming publication [34].
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