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We present a first numerical implementation of a new scheme by Pound et al. [1] that enables the
calculation of the gravitational self-force in Kerr spacetime from a reconstructed metric-perturbation in a
radiation gauge. The numerical task of the metric reconstruction essentially reduces to solving the fully
separable Teukolsky equation, rather than having to tackle the linearized Einstein’s equations themselves in
the Lorenz gauge, which are not separable in Kerr. The method offers significant computational saving
compared to existing methods in the Lorenz gauge, and we expect it to become a main workhorse for
precision self-force calculations in the future. Here we implement the method for circular orbits on a
Schwarzschild background, in order to illustrate its efficacy and accuracy. We use two independent
methods for solving the Teukolsky equation, one based on a direct numerical integration, and the other on
the analytical approach of Mano, Suzuki, and Takasugi. The relative accuracy of the output self-force is at
least 10−7 using the first method, and at least 10−9 using the second; the two methods agree to within the
error bars of the first. We comment on the relation to a related approach by Shah et al. [2], and discuss
foreseeable applications to more generic orbits in Kerr spacetime.
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I. INTRODUCTION

The relativistic two-body problem can be tackled using
black hole perturbation theory in the extreme mass ratio
inspiral (EMRI) regime, in which one of the components is
much larger than its companion. The smaller object expe-
riences a self-force (SF) due to the interaction with its own
gravitational field. We may identify two pieces of the SF,
the conservative and the dissipative. The dissipative piece
of the SF is responsible for the loss of energy and angular
momentum of the orbiting bodies which are radiated away
as gravitational waves. The conservative piece of the SF
modifies the positional elements of the orbit; for example, it
is responsible for the shift in orbital precession [3,4].
The equation of motion for a small mass moving in a

curved spacetimewas originally formulated byMino, Sasaki
and Tanaka [5], and independently by Quinn and Wald
[6]—the resulting equation is usually referred to simply as
the MiSaTaQuWa equation. The MiSaTaQuWa SF was
formulated in the Lorenz gauge where the field equations
become hyperbolic, which makes them suitable to solve
numerically, and the singularity of the particle’s representa-
tion is locally-isotropic. The behavior of the SF under a
gauge transformation was studied by Barack and Ori in [7],
where they showed how to compute it in any gauge related
to Lorenz’s via a sufficiently regular transformation.
Current calculations of the SF usually rely on numerical

solutions of the linearized Einstein’s equations in the
Lorenz gauge [8]. In Schwarzschild this involves solving
ten coupled differential equations for the tensorial-
harmonic components of the perturbation. With the metric
perturbations as an input one may obtain the SF using the

mode-sum method [9] or the puncture method [10,11]. On
Kerr spacetime the tensorial field equations in the Lorenz
gauge (LG) are not separable and one has to deal with a
system of partial differential equations. This has been a
motivation to work in time-domain implementations
[12–17] of MiSaTaQuWa formula with a puncture, but
the numerical evolution in this scheme takes considerably
more time than frequency-domain implementations.
The numerical treatment of black hole perturbations in

Kerr spacetime becomes much simpler in a radiation
gauge (RG) where one implements the Chrzanowski-
Cohen-Kegeles-Wald (CCK) [18–20] formalism to recon-
struct the metric perturbations from the perturbed spin-�2

Weyl scalars, which are solutions to the separable
Teukolsky equation, using an intermediate Hertz potential.
Recently, Pound et al. [1] provided the necessary framework
to regularize the force calculated from the RG reconstructed
perturbations. A numerical prescription to calculate the SF
using the metric perturbations (MP) in the outgoing radi-
ation gauge (ORG) was presented by Shah et al. [2] for a
particle in a circular orbit around a Schwarzschild black
hole. This work assumed that the LG mode-sum would
remain valid in the RG and the authors found numerical
confirmation that some of the LG regularization parameters
could regularize the force in the RG. An important result
from [2] is the computation of gauge-invariant quantities
(H ≡ 1

2
hαβuαuβ, where hαβ is the reconstructed MP in the

radiation gauge and uα is the four-velocity of the particle)
from RG modes in Schwarzschild and a comparison with
the LG values. An extension to a Kerr background for
the CCK metric reconstruction has lead to a successful
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calculation of H [21]. Pound et al. [1] identified three
categories of radiation gauges (“full-”, “half-”, and “no-”
string gauges) according to the singular structure of the MP.
In the full-string RG the singularity extends along a radial
null direction of the spacetime and through the particle at
each time; in the half-string gauges the singularity is
confined either inside or outside the 2-sphere intersecting
the particle (at a given time and radius); for the no string
gauges the MP has no singularity but it exhibits a dis-
continuity at the 2-sphere containing the particle (see also
[22]). In none of the above cases is the singularity confined
to the location of the particle, in contrast to the LG. As a
main practical result of these analyses Pound et al. found the
averaged version of the mode-sum for the no string gauges
that we implement in this work—they also found nontrivial
modifications to the standard LGmode-sum formula for the
half string gauges. Unlike [2], in this work we reexpand the
expression of the retarded force calculated from the RG
metric perturbations in terms of the usual scalar spherical
harmonics for which the original mode-sum was derived.
The structure of this paper is as follows. In Sec. II we

present a short review of the formalism required in our
implementation including the mode-sum formula using
the RG modes, the metric reconstruction from solutions to
Teukolsky equation and the inclusion of low multipoles
using the analytical expressions obtained by Barack and
Lousto [8]. The algorithm of the numerical implementation
to calculate the radial and temporal components of the SF
are given in Sec. III together with a short review of the
Mano-Susuki-Takasugi method. The numerical results are
given in Sec. IV where we show that our implementation
is consistent with the existing literature (energy flux and
t-component of the SF). For completeness we include
full expressions for the static modes, Sasaki-Nakamura
equation, Teukolsky sources and retarded force in terms of
spin-weighted harmonics in the Appendix.
In this work the metric signature is ð−;þ;þ;þÞ, Greek

letters are used for spacetime Boyer–Lindquist coordinates
ðt; r; θ;φÞ indices, and we work in standard geometrized
units (with c ¼ G ¼ 1). We will denote the complex
conjugated of a quantity or operator by − on top of it.
Bold indices correspond to projections with respect of the
Kinnersly tetrad ðl; n; m; m̄Þ.

II. REVIEW OF THE FORMALISM

The gravitational force acting on a particle of mass m
due to a smooth external perturbation hαβ (at the particle’s
location xα ¼ xα0) is given according to [23] by

Fαðx0Þ

¼ − lim
x→x0

mðgαβ þ uαuβÞ
�
∇μhνβðxÞ −

1

2
∇βhμνðxÞ

�
uμuν;

ð1Þ

where gαβ is the background metric (later we will specialize
to the Schwarzschild metric), ∇α is the metric compatible
covariant derivative and the four-velocity of the particle
uα ≡ dxα0ðτÞ=dτ, τ being the proper time, has to be
extended off the world-line to make sense of the limit.
In principle one can also extend the covariant derivatives
and gαβ—since the resulting force only has support on the
world line of the particle—or equivalently leave them as
fields and take the limit consistently. The value of the force
is independent of the extension chosen.

A. Mode-sum regularization

Consider a small mass in geodesic motion around a Kerr
black hole. The perturbed metric due to the presence of the
small mass gþ h diverges at the location of the particle x0.
Detweiler and Whithing showed that the full retarded
metric perturbation admits a decomposition into certain
locally defined singular piece hSαβ and a smooth regular
field hRαβ [24], namely

hfullαβ ¼ hSαβ þ hRαβ; ð2Þ

where hSαβ is chosen near the location of the particle to
cancel the singular part of hfullαβ while not contributing to
the SF. Each component of the SF can be obtained by
subtracting the singular part of the force from the full (or
retarded) value

Fα
selfðx0Þ ¼ lim

x→x0
½Fα

fullðxÞ − Fα
SðxÞ�; ð3Þ

where the fields Fα
fullðxÞ and Fα

SðxÞ satisfy Eq. (1) with hfullμν

and hSμν, respectively.
A practical way to implement Eq. (1) and obtain the SF is

given by the mode-sum regularization procedure. The fields
Fα
fullðxÞ and Fα

SðxÞ can be expanded in spherical harmonics
Ylmðθ;φÞ on the surface t; r ¼ cons (ignoring the vectorial
nature of the SF and treating each of its Boyer-Linquist
components as a scalar function; see [25] for a more
sophisticated covariant approach). By subtracting the
desired l-mode contributions (summed over all possible
values of m) for the full and the singular pieces of the force
[26] we obtain

Fα
selfðx0Þ ¼ lim

x→x0

X∞
l¼0

½Fαl
fullðxÞ − Fαl

S ðxÞ�: ð4Þ

The quantities Fα
fullðxÞ and Fα

SðxÞ diverge at x → x0
(since the full and singular MP diverge at x0). However,
each of the individual l-modes Fαl

fullðxÞ and Fαl
S ðxÞ are

finite. The difference Fαl
fullðxÞ − Fαl

S ðxÞ correspond to the
l-mode of Fα

selfðxÞ which is smooth everywhere.
It is known that in the Lorenz gauge limx→x0F

αl
S ðxÞ

has the large-l expansion limx→x0F
αl
S ðxÞ ¼ AαLþ Bα þ

Cα=Lþ � � � [26], with L≡ lþ 1=2. The coefficients Aα,
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Bα, and Cα are the l-independent regularization parameters
for each component of the SF. The sum in (4) converges
faster than any power of 1=l [recall Fα

fullðxÞ − Fα
SðxÞ is

smooth]. We expect that both the full and singular pieces
share the same large-l power expansion with the same
coefficients. We can then express Eq. (4) as a difference of
two convergent sums, in the form

Fα
selfðx0Þ ¼

X∞
l¼0

½Fαl
full�ðx0Þ∓AαL − Bα − Cα=L�

−
X∞
l¼0

½Fαl
S�ðx0Þ∓AαL − Bα − Cα=L�; ð5Þ

where we first take the limits t → t0, θ → θ0, φ → φ0 and
the sign � depends on the side we approach the value of r0
(the sum Fαl

full�ðx0Þ∓AαL is direction independent). The
individual terms of the sums go as ∼1=l2 and the sequence
of partial sums converges as ∼1=l. We arrive at

Fα
selfðx0Þ ¼

X∞
l¼0

ðFαl
full�ðx0Þ∓AαL − Bα − Cα=LÞ −Dα;

ð6Þ

with

Dα ≡X∞
l¼0

ðFαl
S�ðx0Þ∓AαL − Bα − Cα=LÞ: ð7Þ

In the LG the analytical form of the regularization
parameters Aα and Bα is well known in Kerr [27] with
Cα ≡Dα ≡ 0. The values of the regularization parameters
remain invariant under gauge transformations from LG that
are sufficiently regular [7].
However, as shown in [1], the gauge transformation

vector that goes from Lorenz to radiation gauge is either
singular along a radial null direction (at each time)—in the
best case scenario this singularity is present only in half of
the spacetime either in r > r0 or r < r0 at constant t—or it
is discontinuous at the 2-sphere of radius r ¼ r0.
For a discontinuous RG—the one that transforms to

Lorenz via a discontinuous gauge vector—a two-sided
average mode-sum formula still holds true due to the parity
regularity of the transformation vector [1]:

Fα
self ¼

X
l

�
1

2
ðFαÞlþ þ 1

2
ðFαÞl− − Bα − Cα=L

�
−Dα; ð8Þ

where ðFαÞl� is short hand for limx→�x0F
αl
full�ðxÞ. The

regularization parameters Bα, Cα, and Dα take the standard
LG values for the chosen extension.
The regularization parameters Ar and Br for circular

orbits in Schwarzschild are given analytically (the
Schwarzschild coordinate components of uα are extended

as constant fields away from x0 and the metric related
quantities take their field value1) by

Ar
� ¼ ∓ m2E

r20f
2
0
~V
; Br ¼ −

m2

r20

2E2K̂ðωÞ − E2ÊðωÞ
πf20 ~V

3=2 ;

ð9Þ

with ~V ¼ 1þ L2

r2
0

, ω ¼ L2=ðL2 þ r20Þ and f0 ≡ 1 − 2M=r0.

We have also used the orbital parameters defined as

Ω≡ uφ

ut
¼

ffiffiffiffiffi
M
r30

s
; E ≡ r0 − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 − 3Mr0
p ;

L≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20M

r0 − 3M

s
; ð10Þ

which correspond to the orbital frequency, the specific
energy and angular momentum of the particle around a
circular orbit of radius r0. The functions K̂ðωÞ and ÊðωÞ are
the complete elliptic integrals of first and second kind,
respectively. The sign� in Ar refers to the sided radial limit
once again. By virtue of using the two-sided average
version of the mode-sum the contributions from Ar to
the mode-sum formula will cancel [see Eq. (8)]. Let us
stress that the analytical expression for Br is extension
dependent and only by consistently using the same exten-
sion throughout the calculation the mode-sum method will
give the correct value of the SF for a given gauge.

B. Newman-Penrose formalism
and metric reconstruction

In Schwarzschild spacetime, the Kinnersley tetrad in
Boyer-Linquist coordinates is given by

lα ¼
�

1

fðrÞ ; 1; 0; 0
�
; nα ¼ 1

2
ð1;−fðrÞ; 0; 0Þ;

mα ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ

�
; ð11Þ

where fðrÞ≡ 1 − 2M=r. We will omit the explicit
functional dependence of fðrÞ to simplify the notation.
The corresponding directional derivatives are denoted
by D≡ lα∇α, Δ≡ nα∇α, δ≡mα∇α. The nonzero spin
coefficients are

ϱ ¼ −
1

r
; β ¼ −α ¼ cot θ

2
ffiffiffi
2

p
r
;

γ ¼ M
2r2

; μ ¼ −
1

2r
f: ð12Þ

1See [28] for a full derivation.
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Teukolsky equation [29] describes perturbations of a Kerr space-time with source Ts [given below in Eq. (15)]. Let us
specialize to the Schwarzschild case by setting a ¼ 0. For a particular value of spin s the Bardeen-Press equation
(Teukolsky equation with a ¼ 0) is given by

r2

f
∂2ψ s

∂t2 −
�

1

sin2θ

� ∂2ψ s

∂φ2
− ðr2fÞ−s ∂

∂r
�
ðr2fÞsþ1

∂ψ s

∂r
�
−

1

sin θ
∂
∂θ

�
sin θ

∂ψ s

∂θ
�

− 2s
i cos θ
sin2θ

∂ψ s

∂φ − 2s
ð−rþ 3MÞ

f
∂ψ s

∂t þ ðs2cot2θ − sÞψ s ¼ −4πr2Ts; ð13Þ

where ψ s in the frequency-domain separates as follows:

ψ s ¼ e−iωtRsðrÞsYlmðθ;φÞ; with ω≡mΩ: ð14Þ

The eigenfunctions of the angular part of Eq. (13) are the spin-weighted spherical harmonics sYlmðθ;φÞ and the function
RsðrÞ is solution of the radial part of Eq. (13).
The relevant gravitational sources (T2 for ψ s¼2 ≡ ψ0 and T−2 for ψ−2 ≡ ϱ−4ψ4, respectively) are given by

T−2 ¼ 2ϱ−4fðΔþ 2γ þ 5μÞ½ðδ̄þ 2αÞT24 − ðΔþ μÞT44� þ ðδ̄þ 2αÞ½ðΔþ 2γ þ 2μÞT24 − δ̄T22�g; ð15aÞ

T2 ¼ 2fðδ − 2βÞ½ðD − 2ϱÞT13 − δT11� þ ðD − 5ϱÞ½ðδ − 2βÞT13 − ðD − ϱÞT33�g; ð15bÞ

where the projections of the stress-energy tensor are
given by:

Tab ≡ eαae
β
bTαβ; ð16Þ

with eαa ¼ ðlα; nα; mα; m̄αÞ and Tαβ ¼ m
utr2

0

uαuβδðr − r0Þ×
δðθ − θ0Þδðφ − φ0Þ. The explicit expressions for T�2 can

be found in the Appendix C. All the components of the
metric perturbation tensor are recovered by applying a
differential operator on a scalar quantity Ψ. This Hertz
Potential Ψ is also solution to the homogeneous Teukolsky
equation with opposite spin as the Weyl scalar from which
it is constructed. The relevant operators were given by
Chrzanowzki [18] and Cohen-Kegeles [19]

hORGαβ ¼ −ϱ−4fnαnβðδ̄ − 2αÞðδ̄ − 4αÞ þ m̄αm̄βðΔþ 5μ − 2γÞðΔþ μ − 4γÞ
−nðαm̄βÞ½ðδ̄ − 2αÞðΔþ μ − 4γÞ þ ðΔþ 4μ − 4γÞðδ̄ − 4αÞ�gΨORG � c:c:; ð17Þ

hIRGαβ ¼ f−lαlβðδþ 2βÞðδþ 4βÞ−mαmβðD− ϱÞðDþ 3ϱÞ−lðαmβÞ½Dðδþ 4βÞ þ ðδþ 4βÞðDþ 3ρÞ�gΨIRG � c:c:; ð18Þ

where the sign � corresponds to the state of polarization
and c.c. stands for the complex conjugated terms. Ori [30]
showed thatΨ is unique for a specific gauge. To recover the
correct MP using the CCK reconstruction, Ψ must satisfy
certain fourth order differential equation with the Weyl
curvature scalars (ψ0 or ρ−4ψ4) as source:

ρ−4ψ4 ¼
r4f2

32
~D4ðr4f2Ψ̄ORGÞ; ð19aÞ

ψ0 ¼
1

8
½ð4Ψ̄ORG þ 12M∂tΨORG�; ð19bÞ
ψ0 ¼

1

2
D4Ψ̄IRG; ð19cÞ

ρ−4ψ4 ¼
1

8
½~ð4Ψ̄IRG − 12M∂tΨIRG�; ð19dÞ

where we have used ~D≡ − 1
f ∂t þ ∂r for Schwarzschild.

The operators that lower or raise the spin-weight of the
angular functions sYlmðθ;φÞ are given by

ðη ¼ − ð∂θ þ i csc θ∂φ − s cot θÞη ¼ −
ffiffiffi
2

p
rðδ − 2sβÞη;

ð̄η ¼ − ð∂θ − i csc θ∂φ þ s cot θÞη ¼ −
ffiffiffi
2

p
rðδ̄þ 2sβÞη;

ð20Þ

with the useful identities
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ðsYlmðθ;φÞ ¼ ½ðl − sÞðlþ sþ 1Þ�1=2sþ1Ylmðθ;φÞ; ð21Þ

ð̄sYlmðθ;φÞ ¼ − ½ðlþ sÞðl − sþ 1Þ�1=2s−1Ylmðθ;φÞ: ð22Þ

Equation (19) can be inverted to find the desired Ψ. In particular for circular orbits an algebraic mode by mode inversion
is possible for Eqs. (19b) and (19d):

ΨORG
lm ¼ 8

ð−1Þmðlþ 2Þðlþ 1Þlðl − 1Þψ̄0l;−m þ 12iMmωψ0lm

½ðlþ 2Þðlþ 1Þlðl − 1Þ�2 − 144M2m2ω2
; ð23aÞ

ΨIRG
lm ¼ 8

ð−1Þmðlþ 2Þðlþ 1Þlðl − 1Þψ̄−2l;−m − 12iMmωψ−2lm

½ðlþ 2Þðlþ 1Þlðl − 1Þ�2 − 144M2m2ω2
; ð23bÞ

where ψ−2 ≡ ρ−4ψ4. We have denotedΨlm the modes of
the radial part of the full Hertz potential and consistently for
the scalars ψ0 and ψ−2.

C. Nonradiative modes

The reconstruction from Weyl scalars recovers the full
gauge invariant radiative part of the solution (namely the
l ≥ 2 sector). Wald showed that the solution needs to be
completed by including corrections to the Kerr mass and
angular momentum [31]. Wald also allowed the inclusion
of perturbations to other algebraically special solutions
(C-metrics and Kerr-NUT metrics) and he proved that they
are not physical invacuum. Friedman et al. showed that theC
and Kerr-NUT perturbations can be ruled out in the vacuum
spacetime outside the trajectory of a point particle [32].
The shift in the mass parameter across the r ¼ r0 surface

is encoded in the monopole part of the solution (the l ¼ 0,

m ¼ 0 mode). In the Lorenz gauge the nonvanishing
components of this perturbations are [8]

hl¼0
tt ðr ≤ r0Þ ¼ −

AfMPðrÞ
r3

; ð24aÞ

hl¼0
rr ðr ≤ r0Þ ¼

AMQðrÞ
r3f

; ð24bÞ

hl¼0
θθ ðr ≤ r0Þ ¼ sin−2θhl¼0

φφ ðr ≤ r0Þ ¼ AfMPðrÞ; ð24cÞ

where

A ¼ 2mE
3Mr0f0

½M − ðr0 − 3MÞ ln f0�; ð25Þ

PðrÞ ¼ r2 þ 2Mrþ 4M2; QðrÞ ¼ r3 −Mr2 − 2M2rþ 12M3; ð26Þ

and f0 ≡ fðr0Þ. The external components are

hl¼0
tt ðr≥ r0Þ¼

2mE
3r4r0f0

�
3r3ðr0−rÞþM2ðr20−12Mr0þ8M2Þþðr0−3MÞ

�
−rMðrþ4MÞþrPðrÞf lnfþ8M3 ln

�
r0
r

���
;

ð27aÞ

hl¼0
rr ðr ≥ r0Þ ¼ −

2mE
3Mr4r0f0f2

�
−r3r0 − 2Mrðr20 − 6Mr0 − 10M2Þ

þ 3M2ðr20 − 12Mr0 þ 8M2Þ þ ðr0 − 3MÞ
�
5Mr2 þ r

M
QðrÞf ln f − 8M2ð2r − 3MÞ ln

�
r0
r

���
; ð27bÞ

hl¼0
θθ ðr ≥ r0Þ ¼ sin−2θhl¼0

φφ ðr ≥ r0Þ ¼ −
2mE
9rr0f0

�
3r20M − 80M2r0 þ 156M3

þðr0 − 3MÞ
�
−3r2 − 12Mrþ 3

r
M

PðrÞf ln f þ 44M2 þ 24M2 ln

�
r0
r

���
: ð27cÞ
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Notice that as r → ∞ the tt component of the metric tends
to a constant value, i.e., the metric is not asymptotically flat.
Detweiler and Poisson showed [33] that the Lorenz-gauge
metric given by Eqs. (24) and (27) is unique and any gauge
transformation within the class of Lorenz gauges would
make the metric singular at infinity, at the horizon or in
both limits. This pathology of the metric can be cured by
moving away from the Lorenz gauge by performing a shift
t → tð1þ αÞ with constant α ∼OðmÞ. It is straight forward
to show using Eq. (6) of [7] that this gauge transformation
does not contribute to the values of the SF.
For l ¼ 1, m ¼ 0 there is only one nonvanishing

component of the MP [8]

hl¼1;m¼0
tφ ðrÞ ¼ −2mLsin2θ

�
r2

r30
Θðr0 − rÞ þ 1

r
Θðr − r0Þ

�
;

ð28Þ

where Θ is the usual step function.
We can calculate the contribution to the retarded force

from the l ¼ 0; 1 solutions by directly substituting (24),
(27), and (28) in Eq. (1). The resulting contribution to the
force agrees with the values first obtained by Detweiler and
Poisson [33] at θ ¼ π

2
.

The l ¼ 1,m ¼ 1mode can be added numerically using
the prescription described in [33]. This mode is related to
the motion around the center of mass of the BH-particle
system. A detailed physical interpretation and comparison
with a post-Newtonian calculation can be found in [33].

III. NUMERICAL IMPLEMENTATION
FOR CIRCULAR ORBITS

A. Algorithm

The algorithm to obtain numerically the GSF in a
Schwarzschild background follows the one used by Shah
et al. [2], except when stated. We outline the steps of our
numerical implementation here.

(i) Choose the orbit at radius r0. Obtain the relevant
orbital parameters E, L and Ω using Eq. (10). We fix
the maximum number of modes to compute,
lmax ¼ 80. This choice of lmax guarantees conver-
gence and provides enough l-modes to fit the
l > lmax contribution (described in Sec. III C
below) without introducing numerical noise or
becoming computationally expensive.

(ii) For each static mode of the ORG with l ≥ 2
we analytically calculate the radial function R0ðrÞ
via Eq. (A1) [for the IRG we calculate R4ðrÞ≡
r4f2R̄0ðrÞ].

(iii) For each m ≠ 0 we numerically integrate the radial
Sasaki-Nakamura equation in r� with suitable boun-
dary conditions (see Appendix B). The integration
routine returns the value of the function and the first
derivative with respect to r�. We algebraically relate

the solutions R4ðrÞ≡ r4f2R̄0ðrÞ at the particle’s
location and calculate higher order derivatives using
the radial part of Teukolsky equation.We also find the
homogeneous solutions using the MST method
described in the next section. The agreement between
the two methods will be discussed in Sec. IV C.

(iv) We construct the inhomogeneous solutions using the
standard variation of parameters method, imposing
the jump conditions for the homogeneous solutions
and their first derivatives at r ¼ r0, using the
gravitational source. Shah et al. [2] performed an
analytic integration of the Green’s function over
the source terms to construct the particular inhomo-
geneous solution ψ0. We have checked that these
two methods are equivalent and leave no ambiguity
in the value of the Weyl scalars. The resulting field
ψ0ðrÞ [and r4ψ4ðrÞ] is discontinuous at the location
of the particle.

(v) With the field r4ψ4ðrÞ [or ψ0ðrÞ in the ORG] we find
the harmonics of the Hertz potential ΨIRG

lm ðrÞ [or
ΨORG

lm ðrÞ] using Eq. (23). The total Hertz potential
can be computed as a sum over all modes with the
corresponding angular and time dependence:
sYlmðθ;φÞe−iωt.

(vi) The MP can be recovered in the radiation gauge
using Eq. (18) [or Eq. (17)]. In particular we do the
reconstruction for each l and m.

(vii) We calculate the l-modes of the full force Fl
full (for

each l ≥ 2) by taking derivatives of the components
of the l-modes of the Hertz potential [l-modes of
Eq. (1) in Boyer–Lindquist coordinates acting on
the l-modes of Eq. (17) for the ORG and Eq. (18)
for the IRG]. This is a convenient way for recording
the contributions with respect of their angular
dependence on sYlmðθ;φÞ with s ¼ �2;�1; 0 for
the posterior reexpansion in terms of the usual scalar
spherical harmonics. The explicit expressions are
given in Eq. (C6) and Eq. (C5).

(viii) The remaining modes l ¼ 0; 1 are added in the LG
as discussed in Sec. II C. A method for including the
low modes in the case of eccentric orbits in Kerr will
be presented in a following paper [34].

(ix) We use the definitions of spin-weighted spherical
harmonics in terms of derivatives of scalar spherical
harmonics [See Eq. (C7) in the Appendix]. This way
we can implement the appropriate coupling formulas
[35] to reexpress the r component of the retarded force
in the basis of the scalar spherical harmonics where
the mode-sum was derived [27,28]. In Schwarzschild
the coupling is finite and it relates a givenl-modewith
its four nearest “neighbors,”namely, contributions to a
given l spherical harmonic mode come from the
l� 2;l� 1 and l spin-weighted modes. The latter
implies that we need to calculate lmax þ 2 modes
to have all the contributions to the lmax term in the
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mode-sum. This coupling and the implementation of
the average mode-sum formula were missing in the
prescription described in [2].

(x) After all the contributions to a single l-mode are
considered we apply the mode-sum regularization
formula given by Eq. (8) to obtain the radial
component of the SF.

(xi) We extrapolate the remaining l > lmax modes doing
a numerical fitting of the regularized modes included
in the mode-sum formula as described in Sec. III C.

Once the MP are computed we relate the temporal
component of the SF to the total flux of energy _Erad ≡
−m dE

dt ¼ Ft
ut according to [23,36]

Ft ¼
X
l;m

imΩm
2f

uαuβhlmαβ ; ð29Þ

where hlmαβ are the harmonic modes of the MP in the basis of
spin-weighted spherical harmonics. The sum in Eq. (29)
converges exponentially fast and does not require
regularization.

B. MST (Mano-Suzuki-Takasugi) method

To calculate the solutions to the radial part of the
homogeneous Teukolsky equation, we also use the MST-
method [37,38]. In this method, instead of numerically
integrating the equation from the boundaries (infinity and
event horizon), they are written as a sum over known
analytic functions: the ingoing solution RH (which is
regular at the event horizon) is written as a sum over
hypergeometric function (2F1) and the outgoing solution
R∞ (regular at infinity) is written as a sum over (Tricomi’s)
confluent hypergeometric function (U),

RH ¼ eiϵxð−xÞ−2−iϵ
Xn¼∞

n¼−∞
an2F1ðnþ νþ 1 − iϵ;−n − ν − iϵ;−1 − 2iϵ; xÞ;

R∞ ¼ eizzν−2
Xn¼∞

n¼−∞
ð−2zÞnbnUðnþ νþ 3 − iϵ; 2nþ 2νþ 2;−2izÞ; ð30Þ

where x ¼ 1 − r
2M, ϵ ¼ 2MmΩ and z ¼ −ϵx. We refer the readers to [37,39] for the calculation of the parameter ν

(renormalized angular momentum), and the coefficients an and bn. The solutions were calculated with 16-35 digits of
accuracy2 for orbital radii ranging from r0 ¼ 6M − 200M, respectively.

C. Fitting the large-l tail

In the discontinuous radiation gauge where the radiative modes of the SF are calculated from the Weyl scalar in the limit
r → r�0 , we find that the singular part of the SF contains odd, negative powers of L ¼ ðlþ 1=2Þ on either side3 of r0. Each
of the side dependent values required in the averaged version of the mode-sum are computed according to

Fα
� ¼

Xlmax

l¼0

½ðFα
fullÞl�∓AαL − Bα� −Dα

� þ
X∞

lmaxþ1

�
~E�
2

L2
þ

~E�
4

L4
þ

~E�
5

L5
þ

~E�
6

L6
þ � � � þ

~E�
kmax

Lkmax

�
þO

�
1

lkmax
max

�
; ð31Þ

where the� superscript indicates that the fitting parameters
are calculated using the side dependent values of
½ðFα

fullÞl�∓AαL − Bα� and in general ~Eþ
k ≠ ~E−

k . We extract
the coefficients ~E�

k by matching ½ðFα
fullÞl� − Aα

�L − Bα�
(from a certain lmin to lmax) to a power series of the form4

~E�
2

L2
þ

~E�
4

L4
þ

~E�
5

L5
þ

~E�
6

L6
þ � � � þ

~E�
kmax

Lkmax
: ð32Þ

The best-fit values of ~E�
k are extracted by modifying lmin

and kmax using the procedure described in [2]. The SF is
then calculated using Eq. (8), where the l > lmax tail is
included using the best numerical fit.
An interesting detail to be noted here is that we numeri-

cally find Fα
self to be independent its mode decomposition—

whether written as a sum over mixed spin-weighted
spherical harmonics as done in Eqs. (C5) and (C6) or as
a sum over ordinary spherical harmonics as done in

2The solutions are less accurate near the event horizon but achieve high accuracy as we move further away.
3If the tail was fitted using the averaged modes of the retarded force only even powers of L would appear.
4In the Lorenz gauge a series of the form E2=ðð2l − 1Þð2lþ 3ÞÞ þ E4=ðð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5ÞÞ � � �. is used to fit the

singular part of the force and increase the convergence rate [40]. Analytical expression for E2, E4, E6 were given in [41] and we verify
that they have different values than the parameters we would obtain by fitting the averaged modes to a similar series.
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Eq. (C11)—unlike the sided limits Fα
�. We will further

comment on this numerical result on Sec. IV C.

IV. RESULTS

A. Convergence of the mode sums for Fr and Ft

A feature of the mode-sum regularization procedure is
that it provides an immediate validity test of the results.
If the retarded values of the force and the implementation
of the coupling formulas that allow us to express the force
as purely spherical harmonics contain a systematic error,
then the sum over l-modes after regularization may not
converge to the physical value of the SF.5 It is also required
to consistently use the extension of the four-velocity
[we used the same extension as the LG regularization
parameters Aα and Bα of Eq. (9)]—in principle we can
also extend the components of the metric and connection
terms—when calculating the retarded values and the
regularization parameters, otherwise the mode-sum will
not give the correct value.
For the radial component (left panel of Fig. 1) we

found that the sum over l modes of the average
1
2
½Fr

lðrþ0 Þ þ Fr
lðr−0 Þ� converges ∼1=l, with the green

(dashed) line as reference. In the case of the time compo-
nent (right panel of Fig. 1), we show the exponential
convergence of the sum.

B. Flux of energy

We calculate the fluxes at infinity (−mE∞) and at the
event horizon (−mEEH) following the procedure given in
[42]. And we verify numerically that

dE
dt

¼ dEEH

dt
þ dE∞

dt
; ð33Þ

is satisfied up to ∼10−5 of relative difference for all radii.
Our results are consistent with previous works by Barack

and Sago [35], and more recently Gundlach et al. [43]. Our
calculation shows that at the Innermost Stable Circular
Orbit (ISCO) the ratio _EEH= _E∞ has a value of 3.27 × 10−3

and decreases monotonically with r0 up to 2.06 × 10−9

when r0 ¼ 150M.

C. Comparison of results

We now present a comparison between the radial
component of the SF calculated using the MST method
and the numerical integration of Sasaki-Nakamura func-
tion. Figure 2 shows in blue (solid) line the fractional error
in Frðr0Þ for a sample of radii, taking the values calculated
with the MST method as more accurate. Such values are
obtained using Eq. (8) with 80 calculated modes (as
described in Sec. III A) and a fitted tail of the form given
by Eq. (32) on each sided limit. In red (dashed line) we
show the fractional difference between the IRG and the
ORG values. In this case both results were obtained by
using the Sasaki-Nakamura method. The values used to
generate the plot can be found in Table I in Appendix C.
A similar table was presented in the mentioned work by

Shah et al. [2], but the values for the SF do not agree with
ours. The computation in [2] differs from the one we have
presented here in several ways as we have briefly stated
in previous sections. We now summarize the differences
and discuss why our values correspond to the physical SF
calculated using the RG modes. The table in [2] has the
values of the sum after regularization of the l-modes in the
basis of spin-weighted spherical harmonics. Even though
regularization is possible at the level of “any” harmonic
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FIG. 1 (color online). Left panel shows the convergence of the mode sum for the r component of the SF (solid blue line in log-log
scale) computed using the average version of the mode-sum formula [Eq. (8) with lmax ¼ 80, only ArL and Br are subtracted]. The
reference line (green dashed) corresponds to the 1=l2 fall off at large l. The right panel shows the convergence of the t component (solid
blue line in semi-log scale) of the SF, we show only l ¼ 15 modes. In this case the reference line (green dashed) shows exponential
convergence. In both cases the results correspond to an orbital radius of r0 ¼ 10M.

5Convergence might still occur, for example [2] where the
reexpansion to scalar harmonics and the average were not
included.
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basis, as we mentioned before, the LG regularization
parameters used in [2] are only suitable for modes
expressed in terms of the usual spherical harmonics, just
like we have done in the present work. A numerical
experiment showed that using the averaged version of
the mode-sum method gives the same results in either basis
(spin-weighted and scalar spherical harmonics) in the case
of circular orbits around Schwarzschild, but this might
not happen in more general cases. Only reexpanding the
l-modes in terms of the usual spherical harmonics or
deriving regularization parameters for a different basis will
give the correct SF. A second difference relies on the
average version of the mode-sum formula introduced in [1]:
the values of [2] correspond only to the one sided upper
limit (when r → þr0), in which case the inclusion of a
nontrivial Dα parameter in the appropriate extension is
required6 to give the SF (a different numerical value to the
averaged) in a half string RG or a half-string locally Lorenz
gauge, where the motion is not well defined [1]. We are
aware of an erratum soon to be presented from the authors
of [2] clarifying the issues we have raised in this paper.
In principle the SF in the ORG and the IRG could have

different values. In fact by just looking at Eqs. (C5) and
(C6) it is not obvious that the results would agree. The
Hertz potential Ψ takes a different form when calculated in
the ORG and IRG. For circular equatorial orbits around a
Schwarzschild BH it turns out that the MP and the values
of the SF in the IRG and ORG give the same value.
The equivalence of the MP in both gauges can be shown

analytically using the symmetries of Teukolsky equation.
This agreement has also been confirmed numerically up to
the required accuracy.
A LG code for circular orbits of Schwarzschild calcu-

lates the SF in the strong field regime in approximately
2 hours with lmax ∼ 25 and a factional accuracy of ≲10−4
[35]. Our numerical integration can achieve the same
accuracy (≲10−4) running on a single core in about 45
minutes and an accuracy of ≲10−12 in about 1.5 hours
calculating lmax ∼ 25 modes. With the MST method we
calculate typically 85 modes with an accuracy of 16–35
digits (Sec. III B) within 6–19 hours (we require more time
in the strong field regime) running in 16 processors.
The values of the radial component of the SF in the LG

[35] asymptotically agree with the values given in Table I.
This is not surprising since the change in the force due to
the gauge transformation from Lorenz to ORG falls off at
least ∼r−3 (see Eq. (A25) of [32]).

D. Sources of numerical error

The total value of the radial component of the SF has two
pieces. The first one Fl≤lmax

r is obtained by the methods
already described. The remaining tail piece Fl>lmax

r is
extrapolated numerically as described in Sec. III C using
~N ¼ lmax − lmin of the regularized large l-modes. We
checked that our solutions are insensitive to variations in
the numerical parameters to the required accuracy.
The error in calculating the radial parts of the homo-

geneous Teukolsky equation using the MST-method can
be reduced by first, numerically calculating ν with a very
high accuracy (usually higher than the one mentioned in
Table I), and second, by choosing a high enough nmax, the
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FIG. 2 (color online). Relative difference for the averaged r component of the SF. The blue (solid) line compares the values in the ORG
computed through numerical integration of the Sasaki-Nakamura field against the values calculated using the MST analytical method.
The estimated error of the numerical method is dominated by the l > lmax fitted term, while the error of the MST method is given by the
inclusion of the even dipole mode, these errors are shown explicitly in Table I in Appendix C. The red (dashed) line compares the relative
difference up to the required accuracy between the force calculated from the IRG and the ORG modes.

6The rigid extension was used in [1].
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cutoff in n-series of the hypergeometric and confluent
hypergeometric series in Eq. (30). To reduce the compu-
tation time, we find relations between the derivatives of the
hypergeometric and confluent hypergeometric functions
appearing in Eq. (30) using a combination of various
Guass’s relations for contiguous functions.
The numerical integration of Sasaki-Nakamura equation

is done using a modification to complex variables with
quadrupole precision of the adaptive stepsize Bulirsch-
Stoer routine described in [44]. We allow a relative error
of 1=1015 on each step of the integration. These errors
propagate to give a relative error ∼1=1012 in the value of
each harmonic of the Sasaki-Nakamura field and its first
derivative. However these systematic errors are subdomi-
nant with respect of the contributions from the tail.
The accuracy to which the coefficients ~E�

k in Eq. (31)
can be extracted depends on ~N and the accuracy of the
regularized modes. Due to its high accuracy the MST
method allows a very accurate extrapolation of the tail.
Regarding the values reported in Table I the total tail
accounts for the last 4–5 digits of agreement between the
Sasaki-Nakamura and MST methods. The relative differ-
ence of the two methods is within the error bars reported for
the computation made using numerical integration. These
error bars were estimated by varying the numerical param-
eters of the fitting. The error bars for the MST method
values were estimated from varying the inner boundary of
the integration [rmin ¼ ð2þ ϵÞM] of the dipole even mode
from ϵ ¼ 10−9 to ϵ ¼ 10−6, which dominates over the
accuracy of the MST modes (16-35 significant digits as
mentioned in Sec. III B).

V. CONCLUDING REMARKS

In this work we have presented for the first time a full
calculation of the gravitational SF from the radiation gauge
MP. We have also shown the equivalence (at the level of

SF calculation for circular orbits around Schwarzschild) of
working in an IRG or an ORG, made a successful
comparison between the MST method and numerical
integration of Teukolsky equation, and have tested the
numerical code by calculating well-known quantities avail-
able in the literature, such as the energy fluxes and the t
component of the SF.
An extension of this computation using the MST method

will soon follow for general orbits around a Kerr back-
ground. Teukolsky equation remains separable in Kerr—
unlike the tensorial equations in the LG—and the metric
reconstruction procedure is well understood. One of the
challenges in SF calculations of more general orbits (both
in Schwarzschild and Kerr) is the inclusion of the mass and
angular momentum perturbations that complete the recon-
structed MP [34]. A second challenge in the Kerr calcu-
lations is the reexpansion of the l-modes into the spin-0
spherical harmonics. This involves a numerical projection
of the spin-weighted spheroidal harmonics (in which the
harmonics modes of the full force is obtained) which might
not have a finite coupling as they exhibited in the present
work. The coupling will be simpler if a suitable off the
world line extension of the four velocity is chosen.
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APPENDIX A: STATIC MODES

For the static modes (m ¼ ω ¼ 0) we have two linearly independent solutions proportional to associated Legendre
polynomials of first and second kind:

R0−ðrÞ≡ P2
lðr−MM Þ

rðr − 2MÞ ¼ −
Γðlþ 3Þ

16M2rΓðl − 1Þ 2F1

�
2 − l;lþ 3; 3;−

r
2M

�
; ðA1aÞ

R0þðrÞ≡ Q2
lðr−MM Þ

rðr − 2MÞ ¼
2lΓðlþ 3ÞΓðlþ 1Þ

M2rΓð2lþ 2Þ
�
r −M
M

�
−l−3

2F1

�
l
2
þ 2;

lþ 3

2
;lþ 3

2
;

M2

ðr −MÞ2
�
; ðA1bÞ

where 2F1 are the hypergeometric functions. R0−ðrÞ is regular at the horizon but diverges as rl−2 at infinity for any l > 2.
When r → ∞ and l ¼ 2, R0− goes to a constant. R0þðrÞ is not regular at the horizon since it behaves ∼ðr − 2MÞ−2, but is
regular at infinity where its leading order is given by r−l−3. The asymptotic behavior of these solutions was previously
discussed by Barack and Ori [45] near the event horizon and by Poisson [46] and Keild et al. [47].

CESAR MERLIN AND ABHAY G. SHAH PHYSICAL REVIEW D 91, 024005 (2015)

024005-10



APPENDIX B: CHANDRASEKHAR-SASAKI-
NAKAMURA TRANSFORMATION

In the Schwarzschild case the radial part of Sasaki-
Nakamura equation reduces to

�
d2

dr2�
þ ω2 − VðrÞ

�
XlmðrÞ ¼ 0;

with VðrÞ≡ f

�
rlðlþ 1Þ − 6M

r3

�
: ðB1Þ

The relation between the solutions of the homogeneous
Teukolsky equation with s ¼ −2 and the function XðrÞwas
first found in [48]. In Schwarzschild it can be written as

R4lmðrÞ ¼ 2rfðr − 3M þ ir2ωÞX
0
lmðrÞ
η

þ ½rflðlþ 1Þ

− 6Mf − 2rωð3iM − irþ r2ωÞ�XlmðrÞ
η

;

ðB2Þ

where η ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ − 12iMω and the
prime denotes derivatives with respect of r. To integrate
Eq. (B1) we set boundary conditions which are regular at
infinity and at the event horizon [2]:

XH ¼ eiωr�
Xnmax

n¼0

cn

�
r
M

− 2

�
n
; ðB3aÞ

X∞ ¼ e−iωr�
Xnmax

n¼0

dn

�
M
r

�
n
; ðB3bÞ

with cn ¼ dn ¼ 0 forn < 0. Thevalues of the coefficientscn
and dn are calculated according to the recurrence relations

cn ¼ −
iðn − 3ÞMω

2nðnþ 4iMωÞ cn−3

þ lðlþ 1Þ − ðn − 2Þðn − 3þ 12iMωÞ
4nðnþ 4iMωÞ cn−2

þ lðlþ 1Þ − 2n2 þ 5n − 6 − 12iðn − 1ÞMω

2nðnþ 4iMωÞ cn−1

ðB4Þ

dn ¼
−i

2nMω
½ðn − 3Þðnþ 1Þdn−2

þ ðlþ nÞðl − nþ 1Þdn−1�; ðB5Þ

and nmax is chosen so that the relative difference between
the nþ 1 and the accumulated sum is smaller than 10−15.

APPENDIX C: EXPLICIT EXPRESSIONS FOR
THE SOURCE AND THE FORCE USING

IRG AND ORG MODES

The source and self-acceleration in the ORG were
previously presented in [2,32]. We include the ORG
expressions for completeness. We have identified and
corrected small typos in the sources—an independent
check led us to notice an incompatibility between the
corresponding equations for the source in [32] and [2].
The authors of [21] choose θ ¼ π=2 in their expressions for
the self-acceleration which makes it difficult to read the full
angular dependence required to change the basis from spin-
weighted spherical harmonics to the usual spherical har-
monics in which the mode-sum scheme guarantees to give
the right value of the SF. We write the source of Teukolsky
equation as a sum of three terms T�2 ¼ Tð0Þ þ Tð1Þ þ Tð2Þ
according the angular dependence on the particle’s location
of each term.

TABLE I. Comparison between the radial component of the
GSF, for different values of r0=M. The second column corre-
sponds to the values computed using numerical integration of
Sasaki-Nakamura equation while the values in the third column
are calculated in the ORG using the MST method. The quantities
in parenthesis correspond to the estimated error on the last quoted
decimal shown. The error in the second column is estimated by
changing the numerical parameters of the fitting that contributes
to the tail. The error quoted in the third column is estimated from
moving the inner boundary when numerically solving the l ¼ 1,
m ¼ 1 multipole.

r0=M FrNumðr0Þ × M2

m2 FrMSTðr0Þ × M2

m2

6 0.03350126(1) 0.033501265(1)
7 0.026070691(5) 0.0260706936(1)
8 0.020941671(3) 0.02094167456(7)
9 0.017214435(1) 0.01721443676(8)
10 0.0144093850(9) 0.01440938542(6)
12 0.0105299277(5) 0.01052992732(2)
14 0.008031952(1) 0.00803195180(1)
16 0.006328227(1) 0.006328226988(6)
18 0.005114225(1) 0.005114225196(3)
20 0.0042187145(9) 0.004218713944(1)
24 0.003011654(1) 0.0030116542558(6)
28 0.002257118(5) 0.0022571178017(2)
32 0.001754261(4) 0.0017542618884(1)
36 0.001402452(3) 0.00140245195919(6)
40 0.0011467454(5) 0.00114674532583(3)
50 0.0007465337(2) 0.00074653378046(1)
60 0.00052437948(8) 0.000524379436446(3)
70 0.00038842358(5) 0.000388423560775(1)
80 0.00029922175(3) 0.0002992217373675(7)
90 0.00023755802(2) 0.0002375580134958(4)
100 0.00019316231(2) 0.0001931623007419(2)
120 0.00013491660(1) 0.00013491660149634(8)
140 0.000099532396(7) 0.00009953239215925(3)
160 0.000076441055(5) 0.00007644105294526(1)
180 0.000060543785(4) 0.00006054378560513(1)
200 0.000049135297(3) 0.000049135296208105(1)
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The explicit form—in the Schwarzschild case—of the source terms in the IRG is

Tð0Þ ¼ −
X
lm

mutf20
4

δðr − r0Þ½ðl − 1Þlðlþ 1Þðlþ 2Þ�1=2−2Ylmðθ;φÞȲlm

�
π

2
;Ωt0

�
; ðC1aÞ

Tð1Þ ¼
X
lm

mΩutf0r20
2

�
if0δ0ðr − r0Þ −

�
mΩþ 4iM

r20

�
δðr − r0Þ

�
½ðl − 1Þðlþ 2Þ�1=2−2Ylmðθ;φÞ−1Ȳlm

�
π

2
;Ωt0

�
; ðC1bÞ

Tð2Þ ¼
X
lm

mΩ2utr40
4

�
f20δ

00ðr − r0Þ þ
�
2imΩf0 −

2ðr0 þ 2MÞf0
r20

�
δ0ðr − r0Þ

−
�
m2Ω2 þ 2imΩðr0 þMÞ

r20
−
2ð4M − r0Þ

r30

�
δðr − r0Þ

�
−2Ylmðθ;φÞ−2Ȳlm

�
π

2
;Ωt0

�
: ðC1cÞ

The corresponding source of the ORG is

Tð0Þ ¼ −
X
lm

mut

r40
δðr − r0Þ½ðl − 1Þlðlþ 1Þðlþ 2Þ�1=22Ylmðθ;φÞȲlm

�
π

2
;Ωt0

�
; ðC2aÞ

Tð1Þ ¼
X
lm

2
mΩut

r20

�
iδ0ðr − r0Þ þ

�
mΩ
f0

þ 4i
r0

�
δðr − r0Þ

�
½ðl − 1Þðlþ 2Þ�1=22Ylmðθ;φÞ1Ȳlm

�
π

2
;Ωt0

�
; ðC2bÞ

Tð2Þ ¼
X
lm

mΩ2ut
�
δ00ðr − r0Þ þ

�
6

r0
−
2imΩ
f0

�
δ0ðr − r0Þ

−
�
m2Ω2

f20
þ 2imΩð3r0 − 5MÞ

r20f
2
0

−
10

r20

�
δðr − r0Þ

�
2Ylmðθ;φÞ2Ȳlm

�
π

2
;Ωt0

�
: ðC2cÞ

The radial component of the full force in an IRG in terms of the tetrad component of the metric perturbation is given by

FrIRG
lm ¼ ðutÞ2fm

��
3

4
Dþ 1

2
Δ −

M
r2f

�
h22 −

M

2
ffiffiffi
2

p
r2f

sin2θðð̄1h23 þ ð−1h24Þ þ
iΩ
2f

sin θðð0 − ð̄0Þh22

−
iΩr
2

ffiffiffi
2

p sin θ

�
Δþ 2

r

�
ðh23 − h24Þ þ

M

2
ffiffiffi
2

p
r2f

sin2θðð1h23 þ ð̄−1h24Þ

−
M
r
sin2θ

�
1

8
D −

1

4f
Δþ 1

2r

�
ðh33 þ h44Þ −

rΩ2

f
sin2θh22

�
; ðC3Þ

and the corresponding equation for the ORG:

FrORG
lm ¼ −

ðutÞ2fm
r

�
rf

�
f
16

Dþ 3

8
Δ −

M
2r2

�
h11 −

M

4
ffiffiffi
2

p
r
sin2θðð̄1h13 þ ð−1h14Þ þ

irfΩ
8

sin θðð0 − ð̄0Þh11

−
iΩrffiffiffi
2

p sin θ

�
rΔ −

1

2

�
ðh13 − h14Þ þ

M

4
ffiffiffi
2

p
r
sin2θðð1h13 þ ð̄−1h14Þ

þMsin2θ

�
1

8
D −

1

4f
Δþ 1

2r

�
ðh33 þ h44Þ −

r2fΩ2

4
cos2θh11

�
: ðC4Þ

The above equation differs from Eq. (44) of [2], where the expression was calculated at θ ¼ π=2 and metric signature
ðþ;−;−;−Þ. Equations (C3) and (C4) have the exact powers of sin θ to make it possible to write the final self-force as a
finite sum over spin-0 ordinary spherical harmonics.
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The radial component of the full force in the IRG can be computed as a sum of six terms for each value of l and m with
different angular dependence:

Fr
1lm ¼ 1

4r20
ðutÞ2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p �
f0∂r þ 2∂t −

2

r0

�
f0 −

M
r0

��
ðΨlm þ Ψ̄lmÞYlmðθ;φÞ; ðC5aÞ

Fr
2lm ¼ 1

4f0r40
ðutÞ2Mm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
ðr0f0∂r þ r0∂t − 4f0ÞðΨlm þ Ψ̄lmÞsin2θYlmðθ;φÞ; ðC5bÞ

Fr
3lm ¼ 1

4r20
ðutÞ2Ωim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p
lðlþ 1ÞðΨlm − Ψ̄lmÞ sin θ½1Ylmðθ;φÞ þ −1Ylmðθ;φÞ�; ðC5cÞ

Fr
4lm ¼ −

1

2f0
ðutÞ2mΩi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p �
∂2
t þ 2f0∂t∂r þ f20∂2

r −
2

r20
ðM þ r0f0Þ∂t −

2f20
r0

∂r þ
2f20
r20

�
× ðΨlm − Ψ̄lmÞ sin θ−1Ylmðθ;φÞ; ðC5dÞ

Fr
5lm ¼ 1

4f0r40
ðutÞ2Mm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
ðr0f0∂r þ r0∂t − 2f0ÞðΨlm þ Ψ̄lmÞsin2θ−2Ylmðθ;φÞ; ðC5eÞ

Fr
6lm ¼ −

1

4f20r
5
0

ðutÞ2Mm½r40f0∂2
t ∂r þ 2r40f

2
0∂t∂2

r þ r40f
3
0∂3

r þ 2r30f
2
0∂2

t þ 2r20f0ðr0 − 5MÞ∂t∂r−2ðr20 − 6Mr0 þ 4M2Þ∂t

− 2r20f
3
0∂r�ðΨlm þ Ψ̄lmÞsin2θ−2Ylmðθ;φÞ; ðC5fÞ

where we have omitted to specify that Ψ is the IRG hertz potential. The corresponding terms for the ORG are

Fr
1lm ¼ −

1

16
r0f20ðutÞ2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p �
r0f0∂r − 2r0∂t þ 2

�
f0 þ

3M
r0

��
ðΨlm þ Ψ̄lmÞYlmðθ;φÞ; ðC6aÞ

Fr
2lm ¼ −

1

16
f0ðutÞ2Mm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
½r0f0∂r − r0∂t þ 2ð1þ f0Þ�ðΨlm þ Ψ̄lmÞsin2θYlmðθ;φÞ; ðC6bÞ

Fr
3lm ¼ 1

16
r20f

2
0ðutÞ2Ωim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p
lðlþ 1ÞðΨlm − Ψ̄lmÞ sin θ½1Ylmðθ;φÞ þ −1Ylmðθ;φÞ�; ðC6cÞ

Fr
4lm ¼ −

1

8
f0ðutÞ2mr40Ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p �
∂2
t − 2f0∂t∂r þ f20∂2

r −
3

r0
ð1þ f0Þ∂t þ

2f0
r20

ð3r0 − 2MÞ∂rþ
2

r20
ð1þ 2f0Þ

�
× ðΨlm − Ψ̄lmÞ sin θ1Ylmðθ;φÞ; ðC6dÞ

Fr
5lm ¼ −

1

16
f0ðutÞ2Mmðl − 1Þðlþ 2Þðr0∂t − r0f0∂r − 2ÞðΨlm þ Ψ̄lmÞsin2θ2Ylmðθ;φÞ; ðC6eÞ

Fr
6lm ¼ 1

16
f0ðutÞ2Mm

�
r30∂2

t ∂r − 2r30f0∂t∂2
r þ r30f

2
0∂3

r þ 6r20∂2
t − 2r0ð9r0 − 13MÞ∂t∂rþ12r20f0ðr0 −MÞ∂2

r

− 6ð5r0 − 4MÞ∂t þ
2

r0
ð17r20 − 32r0M þ 8M2Þ∂r−

16

r20
ðM2 − r20Þ

�
ðΨlm þ Ψ̄lmÞsin2θ2Ylmðθ;φÞ: ðC6fÞ

Using the definitions of ð and ð̄ in terms of partial derivatives with respect to the angular coordinates we can express the
spin-weighted spherical harmonics:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
1Ylmðθ;φÞ ¼ − ð∂θ −m csc θÞYlmðθ;φÞ; ðC7Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
−1Ylmðθ;φÞ ¼ − ð∂θ þm csc θÞYlmðθ;φÞ; ðC8Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
2Ylmðθ;φÞ ¼ ð∂2

θ − cot θ∂θ þ 2m cot θ csc θ − 2m csc θ∂θ þm2csc2θÞYlmðθ;φÞ; ðC9Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
−2Ylmðθ;φÞ ¼ ð∂2

θ − cot θ∂θ − 2m cot θ csc θ þ 2m csc θ∂θ þm2csc2θÞYlmðθ;φÞ; ðC10Þ

where we have used ∂φYlmðθ;φÞ≡ imYlmðθ;φÞ, and Ylmðθ;φÞ are the usual scalar spherical harmonics. Writing the
angular functions in this way allows us to use the same formulas as [35] to reexpand Eqs. (C5) and (C6) in spherical
harmonics.
As a sum of a single spherical harmonic we get

Fr
lm ¼ Ylmðθ;φÞfF r

ð−2Þl−2;m þ F r
ð−1Þl−1;m þ F r

ð0Þlm þ F r
ðþ1Þlþ1;m þ F r

ðþ2Þlþ2;mg; ðC11Þ

where

F r
ð−2Þlm ¼ αlmð−2Þf

r
2lm þ ðfr5lm þ fr6lmÞ

ð−βlmð−2Þ þ γlmð−2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp �
βlmð−2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp fr4lm;

F r
ð−1Þlm ¼ �

δlmð−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp fr4lm þ

2mϵlmð−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp fr6lm;

F r
ð0Þlm ¼ fr1lm þ fr2lmα

lm
ð0Þ þ ð∓fr4lm þ 2fr3lmÞ

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp þ ðfr5lm þ fr6lmÞ

ð−βlm0 þ γlmð0Þ þm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp ;

F r
ðþ1Þlm ¼ �

δlmðþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp fr4lm þ

2mϵlmðþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 1Þlðlþ 1Þðlþ 2Þp fr6lm;

F r
ðþ2Þlm ¼ αlmðþ2Þf

r
2lm þ ðfr5lm þ fr6lmÞ

ð−βlmðþ2Þ þ γlmðþ2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp �
βlmðþ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp fr4lm; ðC12Þ

the functions frilm correspond to the angle-independent coefficient of Eqs. (C5) or (C6). Notice the sign dependence of the
coefficient multiplying fr4lm—the upper sign is for the IRG modes while the lower sign for the ORG modes. The coupling
coefficients αlm, βlm, γlm, δlm and ϵlm are given explicitly in [35].
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