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We investigate a Boltzmann gas at equilibrium with its center of mass moving on a circular geodesic in
the Schwarzschild field. As a consequence of Tolman’s law we find that a central comoving observer
measures oscillations of the temperature and of other thermodynamic quantities with twice the frequencies
that are known from test-particle motion. We apply this scheme to the gas dynamics in the gravitational
fields of the planets of the Solar System as well as to strong-field configurations of neutron stars and
black holes.
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I. INTRODUCTION

Relativistic gas theory started as early as 1911 with
the work of Jüttner [1], who derived the one-particle
equilibrium distribution function for a Boltzmann gas.
The covariant form of Boltzmann’s equation was obtained
by Lichnerowicz and Marrot [2]. Equilibrium conditions
for a relativistic gas were shown to imply the existence of a
timelike Killing vector [3]. One of the consequences is
Tolman’s law [4,5], and another one is Klein’s law [6].
General-relativistic gaseous fluids are of interest in

cosmology and astrophysics. In many occasions the material
content of the Universe is modeled in fluid dynamical terms.
Then it is the energy-momentum tensor of the fluid which
appears on the right-hand side of Einstein’s equations and
determines the gravitational field. In an astrophysical context
it is also the behavior of a gas on a given gravitational
background which is important. The probably most inter-
esting case here is the accretion of (gaseous) matter towards
compact objects like black holes. As an example we mention
the observed high-frequency quasiperiodic oscillations in
the fluxes from x-ray binaries, which are supposed to be of
general-relativistic origin [7–10].
Any gas-dynamical analysis starts by establishing the

relevant equilibrium configurations of the system under
consideration. For a Boltzmann gas one distinguishes
local equilibrium from global equilibrium. The former
relies on the mere equilibrium structure of the one-particle
distribution function; the latter adds conditions on the
quantities that appear in this structure. One of these
conditions implies the existence of a timelike Killing
vector, equivalent to a stationarity condition for the
metric. Generally, a global equilibrium is therefore

incompatible with an expanding Universe, while local
equilibrium states of the cosmic substratum are suitable
starting points in standard cosmology.
The present paper is devoted to a global equilibrium

configuration on the background of the static Schwarzschild
metric. We consider a Boltzmann gas with its center of mass
moving on a circular geodesic of this metric, and we study
the equilibrium thermodynamics of this system as seen by a
comoving observer on the geodesic. While this is clearly an
idealized situation, we hope that it may capture some typical
features and serve as a starting point for more realistic
problems in astrophysics, where either the equilibrium
hypothesis or the circular geodesic nature of the worldline
or both are generalized.
The lowest-order gravitational effects that a freely falling

observer can detect locally are conveniently described with
the help of Fermi normal coordinates. These coordinates
are Minkowskian on the geodesic, while gravitation at
lowest order manifests itself in quadratic corrections in the
spacelike geodesic distance, orthogonal to the observer’s
timelike trajectory. We apply a description of this type to
the gas motion, admitting additionally a pure spatial
rotation. This corresponds to using a “proper reference”
frame (cf. Ref. [11]) up to second order. Fixing this frame
determines, via Tolman’s law [4,5], the temperature profile
of the gas as measured by a central, geodesic observer. It
turns out that the comoving observer measures oscillations
of the temperature and other thermodynamic quantities
with frequencies that are double the frequencies known
from test-particle motion in the Schwarzschild field.
The structure of the paper is as follows. In Sec. II we

recall basic properties of the Boltzmann equation for the
one-particle distribution function and its equilibrium sol-
ution. Section III is devoted to the corresponding equilib-
rium conditions. On this basis Tolman’s and Klein’s laws
are derived in Sec. IV. Section V reviews the circular
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test-particle motion in the Schwarzschild field. Fermi
normal tetrads are introduced and discussed in Sec. VI,
on the basis of which the temperature profile is obtained in
Sec. VII. With the help of the equation of geodesic
deviation we reproduce, in Sec. VIII, the basic linear
system which describes oscillatory motions around the
central geodesic. The corresponding oscillations of the
temperature and the other thermodynamic quantities are
discussed in Sec. IX. Section X summarizes our results.

II. BOLTZMANN EQUATION AND EQUILIBRIUM
DISTRIBUTION FUNCTION

A relativistic gas of particles with rest mass m in a
spacetime with metric tensor gμν is characterized by the
spacetime coordinates ðxμÞ ¼ ðct;xÞ and the momenta
ðpμÞ ¼ ðp0;pÞ. Because of the mass shell condition
gμνpμpν ¼ −m2c2 a state of the gas is described by the
one-particle distribution function fðx;p; tÞ in the phase
space spanned by xμ and p. The distribution function is
defined in such a way that fðx;p; tÞd3xd3p is the number
of particles in the volume element d3xd3p at the time t.
The evolution of the distribution function fðx;p; tÞ in

the phase space is governed by the Boltzmann equation
(see, e.g., Ref. [12])

pμ ∂f
∂xμ − Γσ

μνpμpν ∂f
∂pσ ¼ Qðf; fÞ; ð1Þ

where the Γσ
μν are the Christoffel symbols and Qðf; fÞ is

the collision operator of the Boltzmann equation. For
an equilibrium distribution fð0Þ the collision operator
Qðfð0Þ; fð0ÞÞ vanishes and, for a classical gas, fð0Þ becomes
the Maxwell-Jüttner distribution function

fð0Þ ¼ n
4πkTm2cK2ðζÞ

exp

�
−
Uτpτ

kT

�
: ð2Þ

Here, n is the particle number density, T is the temperature,
Uτ is the four-velocity (with UμUμ ¼ −c2), and k is the
Boltzmann constant. Furthermore,

KnðζÞ ¼
�
ζ

2

�
n Γð1=2Þ
Γðnþ 1=2Þ

Z
∞

1

e−ζyðy2 − 1Þn−1=2dy ð3Þ

denotes modified Bessel functions of the second kind with
ζ ¼ mc2=kT. The parameter ζ is the ratio of the rest energy
mc2 of a gas particle and the thermal energy kT of the gas.
The nonrelativistic limit corresponds to ζ ≫ 1, while the
ultrarelativistic limit is obtained for ζ ≪ 1.
With the help of the equilibrium distribution function (2)

we may calculate the energy-momentum tensor

Tμν ¼ c
Z

pμpνfð0Þ
ffiffiffiffiffiffi
−g

p d3p
p0

¼ en
c2

UμUν þ pgμν; ð4Þ

where e is the energy per particle and p is the pressure:

e ¼ mc2
�
K3ðζÞ
K2ðζÞ

−
1

ζ

�
; p ¼ nkT: ð5Þ

Likewise, we obtain the entropy-flow vector

Sμ ¼ −kc
Z

pμfð0Þ ln fð0Þ
ffiffiffiffiffiffi
−g

p d3p
p0

¼ nsUμ ð6Þ

with the entropy per particle

s ¼ k
�
ln
�
4πkTm2cK2ðζÞ

en

�
þ ζ

K3ðζÞ
K2ðζÞ

�
: ð7Þ

The Gibbs function per particle g ¼ e − Tsþ p=n may be
identified with the chemical potential μ:

μ≡ g ¼ kT

�
ln

�
en

4πkTm2cK2ðζÞ
��

: ð8Þ

In terms of the chemical potential the equilibrium distri-
bution function (2) is written as

fð0Þ ¼ exp

�
μ

kT
− 1 −

Uτpτ

kT

�
: ð9Þ

III. EQUILIBRIUM CONDITIONS

While the right-hand side of Boltzmann’s equation (1)
vanishes identically for f ¼ fð0Þ, its left-hand side imposes
restrictions on the fields that appear in this distribution
function. Indeed, inserting (9) into (1) one finds the
polynomial equation

pν∂ν

�
μ

kT

�
−
1

2
pμpν

��
Uμ

kT

�
;ν

þ
�
Uν

kT

�
;μ

�
¼ 0: ð10Þ

Since this equation is valid for all values of pμ it implies

∂ν

�
μ

kT

�
¼ 0;

�
Uμ

kT

�
;ν

þ
�
Uν

kT

�
;μ

¼ 0; ð11Þ

provided the particles have nonvanishing rest mass. The
right-hand expression of Eq. (11) is the so-called Killing
equation, and Uν

kT is a (timelike) Killing vector. The Killing
equation can be rewritten as

Uμ;ν þ Uν;μ −
1

T
ðT;νUμ þ T;μUνÞ ¼ 0: ð12Þ

By suitable projections proportional and perpendicular to
Uα we get the relations
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_T ¼ 0 and _Uμ þ
c2

T
∇μT ¼ 0; ð13Þ

respectively. Here,

_T ≡ Uμ∂μT; _Uμ ≡UνUμ; ν; ∇μT ≡ hνμT;ν; ð14Þ

where hμν ¼ gμν þ c−2UμUν. Equations (13) may be inter-
preted as follows: in equilibrium a gas must have a
stationary temperature and its acceleration must be counter-
balanced by a spatial temperature gradient. In general, the
right-hand expression of condition (13) is therefore not
compatible with a geodesic fluid motion, which would
require _Uμ ¼ 0. We shall return to this point in Sec. VIII.
The trace of (12) yields Uμ

;μ ¼ 0; i.e., equilibrium requires
a vanishing expansion scalar.

IV. TOLMAN AND KLEIN LAWS

In order to derive Tolman’s law [4,5] let us consider a
fluid at rest such that

ðUμÞ ¼
�

cffiffiffiffiffiffiffiffiffiffi−g00
p ; 0

�
: ð15Þ

Taking into account that the existence of a timelike Killing
vector amounts to a stationary metric, the acceleration term
becomes

_Uμ ¼ −
c2

g00
Γμ
00 ¼

c2

2g00
gμνg00;ν: ð16Þ

From the right-hand expression of (13) and from (16) we
have

c2gμν½ln ð ffiffiffiffiffiffiffiffiffiffi
−g00

p
TÞ�;ν ¼ 0; ð17Þ

which implies Tolman’s law

ffiffiffiffiffiffiffiffiffiffi
−g00

p
T ¼ constant: ð18Þ

Klein’s law follows from Tolman’s law and the first of
the equilibrium conditions in (11) and reads

ffiffiffiffiffiffiffiffiffiffi−g00
p

μ ¼
constant. It was obtained here from the equilibrium con-
ditions applied to the Maxwell-Jüttner distribution, but it
can also be derived on purely thermodynamical grounds as
in Klein’s original paper [6].

V. SCHWARZSCHILD METRIC

The Schwarzschild metric is

ds2 ¼ −
�
1 −

2M
r

�
ðdx0Þ2 þ 1

ð1 − 2M
r Þ dr

2

þ r2ðdϑ2 þ sin2ϑdφ2Þ ¼ −c2dτ2; ð19Þ

where M ¼ GM=c2 and G denotes the gravitational
constant.
The Lagrangian of the orbital motion of a test particle

with rest mass m in the plane ϑ ¼ π=2 is

L ¼ m
2

�
1

1 − 2M
r

�
dr
dτ

�
2

þ r2
�
dφ
dτ

�
2

−
�
1 −

2M
r

��
dx0

dτ

�
2
�
: ð20Þ

From this expression we infer that φ and x0 are cyclic
coordinates so that the corresponding generalized momenta
pφ and p0 are conserved and read

pφ ¼ ∂L
∂ðdφ=dτÞ ¼ mr2

dφ
dτ

¼ l; ð21Þ

p0 ¼
∂L

∂ðdx0=dτÞ ¼ −m
�
1 −

2M
r

�
dx0

dτ
¼ −

E
c
: ð22Þ

Here, l and E denote the angular momentum and the energy
of the particle, respectively.
A circular orbit (constant radius r) is characterized by

~E2 ¼
�
1 −

2M
r

��
1þ

~l2

r2

�
; ð23Þ

thanks to (19), (21), and (22). Here, we have introduced the
energy in units of mc2, ~E≡ E=mc2 and the angular
momentum in units of mc, ~l≡ l=mc.
The motion of the test particle is obtained from (19),

(21), and (22) and can be written as (see, e.g., Ref. [11])

�
dr
dcτ

�
2

þ ~V2 ¼ ~E2; ð24Þ

where ~V2 denotes the effective potential

~V2 ¼
�
1 −

2M
r

��
1þ

~l2

r2

�
: ð25Þ

The possible circular orbits are found by searching
the extreme values of the effective potential ~V2, which
results in

~l2 ¼ Mr2

r − 3M
: ð26Þ

Hence, a test particle of rest mass m in orbital motion
with ϑ ¼ π=2 is characterized by constant values of angular
momentum (26) and energy
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~E2 ¼
�
1 −

2M
r

�
2 r
r − 3M

; ð27Þ

thanks to (23) and (26).
Since dφ=dτ is given by (21) and the angular momentum

by (26) it follows by integration that

φ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r − 3M

r
τ ð28Þ

for a circular orbit. The corresponding angular frequency of
the particle motion is

ωφ ¼ ωN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r − 3M

r
; ωN ¼

ffiffiffiffiffiffiffiffi
GM
r3

r
; ð29Þ

where ωN is the Newtonian frequency in the limit
for r ≫ M.
If the particle is slightly displaced from the exact circular

motion in the radial direction, there exists another oscil-
lation frequency, which is given by half the second
derivative of (25) combined with (26), which reads [13]

ωr ¼ ωN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 6M
r − 3M

r
: ð30Þ

Obviously, both frequencies only coincide for r ≫ M.
Their difference gives rise to a precession of the particle
motion within the orbital plane.
The nonvanishing components of the curvature tensor for

ϑ ¼ π=2 are

R0̄ 1̄ 0̄ 1̄ ¼ −
2M
r3

; R0̄ 2̄ 0̄ 2̄ ¼
M
r

�
1 −

2M
r

�
; ð31Þ

R1̄ 2̄ 1̄ 2̄ ¼ −
M
r

1

1 − 2M
r

; R2̄ 3̄ 2̄ 3̄ ¼ 2Mr; ð32Þ

R0̄ 3̄ 0̄ 3̄ ¼ R0̄ 2̄ 0̄ 2̄; R1̄ 2̄ 1̄ 2̄ ¼ R1̄ 3̄ 1̄ 3̄: ð33Þ

Here, the overbar denotes the original Schwarzschild
coordinates according to (19).

VI. FERMI NORMAL COORDINATES

Now, we consider a rarefied gas, say, inside a spacecraft,
in a circular orbit around an object with mass M. The
contributions of the spacecraft and the gas to the gravita-
tional field are assumed to be negligible. Let the center of
mass of the gas move on a circular geodesic of the
Schwarzschild metric. An observer at the center of mass
will conveniently use Fermi normal coordinates to describe
local gravitational effects in the vicinity of the geodesic
[14]. These are comoving, time-orthogonal coordinates
with the center of mass at rest in the origin. The time

coordinate is the proper time τ of the center on the geodesic.
The spatial coordinates are orthogonal spacelike geodesics
parametrized by the proper distance.
Quite generally, the components of the metric tensor up

to the second order in the deviations from the geodesic in
Fermi normal coordinates are [11,14]

g0̂ 0̂ ¼ −1 − R0̂ n̂ 0̂ m̂x
n̂xm̂; ð34Þ

g0̂ î ¼ −
2

3
R0̂ n̂ î m̂x

n̂xm̂; ð35Þ

gî ĵ ¼ δij −
1

3
Rî n̂ ĵ m̂x

n̂xm̂: ð36Þ

The curvature-tensor terms describe the lowest-order
gravitational effects which a freely falling observer can
measure locally. For the special case of circular geodesics
in the Schwarzschild field a Fermi normal tetrad has been
obtained in [15]

ðeᾱ
0̂
Þ ¼

�
~E
X
; 0; 0;

~l
r2

�
; ð37Þ

ðeᾱ
1̂
Þ ¼

�
−
~l sinðαφÞ
r

ffiffiffiffi
X

p ;
ffiffiffiffi
X

p
cosðαφÞ; 0;−

~E sinðαφÞ
r

ffiffiffiffi
X

p
�
; ð38Þ

ðeᾱ
2̂
Þ ¼

�
0; 0;

1

r
; 0

�
; ð39Þ

ðeᾱ
3̂
Þ ¼

�
~l cosðαφÞ
r

ffiffiffiffi
X

p ;
ffiffiffiffi
X

p
sinðαφÞ; 0;

~E cosðαφÞ
r

ffiffiffiffi
X

p
�
: ð40Þ

In these expressions we have introduced the abbreviations

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 3M

r

r
; X ¼ 1 −

2M
r

: ð41Þ

At some initial time ðeᾱ
1̂
Þ shows in the radial direction and

ðeᾱ
3̂
Þ shows in the tangential direction, while ðeᾱ

2̂
Þ is always

perpendicular to the orbital plane. One realizes that on the
circular geodesic

gαβ
∂xα
∂xμ̂

∂xβ
∂xν̂ ¼ ημ̂ ν̂ ð42Þ

is valid, where ημ̂ ν̂ is the Minkowski metric. The tetrads are
parallel transported along the circular geodesic

Deμ̄α̂
dτ

¼ 0: ð43Þ

The nonvanishing components of the Riemann tensor in
Fermi normal coordinates are determined from
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Rμ̂ ν̂ σ̂ τ̂ ¼ Rᾱ β̄ γ̄ δ̄e
ᾱ
μ̂e

β̄
ν̂e

γ̄
σ̂e

δ̄
τ̂ : ð44Þ

Using (31)–(33) and (37)–(44) yields [14–17]

R0̂ 1̂ 0̂ 1̂ ¼ −
M½rþ 3ðr − 2MÞ cosð2αφÞ�

2ðr − 3MÞr3 ; ð45Þ

R0̂ 1̂ 0̂ 3̂ ¼ −
3Mðr − 2MÞ sinð2αφÞ

2ðr − 3MÞr3 ; ð46Þ

R0̂ 2̂ 0̂ 2̂ ¼
M

ðr − 3MÞr2 ; ð47Þ

R0̂ 3̂ 0̂ 3̂ ¼ −
M½r − 3ðr − 2MÞ cosð2αφÞ�

2ðr − 3MÞr3 ; ð48Þ

R0̂ 1̂ 1̂ 3̂ ¼
3M

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p
cosðαφÞ

ðr − 3MÞr3 ; ð49Þ

R0̂ 2̂ 1̂ 2̂ ¼ −
3M

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p
sinðαφÞ

ðr − 3MÞr3 : ð50Þ

Furthermore, the following relationships hold [17]:

R0̂ 3̂ 1̂ 3̂ ¼ −R0̂ 2̂ 1̂ 2̂; R0̂ 2̂ 2̂ 3̂ ¼ −R0̂ 1̂ 1̂ 3̂; ð51Þ

R1̂ 2̂ 1̂ 2̂ ¼ −R0̂ 3̂ 0̂ 3̂; R1̂ 3̂ 1̂ 3̂ ¼ −R0̂ 2̂ 0̂ 2̂; ð52Þ

R1̂ 2̂ 2̂ 3̂ ¼ −R0̂ 1̂ 0̂ 3̂; R2̂ 3̂ 2̂ 3̂ ¼ −R0̂ 1̂ 0̂ 1̂: ð53Þ

Via φ the components of Rμ̂ ν̂ σ̂ τ̂ depend on τ. More-
over, because of the nonvanishing component R0̂ 1̂ 0̂ 3̂ the
second-order contribution to g0̂ 0̂ is not diagonal. A simpler
structure can be obtained by performing a tetrad rotation
around the x2̂ direction according to

E1̄ ¼ e1̂ cos αφþ e3̂ sin αφ;

E3̄ ¼ −e1̂ sin αφþ e3̂ cos αφ: ð54Þ

Now, ðEᾱ
1̂
Þ always shows in the radial direction and ðEᾱ

3̂
Þ

always shows in the tangential direction. Explicitly,

E0̄
0̂
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r − 3M

r
; E3̄

0̂
¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r − 3M

r
; ð55Þ

E1̄
1̂
¼

�
1 −

2M
r

�
1=2

; E2̄
2̂
¼ 1

r
; ð56Þ

E0̄
3̂
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr

ðr − 2MÞðr − 3MÞ

s
; E3̄

3̂
¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M
r − 3M

r
:

ð57Þ

The tetrads e0̂ and e2̂ are unchanged. In this frame the
curvature-tensor components take a simpler form:

R0101 ¼ −
M
r3

2r − 3M
r − 3M

¼ −R2323; ð58Þ

R0303 ¼
M
r3

¼ −R1212; ð59Þ

R0113 ¼
3M
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr − 2MÞp
r − 3M

¼ R0232; ð60Þ

R0202 ¼
M
r3

r
r − 3M

¼ −R1313: ð61Þ

The price to pay for this simplification is that the
new tetrads are no longer parallel transported.
Combining De1̂

dτ ¼ 0 and De3̂
dτ ¼ 0 from (43) with (54)

provides us with

DE1̄

dτ
¼

ffiffiffiffiffiffi
M
r3

r
E3̄;

DE3̄

dτ
¼ −

ffiffiffiffiffiffi
M
r3

r
E1̄: ð62Þ

The transformation describes a rotation with frequencyffiffiffiffiffi
M
r3

q
. As a result, there appear nonvanishing Christoffel

symbols on the geodesic together with mixed spacetime
terms linear in xi in the metric. This corresponds to what is
called a proper reference frame in Ref. [11] (see also
Chap. 21.2 in Ref. [18]) in the absence of acceleration.
But while the proper reference system in Refs. [11,18] is
restricted to linear deviations from the central geodesic,
our analysis includes the deviations up to second order.
The relevant relations are (cf. Refs. [11,18])

Γa
0n ¼ εn

a
mω

m; g0b;n ¼ −εbnmωm: ð63Þ

In our case

Γ1
03 ¼ ε3

1
2ω ¼ ω;

Γ3
01 ¼ −ε132ω ¼ −ω: ð64Þ

It follows that

g01;3 ¼ −ε132ω ¼ ω;

g03;1 ¼ −ε312ωm ¼ −ω: ð65Þ

With ω ¼
ffiffiffiffiffi
M
r3

q
we have

g01 ¼
ffiffiffiffiffiffi
M
r3

r
x3; g03 ¼ −

ffiffiffiffiffiffi
M
r3

r
x1: ð66Þ

Once we know the curvature-tensor components in this
new frame, we can obtain the metric tensor up to second

TEMPERATURE OSCILLATIONS OF A GAS IN CIRCULAR … PHYSICAL REVIEW D 91, 024003 (2015)

024003-5



order in the deviations. The focus in the present paper is on
the component g00 since it is this component which appears
in Tolman’s and Klein’s laws. We find

g00 ¼ −1þM
r3

�
2r − 3M
r − 3M

ðx1Þ2

−
r

r − 3M
ðx2Þ2 − ðx3Þ2

�
: ð67Þ

VII. THE TEMPERATURE PROFILE

Now, we combine the metric structure (67) with
Tolman’s relation (18). As a result we obtain a parabolic
temperature profile in the vicinity of the central geodesic

T ¼ T0ffiffiffiffiffiffiffiffiffiffi−g00
p ≈ T0

�
1þ M

2r3

�
2r − 3M
r − 3M

ðx1Þ2

−
r

r − 3M
ðx2Þ2 − ðx3Þ2

��
; ð68Þ

where T0 is the constant equilibrium temperature on
the geodesic. Obviously, the temperature variations are
different in different directions off the geodesic. The
parabolic structure of the temperature distribution implies
that the spatial gradient of the temperature is linear in the
deviation from the central geodesic. Consequently, the
temperature gradient vanishes on the geodesic itself.
Therefore, on this geodesic, and only there, the second
of the equilibrium conditions (13) consistently reduces to
the equation _Uμ ¼ 0 for geodesic fluid motion. Off the
central geodesic the equilibrium fluid motion is non-
geodesic. However, since the deviation is linear in the
distance the situation simplifies as we shall discuss in the
following section.

VIII. GEODESIC DEVIATION

Apparently, the second equilibrium condition (13) is no
longer compatible with a geodesic motion _Uμ ¼ 0 in the
vicinity of the circular geodesic. But since the terms that
“perturb” the geodesic behavior are linear in the distance,
the equation of geodesic deviation turns out to be appli-
cable for our problem. The reason is that these perturbing
terms lead to higher-order corrections for the geodesic
deviation. In the following we demonstrate this in some
detail.
Quite generally, for a vector ξα orthogonal to the

geodesic the equation for the geodesic deviation is

D2ξα

dτ2
þ Rα

γμνUγUνξμ ¼ 0; ð69Þ

where the explicit form of the first term of this equation
reads

D2ξα

dτ2
¼ d2ξα

dτ2
þ Γα

βγ;ρξ
β dx

ρ

dτ
dxγ

dτ
þ 2Γα

βγ

dξβ

dτ
dxγ

dτ

þ Γα
βγξ

β d
2xγ

dτ2
þ Γα

βγΓ
β
ρσξρ

dxσ

dτ
dxγ

dτ
: ð70Þ

Let us analyze the underlined term in (70). Writing the
second equilibrium condition (13) as

_Uγ ¼ DUγ

dτ
¼ D2xγ

dτ2
¼ −

c2

T
∇γT ð71Þ

and

d2xγ

dτ2
¼ −Γγ

κλU
κUλ −

c2

T
∇γT; ð72Þ

the underlined term is

Γα
βγξ

β d
2xγ

dτ2
¼ −Γα

βγξ
β

�
Γγ
κλU

κUλ þ c2

T
∇γT

�
: ð73Þ

Since ∇γT is linear in the distance and the entire term is
already linear in ξβ, the temperature gradient gives rise to a
second-order contribution. Hence, up to linear order we get
the relationship

Γα
βγξ

β d
2xγ

dτ2
¼ −Γα

βγξ
βΓγ

κλU
κUλ: ð74Þ

Furthermore, in the terms that multiply ξα we may
approximate (15) by ðUμÞ ¼ ðc; 0Þ since in our metric
g00 ¼ −1þOðx2Þ and any correction to g00 ¼ −1 would
lead to higher-order terms. In this case (70) together with
(74) yields

D2ξα

dτ2
¼ d2ξα

dτ2
þ c2Γα

β0;0ξ
β þ 2cΓα

β0

dξβ

dτ

− c2Γα
βγξ

βΓγ
00 þ c2Γα

β0Γ
β
ρ0ξ

ρ; ð75Þ

while the second term in (69) reduces to

Rα
γμνUγUνξμ ¼ c2gαβRβ0μ0ξ

μ: ð76Þ

Now, we identify the spatial components of ξa with the
components xa of our tetrad system. Then, from (69)
together with (75) and (76), we obtain the following form
of the equation for the geodesic deviation:

d2xa

dτ2
þ 2cΓa

β0

dxβ

dτ
− c2Γa

βγx
βΓγ

00 þ c2Γa
β0Γ

β
ρ0x

ρ

þ c2gaβRβ0μ0xμ ¼ 0: ð77Þ

Note that the time derivative of the Christoffel symbols
vanishes since the metric is static. The temporal part of the
equation for the geodesic deviation is identically satisfied.
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Consequently, by taking into account the expressions
(58)–(61) for the components of the Riemann tensor and
those for the Christoffel symbols in (64), we arrive at the
linear-order system of equations

d2x1

dτ2
− 2c

ffiffiffiffiffiffi
M
r3

r
dx3

dτ
− 3c2

M
r3

r − 2M
r − 3M

x1 ¼ 0; ð78Þ

d2x2

dτ2
þ c2

M
r3

r
r − 3M

x2 ¼ 0; ð79Þ

d2x3

dτ2
þ 2c

ffiffiffiffiffiffi
M
r3

r
dx1

dτ
¼ 0: ð80Þ

The system (78)–(80) coincides with the system derived
for the motion of a test particle in Ref. [19].
Equation (79) decouples from the other equations

and describes oscillations in the component x2. The real
solution can be written as

x2 ¼ x20 sin ðΩτÞ; with Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM
r3

r
r − 3M

r
; ð81Þ

where Ω denotes the frequency of the harmonic motion
of the x2 component. This frequency coincides with the
orbital frequency ωφ in (29). But in the present context it
characterizes an oscillation perpendicular to the orbital
plane.
The coupled system of equations (78) and (80) has

oscillatory solutions as well which can be written as

x1 ¼ x10 sin ðωτÞ; ð82Þ

x3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 3M
r − 6M

r
x10 cos ðωτÞ: ð83Þ

Here, the oscillation frequency is

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM
r3

r − 6M
r − 3M

r
: ð84Þ

This frequency coincides with the radial frequency ωr in
(30). But now it characterizes also oscillations in the
tangential direction. Hence, in the ðx1; x3Þ plane the motion
is described by an ellipse. Different from the situation in
terms of Schwarzschild coordinates in Sec. V, there is no
precession in the orbital plane for a comoving observer.
As already discussed in Sec. V, the frequencies Ω and ω

only coincide in the limit M ≪ r, where

ωN ¼ ΩN ¼
ffiffiffiffiffiffiffiffi
GM
r3

r
: ð85Þ

Their ratio is given by

ω

Ω
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

6M
r

r
: ð86Þ

Oscillations with frequencies Ω and ω have been derived
for geodesic particle motion in the Schwarzschild field by
Shirokov [19]. The new feature here is that, via Tolman’s
relation, these frequencies are also relevant for the gas
temperature and other thermodynamic quantities as we
shall discuss in the following section.
As pointed out in Ref. [19], the first-order corrections to

the Newtonian frequency are different for Ω and ω:

ω ≈ ωN

�
1 −

3

2

M
r

�
; Ω ≈ΩN

�
1þ 3

2

M
r

�
: ð87Þ

On the other hand, stable circular orbits only exist for
r > 6M [13]. In the limit r → 6M one has ω → 0 and
Ω →

ffiffiffi
2

p
ΩN . The oscillations are frozen in the x1 − x3

plane, while they continue with the frequency
ffiffiffi
2

p
ΩN in the

x2 plane. In the interval 3M < r < 6M there exist
unstable circular trajectories. Since ω becomes imaginary
in this region, there are exponential instabilities in the
x1 − x3 plane. The oscillation frequency in the x2 direction
increases to very large values as the limit r ¼ 3M is
approached.

IX. THERMODYNAMIC PROPERTIES IN
CIRCULAR GEODESIC MOTION

In this section we shall analyze the thermodynamic fields
of a rarefied gas as measured by an observer in circular
geodesic motion.

A. Temperature oscillations

From (68) with (81)–(84) we obtain the temperature
profile

T − T0

T0

¼ ΔðτÞ ¼ M
2r3

fðx10Þ2½Asin2ðωτÞ

− Bcos2ðωτÞ� − Csin2ðΩτÞg; ð88Þ

where we have introduced the abbreviations

A≡ 2r − 3M
r − 3M

; B≡ 4
r − 3M
r − 6M

; C≡ r
r − 3M

:

ð89Þ

Since the solutions of the system (78)–(80) enter
quadratically, the oscillation frequencies are doubled.
The explicit expression is
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ΔðτÞ ¼ M
4r3

ðx10Þ2
�
ðA − BÞ − ðAþ BÞ cos ð2ωτÞ

− C

�
x20
x10

�
2

þ C

�
x20
x10

�
2

cos ð2ΩτÞ
�
: ð90Þ

The temperature field oscillates in the ðx1; x3Þ plane with
the frequency 2ω and different amplitudes, while in the x2

direction the oscillation frequency is 2Ω. In the Newtonian
limit we have

ΔNðτÞ ¼ −
M
4r3

ðx10Þ2
�
2þ

�
x20
x10

�
2

þ
�
6 −

�
x20
x10

�
2
�
cos

�
2

ffiffiffiffiffiffiffiffi
GM
r3

r
τ

��
: ð91Þ

The lowest-order general-relativistic corrections modify
the amplitudes according to

A − B ≈ −2 − 9
M
r
; Aþ B ≈ 6þ 15

M
r
;

C ≈ 1þ 3
M
r
: ð92Þ

The more interesting effect is a modulation of the
frequencies

cos ð2ωτÞ ≈ cos

�
2ωN

�
1 −

3

2

M
r

�
τ

�
; ð93Þ

cos ð2ΩτÞ ≈ cos

�
2ΩN

�
1þ 3

2

M
r

�
τ

�
: ð94Þ

It follows that the oscillation periods are different in
different directions. Equivalently, this modulation can be
expressed as

cos ð2ωτÞ ≈ cos ð2ωNτÞ cos
�
3
M
r
ωNτ

�

þ sin ð2ωNτÞ sin
�
3
M
r
ωNτ

�
ð95Þ

and

cos ð2ΩτÞ ≈ cos ð2ΩNτÞ cos
�
3
M
r
ΩNτ

�

− sin ð2ΩNτÞ sin
�
3
M
r
ΩNτ

�
: ð96Þ

The Newtonian oscillations with frequency 2ωN ¼ 2ΩN
are modulated by the very small frequency 3M

r ωN.

At lowest order, the frequency difference Δω is

Δω ¼ 2ðΩ − ωÞ ¼ 6
ðGMÞ3=2
c2r5=2

: ð97Þ

The deviations from Newtonian behavior are more
drastic for strong fields. Let us consider the case r ¼
7M which is well in the range of stable circular orbits.
In this case

A ¼ 11

4
; B ¼ 16; C ¼ 7

4
; ð98Þ

and the frequencies ω and Ω become

ω ¼ ωN

2
and Ω ¼

ffiffiffi
7

p

2
ωN; ð99Þ

respectively. The frequency ω is considerably smaller
than the Newtonian frequency, while Ω is considerably
larger. The temperature field oscillates with 2ω ¼ ωN and
2Ω ¼ ffiffiffi

7
p

ΩN . The oscillation periods differ by a factor offfiffiffi
7

p
. The frequency difference is

Δω ¼ ð
ffiffiffi
7

p
− 1ÞωN ≈ 1.65ωN: ð100Þ

Likewise, we obtain the values for r ¼ 10M:

A ¼ 17

7
; B ¼ 7; C ¼ 10

7
; ð101Þ

ω ¼ 2ffiffiffi
7

p ωN; Ω ¼
ffiffiffiffiffi
10

7

r
ωN: ð102Þ

Here, we find

Δω ≈ 0.88ωN: ð103Þ

Interestingly, the ratio between the frequencies for r ¼ 10M
is Ω=ω ¼ ffiffiffiffiffiffiffi

2.5
p

≈ 1.58, which is close to the frequently
observed twin-peak ratio 3/2 in the power spectra of x-ray
binaries [7].
As already mentioned, when r approaches 6M the

frequency ω approaches 0 while the coefficient B diverges.
This indicates the onset of an instability. In the range
3M < r < 6M the coefficient B is negative and we have
an imaginary ω, indicating an exponential instability. As r
approaches 3M, the oscillation frequency in the x2

direction becomes infinitely large.

B. Thermodynamic functions at equilibrium

From Klein’s law (μ
ffiffiffiffiffiffiffiffiffiffi−g00

p
= constant) it follows that the

chemical potential has the same oscillatory character as the
temperature field, namely,
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μ − μ0
μ0

¼ ΔðτÞ: ð104Þ

The energy per particle [left-hand expression of (5)] is
only a function of the temperature so that we can write

e − e0
kT0

¼ c0v
k
ΔðτÞ; ð105Þ

where cv is the heat capacity per particle at constant volume

c0v ¼
∂e
∂T

				
T0

¼ kζ20

�
1þ 5

ζ0

K3ðζ0Þ
K2ðζ0Þ

−
�
K3ðζ0Þ
K2ðζ0Þ

�
2

−
1

ζ20

�
: ð106Þ

According to (8) and the left-hand expression of (11) the
particle number density n is only a function of the
temperature as well

n ¼ 4πm2c
K2ðζÞ
ζ

e
μ
kT−1 ¼ 4πm2c

K2ðζÞ
ζ

e
μ0
kT0

−1; ð107Þ

and we may express it as

n ¼ n0 þ
∂n
∂T

				
T0

ðT − T0Þ: ð108Þ

From this equation and from (88) and (104) we obtain the
behavior of the particle number density in the vicinity of the
circular geodesic:

n − n0
n0

¼
�
ζ0

K3ðζ0Þ
K2ðζ0Þ

− 1

�
ΔðτÞ: ð109Þ

The oscillations of the pressure field follow from the
equation of state p ¼ nkT, (88), and (109) and read

p − p0
p0

¼ ζ0
K3ðζ0Þ
K2ðζ0Þ

ΔðτÞ: ð110Þ

With (7) and (8) the entropy per particle is

s ¼ k

�
ζ
K3ðζÞ
K2ðζÞ

−
μ0
kT0

�
: ð111Þ

Following similar steps as those which led us to (108), we
find

s − s0
s0

¼ −

"K3ðζ0Þ
K2ðζ0Þ ðζ0

K3ðζ0Þ
K2ðζ0Þ − 4Þ − ζ0

K3ðζ0Þ
K2ðζ0Þ −

μ0
mc2

#
ΔðτÞ: ð112Þ

As an example we determine the equilibrium fields in the
nonrelativistic limit ζ ≫ 1. Under this condition the fields
(5)–(8) and (106) up to the order 1=ζ read

e0 ¼ mc2 þ 3

2
kT0

�
1þ 5

4ζ0

�
; ð113Þ

s0 ¼ k

�
ln
T

3
2

0

n0
þ 3

2
lnð2πekmÞ þ 15

4ζ0

�
; ð114Þ

μ0 ¼ mc2 þ kT0

�
ln
en0

T
3
2

0

−
3

2
lnð2πkmÞ − 15

8ζ0

�
; ð115Þ

c0v ¼
3

2
k

�
1þ 5

2ζ0

�
: ð116Þ

With (113)–(116) the relations (105), (110), and (112)
reduce to

e − e0
kT0

¼ 3

2

�
1þ 5

2ζ0

�
ΔðτÞ; ð117Þ

p − p0
p0

¼
�
1þ 5

2ζ0

�
ζ0ΔðτÞ; ð118Þ

and

s − s0
s0

¼ 1

ln en0

T
3
2
0

− 3
2
lnð2πkmÞ ζ0ΔðτÞ; ð119Þ

respectively.
Hence, apart from the factors, the energy per particle

shows the same dependence on τ as the temperature and the
chemical potential. However, the oscillation amplitudes of
the pressure and the entropy per particle are larger since
they are multiplied by ζ0 ¼ mc2=kT0, which has a big
value in this limit.

C. Analysis of temperature oscillations

Now, let us analyze the temperature oscillations of a gas,
e.g., in a spacecraft, at low altitudes in orbits around the
planets of the Solar System, where we can approximate the
orbit radius r by the radius R of the massive object, i.e.,
r ≈ R. In the first two columns of Table I we specify the
radii and the masses of the planets. The ratios M=R ¼
GM=Rc2 in the third column are sufficiently small so that
we can use the approximation (91) for the oscillation ΔðτÞ.
From the fourth column we infer that the frequencies ωN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
for the four outer planets are about one-half

of the ones for the four inner planets. The fifth column
contains the corresponding oscillation amplitudes
GM=R3c2.
In Fig. 1 we show the temperature oscillationsΔNðτÞ of a

gas in circular motion around Earth, Mars, and Saturn as
functions of the proper time τ. As an example we have

TEMPERATURE OSCILLATIONS OF A GAS IN CIRCULAR … PHYSICAL REVIEW D 91, 024003 (2015)

024003-9



taken x10 ¼ x20 ¼ 1. The curves complement the data of the
table, indicating that the frequencies for Earth and Mars are
practically the same. The amplitudes are different, however,
the amplitude of the latter being smaller than that of the
former. For Saturn both the oscillation frequency and the
amplitude are smaller than the corresponding quantities for
Earth and for Mars. Note that the fractional amplitudes of
the oscillations are of the order of 10−23; i.e., they are
very small.
As a second application we analyze the previously

considered case r ¼ 7M, which corresponds to strong
fields. If the massive object has a radius of the order of
Earth’s radius, the Newtonian frequency is about wN≈
17.77 Hz. The temperature oscillations ΔðτÞ for this case
are plotted in Fig. 2 as function of the proper time τ. As
to be expected, both the oscillation frequencies and the
amplitudes here are larger than those for the planets of the
Solar System. Moreover, the frequency difference becomes
clearly visible.
The oscillation amplitudes for the pressure and the

entropy per particle are larger than those for the temperature,

the energy per particle, and the chemical potential, since the
amplitudes of the former are multiplied by ζ0 ¼ mc2=kT.
For a hydrogen gas H2 at a temperature of 300 K this factor
is about ζ0 ≈ 7.2 × 1010. Hence, the oscillations of the
pressure and the entropy per particle are more pronounced
than those for the temperature, the energy per particle, and
the chemical potential.

D. Compact objects

As already mentioned in the Introduction, a poten-
tially interesting application is the behavior of matter in
the accretion disks of x-ray binaries. The observed
quasiperiodic oscillations are supposed to represent
the effects of matter motion in strong gravitational
fields [7–10]. While a Boltzmann gas at equilibrium
certainly does not provide a realistic description of
accretion disks, it might be useful nevertheless as an
idealized toy model which perhaps captures at least
some of the features of the real situation. In any case,
the reason for the mentioned quasiperiodic oscillations

TABLE I. Parameters for planets in the Solar System.

m kg s−1 m−2

R M GM=Rc2 ωN GM=R3c2

Mercury 2.44 × 106 3.30 × 1023 1.00 × 10−10 1.23 × 10−3 1.69 × 10−23

Venus 6.05 × 106 4.87 × 1024 5.97 × 10−10 1.21 × 10−3 1.63 × 10−23

Earth 6.38 × 106 5.97 × 1024 6.95 × 10−10 1.24 × 10−3 1.71 × 10−23

Mars 3.39 × 106 6.41 × 1023 1.41 × 10−10 1.05 × 10−3 1.22 × 10−23

Jupiter 7.00 × 107 1.90 × 1027 2.01 × 10−8 6.09 × 10−4 4.13 × 10−24

Saturn 5.82 × 107 5.68 × 1026 7.25 × 10−9 4.38 × 10−4 2.14 × 10−24

Uranus 2.54 × 107 8.68 × 1025 2.54 × 10−9 5.96 × 10−4 3.95 × 10−24

Neptune 2.46 × 107 1.02 × 1026 3.09 × 10−9 6.77 × 10−4 5.09 × 10−24

0 2000 4000 6000 8000 10000
τ

-4e-23

-3e-23

-2e-23

-1e-23

0

ΔΝ(τ)

Earth
Mars
Saturn

FIG. 1. Temperature oscillations of a gas in circular motion
around Earth, Mars, and Saturn.

0 1 2 3 4 5
τ

-3e-14

-2e-14

-1e-14

0

Δ(τ)

FIG. 2. Temperature oscillation of a gas in circular motion
around a massive object r ¼ 7M with Earth’s radius.
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appears to be unclear so far. The relevant frequencies
are supposed to be related to test-particle frequencies.
How this exactly occurs is an open problem. Very likely,
hydrodynamic and/or plasma effects play a role here.
Apparently, one has to find out how the individual
particle motion is related to the dynamics of the
medium, which is described in terms of fluid or plasma
quantities. The point that our model makes is that it
establishes a link between the motion of individual
particles and thermodynamical quantities such as tem-
perature and energy density. How idealized the model
might ever be, it translates particle oscillations into
oscillations of fluid dynamical quantities. Such a feature
should also be a necessary ingredient in more realistic
models.
Tentatively, we apply our model to strong-field configu-

rations which are typically discussed in the literature (see,
e.g., Ref. [8]). For a neutron star with mass M ¼ 1.4M⊙,
where M⊙ is the solar mass, the Schwarzschild radius is
rS ¼ 2 GM

c2 ≈ 4.1 km. Let us consider a circular orbit at
r ¼ 5rS ¼ 10M ≈ 20.5 km. This corresponds to frequen-
cies of about ωN ¼ 4.62 × 103 Hz. Likewise, let us con-
sider a black hole of ten solar masses M ¼ 10M⊙. It has a
Schwarzschild radius rS ¼ 2 GM

c2 ≈ 29.5 km. For circular
orbits r ¼ 5rS ¼ 10M ≈ 148 km the frequencies are of the
order of ωN ¼ 6.4 × 102 Hz. As already mentioned, for
any r ¼ 10M the frequency ratio Ω=ω ¼ ffiffiffiffiffiffiffi

2.5
p

≈ 1.58 is
of the order of the frequently observed ratio 3=2 from x-ray
binaries.
Figures 3 and 4 visualize the temperature oscillations of

a gas in circular motion around a neutron star with r ¼
10M andM ¼ 1.4M⊙ and a black hole with r ¼ 10M and
M ¼ 10M⊙, respectively. Because of the factor M

r3 in the

expression (90) for ΔðτÞ the amplitude of the oscillations is
larger for the motion in the field of the neutron star.

X. SUMMARY

A Boltzmann gas at equilibrium may be seen as the
simplest exactly calculable matter model that one may
think of. Although being a highly idealized configuration
it sets a benchmark for more realistic models. We have
shown here that the equilibrium condition, represented by
Tolman’s law, dictates the entire thermohydrodynamics
of the gas, including its behavior in strong gravitational
fields. The temperature profile of the Boltzmann gas in
circular geodesic motion in the Schwarzschild field turns
out to be determined by oscillations with two frequencies

2ω ¼ 2
ffiffiffiffiffiffi
GM
r3

q ffiffiffiffiffiffiffiffiffiffi
r−6M
r−3M

q
and 2Ω ¼ 2

ffiffiffiffiffiffi
GM
r3

q ffiffiffiffiffiffiffiffiffiffir
r−3M

p
, the differ-

ence of which is a purely general-relativistic effect. The
oscillation frequencies of the temperature and of the other
thermodynamic quantities like the energy per particle are
exactly twice the frequencies for the test-particle motion.
This feature is traced back to the parabolic temperature
profile around the circular geodesic, which, in turn, is a
direct consequence of Tolman’s law, applied to (modified)
Fermi normal coordinates. This extends the concept of a
proper reference frame to second-order deviations of the
metric from the locally Minkowskian frame, carried by a
comoving observer. Thus, the equilibrium condition allows
us to relate properties of the individual particle motion
to thermohydrodynamical variables. Different from the
test-particle oscillation frequencies (29) and (30) in
Schwarzschild coordinates, reviewed in Sec. V, a comoving
observer does not measure a precession within the orbital
plane since oscillations occur with the same frequency
2ω both in radial and in tangential directions. But the

0 0.005 0.01 0.015 0.02
τ

-1e-09

-5e-10

0

Δ(τ)

FIG. 3. Temperature oscillation of a gas in circular motion
around a neutron star with r ¼ 10M and M ¼ 1.4M⊙.

0 0.005 0.01 0.015 0.02
τ

-3e-11

-2e-11

-1e-11

0

Δ(τ)

FIG. 4. Temperature oscillation of a gas in circular motion
around a black hole with r ¼ 10M and M ¼ 10M⊙.
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oscillation frequency 2 Ω perpendicular to the orbital plane
does not coincide with the frequency in the plane. The
frequency difference is almost negligible in the vicinity of
the planets of the Solar System. It may crucially affect,
however, the matter dynamics close to compact astrophysi-
cal objects like neutron stars or black holes.
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