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The cosmology of brane-induced gravity in six infinite dimensions is investigated. It is shown that a
brane with Friedmann-Robertson-Walker symmetries necessarily acts as a source of cylindrically
symmetric gravitational waves, so-called Einstein-Rosen waves. Their existence essentially distinguishes
this model from its codimension-one counterpart and necessitates solving the nonlinear system of bulk and
brane-matching equations. A numerical analysis is performed and two qualitatively different and
dynamically separated classes of cosmologies are derived: Degravitating solutions for which the Hubble
parameter settles to zero despite the presence of a novanishing energy density on the brane, and
superaccelerating solutions for which Hubble grows unbounded. The parameter space of both the stable
and unstable regime is derived and observational consequences are discussed: It is argued that the
degravitating regime does not allow for a phenomenologically viable cosmology. On the other hand, the
superaccelerating solutions are potentially viable; however, their unstable behavior questions their physical
relevance.
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I. INTRODUCTION

We are in the golden age of observational cosmology, in
which General Relativity (GR) is being put to the test at the
largest observable distances [1,2]. Consequently, it has
become an important task to develop consistent competitor
theories which modify ΛCDM predictions on cosmological
scales. Moreover, there is still no fundamental understand-
ing of the dark sector, which constitutes the main part of the
energy budget in the ΛCDM model. The most pressing
issue from a theory standpoint is the cosmological constant
problem (see [3] for a seminal work and [4] for a more
recent discussion). This provides a strong motivation to
look for consistent infrared modifications of gravity.
A prominent candidate is the model of brane-induced

gravity (BIG) [5,6] according towhich our four-dimensional
universe (the brane) and all itsmatter content is localized in a
d-dimensional infinite space-time (the bulk). Despite the
fact that the extra dimensions are infinite in extent, 4D
gravity is nevertheless recovered at short-enough distances
on the brane, thanks to an intrinsic Einstein-Hilbert term (or
brane-induced gravity term) on the brane. This results in a
modification of gravity characterized by a single length scale
rc which discriminates between two gravitational regimes:
A conventional 4D regime on scales l ≪ rc, for which the
Newtonian potential is proportional to 1=r up to small
corrections; and a d-dimensional regime on scales l ≫ rc,

for which gravity on the brane is effectively weakened and
the scaling becomes 1=rd−3. In order to be in accordance
with gravitational measurements on solar system scales, the
crossover scale rc has to be large enough, e.g., for d ¼ 5
lunar laser ranging experiments demand rð5Þc ≳ 0.04H−1

0 [7].
Thus, cosmology represents the ideal playground for testing
these theories.
Brane-induced gravity models are interesting also for

other reasons. At the linear level, the effective 4D graviton
is a resonance, i.e., an infinite superposition of massive
graviton states. Historically it turned out to be notoriously
difficult to give a mass to the 4D graviton on a nonlinear
level without introducing Boulware-Deser ghost instabil-
ities (for recent reviews, see [8,9]). This has been achieved
recently with de Rham-Gabadadze-Tolley (dRGT) gravity
[10]. Extradimensional constructions, such as BIG, offer
promising arenas to devise ghostfree examples. Another
motivation comes from the degravitation approach to the
cosmological constant problem [11–15]. The massive/
resonant graviton leads to a weakening of the gravitational
force law at large distances, which makes gravity effec-
tively insensitive to a large cosmological constant. There
are linear [15] and nonlinear [16] indications for that claim.
The best-known and most extensively studied example is

the Dvali-Gabadadze-Porrati (DGP) model [5], correspond-
ing to d ¼ 5. The crossover scale in this case is given by

rð5Þc ¼ M2
Pl

2M3
5

, where M5 is the bulk Planck scale. For

cosmology, the DGP setup gives rise to a modified
Friedmann equation [17], H2 � H

rð5Þc
¼ ρ

3M2
Pl
, featuring an

additional term controlled by rc. Accordingly, the
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modification can be neglected for early times and large

curvature (H ≫ 1=rð5Þc ), whereas it becomes significant at

late times and small curvature (H ≲ 1=rð5Þc ). The plus and
minus sign correspond to two different branches of sol-
utions, the “normal” and the “self-accelerating” branch,
respectively. The former is characterized by a weakening of
gravity since the energy density gets effectively reduced,
while the latter describes a gravitational enhancement. The
self-accelerated branch is widely believed to suffer from
perturbative ghost instabilities [18–23]. The normal branch
is perturbatively stable. Confronting DGP with cosmologi-
cal observations yields a rather stringent bound on the

crossover scale, rð5Þc ≳ 3H−1
0 [24].

A natural generalization of the DGP model are higher-
codimension scenarios (d > 5) [6]. Several difficulties have
impeded their development:

(i) According to claims in the literature, the model
propagates a linear ghost on a Minkowski back-
ground [25,26], which questions the quantum con-
sistency of the whole theory.

(ii) Bulk fields are generically divergent at the position
of a higher-codimension brane and require a regu-
larization prescription.

(iii) A nontrivial cosmology on the brane implies the
existence of gravitational waves which are emitted
into the bulk. (In d ¼ 5, the symmetries of the
geometry imply a static bulk, because there is a
generalization of Birkhoff’s theorem to planar sym-
metry [27]. However, no such theorem exists for
cylindrical symmetry, and Einstein-Rosen waves
[28] are in fact a counterexample.) Including these
waves in the dynamical description makes it much
more difficult to solve the full system.

The first point, which clearly would be the most severe,
was recently proven to be wrong [29]. Through a detailed
constraint analysis, it was shown rigorously in [29] that
the would-be ghost mode is not dynamical and is instead
subject to a constraint. This is analogous to the conformal
mode of standard 4D GR. For d ¼ 6 the positive
definiteness of the Hamiltonian was explicitly shown
in [29]. Consequently, in a weakly coupling regime on a
Minkowski background the model is healthy. This result
offered a new window of opportunity for investigating
consistently modified cosmologies at the largest observ-
able scales.
In the present paper we explore cosmological solutions

in the simplest case: Brane-induced gravity in d ¼ 6

dimensions. Those solutions are obviously interesting for
observational purposes, but they also test the nonperturba-
tive stability of the model.
To overcome the second issue listed above, we introduce

in Sec. II a regularization which replaces the infinitely
thin brane by a hollow cylinder of finite size R. We stabilize
this size by introducing an appropriate azimuthal pressure.

The microscopical origin of this pressure component is not
specified, but we check a posteriori whether the required
source is physically reasonable (i.e., whether it satisfies the
standard energy conditions).
We first check the consistency of our framework by

deriving known solutions for a static cosmic string in 6D in
Sec. III. Based on these solutions the geometry of the setup
is illustrated and a distinction between sub- and supercriti-
cal branes is motivated.
According to the third issue listed above, which is

discussed in more detail in Sec. IV, a key feature of the
higher codimensional models is the existence of bulk
gravitational waves which are emitted by the brane and
affect its dynamics. For d ¼ 6 they correspond to a higher-
dimensional generalization of Einstein-Rosen waves.
Consequently, we must resort to numerics, introduced in
Sec. V, to find the most general solutions.
We then solve Einstein’s field equations in the bulk in the

presence of FRW matter (and brane-induced gravity terms)
on the brane and present the results in Sec. VI. We stress
that these solutions have been derived from the full system
of nonlinear Einstein equations without making any
approximations or additional assumptions other than hav-
ing FRW symmetries on the brane and a source-free bulk.
This result makes it possible for the first time to discuss the
phenomenological viability of the six-dimensional BIG
model with respect to cosmological observations.
Depending on the model parameters, we find two

qualitatively different classes of solutions:
(i) Degravitating solutions for which the system ap-

proaches the static cosmic string solution, i.e., the
4D Hubble parameter becomes zero despite the
presence of a nonvanishing on-brane source.

(ii) Superaccelerating solutions for which Hubble
grows unbounded for late times.

The solution of the first type constitutes the first example
of a dynamically realized degravitation mechanism.
Accordingly, the brane tension is shielded from a 4D
observer by exclusively contributing to extrinsic curvature.
We dismiss the second type due to its pathological runaway
behavior. In addition, the effective energy density that
sources 6D gravity turns negative for these solutions. This
bears strong resemblance with the self-accelerating branch
in the DGP model and thus questions their perturbative
quantum stability.
It is shown that the degravitating and superaccelerating

solutions are separated by a physical singularity. Thus, it
is not possible to dynamically evolve from one regime to
the other. We derive an analytic expression for the
separating surface in parameter space. This in turn allows
us to derive a necessary condition to be in the degravitat-
ing regime,

ðHrcÞ2 <
3

2
jHjR; ð1Þ
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with 2πR the circumference of the cylinder and rc the
crossover scale.1 However, a phenomenologically viable
solution has to fulfill two requirements: First, Hrc ≫ 1
for early times which ensures that the deviation from
standard Friedmann cosmology is small. Second, HR ≪
1 in order to be insensitive to unknown UV physics that
led to the formation of the brane. Obviously, these two
conditions are incompatible with the bound (1). As a
consequence of these considerations, the degravitating
solutions are ruled out phenomenologically.
We conclude in Sec. VIII with some remarks on

supercritical energy densities. A number of technical results
have been relegated to a series of appendixes. In particular,
we repeat the analysis with a different regularization
scheme in Appendix A to check the insensitivity of our
results to the regularization details.
We adopt the following notational conventions: capital

Latin indices A; B;… denote six-dimensional, small Latin
indices a; b;… five-dimensional, and Greek indices
α; β;… four-dimensional space-time indices. Small Latin
indices i; j;… run over the three large spatial on-brane
dimensions and corresponding vectors are written in bold-
face. The space-time dimensionality d of some quantity Q
is sometimes made explicit by writing QðdÞ. Our sign
conventions are “þþþ” as defined (and adopted) in [30].
We work in units in which c ¼ ℏ ¼ 1.

II. THE MODEL

The action of the BIG model inD ¼ 4þ n dimensions is
the sum of three terms,

S ¼ SEH þ SBIG þ Sm½h�: ð2Þ

The first term,

SEH ¼ MD−2
D

Z
dDX

ffiffiffiffiffiffi
−g

p
RðDÞ; ð3Þ

describes Einstein-Hilbert gravity in D infinite space-time
dimensions. The bulk Planck scale is denoted by MD. The
bulk is assumed to be source-free; in particular, the bulk
cosmological constant is set to zero for simplicity. The
second term is the induced gravity term on a codimension-n
brane,

SBIG ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−h

p
Rð4Þ: ð4Þ

This describes intrinsic gravity on the brane, with hμν
denoting the induced metric. To match standard GR in the
4D regime, MPl is identified as the usual 4D Planck scale.
From the effective field theory point of view, the BIG term

can be thought to arise from integrating out heavy matter
fields on the brane. The last term in (2), Sm½h�, is the action
for matter fields localized on the brane, which by definition
couple to hμν.
Henceforth wewill focus onD ¼ 6, corresponding to the

codimension n ¼ 2 case.

A. Regularization schemes

In general, a localized codimension-two source leads to a
singular geometry, i.e., the bulk metric diverges logarithmi-
cally at the position of the brane. This is well known for
static solutions, reviewed in Sec. III. For the pure tension
case, the space-time develops a conical singularity—the
bulk geometry stays flat arbitrarily close to the brane but
diverges exactly at the brane. For more general static and
nonstatic solutions we have to deal with curvature singu-
larities other than the purely conical one. These singular-
ities can be properly dealt with by introducing a certain
brane width.
In this work, we adopt a regularization which consists of

blowing up the brane to a circle of circumference 2πR
[31,32]. In other words, the brane is now a codimension-
one object, with topology M4 × S1. The matter fields are
smeared out on the S1. This amounts to the substitution

SBIG → M3
5

Z
M4×S1

d5x
ffiffiffiffiffiffiffiffiffiffiffi
−hð5Þ

p
Rð5Þ; ð5Þ

where M3
5 ¼ M2

Pl
2πR, and hð5Þab is the five-dimensional induced

metric.
Furthermore, in the main body of the paper, we follow a

static regularization scheme, which makes the evolution
completely insensitive to the geometry inside the regular-
ized brane. This scheme can be viewed from two equivalent
perspectives:

(i) The brane is a boundary of space-time, and there is
no interior geometry to speak of. This is the hollow
cylinder perspective. In this case, the equations of
motion consist of Einstein’s field equations in the
exterior, supplemented by Israel’s junction condi-
tions [33,34] at the brane,

Tð5Þa
b −M3

5G
ð5Þa

b ¼ M4
6ðKc

outcδ
a
b − Ka

outbÞ

−
1

R
ðδab − δaϕδ

ϕ
bÞ; ð6Þ

where Koutab is the extrinsic curvature tensor. In
the second line, we have extracted from Tð5Þa

b a
cosmological constant along M4. This is necessary
to ensure that the deficit angle vanishes when
Tð5Þa

b → 0.
(ii) The brane has an interior geometry, such that the

junction condition now becomes
1Here and henceforth, rc refers to the 6D crossover scale,

defined below in (22).
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Tð5Þa
b −M3

5G
ð5Þa

b ¼ M4
6ð½Kc

c�δab − ½Ka
b�Þ; ð7Þ

where ½Kab�≡ Koutab − Kinab. However, to ensure
that the interior region does not introduce any
dynamics on the brane, we demand that Kin

ab is
equal to a constant value corresponding to a static
cylinder,

Kϕ
inϕ ¼ 1

R
; K0

in0 ¼ Ki
inj ¼ 0: ð8Þ

With this choice, the junction condition (7) agrees
with (6), and the two descriptions give identical
brane geometry and exterior space-time. We will not
be concerned with the brane interior.

A priori one naturally expects that the solutions thus
obtained should not depend sensitively on the details of
the regularization, as long as the characteristic time scale
(H−1, in the case of interest) is much longer than the radius
of the circle, i.e.,

H−1 ≫ R: ð9Þ

We explicitly check this expectation in Appendix A, by
studying a different regularization scheme called dynamical
regularization. In this scheme, the gravitational dynamics
are fully resolved inside the cylinder. We find that the time-
averaged Hubble evolution on the brane agrees with the
static regularization result in the limit (9).
Let us stress that only by performing this fully self-

consistent GR analysis, which in particular implements
regularity at the symmetry axis, was it possible to quantify
the effect of having some interior dynamics and thus to show
that our results are regularization independent. Moreover,
this analysis revealed that the static regularization corre-
sponds to the favorable case where the effects of the interior
dynamics are minimized and perfectly smoothed out. The
presentation in the main part of the paper therefore uses
the simpler static regularization. The interested reader is
referred to the Appendix A for more details.

B. Bulk geometry

The assumed symmetries are homogeneity, isotropy and
(for simplicity) spatial flatness along the three spatial brane
dimensions, as well as axial symmetry about the brane. As
shown in Appendix C, given these symmetries and the fact
that the space-time is empty away from the brane, the bulk
metric can be brought to the form

ds26 ¼ e2ðη−3αÞð−dt2 þ dr2Þ þ e2αdx2 þ e−6αr2dϕ2: ð10Þ

Note that by formally replacing 3α → α in the first and last
term and x → z, we recover the ansatz that was used by
Einstein and Rosen to derive the existence of cylindrically
symmetric waves in GR [28] (see also, e.g., [35]). The

additional factor 3 in the generalized case simply counts
the dimensionality of the symmetry axis. In the remainder
of the paper we will refer to (10) as the Einstein-Rosen
coordinates.
The Einstein field equations in the exterior (vacuum)

region become

∂2
t α ¼ ∂2

rαþ 1

r
∂rα ð11aÞ

∂rη ¼ 6rðð∂rαÞ2 þ ð∂tαÞ2Þ ð11bÞ

∂tη ¼ 12r∂rα∂tα: ð11cÞ

The fact that α obeys the linear2 2D wave equation (11a)
makes the coordinate choice (10) unique and especially
convenient for numerical implementation.

C. Brane geometry

The induced cosmological metric on the brane is

ds25 ¼ −dτ2 þ e2α0dx2 þ R2dϕ2; ð12Þ

where the subscript “0” denotes evaluation at the brane
position. The scale factor is recognized as aðτÞ≡ eα0 , with
Hubble parameterH ≡ dα0=dτ. The proper time τ is related
to the “bulk” time via

dτ ¼ e−3α0

γ
dt; ð13Þ

where

γ ≡ e−η0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðdr0dt Þ2

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0 þ _r20e

−6α0
q

; ð14Þ

with r0ðtÞ describing the position of the brane in the
extradimensional space, and _r0 ≡ dr0

dτ . Here and henceforth,
dots refer to d=dτ.
To recover 4D gravity in the appropriate regime, we

assume that the proper circumference (divided by 2π) is
stabilized,

R≡ r0e−3α0 ¼ const ð15Þ

The justification is clear: A realistic defect would have
some underlying bulk forces to keep its core stable.
Technically, this is imposed by introducing a suitable
azimuthal pressure component Pϕ. We must of course
check a posteriori whether the pressure thus inferred

2Despite the linearity of this equation, the complete brane-bulk
system is still highly nonlinear due to the junction conditions,
discussed below.
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satisfies physically reasonable energy conditions, such as
the null energy condition.
As an immediate consequence of the stabilization con-

dition, the 4D Planck mass,

M2
Pl ¼ 2πRM3

5; ð16Þ

is constant. Moreover, (15) implies _r0 ¼ 3Hr0, which
allows us to rewrite (14) as

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0 þ 9H2R2

p
: ð17Þ

The symmetries of our system allow for a fluid ansatz of
the localized 5D energy-momentum tensor

Tð5Þa
b ¼

1

2πR
diagð−ρ; P; P; P; PϕÞ; ð18Þ

where the overall factor is such that Tab ¼ 2πRTð5Þ
ab defines

a 4D energy-momentum tensor. Fixing R also implies that
the energy density and pressure satisfy the standard 4D
conservation equation

_ρþ 3Hðρþ PÞ ¼ 0: ð19Þ

D. Junction conditions

In the next step, we explicitly evaluate the junction
conditions (6). The outward-pointing unit normal vector is
given by nA ¼ e3α0ð3HR; γ; 0; 0; 0; 0Þ. It is straightforward
to show that Koutab has components

K0
out0 ¼

3R
γ
ð _H þH _η0Þ þ nA∂Aðη − 3αÞj0; ð20aÞ

Ki
outj ¼ δijn

A∂Aαj0; ð20bÞ

Kϕ
outϕ ¼ γ

R
− 3nA∂Aαj0: ð20cÞ

Using (15), (16) and (18), the (0,0) component of the
junction conditions gives a modified Friedmann equation

H2 ¼ ρ

3M2
Pl

þ 1

r2c
ðγ − 1Þ; ð21Þ

where γ is given by (17), and rc denotes the crossover scale

r2c ≡ 3M2
Pl

2πM4
6

: ð22Þ

The modification to the standard Friedmann equation is
controlled by this crossover scale. Assuming jγ − 1j ∼ 1,
one can already tell that in the regime where H ≫ r−1c the
modification is negligible and the model reproduces the
standard 4D evolution. When H becomes of order r−1c ,

however, the modification becomes important and we
expect a transition to a 6D regime. This is of course the
way the model was engineered to work in the first place. It
is also very similar to the 5D (DGP) case, where the

modification term is simply �H=rð5Þc , with the appropriate

5D crossover scale rDGPc ¼ M2
Pl

2M3
5

. But the crucial difference is

that in the 6D case, the modification term cannot be directly
expressed in terms of on-brane quantities like H. It knows
something about the bulk geometry through its dependence
on η0, and in order to make quantitative predictions one has
to solve the bulk Einstein equations (11) as well.
The ði; jÞ component of the junction conditions, com-

bined with the vacuum Einstein equations (11b) and (11c)
in the limit r → rþ0 , can be expressed as

_H ¼ −
3

2fðτÞ
�

P
3M2

Pl

þH2 −
1

r2c
ðγgðξ; χÞ − 1Þ

�
; ð23Þ

where

fðτÞ≡ 1 −
9R2

2r2cγ
; ð24Þ

and

gðξ; χÞ≡ 1þ 2ð9χ − 1Þ½3χ þ ξð3ξ − 2Þð9χ − 1Þ�; ð25aÞ

ξ≡ r∂rαj0; χ ≡H2R2

γ2
: ð25bÞ

In our analysis, we will see that the sign of fðτÞ allows to
discriminate between a stable and an unstable class of
solutions.
The closed set of equations describing the bulk-brane

system comprises the bulk equations of motion (11), the
energy conservation equation (19) and the Friedmann
equation (21). The _H equation (23) follows from these,
as usual. For the purpose of numerical implementation,
however, we will integrate the _H equation. The Friedmann
equation will only be implemented at the initial time and
later on will serve as a numerical consistency check.
Finally, the ðϕ;ϕÞ component of the junction conditions

can be used to determine the azimuthal pressure,

Pϕ

3M2
Pl

¼ − _H

�
1 −

3R2

r2cγ

�
− 2H2

þ 6γ

r2c
fχ þ ½3χ − ξð9χ − 1Þ�2g: ð26Þ

In our analysis, we will compute Pϕ explicitly to check, for
instance, whether the equation of state along the azimuthal
direction satisfies the null energy condition.
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Before investigating the dynamical solutions, let us
pause to recover the well-known static solutions from
our setup.

III. STATIC SOLUTIONS

The static case constitutes an important check of the
above equations and will provide a first physical insight
into the geometry of the system.3

For a purely static solution _r0 ¼ 0 and all metric
functions solely depend on r. The exterior field equa-
tions (11) yield the solution

α ¼ c log
r
r0

þ α0 and η ¼ 6c2 log
r
r0

þ η0: ð27Þ

By rescaling coordinates tangential to the brane, we can
set α0 ¼ 0 without loss of generality. The remaining
constants c and η0 are determined by the junction con-
ditions (21) and (23),

η0 ¼ − log

�
1 −

ρ

ρcrit

�
; ð28aÞ

c ¼ 1

3

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρcrit þ ð1þ 3wÞρ

2ðρcrit − ρÞ

s 1
A; ð28bÞ

where w ¼ P=ρ is the equation of state. Here we have
introduced the critical density ρcrit ≡ 2πM4

6. The third
junction condition (26) then becomes

Pϕ ¼ 6c2ðρcrit − ρÞ: ð29Þ

Note that (28a) is ill defined for ρ > ρcrit; we will
come back to this point shortly. The line element for the
exterior reads

ds2 ¼ e2η0
�
r
r0

�
12c2−6c

ð−dt2 þ dr2Þ

þ
�
r
r0

�
2c
dx2 þ

�
r
r0

�
−6c

r2dϕ2: ð30Þ

Since the brane-induced terms vanish identically for static
configurations, this solution is the direct generalization of
the exterior metric of a static cylinder in 4D, first derived by
Levi-Civita [36] and later reviewed for example in [37].

Consider the case of pure 4D tension on the brane,

ρ ¼ −P≡ λ ð31aÞ

⇒ c ¼ 0 ¼ Pϕ: ð31bÞ

The coordinate rescaling ðt̄; r̄Þ ¼ ðeη0t; eη0ðr − r0Þ þ r0Þ
yields the famous wedge geometry in Gaussian normal
coordinates, characterized by the deficit angle δ≡ λ=M4

6,

ds2 ¼ −dt̄2 þ dr̄2 þ dx2 þWðr̄Þ2dϕ2; ð32Þ

where

Wðr̄Þ ¼
�
r̄ for r̄ ≤ r0
δ
2π r0 þ ð1 − δ

2πÞr̄ for r̄ > r0:
ð33Þ

Note that this solution corresponds to the generalization of
the cosmic string geometry [38,39] to 6D. The coordinates
cover again the whole space-time including the interior. A
well-known fact about this solution is that the intrinsic
brane geometry is flat and the energy on the brane only
affects the extrinsic curvature, thereby creating a deficit
angle. This property makes the higher codimensional
models in particular interesting with respect to the cosmo-
logical constant problem because λ is effectively “filtered
out” from the perspective of a brane observer; see [4] and
[11] in the case of large or infinite extra dimensions,
respectively.
For subcritical tensions δ < 2π we find for the ratio of

physical radius and circumference r̄=Wðr̄Þ ¼ 1 for r̄ ≤ r0
and r̄=Wðr̄Þ > 1 for r̄ > r0. In an embedding picture this
corresponds to a capped cone, as shown in Fig. 1. In the
critical limit δ → 2π, the embedding geometry becomes
“cylindrical.”
In the supercritical case, δ > 2π, the circumference

2πWðr̄Þ decreases for r̄ > r0 and vanishes for a certain
radius r̄1, implying the existence of a second axis.
However, in general the geometry is not elementarily flat
at that position, i.e., W0ðr̄1Þ ≠ 1, which indicates the
existence of a naked singularity. It has been argued that
this (conical) singularity is an artifact of the static approxi-
mation and is resolved once the full dynamics are taken into
account [40].
The derivation of the junction conditions in the Einstein-

Rosen language is not compatible with the supercritical
scenario. This is clear in the static case, as already
mentioned, since (28a) does not allow a real solution for
η0 in the supercritical regime. See Appendix C for a more
detailed discussion of this point in the context of dynamical
solutions, and [41] for a detailed investigation of super-
critical cosmic strings. We henceforth exclude the super-
critical regime from our analysis.

3Note that in this case the static regularization (used in the
main text) and the dynamical one (discussed in Appendix A)
coincide by construction. Indeed, the only nonsingular static
geometry inside the cylinder is Minkowski space, hence the
extrinsic curvature at the inner boundary is exactly the one given
by (8).
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IV. INTERLUDE: BULK-BRANE DYNAMICS

The analysis of cosmological solutions on the brane is
greatly complicated by the fact that the assumed sym-
metries allow for axially symmetric gravitational waves
propagating in the bulk. This is unlike the much-studied
codimension-one case, where the assumption of planar
symmetry enforces a version of Birkhoff’s theorem [27]:
The only vacuum 5D solutions are Minkowski or
Schwarzschild. The Schwarzschild mass parameter enters
the brane Friedmann equation as the coefficient of a “dark
radiation” term. In particular, the brane Friedmann equation
is completely local.
The codimension-two case of interest is qualitatively

very different. The bulk field equations (11) explicitly show
that in this case gravitational waves are in fact compatible
with all the symmetries. As a consequence, it would be
possible to prepare a wave packet in the bulk that reaches
the brane at some arbitrary time. Since the amplitude of
the wave is given by the metric function αðt; rÞ, while the
4D scale factor is determined by α0ðtÞ≡ αðt; r0Þ, the 4D
cosmological evolution will inevitably be influenced by
such a wave packet. As a result, it cannot be possible to
derive a closed local on-brane evolution equation for α0,
without imposing additional restrictions on the bulk
geometry.
What could these restrictions be? As a first guess, one

could try to assume a flat bulk geometry, just as could be
done in the DGP case. After all, this is also what happens in
the static pure tension solution. However, it turns out that
this is no longer possible after one demands α0 to have
nontrivial dynamics. To show this, let us try to set the
ðt; x1; t; x1Þ and ðt; r; t; rÞ components of the Riemann
tensor to zero, which is a necessary condition for flatness.
This in turn demands

ð∂tαÞ2 − ð∂rαÞ2 ¼ 0 and r∂rα ¼ 0: ð34Þ

The only solution to these equations is indeed the trivial
configuration α ¼ constant.
So a dynamical codimension-two brane inevitably

curves the extradimensional space-time, and since the on

brane geometry will be time dependent, so will be the bulk
geometry. In other words, gravitational waves are not only
possible for a nontrivial cosmology in this setup, but in fact
necessary.
One could still try to arrive at a closed on-brane system

by implementing an “outgoing wave condition” at the outer
boundary of the brane to exclude incoming bulk waves.
Physically, this is clearly a necessary condition because we
assume a source-free, infinite bulk. However, it is well
known that such a condition is necessarily nonlocal (in
time) in the case of cylindrically symmetric waves (see [42]
for a review, and [43] for a discussion in the context of GR).
Moreover, because the coordinate position of the brane
r0ðtÞ will in general be time dependent, the resulting on-
brane system would be nonlocal both in space and time. It
is clear that solving such a nonlocal system would not be
any easier than solving the full bulk system from the start.
In other words, if one tried to accommodate for all allowed
bulk configurations in the on-brane system, one would end
up with not only one, but infinitely many “constants of
integration.” This is what makes the codimension-two
problem much harder to solve.
Therefore, there seems to be no way around solving the

full bulk geometry in order to see what 4D cosmology
emerges in the codimension-two BIG model. This can in
general only be done numerically, and we will do so in the
next sections.

V. NUMERICAL IMPLEMENTATION
AND INITIAL DATA

We now turn to the numerical implementation of the full
brane-bulk system (11), (19) and (21). Solutions were
obtained by specifying initial data, as explained below, and
numerically integrating this initial value problem forward
in time. Since the dynamical bulk equation (11a) is nothing
but the standard (flat space) cylindrically symmetric scalar
wave equation, it is straightforward to find a stable
integration scheme for the PDE part of the problem.
There is only a slight complication stemming from the
matching procedure. Even though the physical brane size R
is fixed, its coordinate position r0 is generally time

(a) (b) (c)

FIG. 1. Embedding diagrams of the regularized static geometry in the case of a pure tension brane. The circle at r̄ ¼ r0 describes the
brane. As the tension approaches the critical value, the deficit angle approaches 2π, and the bulk geometry becomes cylindrical (b). For
supercritical tensions, a naked singularity develops in the bulk a finite distance away from the brane. (a) δ < δcrit, (b) δ ¼ δcrit,
(c) δ > δcrit.
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dependent. Therefore, if one chooses a fixed spatial grid
size in the bulk (as we do), one has to allow r0 to lie in
between those grid points. We deal with this problem by
using some suitable interpolation scheme. The details of the
numerical implementation can be found in Appendix B.
The numerical integration starts at some initial time

t ¼ ti, τ ¼ τi. Let us denote all functions evaluated at
this time with a subscript i. Through a global rescaling
of coordinates, we can always set α ¼ 0 on the brane
initially, i.e.,

ðα0Þi ¼ 0: ð35Þ
Consequently, the initial brane position is

ðr0Þi ¼ R: ð36Þ
In the bulk we must specify the initial radial profile αiðrÞ
and its time derivative ∂tαiðrÞ. To be definite, as initial
profile we choose the static profile given by (27), namely

αiðrÞ ¼ c ln

�
r
R

�
; ð37Þ

where the constant c is given by (28b) with ρ → ρi. In
particular, for a cosmological constant (w ¼ −1), we get
c ¼ 0, and hence αiðrÞ ¼ 0. Note that by choosing the
static profile we are not putting any potential energy into
the bulk gravitational field initially.
At the brane position, the velocity profile is related to the

initial Hubble parameter Hi via

∂tα0i ¼
dα0i
dt

−
dr0i
dt

∂rα0i

¼ dα0i
dt

ð1 − 3∂rα0iÞ

¼ Hi

γi
ð1 − 3cÞ: ð38Þ

Extending this to the bulk, we write

∂tαiðrÞ ¼
Hi

γi
ð1 − 3cÞFðrÞ; ð39Þ

where FðrÞ is some profile function satisfying the boun-
dary condition FðRÞ ¼ 1. To minimize the amount of
kinetic energy put into the gravitational field initially,
which could impact the brane cosmology for long times,
we will choose profile functions which are sharply local-
ized around the brane. For definiteness, we will focus on a
Gaussian profile of width σ,

FðrÞ ¼ exp

�
−
ðr − RÞ2

σ2

�
: ð40Þ

With these choices, we expect the on-brane evolution to
rapidly become insensitive to the initial conditions.

This completes the specification of initial data. Indeed,
the remaining variable, η0i, is fixed by the constraint (21),
together with the relation (17).4 Specifically,

ρi
ρcrit

¼ r2cH2
i þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0i þ 9H2

i R
2

q
: ð41Þ

Note that this equation does not always have a (real)
solution for η0i. The existence of a real solution places an
upper bound on the energy density,

ρ

ρcrit
< r2cH2 þ 1 – 3jHjR: ð42Þ

Since the constraint has to hold for all times, we were able
to drop the subscript i. We will refer to this as the criticality
bound, separating the sub- and supercritical regimes. As
soon as (42) is violated, the initial constraint cannot be
fulfilled. The reason is that in this parameter regime the
Einstein-Rosen coordinates as used in our derivation are
no longer valid. The interested reader is referred to
Appendix C for more details. Since this supercritical
regime is not compatible with our coordinate choice, it
will not be considered in this paper.
As a check on (42), note that it correctly reproduces the

static criticality bound ρ < ρcrit ¼ 2πM4
6 in the static limit

H → 0. In the dynamical case, however, the bound is more
general. In particular, for rc ¼ 0, i.e., without the induced
gravity terms, the bound becomes stronger—the critical
point is reached for a smaller value of ρ than in the static
case. Physically, the reason is that for H ≠ 0, there is
additional kinetic energy in the system. For rc ≠ 0, on the
other hand, the induced gravity terms can absorb (or
“shield”) part of the energy density from the bulk, thereby
allowing much larger values for ρ than in the static case.
The final ingredient is the choice of grid spacing for the

numerical calculation. We use a scheme in which the
temporal and radial grid spacing is the same and constant,

Δt ¼ Δr≡ ϵ: ð43Þ

The system can then be evolved forward in time using (11)
and (23) for any given Hi, σ, R, rc, ρi and equation of state
parameter w. (In fact, the quantities Hi, R and rc enter the
equations only in the combinations Hirc and HiR, so only
two of them need to be specified while the third one is
degenerate.) The constraint equation (21) can be used as an
important consistency check for the numerical solver.
Further details of the numerical implementation are given
in Appendix B. In what follows we will present the results.

4The full radial profile ηðrÞ can be calculated from (11b), but is
actually not needed for the evolution of α. Only η0 enters through
the junction conditions, and it can be calculated at later times
from its initial value using (11b) and (11c) only locally at the
brane position.
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VI. NUMERICAL SOLUTIONS

We have found two, qualitatively different, classes of
solutions, depending on the initial conditions. The first
class, called degravitating solutions, features a geometry
which at late times approaches the static profile. In
particular, H → 0 on the brane. The second class, called
superaccelerating solutions, features a runaway behavior
for the Hubble parameter on the brane. The source for this
apparent instability is an effective energy density on the
brane which violates the null energy condition.
After describing a fiducial degravitating (Sec. VI A) and

superaccelerating (Sec. VI B) solution, we will discuss the
regions of parameter space spannedbyeach class inSec.VI C.

A. A degravitating solution

As a first example, let us consider a 4D cosmological
constant source (w ¼ −1) with parameters5

Hirc ¼
1

10
; HiR ¼ 1

20
; ρ ¼ 4

5
ρcrit: ð44Þ

For this choice, the energy density lies in the subcritical
regime. Meanwhile, the crossover scale rc is smaller than
the initial Hubble radius, hence we expect a large modi-
fication to standard 4D gravity. This can be seen directly
from the Friedmann equation (21): The modification term
ðγ − 1Þ is controlled by rc.
The results of the numerics are depicted in Fig. 2.

Figure 2(a) shows the Hubble parameter on the brane as
a function of time. (The numerical error estimates for H,
discussed in Appendix B 2, are smaller than the line
thickness.) We see that H initially decreases to negative
values, turns around and approaches zero at late times. This
confirms that the static solutions of Sec. III have a finite
basin of attraction. This is one of the central results of this
work: It is the first example of dynamical degravitation,
and demonstrates how the brane tension can be absorbed
into extrinsic curvature while the intrinsic brane geometry
tends to flat, Minkowski space. The evolution of the
bulk geometry, characterized by α, is shown in Fig. 2(b).

(a) (b)

(c) (d)

FIG. 2 (color online). Example of a degravitating solution. (a) The Hubble parameter on the brane exhibits degravitation. It starts out
positive and asymptotically tends to zero, (b) The radial profile for α at different values of τ. The dots indicate the brane position as a
function of time, (c) Equation of state of Pϕ that is needed to keep the brane circumference fixed for w ¼ −1. It never falls below the
value −1 corresponding to unphysical matter, (d) The effective energy density, ρ̂≡ ρ − 3M2

4H
2, as “seen” by 6D GR. This approaches a

positive value consistent with the static solution.

5For completeness, the width of the initial Gaussian profile
(40) is set to σ ¼ R=50, and the step size for integration (43) is
ϵ ¼ 2 × 10−4R.
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The initial configuration, as discussed in the last section, leads
after a few time steps to a rather narrow Gaussian profile. As
time evolves, we see that α describes a two-dimensional
gravitational wave that moves outwards, gets more and
more diluted and asymptotically settles to a constant.
It remains to check the physicality of the azimuthal

pressure component Pϕ required for stabilization. The
equation of state corresponding to this pressure component
is shown in Fig. 2(c). The equation of state satisfies the null
energy condition (wϕ ≥ −1), and is therefore physically
reasonable. At late times, Pϕ → 0, which is consistent with
the static solution for a 4D cosmological constant—see
(31b). Figure 2(d) shows the effective energy density
(including the brane-induced terms) that sources the 6D
bulk gravity theory, ρ̂≡ ρ − 3M2

4H
2. This quantity remains

positive at all times, which indicates a healthy source from
the bulk perspective. At late times, H → 0, and ρ̂
approaches 4

5
ρcrit, which is consistent with a static solution

with brane density given by (44).
We have repeated the analysis with a dust ðw ¼ 0Þ or

radiation ðw ¼ 1=3Þ component on the brane and found

similar behavior. The system approaches the corresponding
static, deficit-angle solutions at late times. The azimuthal
pressure Pϕ and effective density ρ̂ are healthy at all times.

B. A superaccelerating solution

Consider once again a 4D cosmological constant source
(w ¼ −1), with the same parameters as before except for a
somewhat larger value of rc,

Hirc ¼
1

4
: ð45Þ

In this case we find completely different behavior. The
Hubble parameter on the brane, shown in Fig. 3(a), grows
monotonically in time, which indicates an effective viola-
tion of the null energy condition. This growth propagates
into the bulk, as can be seen from Fig. 3(b): The wave
function αðτ; rÞ grows in time at any r.
This pathological behavior is reflected in the azimuthal

pressure Pϕ, whose equation of state [Fig. 3(c)] becomes
less than −1 and tends to −∞. Such an equation of state

(a) (b)

(c) (d)

FIG. 3 (color online). Example of a superaccelerating solution. (a) The Hubble parameter on the brane grows in time, indicating super-
acceleration, (b) The radial profile of the function α at different values of τ. At fixed r; α grows in time, (c) Equation of state of Pϕ that is
needed to keep the brane circumference fixed. It is negative and falls rapidly below −1, (d) The effective energy density, as “seen” by 6D
GR, becomes negative. This is interpreted as the source of the physical instability.
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violates the null energy condition and is rather unphysical.
This suggests that no consistent stabilization mechanism
exists for a superaccelerating solution. One might wonder
whether this apparent instability is solely due to this strange
azimuthal component required to fix the brane circum-
ference. We found that this is not the case. In Appendix 3 d,
we show that fixing Pϕ ¼ 0 by hand, and therefore
allowing the circumference to evolve in time, still results
in superacceleration.
The instability can be clearly seen by looking at the

effective energy density ρ̂≡ ρ − 3M2
4H

2 that sources 6D
gravity. As shown in Fig. 3(d), ρ̂ starts out positive but
eventually turns around and reaches negative values. This
behavior bears resemblance to the DGP model, where the
self-accelerating branch leads to a negative effective
energy density [22]. The self-accelerating branch is widely
believed to contain a ghost in the spectrum [18–23].
Although the study of perturbations is beyond the scope
of this paper, we also expect that the superaccelerating
solutions in 6D are likely to have ghosts. (The instability
is even more severe in our case, since ρ̂ decreases

monotonically at late times whereas it is bounded below
in DGP.) Note that this instability uncovered here is a
nonlinear result which can only be inferred from the full
Einstein equations. On a Minkowski background the linear
6D model is stable [29].

C. Contour plot

As the above examples show emphatically, our 6D
model yields qualitatively very different solutions, depend-
ing on the choice of parameters. To study this more
systematically, we now perform a scan over ρi and rc,
keepingHiR ¼ 0.05 fixed. This will allow us, in particular,
to understand the border delineating degravitating and
superaccelerating solutions.
The results are shown in Fig. 4(a), where each dot

corresponds to one set of parameters for which we ran the
numerics. The green region [also labeled (1)] corresponds
to degravitating solutions. As in the example of Sec. VI A,
the brane Hubble parameter H tends to zero at late times,
and the effective energy density ρ̂ is always positive.

(a) (b)

(c)

FIG. 4 (color online). Results of the numerical stability analysis of the model. (a) Behavior of solutions for different choices of rc and
ρi. The green region [Region (1)] shows stable solutions; the red region [Region (2)] shows unstable solutions. The solid line in between
corresponds to f ¼ 0. The gray region corresponds to super-critical solutions, which are not covered in our analysis, (b) Zoom into the
small blue rectangle depicted in (a). The yellow/orange regions show solutions which hit the singularity at f ¼ 0 in a finite time. The
dashed lines have been inferred from the numerical results, (c) The evolution of fðτÞ≡ 1 − 9R2

2r2cγ
; forHirc ¼ 0.15 and different values of

ρi. The color/numerical labels of the curves match those of (b). The yellow (4) and the orange (5) lines hit the singularity at f ¼ 0 in
finite time, while the green (1) and red (2) curves avoid the singularity.
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The red region [also labeled (2)] indicates superaccelerating
solutions. As in Sec. VI B, H grows unbounded, while ρ̂
eventually becomes negative, indicating a classical insta-
bility. Finally, the gray region [labeled (3)] corresponds to
parameter choices for which the criticality bound (42) is
violated. As explained earlier, our coordinate system is ill
defined in this case, and hence we cannot make any
statements about solutions in this region.
It turns out that the border between the stable and

unstable regions matches perfectly the location in param-
eter space where

fðτÞ≡ 1 −
9R2

2r2cγ
; ð46Þ

first introduced in (24), vanishes. This is drawn as a solid
line in Fig. 4(a). In the degravitating regime, f is negative,
and in the superaccelerating regime it is positive. Since f
appears in the denominator on the right-hand side of the _H
equation (23), the evolution ofH becomes ill defined when
f vanishes. The system hits a (physical) singularity, where
the numerics of course break down.
To better understand the boundary between the stable

and unstable regions, Fig. 4(b) zooms in on the boxed
region of Fig. 4(a). For parameters sufficiently close to the
f ¼ 0 line, fðτÞ dynamically approaches zero after a short
time, and the system hits a singularity. The basin of
attraction for the singularity corresponds to the yellow
region [labeled (4)], in which case one starts in the
“healthy” region, and the orange region [labeled (5)], in
which case one starts in the “unstable” region. This is
shown in more detail in Fig. 4(c). This yellow-orange
attractor region of the singularity, which is hardly visible in
Fig. 4(a), can be broadened by injecting more energy into
the bulk initially. This can be achieved by widening the
initial Gaussian velocity profile.
We checked that these results are largely unchanged if

one uses dust (w ¼ 0) or radiation (w ¼ 1=3) on the brane.
Furthermore, we repeated the entire analysis for a different
value of the circumference, namely R ¼ 0.025H−1

i , and
found similar agreement. In particular, the border between
the stable and unstable regimes again coincides with the
f ¼ 0 line in parameter space.

D. Interpretation

The main lesson from the above analysis can be
summarized as follows: For subcritical energy densities,
the model is stable if and only if the function fðτÞ < 0.
Using the constraint (21) to eliminate γ, this stability
condition can be cast into the form

ρ

ρcrit
> r2cH2 þ 1 −

9R2

2r2c
: ð47Þ

If this bound is violated, the model is unstable. The stable
and unstable regions are separated by a physical singularity,

so it is not possible to evolve dynamically from one region
to the other.
It is instructive to compare this result with the analogous

situation in the DGP model. In that case, the modified
Friedmann equation reads [17]

H2 ¼ ρ

3M2
Pl

� jHj
rð5Þc

; ð48Þ

where rð5Þc ≡ M2
Pl

2M3
5

. The − sign corresponds to the normal

branch and the þ sign to the self-accelerated branch. At
initial time, this can be rewritten as

ρi
6M3

5Hi
¼ Hir

ð5Þ
c ∓1: ð49Þ

The ratio ρi
6M3

5
Hi
, which is the 5D analogue of ρ

2πM4
6

, is fixed

(up to the choice of branch) for a given crossover scale rð5Þc .
Therefore, the DGP parameter space is only one dimen-
sional. This difference is due to the fact that in 6D there is
additional freedom in choosing the initial deficit angle. The
resulting DGP “contour” plot, shown in Fig. 5, is remark-
ably similar to the 6D setup. The green line corresponds to
the normal branch of DGP; this branch is stable, and the
effective density ρ̂ is positive. The red line is the self-
accelerated branch. On this branch, H is always larger than

Hself ≡ 1=rð5Þc , and ρ̂ is always negative.
Our results generalize this peculiarity of the DGP model

to codimension-two. The main differences are: (i) The
stable/unstable solutions lie on disconnected branches in
the DGP model, whereas they are separated by a physical
singularity in 6D; (ii) there is no criticality bound on ρ in
DGP, hence no gray region.

VII. PHENOMENOLOGY

The stable/degravitating (green) region of Fig. 4(a) is
bounded from above by the critical bound (42), and from

FIG. 5 (color online). The "contour" plot for the DGP model
consists of two disjoint lines. The green line is the normal branch,
which is stable. The red line is the self-accelerated branch, which
is unstable.
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below by the stability bound (47). Since we have analytic
expressions for both borders, we can discuss how this stable
region depends on model parameters. Of particular interest
is whether phenomenologically viable points can lie inside
this region.
Figure 6 shows three contour plots for different values of

HR. In the limit HR → 0, the degravitating region gets
squeezed towards theHrc ¼ 0 axis, while approaching ρ ¼
ρcrit from below. The dotted lines are the corresponding
boundaries for the dynamical regularization discussed in
Appendix A. As HR decreases, the dotted and solid lines
approach each other, implying that the two regularization
schemes agree in this limit, as expected.
The bounds (42) and (47) imply that subcritical, stable

solutions exists if and only if

ðHrcÞ2 <
3

2
jHjR: ð50Þ

This bound can also be derived in the dynamical regulari-
zation, in which case it is only a necessary condition.
For phenomenological reasons, we need Hrc ≫ 1 to

reproduce standard 4D cosmological evolution on the
brane, at least at early times. Indeed, if instead Hrc ≲ 1,
then the system will exhibit a 6D behavior. On the other
hand, we must have HR ≪ 1, as mentioned in (9), in order
for brane physics to admit an effective 4D description.
Clearly, these two requirements—Hrc ≫ 1 andHR ≪ 1—
are mutually incompatible, given (50). In other words, the
model admits no (subcritical) solutions that are both stable
and phenomenologically viable.
In the superaccelerating (red) region of Fig. 4(a), on the

other hand, there is no problem with achieving arbitrarily
large values of Hrc. Figure 7 shows the Hubble evolution
for different values of rc (black curves), compared to the
standard 4D evolution (blue curve). The matter consists of
dust and cosmological constant, with

ρcci ¼ ρdusti ¼ 1

2
ðH2

i r
2
c þ 0.8Þρcrit: ð51Þ

As expected, the larger the rc value, the longer the
standard evolution is traced. Once the modification kicks
in, however, the evolution becomes unstable and super-
accelerating. This instability, accompanied by a negative
effective energy density, should be regarded as strong
indications against the physical relevance of those sol-
utions. We expect fluctuations around such backgrounds
to exhibit ghost instabilities, analogous to the DGP
model. It would of course be worthwhile to verify this
expectation through explicit calculation. While it would
be desirable to further verify this last claim, we think that
our current results already suggests that the superaccel-
erating solutions should not be regarded as consistent
alternative cosmologies.

FIG. 7 (color online). The Hubble evolution for different values
of the crossover scale rc (black curves), compared to the standard
4D evolution (blue curve). Since Hirc > 1, these curves all lie
deep inside the superaccelerating/red region. As the value of rc is
increased, the solution traces the 4D evolution for longer.

(a) (b) (c)

FIG. 6 (color online). Contour plots for different values of HR. The dotted lines correspond to the dynamical regularization discussed
in Appendix A. The color scheme is the same as in Fig. 4. (a) HR ¼ 0.1, (b) HR ¼ 0.05, (c) HR ¼ 0.01.
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VIII. CONCLUSION

In this work, the cosmology of the brane-induced gravity
model in 6 dimensions has been investigated. The existence
of bulk gravitational waves, and the fact that a (nontrivial)
FRW codimension-two brane cannot be embedded in a
Minkowski bulk, makes it impossible to derive a local on-
brane Friedmann equation as in the DGP case. Therefore,
we solved the full (nonlinear) system of bulk-brane
equations numerically.
We found that the model can show two qualitatively

different behaviors: Either the solutions degravitate, i.e.,
they dynamically approach the static deficit angle solution,
or they superaccelerate, i.e., the Hubble parameter grows
unbounded. This instability originates from the effective
energy density ρ̂, which sources six-dimensional GR,
becoming negative in those cases. It is very likely—though
we have not shown this in the present work—that pertur-
bations around those solutions would allow for ghosts, on
top of the classical instability of the background itself.
It would certainly be desirable to verify this claim; one
strong indication for it is that this is exactly what happens
in the DGP case: ghosts are present in fluctuations around
the self-accelerated branch, which also has ρ̂ < 0. But in
6D the instability already shows up in the background
solution, which is why we already consider them physically
irrelevant.
Whether a solution degravitates or superaccelerates

depends on the three independent (dimensionless) param-
eters HR, Hrc and ρ=ρcrit. We were able to derive an
analytic expression that determines the border between the
two regimes and showed that it corresponds to a physical
singularity. Thus, a solution can never dynamically evolve
from one regime to the other.
Unfortunately, it turned out that the stable, degravitating

solutions are not phenomenologically viable because
they never lead to an almost 4D behavior, and thus could
never match the past history of our universe which is
very well described by the standard FRWevolution. On the
other hand, phenomenologically interesting parameters
Hrc ≫ 1, HR ≪ 1, which are indeed able to mimic a
4D evolution, always lead to an instable behavior once the
modification sets in. Unless there is some way to make
sense of those instable solutions—which seems very
unlikely—we conclude that the BIG model in d ¼ 6 is
ruled out (for subcritical energy densities).
It should be noted that we have not investigated

supercritical energy densities. An effective field theory
(EFT) analysis in Appendix D shows that for large-enough
values of the regularization scale (R > M−1

6 ) this consti-
tutes the remaining window in parameter space which
could allow for a phenomenologically interesting solution.
Finally, we have not considered a cosmological constant in
the bulk. It might be interesting to check how relaxing this
assumption would change the size of the healthy region in
parameter space.
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APPENDIX A: DYNAMICAL REGULARIZATION

In the dynamical regularization, the space-time geometry
in the interior of the cylinder is resolved and its dynamical
impact on the brane evolution is properly taken into
account. This has the advantage that the regularity con-
dition at the axis can be implemented and thus one obtains a
fully self-consistent and nonsingular solution of the (modi-
fied) Einstein equations in the whole space-time. Note that
in the static regularization, the brane dynamics was not
influenced by an interior geometry because the system
(braneþ exterior bulk) was closed by defining the brane as
the boundary of space-time (7) or, equivalently, setting
the extrinsic curvature in the interior to its static value
(8). The geometrically more consistent boundary condition
is the one that ensures regularity at the axis. However, this
has the drawback that one has to specify more initial data,
and that the solutions will become more sensitive to those
initial conditions, because gravitational waves that are
reflected at the axis can influence the on-brane evolution.
However, it turns out that the solutions obtained in the two
regularizations agree very well, up to small oscillations in
the dynamical case which are caused by the initial con-
ditions. This result shows that the static regularization is
indeed an efficient way to get rid of the dependency on the
interior geometry, but without affecting the evolution on the
time scales we are actually interested in.
In this section, we give the details of the dynamical

regularization. We will consider the case in which the brane
circumference is fixed (as in the main text), but also the
case Pϕ ¼ 0 in which the brane circumference becomes
time dependent. The latter case serves as a proof that
superacceleration in the stabilized scenario is not caused by
the (unphysical) equation of state of Pϕ. We present the
numerical results in Sec. A 3 and compare them to the ones
obtained in the static regularization, which were shown in
the main body of the paper.

1. Brane bulk dynamics

As discussed in Appendix C, the Einstein-Rosen coor-
dinates (10) can only be introduced in vacuum regions
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of space-time. Since the interior of the cylinder is also
source-free, we can use the same metric ansatz there.
However, the energy-momentum tensor that is localized
on the brane then implies that the interior and exterior
coordinate patches will not be continuously connected. To
distinguish them, we will put tildes on all coordinates and
functions that live in the interior, so the line element inside is

d~s2 ¼ e2ð~η−3~αÞð−d~t2 þ d~r2Þ þ e2~αdx2 þ e−6~α ~r2dϕ2; ðA1Þ
with ~α and ~η being functions of ð~t; ~rÞ. (The coordinates x and
ϕ are continuous, so there is no need for tildes on them.)
Einstein’s field equations inside the cylinder take of course
the same form as outside, Eq. (11) with the replace-
ment ðt; r; α; ηÞ → ð~t; ~r; ~α; ~ηÞ.
Regularity at the axis implies the condition

lim
~r→0

∂ ~r ~α ¼ 0 ðA2Þ

and elementary flatness, i.e., the absence of a conical
singularity, requires

lim
~r→0

~η ¼ 0: ðA3Þ

Denoting with ~r0ð~tÞ the brane position in the interior
coordinate patch, and defining ~γ analogously to γ (14),
continuity of the metric at the position of the brane yields

α0ðtÞ ¼ ~α0ð~tÞ; ðA4aÞ

r0ðtÞ ¼ ~r0ð~tÞ; ðA4bÞ

dt
γ
¼ d~t

~γ
: ðA4cÞ

The extrinsic curvature at the exterior and interior boundary
of the cylinder are calculated using the outward-pointing
normal vectors

nA ¼ γe3α0
�
dr0
dt

; 1; 0; 0; 0; 0

�
; ðA5Þ

~nA ¼ ~γe3~α0
�
d~r0
d~t

; 1; 0; 0; 0; 0

�
; ðA6Þ

respectively. Using this, Israel’s junction conditions (7)
become

−
ρ

3M2
Pl

þ ðH2 þHHRÞ ¼
1

r2c
ðγ − ~γÞ ðA7aÞ

P
M2

Pl

þ
�
2
dH
dτ

þ dHR

dτ
þ 3H2 þH2

R þ 2HHR

�

¼ 3

r2c

�
γ

�
1þ r0

d2r0
dt2

1 − ðdr0dt Þ2
�
þ RnA∂Aðη − 4αÞj0 − “tilde”

�

ðA7bÞ

Pϕ

3M2
Pl

þ
�
dH
dτ

þ 2H2

�

¼ 1

r2c

�
γ

r0
d2r0
dt2

1 − ðdr0dt Þ2
þ RnA∂Aηj0 − “tilde”

�
: ðA7cÞ

Here “tilde” is shorthand for repeating all the terms in the
square brackets, but with tildes on all functions and
variables. Note that we have not assumed R ¼ constant,
and so the brane-induced gravity terms ∝ Gð5Þa

b on the left-
hand side of (A7) receive contributions not only from H,
but also from HR ≡ _R=R. Furthermore, the energy con-
servation equation now reads

dρð5Þ

dτ
þ 3Hðρð5Þ þ Pð5ÞÞ þHRðρð5Þ þ Pð5Þ

ϕ Þ ¼ 0; ðA8Þ

where the five-dimensional source terms are related to
the four-dimensional ones by Tð5Þa

b ¼ Ta
b=ð2πRÞ. As a

consistency check, one can verify that this conservation
equation follows from the junction conditions (A7),
together with the vacuum Einstein equations (11).
Finally, it will be convenient to work with R instead

of r0 and ~r0 in (A7). To this end, note that the definition of
R in (15) implies _r0 ¼ ð3H þHRÞr0 and so (14) can be
written as

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0 þ ð3H þHRÞ2R2

q
: ðA9Þ

Another straightforward calculation gives

r0
d2r0
dt2

1 − ðdr0dt Þ2
¼ R2

γ2
½3 _H þ _HR þ ð3H þHRÞðHR þ _η0Þ�:

ðA10Þ

Equations (A9) and (A10) similarly hold for the tilde
quantities, i.e., for ðγ; η0; r0Þ → ð~γ; ~η0; ~r0Þ.
As before, the equations of motion are only closed after

specifying an equation of state for both of the two pressure
components P and Pϕ. For the former we will again assume
a fixed (but arbitrary) linear equation of state P ¼ wρ. For
the latter, we will consider two different possibilities: (a) Pϕ

is chosen to stabilize the brane circumference, exactly as it
was done in the main part of this work; (b) Pϕ ¼ 0. Let us
now further discuss the two cases separately.

a. Fixed brane width

As in the main text, we set HR ¼ 0 and use the junction
condition (A7c) only to infer the value of Pϕ that is needed
to stabilize the brane. The remaining junction conditions
take the form

UNIVERSE AS A COSMIC STRING PHYSICAL REVIEW D 91, 024002 (2015)

024002-15



H2 ¼ ρ

3M2
Pl

þ 1

r2c
ðγ − ~γÞ; ðA11aÞ

_H ¼ −3
2f̂ðτÞ

�
P

3M2
Pl

þH2 −
1

r2c
ðγgðξ; χÞ − ~γgð~ξ; ~χÞÞ

�
;

ðA11bÞ

with

γ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0 þ9H2R2

p
; ~γ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2~η0 þ9H2R2

p
; ðA12Þ

the function g is the one defined in (25a) and

f̂ðτÞ≡ 1 −
9R2

2r2c

�
1

γ
−
1

~γ

�
: ðA13Þ

The modified Friedmann equations (A11) are very
similar to the ones of the static regularization, (21) and
(23), with the crucial difference that now the quantities
~η0 and ∂ ~r ~α0 enter, which are determined by the interior
bulk evolution. In this way, the brane evolution is now
influenced by the space-time dynamics inside the cylinder.
Furthermore, note that the function f is now slightly
modified to f̂.

b. Vanishing azimuthal pressure

For Pϕ ¼ 0 the brane circumference R will in general be
time dependent, and so the energy conservation
equation (A8) now implies

ρð5ÞðτÞ ∝ 1

RðτÞ e
−3ð1þwÞα0ðτÞ: ðA14Þ

As a consequence, the dimensionally reduced quantity ρ≡
2πRρð5Þ scales exactly as before.
We can still formally introduce the four-dimensional

Planck scale and the crossover scale as in (16) and (22)
respectively, but one has to keep in mind that they will now
be functions of time as well. Specifically, they scale with R
as MPlðτÞ; rcðτÞ ∝

ffiffiffiffiffiffiffiffiffi
RðτÞp

.
The junction conditions then become

H2 þHHR ¼ ρ

3M2
Pl

þ 1

r2c
ðγ − ~γÞ; ðA15aÞ

_H ¼ Aδþ B
1 − 4δ

; ðA15bÞ

_HR ¼ Að1 − 3δÞ þ B
1 − 4δ

; ðA15cÞ

with the following definitions:

A≡ −
P
M2

Pl

þ 3H2 − 2HHR −H2
R

þ 3

r2c

�
γ

�
1 − 4

�
ξþ dr0

dt
ψ

��
− “tilde”

�
; ðA16aÞ

B≡ −2H2 þHRð3HþHRÞδ

þ 6

r2c

�
γ

�
4
dr0
dt

ξψþ
�
1þ

�
dr0
dt

�
2
�
ðξ2þψ2Þ

�
−“tilde”

�
;

ðA16bÞ

δ≡ R2

r2c

�
1

γ
−
1

~γ

�
; ðA16cÞ

ψ≡r0∂tα0¼
R
γ
½H−ξð3HþHRÞ� ðand similarly for ~ψÞ:

ðA16dÞ

This time there are two dynamical equations of motion,
Eqs. (A15b) and (A15c), which will be used to numerically
determine H and HR, respectively. The constraint
equation (A15a) again serves as a nontrivial consistency
check for the numerics.

2. Numerical implementation and initial data

The numerical scheme is the same as the one used for the
solutions in the static regularization, with two slight
modifications: First, we now also have to specify initial
data in the interior that have to be compatible with the
boundary conditions (A2) and (A3). Second, since we have
two discontinuous time coordinates for the interior and
exterior region, the corresponding temporal grid points will
in general not agree at the brane position. We again deal
with this problem by some suitable interpolation scheme.
The details of the numerical implementation can be found
in Appendix B.
The initial data in the exterior is chosen in the same way

as before, i.e. as discussed in Sec. V. But now we also have
to specify the initial radial profile ~αið~rÞ and its time
derivative ∂~t ~αið~rÞ for ~r ∈ ½0; R�. As for the exterior, we
choose the profile of the static solution discussed in Sec. III,
which is simply

~αið~rÞ ¼ 0: ðA17Þ

For the velocity profile, regularity at the axis (A2) implies

∂ ~r∂~t ~αið0Þ ¼ 0: ðA18Þ

At the brane position, it is related to the initial Hubble
parameter Hi via
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∂~t ~α0i ¼
d ~α0i
d~t

¼ Hi

~γi
ðA19Þ

where the first equality uses ∂ ~r ~αi ¼ 0 which is satisfied for
our choice (A17). We can thus write

∂~t ~αið~rÞ ¼
Hi

~γi
~Fð~rÞ ðA20Þ

with some profile function ~Fð~rÞ satisfying the boundary
conditions ~F0ð0Þ ¼ 0 and ~FðRÞ ¼ 1. For definiteness, we
will choose the flat profile

~Fð~rÞ≡ 1: ðA21Þ

This choice is motivated by the observation that for R small
enough, the regularity condition at the axis implies that
∂ ~r ~α ≈ 0. We again expect the on-brane evolution to become
insensitive to the initial conditions for late times.
For the case Pϕ ¼ 0 we also have to specify an initial

value for HR, which we will (for simplicity) set to zero,

ðHRÞi ¼ 0: ðA22Þ

In particular, this implies that the initial constraint (A15a) is
identically to the case of fixed R, (A11a). Furthermore, the
values for R and rc—which are constant for HR ¼ 0—will
be used as the initial values Ri and ðrcÞi in the case Pϕ ¼ 0,
when comparing the corresponding solutions.
This completes the specification of initial data. Indeed,

the remaining variables ~η0i and η0i are determined by the
regularity condition (A3) together with the constraints
(11b) and (A11a).6 Specifically,

~η0i ¼ 6

Z
R

0

d~r ~r ½ð∂ ~r ~αiÞ2 þ ð∂~t ~αiÞ2� ðA23aÞ

¼ 6H2
i

γ2i

Z
R

0

d~r ~r ~F2 ðA23bÞ

¼ 3H2
i R

2

e−2~η0i þ 9H2
i R

2
; ðA23cÞ

an implicit equation for ~η0i which can be solved numeri-
cally. (Note that for any value of HiR there exists a unique
real solution for ~η0i to this equation.) It is also interesting
that ~η0i is a direct measure of the gravitational energy stored
inside the cylinder initially, which is suggested by (A23a).
In fact, it is (up to a constant factor) nothing but the

so-called C-energy introduced by Thorne [37], generalized
to 6 dimensions. We will come back to this point in
Sec. A 3 e, when discussing the dependence on the interior
initial data.
The exterior η0i is finally obtained from (A11a), which

can be rewritten as

ρi
ρcrit

¼ r2cH2
i þ ~γi −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0i þ 9H2

i R
2

q
: ðA24Þ

The existence of a real solution for η0i (and in fact for η0 at
any other time) again places an upper bound on the energy
density,

ρ

ρcrit
< r2cH2 þ ~γ − 3jHjR: ðA25Þ

This should be compared to the criticality bound (42) in the
static regularization, which is formally obtained from (A25)
by the replacement ~γ → 1. As soon as this bound is
violated, the initial constraint cannot be fulfilled, and we
are in the supercritical regime which is excluded from our
analysis.
Finally, one also has to specify a grid spacing for the

interior domain. As for the exterior, we will take the
temporal and radial grid spacing to be equal and constant,
but it can be different from the spacing outside,

Δ~t ¼ Δ~r≡ ~ϵ: ðA26Þ

In what follows we will present the results.

3. Numerical solutions

In Secs. A 3 a and A 3 b, respectively, we reinvestigate
the two fiducial degravitating and superaccelerating sol-
utions from the main text in the dynamical regularization.
We thereby find that our results are independent of the
choice of regularization scheme. In Sec. A 3 c, we show
that the interior volume of the cylinder is sufficiently
stabilized in the dynamical regularization, and Sec. A 3 d
excludes the unphysical behavior of Pϕ in the stabilized
scenario as the source of superacceleration by considering
Pϕ ¼ 0. Finally, Sec. A 3 e investigates the regimes in
parameter space corresponding to the stable/unstable sol-
utions in the dynamical regularization.

a. Degravitating solution

Let us first consider the case HR ¼ 0, for the parameters
(44), which led to a degravitating solution in the static
regularization (cf. Sec. VI A).
The numerical results are shown in Fig. 8. Unlike in

the static regularization, now the geometry inside the
cylinder—characterized by ~α—is obtained as well, which
is plotted in Fig. 8(a) together with α. It is evident from this
plot that dynamically resolving the interior indeed allows

6The full radial profile of ~η; η can be calculated from (11b), but
is actually not needed for the evolution of α. Only ~η0; η0 enter
through the junction conditions, and those can be calculated at
later times from their initial values using (11b), (11c) locally at
the brane position.
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for gravitational waves moving back and forth between the
axis ~r ¼ 0 and the brane, where they are partially trans-
mitted to the exterior. As a consequence, the r-profile of α
is not as smooth as before [cf. Fig. 2(b)], but is slightly
distorted by those waves. But apart from this, the two
solutions are practically identical.
This becomes even more obvious when comparing the

time evolution of Hubble, shown in Fig. 8(b). In the
dynamical regularization (solid line), the gravitational
waves in the interior region produce small oscillations
(with frequency∼1=R) in the on-brane evolution. However,
this is exactly the part which is sensitive to the initial
conditions that are chosen in the bulk, so we would not trust
them anyway. But now we see that the dashed line (static
regularization) perfectly follows the mean of this oscilla-
tory behavior. (Note that the same holds true for all other
observables like ρ̂ or Pϕ.) This confirms that the static
regularization is indeed an efficient way to get rid of the
dependency on the interior geometry, but in such a way that

the long-time evolution (on time scales ∼1=Hi) is not
affected. Furthermore, it shows that the predicted Hubble
evolution on the time scales of interest Δt ∼ 1=Hi ≫ R is
completely insensitive to what is going on inside the
cylinder, and is in that sense regularization independent.
We also checked that this remarkable agreement between

the two regularizations is not altered when considering dust
(w ¼ 0) or radiation (w ¼ 1=3).

b. Superaccelerating solution

Next, let us investigate the superaccelerating solution
presented in Sec. VI B in the dynamical regularization.
That is, we still keep R fixed and use the parameters (45)
(and grid spacings ϵ ¼ 5 × 10−4R, ~ϵ ¼ 10−3R).
The results are shown in Fig. 9. The evolution of α

is qualitatively the same as in the static regularization,
cf. Fig. 3(b).Moreover, there are novisible small oscillations
as in the degravitating solution, because the dynamics
is completely dominated by the overall superacceleration.

(a) (b)

FIG. 9 (color online). The superaccelerating solution of Fig. 3, but in the dynamical regularization. (a) The radial profile of α at
different values of τ. The dots indicate the brane position, left of which the plotted function is the interior ~αð~rÞ, (b) The Hubble parameter
shows qualitatively the same superaccelerating behavior in both regularizations.

(a) (b)

FIG. 8 (color online). The degravitating solution of Fig. 2, but in the dynamical regularization. (a) The radial profile of α at different
values of τ. The dots indicate the brane position, left of which the plotted function is the interior ~αð~rÞ, (b) The Hubble parameter in the
static regularization smoothly traces the mean of the one in the dynamical regularization.
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In the Hubble plot, Fig. 9(b), the dashed line again
corresponds to the static regularization. While there is no
perfect agreement in this case, the qualitative behavior is
not altered. Moreover, we checked that the curves approach
each other as the regularization sizeR is decreased.Note that
the value R ¼ 0.05H−1

i is still vastly larger than a phenom-
enologically realistic value, e.g., R ¼ 10−36H−1

i for
R ∼ 10−3 eV and Hi ∼Htoday ∼ 10−33 eV. The faster
growth in the static regularization is due to the fact that
in this case the parameters (45) are closer to the stability
bound, cf. Fig. 6.
As with Hubble, the effective equation of state for Pϕ is

qualitatively the same as in the static regularization. It
becomes smaller than −1 and tends to −∞. As already
discussed in the main text, this unphysical source might in
principle happen to be the reason for the superacceleration.
To exclude this possibility, we accordingly present the
solution for the case Pϕ ¼ 0 in Sec. A 3 d.

c. Volume stabilization

In the dynamical regularization we can also address the
question whether the extra space volume inside the cylinder
is approximately constant and, in particular, vanishes for
R → 0, as is required by a consistent regularization.
A priori, it is not clear whether this condition is fulfilled,
since we only fixed the circumference R. From (A1) we
derive for the volume in the interior

V intðτÞ ¼ 2π

Z
r0ðτÞ

0

drre~η−6~α; ðA27Þ

which can be integrated numerically, and is depicted by the
dashed lines in Fig. 10. We find that the interior volume
oscillates with a frequency of order R−1. The oscillations
are again due to small wave excitations in the interior of the
cylinder and are thus an artifact of the initial conditions.
The closer we approach the attractor solution in the

(a) (b)

FIG. 10. The 2D volume of the interior of the cylinder V int (A27) is approximately constant as compared to the 3D brane volume
Vb ∝ e3α0 , confirming a successful stabilization in the dynamical regularization. (a) The degravitating solution, (b) The super-
accelerating solution.

(a) (b)

FIG. 11. Plots of the numerical results for the superaccelerated solution in the case Pϕ ¼ 0. The instable behavior encountered in the
case HR ¼ 0 is not cured by setting Pϕ ¼ 0. (a) The two Hubble parameters as functions of τ, showing a super-accelerated behavior,
(b) The effective energy density becomes negative and tends to −∞.
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degravitating case, the more they are washed out, and V int
approaches the flat space value Vflat ¼ πR2 (dotted line)
which lies slightly below the initial volume V intð0Þ.
The solid curves describe the evolution of a certain initial

3D volume Vb ∝ e3α0 intrinsic to the brane. Evidently, the
interior volume can be regarded as approximately constant
as compared to the brane volume, in both the degravitating
and superaccelerating solutions. We consequently conclude
that by fixing the circumference, the volume of the cylinder
is sufficiently stabilized in the dynamical regularization.
Furthermore, this volume vanishes for R → 0 as demanded
by a consistent regularization.
Regarding the superaccelerating solution, note that in

particular the volume inside the cylinder does not collapse,
which could have been a potential source of energy for the
superacceleration in the brane direction. Instead, the energy
for this expansion is provided by the brane-induced gravity
terms, as already discussed. This conclusion can also be
drawn from the fact that we find the same Hubble evolution
for the static regularization, where the system is not
influenced by an interior geometry. In summary, the interior
of the cylinder has to be discarded as a potential source for
the instability.

d. Vanishing azimuthal pressure

We now set Pϕ ¼ 0, and choose the same parameters as
for the superaccelerating solution before (but with grid
spacings ~ϵ ¼ 10−3 × Ri and ϵ ¼ 2 × 10−3Ri). The results
are shown in Fig. 11. The estimated numerical error bars
are again smaller than the line widths.
The two Hubble parameters H and HR are plotted in

Fig. 11(a). They both increase, implying a superaccelerated
expansion. Figure 11(b) shows the effective energy density
from a 6D perspective, which for HR ≠ 0 is given by

ρ̂≡ ρ − 3M2
PlðH2 þHHRÞ: ðA28Þ

Again, it becomes negative and tends towards −∞. This
shows that the instability is not due to the unphysical
pressure Pϕ encountered in the HR ¼ 0 scenario. On the
contrary, the unphysical behavior of Pϕ is a consequence of
the instability and the requirement of stabilizing the brane
width R. This can also be understood from Fig. 11(a) which
shows that without any stabilization the acceleration is
dominantly in ϕ direction.

e. Contour plot

Figure 12 shows the result of the classification of
parameter space in the dynamical regularization with fixed
brane width R ¼ 0.05H−1

i . The coloring (labeling) is the
same as in Fig. 4.
Similarly to the static regularization, the degravitating

and superaccelerating regimes are separated by the region
in parameter space where the function f̂, introduced in

Eq. (A13), vanishes. It is negative in the degravitating
regime, and positive in the superaccelerating regime. After
eliminating γ by using the constraint (A11a), the stability
bound f̂ < 0 can be cast in the form

ρ

ρcrit
> r2c

�
H2 þ 2~γ2

9R2 þ 2r2c ~γ

�
: ðA29Þ

If it is violated, the model is unstable. The two regions are
again separated by a physical singularity, so it is not
possible to evolve dynamically from one region to the
other. Equation (A29) also immediately shows that ρ̂≡
ρ − ρcritr2cH2 is always positive when the bound is satisfied.
On the other hand, the violation of this bound does not
immediately imply ρ̂ < 0. (In Fig. 12 ρ̂i is zero along the
dotted line and positive above.) But the numerical results
show that whenever the bound is violated, ρ̂ dynamically
becomes negative at some (later) time.
One disturbing fact with the criticality bound (A25) and

the stability bound (A29) in the dynamical regularization is
their dependence on the interior bulk geometry, through the
appearance of ~γ. However, ~γ can only take values in the
interval

3jHjR < ~γ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9H2R2

p
: ðA30Þ

Let us, for convenience, introduce the parameter

q ≔
~γ − 3jHjRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9H2R2
p

− 3jHjR ∈ ð0; 1Þ: ðA31Þ

Themaximumvalue q ¼ 1 corresponds to ~η0 ¼ 0, which by
inspection of Eq. (A23a) is equivalent to ∂ ~r ~α ¼ ∂~t ~α ¼ 0, or
in other words, to zero gravitational energy inside the
cylinder. Initially, for Hi ≠ 0, this can never be achieved

FIG. 12 (color online). The same contour plot as in Fig. 4, but
for the dynamical regularization. The dashed line corresponds to
the criticality bound (A25), the solid line to the stability bound
(A29), and the dotted line to ρ̂i ¼ 0⇔ ρi ¼ 3M2

PlH
2
i , i.e., the

standard 4D constraint.
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exactly, because of the constraint (38). However, by making
the profile function ~F sharply localized, it could be
approached asymptotically.On the other hand, theminimum
value q ¼ 0 would correspond to ~η0 ¼ ∞, i.e., an infinite
amount of gravitational energy inside the cylinder. This is
clearly not what we want, so we are mainly interested in
values of q close to 1. In particular, for the flat initial
conditions that we used for our numerics and HiR ¼ 0.05
(which was chosen in Fig. 12) one finds q ¼ 0.9915.
Figure 13 shows how the contour plots depend on this

parameter q: As q decreases, the green region (1) becomes
smaller and is replaced by the gray region (3). This is due to
the fact that as q → 0, we are putting more and more energy
into the gravitational field and so the configuration becomes
supercritical for smaller values of ρ. As just mentioned, this
is not the situation we are interested in. Therefore, in Fig. 6,
comparing the contours in both regularizations, q was set
equal to 1.
Finally, let us again stress two important observations,

already discussed in Sec. VII: (i) the contour plots in
both regularizations agree in the limit R → 0; (ii) the main
result—that all degravitating solutions are ruled out by
observations—is independent of which regularization
scheme is used. Indeed, the crucial bound (50) can also
be derived from Eqs. (A25) and (A29).

APPENDIX B: NUMERICAL IMPLEMENTATION

1. Algorithm

Here we present the details of the numerical implemen-
tation that is used to solve the bulk brane system. We focus
on the dynamical regularization because it is technically
slightly more complicated. The algorithm for the static
regularization is simply obtained by discarding the whole
evolution of the interior space-time, and using the appro-
priate junction conditions (21) and (23) instead of (A11).
Moreover, we only discuss the case HR ¼ 0 explicitly. The

only difference for the case Pϕ ¼ 0 is that there is one more
dynamical on-brane variable, viz. R, which is treated
in complete analogy to α0, by using the junction
conditions (A15).
The goal is to solve the bulk equations (11) in the interior

and exterior region, together with the junction conditions
(A11). The initial data is chosen as described in Sec. A 2
and the time evolution is calculated using the two dynami-
cal equations (11a) and (A11b), whereas the constraint
(A11a) is only enforced at initial time and later used as a
consistency check, as discussed in the next section.
For the bulk PDE we use a discretization with fixed

equidistant spacing

Δ~t ¼ Δ~r≡ ~ϵ; Δt ¼ Δr≡ ϵ: ðB1Þ

Denoting αnj ≔ αðtn; rjÞ, the derivatives of α are approxi-
mated by the following finite difference representations:

∂2
rαðt; rÞ →

αnjþ1 − 2αnj þ αnj−1
ϵ2

; ðB2aÞ

∂rαðt; rÞ →
αnjþ1 − αnj−1

2ϵ
; ðB2bÞ

∂2
t αðt; rÞ →

αnþ1
j − 2αnj þ αn−1j

ϵ2
: ðB2cÞ

The wave equation (11a) then allows us to explicitly
calculate the next time step αnþ1

j from the past values
αnj , α

n−1
j ,

αnþ1
j ¼ −αn−1j þ αnjþ1 þ αnj−1 þ ðαnj−1 − αnjþ1Þ

ϵ

2rj
; ðB3Þ

and similarly for ~α. The Courant condition Δt=Δr ≤ 1 is
satisfied for our choice (B1), and so the scheme is
numerically stable [44].

(a) (b) (c)

FIG. 13 (color online). Contour plots in the dynamical regularization for different values of q as defined in (A31), with HR ¼ 0.05.
(a) q ¼ 1, (b) q ¼ 0.5, (c) q ¼ 0.
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Equation (B3) can only be used inside of the spatial
domain of integration, i.e., away from the boundaries
~r ∈ f0; ~r0g; r ∈ fr0; rmaxg. At the axis, ~α is determined
by the regularity condition (A2) which translates to

~αn0 ¼ ~αn1: ðB4Þ

At the outer boundary r ¼ rmax, we simply implement the
fixed Dirichlet boundary condition

αnJ ¼ 0: ðB5Þ

In fact, we would like to impose nonreflecting boundary
conditions, so that all gravitational waves emitted by the
brane leave the domain of integration without any reflec-
tions. However, as is well known [42,43], in two spatial
dimensions this condition is nonlocal (in time). Therefore,
it is computationally quite expensive and so we simply
choose the most primitive alternative of making the domain
of integration large enough so that any wave that is
reflected at r ¼ rmax cannot reach the brane by the end
of the numerical simulation.
The value at the brane, ~α0 ¼ α0, is determined by the

dynamical junction condition (A11b). However, there is a
slight complication because the time stepsΔt andΔ~t do not
correspond to the same physical time steps. (This compli-
cation is of course absent in the static regularization.) In
fact, the discretized version of Eq. (A4c) is

Δt
γ

¼ Δ~t
~γ
; ðB6Þ

and γ ≠ ~γ whenever there is a modification to the 4D
evolution, cf. (A11a). Now suppose we are given all
relevant initial data at the initial time ~ti, ti (which we
can assume to correspond to the same physical time, and set
equal to zero, without loss of generality). Then we use
(A11b) to determine ~α0 and α0 at the next time step, i.e.,
~α0ðΔ~tÞ and α0ðΔtÞ. Those we use as the appropriate
boundary conditions to solve (B3), which in turn allows
us to calculate ~η0ðΔ~tÞ and η0ðΔtÞ with the discretized
version of

dη0
dt

¼ ∂tη0 þ
dr0
dt

∂rη0

¼ 6r0½2ð∂tα0Þð∂rα0Þ þ ð∂tα0Þ2 þ ð∂rα0Þ2� ðB7aÞ

(and similarly for ~η0), where we used (11b) and (11c) in the
limit r → rþ0 (or ~r → ~r−0 ). We now want to iterate this
process, but to use (A11b) again we need ~η0 and η0 at the
same physical time (i.e., both at Δ~t, or both at Δt). Assume
that for instance Δt is “ahead in time,” i.e., ~tðΔtÞ > Δ~t,
cf. Fig. 14. We then estimate η0ðtðΔ~tÞÞ by linearly
interpolating between η0ð0Þ and η0ðΔtÞ. With this we
can repeat the procedure to obtain ~η0ð2Δ~tÞ, from which

we get ~η0ð~tðΔtÞÞ, again by linear interpolation. Then we
can calculate η0ð2ΔtÞ and continue the iteration.
A second complication stems from the fact that even

though the physical brane circumference R is kept fixed,
the brane’s coordinate position ~r0 ¼ r0 will be time
dependent for any nontrivial evolution of α, because
R ¼ r0e−3α0 ¼ ~r0e−3~α0 . But since we use a fixed spatial
grid, and the brane moves with a speed less than 1, this
implies that the brane position will lie in between two grid
points most of the time. We again solve this problem by
linear interpolation: Suppose the brane (say, in the exterior
coordinate patch) is initially located at some grid point j,
cf. Fig. 15. Equation (A11b) (with the appropriate initial
data) gives the new value of α0 at the new brane position
(which is also determined by α0). Assume that the brane
moved to the right, as in Fig. 15. Then the new value of α at
j cannot be obtained using (B3), because it would require
initial data at the point jþ 1, which lies outside the domain
of integration. In those cases, we estimate the new value of
αj by linearly interpolating between the brane value and the

FIG. 14. Using two different coordinate patches for the interior
and exterior geometry implies that the temporal grid points do not
correspond to the same physical time at the position of the brane.
The values of ~η0 and η0 at the gray points, which are needed in
(A11b), are found by linearly interpolating between the neigh-
boring black points.

FIG. 15. Sketch of the space-time grid. The white points
indicate the brane position, which in general does not lie on a
grid point, but on which the boundary data for α is given. Black
points are calculated using the wave equation (B3). For the gray
points, this is not possible because of the lack of initial data, so
they are obtained by linearly interpolating between the neighbor-
ing black and white points.
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new value at the point j − 1 [which can be obtained from
(B3)]. If the brane crosses one spatial grid point, then there
are two values of α which cannot be calculated from (B3),
in which case we determine both of them by linear
interpolation.
Finally, we checked that the numerically results are

practically unchanged if instead of linear interpolations we
use quadratic interpolations everywhere. This shows that
the numerical errors are mainly not due to the interpolation,
but to the discretization. But those errors are very well
under control, as we will discuss next.

2. Error estimates and consistency checks

One way to estimate the numerical uncertainties is to
check how much the calculated quantities change when the
grid spacing is made smaller. For instance, one can define
an error estimate δA for some quantity A calculated with
grid spacing ϵ as δAðϵÞ≡ Að2ϵÞ − AðϵÞ. If AðϵÞ converged
to its true value linearly in ϵ as ϵ → 0, this would give
exactly the correct error; for a faster convergence the true
error would even be smaller. The plots on the left-hand side
of Fig. 16 show the corresponding error of the Hubble
parameter for the degravitating solution presented in
Sec. VI A (top), and for the superaccelerating solution
of Sec. VI B (bottom). In the Hubble plots [Figs. 2(a)
and 3(a)] the corresponding error bars would not exceed

the line thickness. The dashed curves depict the error
estimates when the grid spacing is doubled; the scaling of
the errors is compatible with an (approximately linear)
convergence as ϵ → 0.
There are several nontrivial consistency checks that one

can perform. The most important one is the constraint
equation (21), which is only imposed at the initial time, and
should be automatically fulfilled at all later times. Its
violation δC≡H2 − ρ=ð3M2

PlÞ − ðγ − 1Þ=r2c, measured in
units ofH2

i , is plotted on the right-hand side of Fig. 16; it is
indeed compatible with being zero within the numerical
uncertainties.
We do not explicitly show the corresponding error plots

for the solutions in the dynamical regularization presented in
Appendix A, but we checked that they are all equally well
under control. In that case, there is also another nontrivial
consistency check, coming from the fact that somequantities
(like Hubble) which should be continuous across the brane
can be calculated independently from the interior and
exterior in our numerical scheme. The difference between
them was again found to be compatible with being zero.

APPENDIX C: EINSTEIN-ROSEN COORDINATES

With the assumed symmetries, the bulk metric can be
written as

FIG. 16. Error estimates of Hubble (left column) and consistency checks (right column) for the degravitating solution presented in
Sec. VI A (upper row) and the superaccelerating solution of Sec. VI B (lower row), as explained in the text.
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ds26 ¼ e2ðη−3αÞð−dt2 þ dr2Þ þ e2αdx2 þ e−6αW2dϕ2;

ðC1Þ

where η; α and W are functions of ðt; rÞ. This is the 6D
generalization of a metric describing “whole-cylinder
symmetry” as discussed in [37] or [45] [chap. 22] in the
case of 4D. This form does not completely fix the ðt; rÞ
coordinates since it is still invariant under a transformation
ðt; rÞ ↦ ðt�; r�Þ, subject to the condition

� ∂tr�

∂rr�

�
¼ �

� ∂rt�

∂tt�

�
: ðC2Þ

This implies an integrability condition for r�,

∂2
rr� ¼ ∂2

t r�: ðC3Þ

Away from the brane, the bulk Einstein equations imply

∂2
rW ¼ ∂2

t W; ðC4Þ

where we have used Tð6Þ
AB ¼ 0. This naturally suggests

fixing the remaining gauge freedom through

r� ¼ Wðt; rÞ: ðC5Þ

Dropping asterisks, the metric ansatz becomes (10).
Note that the interpretation of r� as a spatial coordinate

implicitly assumes that the gradient of W in the original
coordinates (C1) is spacelike. Furthermore, in deriving the
junction conditions in Sec. II D we assumed that r� gets
larger as one moves away form the brane, which in turn
requires the gradient of W to be outward pointing. One of
these assumptions, however, is not true if the energy
density localized on the brane is supercritical, as we will
now show. The following discussion partly follows the one
in the appendix of [46].
We begin with the general cylindrically symmetric

ansatz (C1) for the exterior line element ds26 which depends
on the function Wðt; rÞ. For the interior we require the
Einstein-Rosen form, i.e., we make the ansatz (A1) for d~s26.
(For the case of the static regularization you simply have to
set ~γ ¼ 1 in the following discussion.)
By introducing the metric function Wðt; rÞ, the junction

condition (A7a) gets generalized to

~γ − e−3α0nA∂AWj0 ¼
ρ̂

ρcrit
; ðC6Þ

where the normal vector nA and ρ̂ are defined in (A5) and
(A28), respectively. Moreover, a similar equation can be
derived from the continuity condition W0 ¼ ~r0. By differ-
entiating it with respect to τ and using (A4c) we find

~γ
d~r0
d~t

− e−3α0tA∂AWj0 ¼ 0: ðC7Þ

Here, tA ¼ γe3α0ð1; dr0=dt; 0; 0; 0; 0Þ denotes the unit
tangent vector on the brane for which nAtA ¼ 0.
According to (C4), W obeys a 1D wave equation in the

bulk. The general solution can be written as

(a)

(b)

(c)

FIG. 17 (color online). Contour plots in the static regularization
for different values of RM6 with HR ¼ 0.05 fixed. The blue area
(framed by the dashed lines) corresponds to an estimate of the
parameter regime with a valid EFT. The dotted line in the center
corresponds to K ¼ 0, the dashed lines to K ¼ �M6.
(a) RM6 ¼ 0.05, (b) RM6 ¼ 0.5, (c) RM6 ¼ 1.5.
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Wðt; rÞ ¼ Wþðtþ rÞ þW−ðt − rÞ: ðC8Þ
Plugging this back into (C6) and (C7), we find for W0þ and
W0

− evaluated at the brane

W0þj0 ¼
1

2γð1þ dr0
dt Þ

�
~γ

�
1þ d~r0

d~t

�
−

ρ̂

ρcrit

�
; ðC9aÞ

W0
−j0 ¼

1

2γð1 − dr0
dt Þ

�
ρ̂

ρcrit
− ~γ

�
1 −

d~r0
d~t

��
: ðC9bÞ

These two equations allow us to characterize the gradient

∂AWj0 ¼ ðwþ þ w−; wþ − w−; 0; 0; 0; 0Þ; ðC10Þ
where wþ ≡W0þj0 and w− ≡W0

−j0 have been introduced.
We distinguish three different cases:

(i) wþ > 0 and w− < 0: In this regime ∂AWj0 is space-
like and outward pointing. Therefore, it is consistent
to introduce a new radial coordinate r� ¼ Wðt; rÞ in
order to implement the Einstein-Rosen form. The
condition gets translated via (C9) into

ρ̂

ρcrit
< ~γ − j3H þHRjR: ðC11Þ

As expected, this is precisely the criticality bound
(A25) once we set HR ¼ 0.

(ii) wþw− > 0: In this regime ∂AWj0 is timelike. Con-
sequently Wðt; rÞ could play—at least locally at the
position of the brane—the role of a new time
coordinate but not of a spatial coordinate as assumed
for our analysis. This happens for

~γ − j3H þHRjR <
ρ̂

ρcrit
< ~γ þ j3H þHRjR:

ðC12Þ
This interval vanishes in the static case. In our
analysis, it already corresponds to the gray (super-
critical) area in the contour plot in Fig. 6.

(iii) wþ < 0 and w− > 0: In this regime ∂AWj0 is again
spacelike but inward pointing. Consequently,
Wðt; rÞ can play the role of a “reversed” radial
coordinate. This happens in the static supercritical
case discussed in Sec. III. In the general dynamical
case, the condition on the energy density becomes

ρ̂

ρcrit
> ~γ þ j3H þHRjR: ðC13Þ

This regime is also part of the gray area in the
contour plot.

APPENDIX D: EFFECTIVE FIELD
THEORY BOUNDS

In this section the validity of the EFT description is
investigated. We will find that, depending on the value of R,
there are further bounds on the possible parameters of the
model stemming from the requirement of having a
valid EFT.
Since the fundamental cutoff scale in the bulk is given by

M6, the breakdown of the EFT occurs once the bulk
curvature terms are of the same order. We can use the
extrinsic curvature as a diagnostic tool by comparing it to
the M6 scale. To be precise, we focus on the combination
K≡ ð½Kc

c� − ½K0
0�Þ which occurs in the (0,0) component

of the junction conditions (6). Therefore, the dimensionless
combination of K and M6 for a stabilized azimuthal
direction (HR ¼ 0) can be evaluated to

K
M6

¼ 1

RM6

�
ðrcHÞ2 − ρ

ρcrit

�
: ðD1Þ

Once this expression becomes of order unity, we expect the
EFT to break down. [At this point higher-order operators,
which are normally suppressed by M6, would modify the
right-hand side of (6), thereby invalidating our previous
analysis.] Obviously, this strongly depends on the scale R.
Figure 17 visualizes the regime of validity for different
values of RM6. Outside the blue area (framed by the dashed
lines) the EFT breaks down since K > M6. The dotted line
corresponds to a vanishing extrinsic curvature and hence to
standard 4D evolution as becomes clear from (D1).
The dependence on R has several consequences: On the

one hand, if we are interested in studying the supercritical
regime, we have to choose a large radius R > M−1

6 . On the
other hand, for very small radius R ≪ M−1

6 the supercritical
regime cannot be probed within a valid EFT. Moreover, the
blue region then only allows for rather small deviations
from standard GR.
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