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A simple way of explaining dark matter without modifying known Standard Model physics is to require
the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity.
We consider a hidden sector containing two stable particles charged under an unbroken Uð1Þ0 gauge
symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry,
the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of
strength ϵ ∼ 10−9 appears to be necessary in order to explain galactic structure. We calculate the effect of
this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at
hydrogen recombination. We then examine the process of dark recombination, during which neutral dark
states are formed, which is important for large-scale structure formation. Galactic structure is considered
next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the
current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is
compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to
the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a
dynamical halo model can reproduce several observed features of disk galaxies, including the cored density
profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit
into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model,
which can serve as a guideline for future experimental searches.
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I. INTRODUCTION

A variety of observations suggest the existence of non-
baryonic dark matter in the Universe. Among these are
measurements of the rotation curves of spiral galaxies,
which are asymptotically flat [1]. Dark matter is also
required to explain the cosmic microwave background
(CMB) anisotropy spectrum (particularly the structure of
the acoustic peaks), the matter power spectrum and large-
scale structure (LSS) formation (see e.g. [2]). Cosmological
observations can be explained within the framework of the
Friedmann-Robertson-Walker (FRW) model (see e.g. [3]),
which assumes isotropy and homogeneity of the Universe
on large scales. Comparisons with observations require the
total dark matter mass to be approximately 5 times that of
baryonic matter.
The particle physics underlying dark matter is unknown

but a promising possibility, widely discussed in recent
literature (see e.g. [4–7]) is that dark matter resides in a
hidden sector. That is, an additional sector containing
particles and forces, which interact with the known
Standard Model particle content predominantly via gravity.
A special case is mirror dark matter (MDM), where the
hidden sector is exactly isomorphic to the Standard Model

[8]. It has been shown that MDM can, under suitable
assumptions and initial conditions, reproduce the successes
of collisionless cold dark matter (CDM) on large scales,
while deviating on small scales. This is important because
such a model has the potential to address apparent short-
comings of collisionless CDM such as inferred cores in
dark matter halos and the missing satellites problem [9,10].
Mirror dark matter is self-interacting due to an unbroken

Uð1Þ0 interaction (mirror electromagnetism). The associ-
ated gauge boson, the mirror photon, is massless, which
implies that MDM is dissipative. Dissipative dark matter is
a possible scenario, provided that there exists a substantial
heat source that can replace the energy lost due to
dissipative interactions. It has been argued [11] that
ordinary supernovae can provide such a heat source
provided photon-mirror photon kinetic mixing exists.
More in-depth studies of this possibility [12] have shown
that the model can reproduce several observational proper-
ties of disk galaxies. MDM also seems to be capable of
explaining the positive results from the direct detection
experiments, especially the annual modulation signals
observed by DAMA [13] and CoGeNT [14], consistently
with results from the other experiments [15,16]. For an up-
to-date review and a more detailed bibliography see [17].
It is possible that dark matter might arise from a more

generic hidden sector with qualitatively similar features.
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As long as the hidden sector contains an unbroken Uð1Þ0
gauge interaction, dissipative dark matter can arise. The
simplest such generic hidden sector model contains two
massive states, interacting with the Uð1Þ0 gauge field (the
dark photon), with a priori unknown Uð1Þ0 charges and
masses. Such a model can then closely resemble MDM,
with the lighter state corresponding to the mirror electron
and the heavier state corresponding to mirror nuclei.
Kinetic mixing can couple the massless Uð1Þ0 gauge field
with the ordinary photon. The fundamental physics is
described by five free parameters. Our aim is to constrain
this five-dimensional parameter space using early universe
cosmology and galactic structure considerations.
The outline of this article, then, is as follows. In Sec. II

we define the model and examine some of its properties.
Sections III and IV are devoted to studying its early
universe phenomenology, focusing in particular on how
big bang nucleosynthesis (BBN) and the onset of structure
formation are affected. Section V is dedicated to analyzing
the model in the context of galactic structure. Finally, in
Sec. VI we draw on the analyses of the previous sections to
summarize the constraints on the model, and in Sec. VII we
give some concluding remarks.

II. TWO-COMPONENT HIDDEN SECTOR
DARK MATTER

The model considered incorporates a hidden sector
featuring an unbroken Uð1Þ0 gauge interaction. This means
there is a massless gauge boson, called the dark photon
(γD). The hidden sector will also contain two stable dark
matter particles, F1 and F2, taken to be Dirac fermions,
with masses mF1

and mF2
. These two particles are assumed

to be charged under the Uð1Þ0 gauge group, with charges
Q0

F1
and Q0

F2
, opposite in sign but not necessarily equal in

magnitude.
In the early universe, the Uð1Þ0 interactions would be

expected to efficiently annihilate the symmetric compo-
nent, meaning that the abundance of F1 and F2 dark matter
is set by its particle-antiparticle asymmetry. This is an
example of asymmetric dark matter, which has been
extensively discussed in recent literature [18]. Dark matter
asymmetry and local neutrality of the Universe then imply

nF1
Q0

F1
þ nF2

Q0
F2

¼ 0; ð1Þ

where nF1
and nF2

are the number densities of F1 and F2,
respectively. This is, of course, quite analogous to the
situation with ordinary matter (F1 ∼ electron, F2 ∼ proton).
The only possible renormalizable and gauge-invariant

interaction coupling the ordinary particles with the dark
sector is the Uð1Þ0 −Uð1ÞY kinetic mixing term [19].
Including this term, the full Lagrangian of our model is1

L ¼ LSM −
1

4
F0μνF0

μν þ F̄1ðiDμγ
μ −mF1

ÞF1

þ F̄2ðiDμγ
μ −mF2

ÞF2 −
ϵ0

2
FμνF0

μν; ð2Þ

where LSM denotes the SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY gauge
invariant Standard Model Lagrangian which describes the
interactions of the ordinary particles. Also, F0

μν ¼ ∂μA0
ν −

∂νA0
μ [Fμν ¼ ∂μBν − ∂νBμ] is the field-strength tensor

associated with the Uð1Þ0 [Uð1ÞY] gauge interaction, A0
μ

[Bμ ¼ cos θwAμ þ sin θwZμ] being the relevant gauge field.
The two dark fermions are described by the quantum fields
Fj and DμFj ¼ ∂μFj þ ig0Q0

jA
0
μFj, where g0 is the cou-

pling constant relevant to this gauge interaction (j ¼ 1; 2).
The dark fermions are stable which is a consequence of the
Uð1Þ0 gauge symmetry and an accidental Uð1Þ global
symmetry (implying conservation of F1 and F2 numbers).
This is reminiscent of howUð1ÞQ and the accidental baryon
number symmetries arise in the Standard Model and how
they stabilize the electron and proton. This is quite a
general feature of hidden sector dark matter models and
illustrates why they are so appealing theoretically: they
typically predict a spectrum of massive, dark and stable
particles.
The interactions of F1 with the dark photon are char-

acterized by the dark fine structure constant:
α0 ≡ ðg0QF1

Þ2=4π. The coupling of F2 with the dark photon
will be modified by the charge ratio: Z0 ≡Q0

F2
=Q0

F1
. By

means of a nonorthogonal transformation, one can remove
the kinetic mixing and show that the net effect of the
relevant term is to provide the dark fermions with a tiny
ordinary electric charge [20]. The physical photon now
couples to dark fermions with charge,

cos θwg0Q0
Fj
ϵ0 ≡ ϵFj

e: ð3Þ

Thus the fundamental physics of the model is described by
five independent parameters: mF1

; mF2
; α0; Z0 and ϵ≡ ϵF1

(note that ϵF2
¼ Z0ϵF1

and is therefore not an independent
parameter). For definiteness we will focus on the case
mF1

≪ mF2
, with Z0 being an integer.

Clearly it is entirely possible for our model to be the low
energy effective field theory limit of a more complex
theory. In this context, F1 and/or F2 might represent bound
states (dark nuclei), which could be bound together by
some interaction which resembles the strong one. In this
case, the F1=F2 masses arise from a dark confinement scale
(analogous to ΛQCD in the Standard Model) rather than
being a bare mass term. Alternatively, the mass terms for Fj

might originate from a hidden sector scalar, S, by means of
a Lagrangian term of the form λjSF̄jFj, with hSi ≠ 0.
Some possible implications of this model for dark

matter direct detection experiments have been discussed
previously in [21]. Furthermore, as explained in the

1Here and throughout the article, natural units with ℏ ¼ c ¼
kB ¼ 1 will be used.
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Introduction, the dark matter phenomenology is similar but
generalizes the MDM case. Related hidden sector models,
featuring an unbroken Uð1Þ0 interaction, have also been
discussed in recent literature, e.g. [4,5,22] and much earlier
in [23]. However, these models assume parameter space
where the dark matter galactic halo is in the form of atoms
(or a nondissipative plasma), and thus can be collisional but
generally not dissipative.2 We consider the case where the
galactic halo is in the form of a roughly spherical
dissipative plasma. Such a spherical plasma would cool
via dissipative processes, for instance dark bremsstrahlung,
unless a substantial heat source exists. Here a pivotal role is
played by the kinetic mixing interaction: kinetic mixing
induced processes (such as plasmon decay [25,26]) within
the core of ordinary core-collapse supernovae are presumed
to provide the heat source that replaces the energy lost to
dissipative interactions. This is possible provided ϵ ∼ 10−9

and mF1
≲ few × TSN ≃ 100 MeV, where TSN is the tem-

perature reached in the core of ordinary supernovae.3

A lower limit mF1
≳ 0.01 MeV arises from studies of

red giants [29] and white dwarfs [26,30] (see [31] for a
summary of relevant bounds).
Finally, one can also consider a two-component hidden

sector model where the two dark matter particles are bosons
rather than fermions, charged under a Uð1Þ0 gauge inter-
action. In the case of two scalar particles, Bj, the
Lagrangian is

L ¼ LSM −
1

4
F0μνF0

μν þ ðDμBjÞ†ðDμBjÞ

−m2
Bj
B†
jBj −

ϵ0B
2
FμνF0

μν; ð4Þ

where j ¼ 1; 2 (with summation over j implied). As in the
two-component fermion case, one can consider the general
case where the Uð1Þ0 charges of B1 and B2 are different,
with Z0

B being the charge ratio. As before, the Lagrangian in
Eq. (4) possesses an accidental global Uð1Þ symmetry4

which together with the Uð1Þ0 gauge symmetry implies
conservation of B1 and B2 numbers, and hence stability of

the dark matter particles. Again, the kinetic mixing term
will play a dominant role in the cosmological and galactical
dynamics of such a model. Barring factors of order unity to
account for spin statistics, the analysis we will perform in
the following sections will hold for this bosonic model as
well as the fermionic one. In particular, the bounds that are
summarized in Sec. VI hold for the bosonic case, up to
factors of order unity. For definiteness, though, we will
focus on the fermionic model.

III. COSMOLOGY OF THE EARLY UNIVERSE

In SecS. III and IV we derive constraints on the
parameter space of the model from early universe cosmol-
ogy considerations. We assume at the outset that the light
F1 particle has mass in the range 0.01 MeV≲mF1

≲
100 MeV. As mentioned in the previous section, and
discussed in more detail in Sec. V, this mass range for
the F1 particle is motivated by the adopted dissipative
dynamics governing galactic halos, which sees substantial
halo heating from ordinary core-collapse supernovae
compensating for the energy lost due to dissipative
interactions. This mechanism also requires kinetic mixing
of magnitude ϵ ∼ 10−9 which, it turns out, is in the
interesting range where it can be probed by early universe
cosmology.

A. Evolution of
TγD
Tγ

Successful cosmology, BBN and LSS strongly constrain
exotic contributions to the energy density during the
radiation dominated era. If we define Tγ½TγD � and Tν to
be the photon [dark photon] and neutrino temperatures,
then we require TγD ≪ Tγ (the exact mechanism that
provides such an initial condition will not be of our
concern, although asymmetric reheating is possible within
inflationary models [32]).5 As discussed previously,
kinetic mixing confers a tiny ordinary electric charge to
dark fermions. It follows that in the early universe
energy and entropy can be transferred between the
sectors. Thus even if the Universe starts with
TγD=Tγ ¼ 0, TγD will be generated as entropy is transferred
from the visible to the hidden sector. In the following work
we first study the evolution of TγD=Tγ (with initial con-
dition TγD=Tγ ¼ 0), and then consider the relevant cosmo-
logical constraints.
In the early universe energy is transferred between the

sectors via various processes, including (to order ϵ2)
eē → F1F̄1, eF1 → eF1, eē → F2F̄2, and γF1 → γDF1.
Given the assumed initial condition, TγD=Tγ ¼ 0, we can to

2An alternative possibility examined in recent literature,
known as double-disk dark matter (DDDM), explores the
scenario where only a subdominant component of the dark
matter exhibits dissipative interactions [24]. These dissipative
dynamics allow for DDDM to cool efficiently and form a thin
dark matter disk, similar to the baryonic disk.

3Although the kinetic mixing parameter is very small,
ϵ ∼ 10−9, this does not represent a theoretical problem, such
as radiative instability. Indeed, as discussed in [27], small values
for the coupling are technically natural (in the sense of ’t Hooft
[28]) since, in the limit ϵ → 0, an enhanced Poincaré symmetry
arises: GSM

P ⊗ GHS
P , where GP denotes the Poincaré group and SM

and HS stand for Standard Model and hidden sector, respectively.
4Technically, this accidental global Uð1Þ symmetry will be

present only if the Uð1Þ0 charges of B1 and B2 are such as to
prevent interaction terms like λB3

1B2.

5We only require TγD ≪ Tγ at, say, the QCD phase transition,
TQCD ∼ 100 MeV. Thus, even if the Universe started with TγD ¼
Tγ at T > TQCD, the heating of the ordinary sector at the QCD
phase transition would be sufficient to establish the necessary
initial condition, TγD ≪ Tγ , at TQCD.
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a reasonable approximation neglect inverse processes, such
as F1F̄1 → eē. Also, processes involving F2 can be
approximately neglected if F2 is much heavier than F1

[simple analytic calculations indicate that for mF2
≫

Z02 maxðme;mF1
Þ the energy transfer between the sectors

is dominated by F1 production]. Of the remaining proc-
esses, eē → F1F̄1 is expected to dominate (for Tγ ≳me),
given that the rates of all other two-body processes
are smaller by a factor of ≲nF1

=ne ∼ ðTγD=TγÞ3, and
typically we are constrained to reside in the region of
parameter space where ðTγD=TγÞ3 ≪ 1. Hence for
mF1

≳ 0.1 MeV, we consider just one production process,
eē → F1F̄1.

6

For mF1
≲ 0.1 MeV, one could consider processes such

as γF1 → γDF1 in addition to eē → F1F̄1. Although the
rate for γF1 → γDF1 is suppressed relative to eē → F1F̄1

by ∼ðTγD=TγÞ3 for Tγ ≳me, for Tγ ≲me the rate of
γF1 → γDF1 can become important and eventually
dominate.7 Here we shall focus on mF1

≳ 0.1 MeV, where
eē → F1F̄1 is the dominant process affecting the evolution
of the temperatures. Thus, our analysis will only be strictly
valid in the range 0.1 MeV≲mF1

≲ 100 MeV, while the
study of the region 0.01 MeV≲mF1

≲ 0.1 MeV will
require further work. Restricting ourselves to the region
of parameter space mF1

≳ 0.1 MeV also bypasses several
other complications which arise in the context of galactic
structure (Sec. V).
The cross section for eē → F1F̄1 is analogous to that of

muon pair production, with the essential difference being
that the coupling of F1 to the ordinary photon is now given
by ϵe. The cross section for this process is

σ ¼ 4π

3s3
ϵ2α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

F1

s − 4m2
e

s
½s2 þ 2ðm2

e þm2
F1
Þsþ 4m2

em2
F1
�;

ð5Þ

where
ffiffiffi
s

p
is the center-of-momentum energy of the system,

α ¼ e2=4π is the fine-structure constant and me is the
electron mass. The following treatment generalizes the
MDM case analyzed in [34], which itself followed earlier

works [26,35,36]. Energy is transferred between the visible
and dark sectors within a comoving volume R3 (R being the
scale factor) at a rate given by

dQ
dt

¼ R3nenēhσvM∅lEi; ð6Þ

where hσvM∅lEi denotes the thermal average of the cross
section (σ), the Møller velocity (vM∅l) and the total energy
of the process (E ¼ E1 þ E2). Following [36,37], we
replace the exact Fermi-Dirac distribution with the simpler
Maxwellian one, so that the thermally averaged cross
section is given by

hσvM∅lEi ¼
R
d3p1d3p2e−

E1
T e−

E2
T σvM∅lER

d3p1d3p2e−
E1
T e−

E2
T

: ð7Þ

To evaluate the thermally averaged cross section, similar
steps as in [36,37] can be followed, yielding

hσvM∅lEi ¼
ω

8m4
eT2

γ ½K2ðme
Tγ
Þ�2

Z
∞

4M2

dsσðs − 4m2
eÞ

×
ffiffiffi
s

p Z
∞

ffiffi
s

p dEþe
−Eþ

Tγ Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ
s

− 1

r
; ð8Þ

where ω ≈ 0.8 takes into account various approximations
such as the aforementioned use of a Maxwell-Boltzmann
distribution in lieu of the actual Fermi-Dirac one in
evaluating the thermally averaged cross section [36].
K2ðzÞ is the modified Bessel function of the second kind
and argument z, and M≡maxðme;mF1

Þ. Finally, we can
write (see for instance [38])

ne ≃ nē ¼
1

π2

Z
∞

me

dE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

e

p
E

1þ e
E
Tγ

: ð9Þ

Since self-interaction rates are bigger than the rates of
kinetic mixing induced processes by many orders of
magnitude (∼1=ϵ2), the overall system can be modeled
as being composed of two subsystems, one at temperature
Tγ and the other at temperature TγD , exchanging energy
while remaining instantaneously in thermodynamical equi-
librium. This system is somewhat analogous to that of a
block of ice melting in a glass of water (e.g. [39]). The
second law of thermodynamics can therefore be applied to
it. In principle, the neutrino subsystem should be taken into
account too. In practice the net transfer of energy to the
neutrino subsystem can be approximately neglected, at
least for mF1

≲ 10 MeV, since energy transfer to the dark
sector then happens predominantly after neutrino kinetic

6While this work was in progress, a paper [33] appeared which
considered Neff constraints on a related model. There they
considered additional production channels, such as
γF1 → γDF1, for a wide range of parameter space. The effect
of these extra channels is to tighten constraints on ϵ by around a
factor of 2.

7Another F1 production channel that could be relevant for very
low F1 mass is plasmon decay (γ → F1F̄1). It can become
important when mF1

≲ ωP=2, where ωP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παT2=9

p
is the

plasma frequency (see e.g. [26]). This implies that during the
period of interest (from BBN to the formation of the CMB)
plasmon decay is only important for mF1

≲ 50 keV.
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decoupling.8 This means that dSν ≃ 0. Nevertheless, the
evolution of Tν will still have to be taken into account,
though it trivially scales as the inverse of the scale factor
(see e.g. [38]).
The second law of thermodynamics states that the

change in entropy in the visible sector is given by

dS ¼ −
dQ
Tγ

: ð10Þ

Similarly, the change in entropy for the dark sector is

dS0 ¼ dQ
TγD

: ð11Þ

A useful way to express the entropy of a particle species in
cosmology is given in e.g. [38]

S ¼ ρþ p
T

R3; ð12Þ

where ρ, p and T denote its energy density, pressure and
temperature, respectively. Taking the derivative with
respect to time on both sides of Eqs. (10) and (11) and
combining the result with Eqs. (6) and (12) yields

d
dt

�ðργþpγþρeþpeÞR3

Tγ

�
¼−

nenēhσvM∅lEiR3

Tγ
;

d
dt

�ðργD þpγD þρF1
þpF1

ÞR3

TγD

�
¼nenēhσvM∅lEiR3

TγD

; ð13Þ

where we have neglected the neutrino contribution to the
entropy change, which is justified as dSν ≃ 0, as discussed
above. In Eqs. (13) and below, we have defined
ρe ≡ ρe þ ρē, and similarly for pe, ρF1

and pF1
.

The 00 component of the Einstein field equations for the
FRW metric describes the evolution of the scale factor R.
This is known as the first Friedmann equation and in a flat
universe takes the form

�
_R
R

�
2

¼ 8πGN

3
½ργ þ ρe þ ρν þ ργD þ ρF1

�: ð14Þ

Defining x≡me=Tγ , energy densities and pressures in the
visible sector are given in e.g. [38]

ργ ¼
π2

15
T4
γ ;

pγ ¼
π2

45
T4
γ ;

ρe ¼
2T4

γ

π2

Z
∞

x
du

ðu2 − x2Þ12u2
1þ eu

;

pe ¼
2T4

γ

3π2

Z
∞

x
du

ðu2 − x2Þ32
1þ eu

;

ρν ¼
7π2

40
T4
ν: ð15Þ

Similarly for the dark sector, with x0 ≡mF1
=TγD ,

ργD ¼ π2

15
TγD

4;

pγD ¼ π2

45
TγD

4;

ρF1
¼ 2TγD

4

π2

Z
∞

x0
du

ðu2 − x02Þ12u2
1þ eu

;

pF1
¼ 2TγD

4

3π2

Z
∞

x0
du

ðu2 − x02Þ32
1þ eu

: ð16Þ

Considering the neutrino subsystem, the neutrino tem-
perature scales as Tν ∝ 1=R which follows from dSν ≃ 0.
Noting that all proportionality factors cancel [being there
the same power of the scale factor R on both sides of
Eqs. (13)], R in Eqs. (13) can effectively be replaced by
1=Tν. Accordingly, Eqs. (13) can be expressed as

d
dt

�ðργ þ pγ þ ρe þ peÞ
TγT3

ν

�
¼ −

nenēhσvM∅lEi
TγT3

ν
;

d
dt

�ðργD þ pγD þ ρF1
þ pF1

Þ
TγDT

3
ν

�
¼ nenēhσvM∅lEi

TγDT
3
ν

; ð17Þ

and Eq. (14) as

1

Tν

dTν

dt
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

3
ðργ þ ρe þ ρν þ ργD þ ρF1

Þ
r

: ð18Þ

Some manipulation shows that Eqs. (17) can be brought to
the form

8For F1 masses in the range 10 MeV ≲mF1
≲ 100 MeV, there

can be a significant transfer of entropy out of the neutrino
subsystem. For the largest F1 masses, mF1

∼ 100 MeV, the
evolution can be separated into two distinct stages. The first is
where F1; F̄1 states are produced via processes such as
ēe → F̄1F1. For these largest F1 masses of interest, these
production processes will only be important for temperatures
above the kinetic decoupling of the neutrinos so that Tν ¼ Tγ

results. The second stage is the annihilation of electrons and
positrons (ēe → γγ) which continues to occur at temperatures
where the neutrinos have kinetically decoupled and leads to the
heating of photons relative to the neutrinos (Tγ > Tν). We have
checked that the effect of neglecting the transfer of entropy to the
neutrino system during the F1; F̄1 production era does not greatly
modify (≲20%) our derived limits on ϵ from the constraints on
δNeff .
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ζ
dTγ

dt
þ κ

dTν

dt
¼ −

nenēhσvM∅lEi
T3
γ

;

ζ0
dTγD

dt
þ κ0

dTν

dt
¼ nenēhσvM∅lEi

T3
γD

; ð19Þ

where

ζ≡ 3ργ
T4
γ
þ 3pγ

T4
γ
þ 3ρe

T4
γ
þ 3pe

T4
γ

þ 2m2
e

π2T2
γ

Z
∞

x
du

ðu2 − x2Þ−1
2u2 þ ðu2 − x2Þ12
1þ eu

;

κ≡ −
�
3ργ
T3
γ
þ 3pγ

T3
γ
þ 3ρe

T3
γ
þ 3pe

T3
γ

�
1

Tν
;

ζ0 ≡ 3ργD
TγD

4
þ 3pγD

TγD
4
þ 3ρF1

TγD
4
þ 3pF1

TγD
4

þ 2m2
F1

π2TγD
2

Z
∞

x0
du

ðu2 − x02Þ−1
2u2 þ ðu2 − x02Þ12
1þ eu

;

κ0 ≡ −
�
3ργD
TγD

3
þ 3pγD

TγD
3
þ 3ρF1

TγD
3
þ 3pF1

TγD
3

�
1

Tν
: ð20Þ

We are now left with a closed system of three differential
equations [Eqs. (18) and (19)] for three unknowns (Tγ, TγD
and Tν). Given suitable initial conditions, then, the system
can be solved numerically to give the evolution of these
three quantities. An example is presented in Fig. 1, where
the evolution of TγD=Tγ is plotted as a function of Tγ for
different values ofmF1

and for ϵ ¼ 10−9. Note that the flow
of time is from the right to the left.
It can be seen from Fig. 1 that TγD=Tγ asymptotically

approaches a constant at late times. We would like to find
an approximate analytic expression for the asymptotic
value of TγD=Tγ . It is perhaps useful to recall the results

obtained for MDM. In this context, MDM can be viewed as
a special case of our model in the limit where mF1

¼ me.
For the case of MDM it has been found that Tγ0=Tγ (where
γ0 denotes the mirror photon, which is of course analogous
to our dark photon, γD) asymptotically evolves to [34]

Tγ0

Tγ
≃ 0.31

�
ϵ

10−9

�1
2

: ð21Þ

More generally, mF1
≠ me in the context of our two-

component hidden sector model, and one expects a some-
what different behavior in TγD=Tγ to account for this mF1

dependence. Previous work in the MDM context shows that
in the limit of Tγ ≫ me, an analytic expression can be
found for Tγ0=Tγ [36],

Tγ0

Tγ
∝

ffiffiffi
ϵ

p �
1

T
−

1

Ti

�1
4

; ð22Þ

with an assumed initial condition Tγ0 ¼ 0 at Tγ ¼ Ti. For
Tγ ∼me, energy transfer to the mirror sector cuts off, as the
process eē → e0ē0 becomes infrequent due to Boltzmann
suppression of e, ē number densities.
We can attempt to generalize the result to our case. The

process eē → F1F̄1 will cease to be important at temper-
atures below ∼M≡maxðme;mF1

Þ. Equation (22) then
suggests that the asymptotic value of the ratio TγD=Tγ is

proportional to
ffiffiffi
ϵ

p ðme=MÞ14. This intuition has been
verified numerically, by evolving for different values of
ϵ and mF1

. Numerically, we find that the asymptotic value
of TγD=Tγ can be expressed in the form

TγD

Tγ
≃ 0.31

ffiffiffiffiffiffiffiffiffi
ϵ

10−9

r �
me

M

�1
4

;

M≡maxðme;mF1
Þ; ð23Þ

for parameters in the range ϵ ∼ 10−9 and
0.1 MeV≲mF1

≲ 100 MeV.
One can also attempt to understand the shape of the

curves in Fig. 1. At early times (Tγ ≫ mF1
; me) the curves

overlap, following a TγD=Tγ ∝ ð1=TγÞ14 behavior consistent
with the analytic solution previously discussed. At some
later time corresponding to Tγ ∼M, the curves start
deviating from the analytic solution. The rising of the
various curves at different temperatures and with character-
istic bumps can be understood in terms of annihilation
processes which are heating the respective sectors roughly
at the temperature corresponding to the mass of the particle-
antiparticle pair which is annihilating. That is, electron-
positron and F1-F̄1 annihilations explain the deviation of
the numerical solution from the simpler analytic one. Once
the annihilation processes are over, TγD=Tγ reaches its
asymptotic value.
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FIG. 1. Evolution of X ≡ TγD=Tγ for mF1
¼ 10 MeV (dot-

dashed line), mF1
¼ 1 MeV (solid line) and mF1

¼ 0.1 MeV
(dashed line).
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B. Calculation of δNeff ½CMB�
We now compute the modification of the energy density

at the hydrogen recombination epoch in the early universe.
Away to parametrize this extra energy density is in terms of
an effective number of neutrino species. Recall that the
relativistic energy density component at recombination can
be expressed as

ρrad ¼
�
1þ 7

8

�
4

11

�4
3

Neff ½CMB�
�
ργ; ð24Þ

where the factor of 7=8 takes into account the different
statistical natures (fermionic instead of bosonic) of neu-
trinos with respect to photons, and the factor of 4=11 takes
care of γ heating due to eē annihilation after neutrino
kinetic decoupling (see for instance [38]). Neff is referred to
as the effective number of neutrinos and is predicted to be
Neff ≃ 3.046 in the Standard Model (see e.g. [40]).
Observations from WMAP [41], the South Pole
Telescope [42], the Atacama Cosmology Telescope [43]
and the Planck mission [44] are consistent with the
Standard Model predictions and can be used to constrain
δNeff ½CMB�≡ Neff ½CMB� − 3.046. Using the result of
Planck’s analysis Neff ½CMB� ¼3.30� 0.27 [44] gives the
2σ upper limit: δNeff ½CMB� < 0.80.
In our model the modification to the effective number of

neutrinos can be written as follows:

δNeff ½CMB� ¼ 3

��
TνðϵÞ

Tνðϵ ¼ 0Þ
�
4

− 1

�
þ 8

7

�
TγDðϵÞ

Tνðϵ ¼ 0Þ
�

4

;

ð25Þ

where the temperatures are evaluated at photon decoupling,
Tγ ≃ 0.26 eV. The two terms on the right-hand side of
Eq. (25) account for distinct effects. First, the process eē →
F1F̄1 will increase TγD at the expense of Tγ, thus reducing
Tγ=Tν and effectively increasing the number of neutrino
species at recombination. The second term is the direct
increase in Neff ½CMB� due to the increase in TγD itself.
One has to pay attention when using δNeff ½CMB� to set

constraints on the parameter space, since the addition of
energy density is not the only effect to consider. Prior to the
recombination of F1 and F2 into neutral dark states, dark
matter behaves like a tightly coupled fluid, analogous to the
photon-baryon fluid in the visible sector. This fluid under-
goes acoustic oscillations, which suppress power on small
scales, hence behaving very differently from collisionless
CDM. Thus, there are two quite different possible effects
for the CMB to consider. The first is the extra energy
density as parametrized by δNeff ½CMB�, and the second is
the effect of dark acoustic oscillations prior to dark
recombination. In this section we consider the energy
density modification, while the constraints arising from
dark acoustic oscillations will be dealt with in Sec. IV.

In Fig. 2, we present results for δNeff ½CMB� obtained by
numerically solving Eq. (25) [in the process, solving also
Eqs. (18) and (19)] for some example parameter choices.
We set constraints on our model by using the limit
δNeff ½CMB� < 0.80. In Fig. 3 the exclusion limits for
our model in the ϵ-mF1

parameter space are shown, with
the excluded region being above the line. Notice for
mF1

¼ 0.511 MeV we recover the bound on ϵ obtained
for MDM, ϵ≲ 3.5 × 10−9 [34].

C. Calculation of δNeff ½BBN�
The addition of extra energy density during the early

universe also has an effect on BBN, the process during
which light nuclei, and in particular helium, were syn-
thesized (for a more detailed review see e.g. [45]). It is
known that increasing the energy density by the addition of
one neutrino species increases the helium fraction, Yp,
by approximately 0.013 [46]. It follows therefore that
the change in the effective number of neutrino species
associated with BBN is approximately given by
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FIG. 2. δNeff ½CMB� versus ϵ at fixed values of mF1
for (going

from up to down) mF1
¼ 0.1, 0.511, 0.7, 1, 10 MeV.
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FIG. 3. Exclusion limits obtained from δNeff ½CMB� < 0.80 in
ϵ-mF1

parameter space (excluded region is above line).
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δNeff ½BBN� ¼
YpðϵÞ − Ypðϵ ¼ 0Þ

0.013
: ð26Þ

The first step toward the synthesis of helium is the synthesis
of deuterium which, in turn, depends on the neutron
abundance Xn ≡ np=ðnn þ npÞ. We begin by considering
the weak interaction processes which affect the neutron
abundance,

nþ νe ↔ pþ e;

nþ ē ↔ pþ ν̄e;

n → pþ eþ ν̄e: ð27Þ

At equilibrium (hence, at high temperatures) Xn≃
1=ð1þ eQ=TÞ, where Q≃ 1.293 MeV is the difference
between the neutron and the proton masses.
The rates for the four processes which affect the neutron

abundance (excluding neutron decay) can be found in
e.g. [45]

λ1 ≡ λðnþ νe → pþ eÞ

¼ A
Z

∞

0

dPνE2
eP2

ν
1

e
Eν
Tν þ 1

1

e−
Ee
Tγ þ 1

;

λ2 ≡ λðnþ ē → pþ ν̄eÞ

¼ A
Z

∞

0

dPeE2
νP2

e
1

e
Ee
Tγ þ 1

1

e−
Eν
Tν þ 1

;

λ3 ≡ λðpþ e → nþ νeÞ

¼ A
Z

∞ffiffiffiffiffiffiffiffiffiffiffi
Q2−m2

e

p dPeE2
νP2

e
1

e
Ee
Tγ þ 1

1

e−
Eν
Tν þ 1

;

λ4 ≡ λðpþ ν̄e → nþ ēÞ

¼ A
Z

∞

Qþme

dPνE2
eP2

ν
1

e
Eν
Tν þ 1

1

e−
Ee
Tγ þ 1

; ð28Þ

where Ee½Eν�, Pe½Pν� indicate the electron [neutrino]
energy and momentum, respectively. The extremals of
the integrals are obtained from kinematical considerations.
The factors within the integrals account for Fermi-Dirac
statistics and Pauli blocking. The values of the various
constants are given by

A ¼ G2
Fð1þ 3g2AÞcos2θc

2π3
;

GF ¼ 1.166 × 10−5 GeV−2;
gA ¼ 1.257;

cos θc ¼ 0.97456: ð29Þ

The evolution of the neutron abundance, Xn, is governed by
the differential equation,

dXn

dt
¼ −ðλ1 þ λ2 þ λnÞXn þ ðλ3 þ λ4Þð1 − XnÞ; ð30Þ

where λ−1n ¼ τn ≃ 886.7 s is the neutron lifetime.
Equation (30) can be used to evolve the neutron fraction
down to the so-called deuterium bottleneck temperature
Tγ ≃ 0.07 MeV [of course, Eqs. (18) and (19) need to be
solved simultaneously to obtain the modified time-temper-
ature relation]. The helium fraction, Yp, is twice the value
of Xn at this time, and δNeff ½BBN� can be evaluated by
using Eq. (26).
There are hints that δNeff ½BBN� is also nonzero and

positive. The data constrain δNeff ½BBN� < 1 at around
95% confidence level [47]. In Fig. 4 δNeff ½BBN� is plotted
against ϵ keeping mF1

fixed. The constraints following
from this analysis are shown together with those obtained
from δNeff ½CMB� in Fig. 5. Evidently the limits set by
δNeff ½CMB� are more stringent than those set by
δNeff ½BBN�. Finally, we find an analytic approximation
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FIG. 4. δNeff ½BBN� versus ϵ at fixed values of mF1
for (going

from up to down) mF1
¼ 0.1, 0.7, 1, 2, 10 MeV.
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FIG. 5. Exclusion limits from δNeff ½CMB� < 0.80 (solid line)
and δNeff ½BBN� < 1 (dashed line). Regions above lines are
excluded.
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to CMB δNeff constraints on ϵ arising from early universe
cosmology,

ϵ≲ 3.5 × 10−9
�
M
me

�1
2

: ð31Þ

The ϵ ∼M
1
2 dependence can easily be understood by

referring to Eqs. (23) and (25).

IV. DARK RECOMBINATION

A. Saha equation for dark recombination

Additional energy density, as parametrized by
δNeff ½CMB�, is not the only new physics affecting the
CMB. Prior to recombination of F1 and F2 into neutral dark
states, dark matter behaves like a tightly coupled fluid
which undergoes dark acoustic oscillations. These oscil-
lations suppress power on small scales (hence deviating
from collisionless CDM), below some characteristic scale
L⋆, which is itself a function of the parameters in our
model. Ultimately such a suppression of power on small
scales may help in explaining the observed dearth of small
galaxies in the neighborhood of the Milky Way. In the
following, though, we simply derive approximate bounds
by requiring that Tdr ≳ Teq, where Tdr is the temperature in
the visible sector at the time of dark recombination, and Teq
is the temperature of matter-radiation equality. This require-
ment has been used in the literature (see for instance [48]),
and follows from studies in the MDM context [9,49,50].
Roughly, Tdr ≳ Teq means that LSS is unaffected by dark
acoustic oscillations on scales which are still growing
linearly today.
In the present model, dark recombination involves jZ0j

F1 particles combining with one F2 particle to form a
Uð1Þ0-neutral dark state, which will be called D0 (recall Z0
is the charge ratio of F2 and F1). We would like to know
when (at what temperature or, equivalently, redshift) does
dark recombination happen, that is, the moment in which
the last F1 recombines with the state formed by jZ0j-1 F1

particles and one F2. Let us call this last state Dþ (we take
the convention where F1 has charge −1 and F2 has charge
jZ0j). The relevant process to look at is

F1 þDþ ↔ D0 þ γD: ð32Þ

The Saha equation for the process above is given in e.g. [3]

nD0

nDþnF1

¼ nD0
ð0Þ

nDþð0ÞnF1

ð0Þ ; ð33Þ

where the superscript ð0Þ denotes the equilibriumvalue. Note
that inwritingEq. (33) it has been assumed thatnγD ¼ nγD

ð0Þ.
It is worth stressing that Eq. (33) is an approximate
equilibrium equation, namely, the equilibrium limit of the
Boltzmann equations. It does not, therefore, follow the

abundances through out-of-equilibrium processes, such as
freeze-out (see for instance [3]). Equation (33), nonetheless,
predicts the correct redshift of dark recombination, which is
the quantity we wish to determine.
To proceed, it is useful to introduce the ionization

fraction of F1,

χ ≡ nF1

nF2

¼ nF1

nF1
þ nD0

¼ nF1

nDþ þ nD0

; ð34Þ

where nF1
is the number density of free F1 particles and nF2

is the total number density of F2. The last equality follows
from assuming Uð1Þ0 neutrality. The left-hand side of
Eq. (33) is then ð1 − χÞ=ðnF2

χ2Þ. The right-hand side of
Eq. (33) can also be expressed in a more useful form. For a
species A of mass mA and temperature TA, the equilibrium
number density in the limit mA ≫ TA can be written as
(see e.g. [3])

nA ¼ gA

�
mATA

2π

�3
2

e−
mA−μA

TA ; ð35Þ

with μA being the chemical potential of the species and gA a
degeneracy factor that usually takes into account multiple
spin states. To good approximation μγD ¼ 0 so, as long as
the equilibrium holds, the following is true:

μF1
þ μDþ ¼ μD0 : ð36Þ

The ionization energy of D0, I0, is defined to be

I0 ¼ mF1
þmDþ −mD0 : ð37Þ

Equation (33) can be rearranged in a form which is more
useful for following the evolution of the ionization fraction
of F1. To do so, we can employ the fact that gF1

gDþ ¼ gD0

and work in the approximation mDþ ≃mD0 ≃mF2
. This

approximation is valid as long as mF2
≫ mF1

which is
assumed.9 These considerations allow the right-hand side
of Eq. (33) to be rearranged to the form

nD0
ð0Þ

nDþð0ÞnF1

ð0Þ ¼
�

2π

mF1
TγD

�3
2

e
I0

TγD : ð38Þ

The end result is that the Saha equation [Eq. (33)] can be
reduced to the more suitable form

1 − χ

χ2
¼ nF2

�
2π

mF1
TγD

�3
2

e
I0

TγD : ð39Þ

The F2 number density simply scales with the baryon
number density as follows:

9This approximation is similar to that of approximating the
mass of the hydrogen atom with the proton mass.
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nF2
¼
�
Ωdm

Ωb

��
mp

mF2

�
nB¼

�
Ωdm

Ωb

��
mp

mF2

��
nB
nγ

��
nγ
nγD

�
nγD;

ð40Þ

wheremp ≃ 0.94 GeV is the proton mass and η≡ nB=nγ is
the baryon-to-photon ratio. Using Ωdm=Ωb ≃ 5.4 [44],
η≃ 6 × 10−10 [51], nγ=nγD ¼ ðTγ=TγDÞ3 [with Tγ=TγD

evaluated using Eq. (23)] and nγD ¼ π2T3
γD=45 allows us

to rewrite Eq. (39) in the following form:

1 − χ

χ2
¼ A

�
TγD

I0

�3
2

e
I0

TγD ; ð41Þ

where

A≃ 3.5 × 10−7
�
10−9

ϵ

�3
2

�
M
me

�3
4

�
GeV
mF2

��
I0

mF1

�3
2

: ð42Þ

Using the variable ξ≡ I0=TγD , Eq. (41) can be put to the
form

1 − χ

χ2
¼ Aξ−

3
2eξ: ð43Þ

The Saha equation can be used to determine the redshift of
dark recombination. To solve for the redshift (or, equiv-
alently, temperature) of dark recombination, we take
χ ≈ 0.1, so that Eq. (43) reduces to

ξ ¼ 3

2
ln ξþ ln

�
90

A

�
: ð44Þ

In this form the Saha equation is easy to solve numerically.
Once the value of ξ that solves the equation has been found,
the temperature of the dark sector at dark recombination,
T 0
dr, is given by

T 0
dr ¼

I0

ξ
: ð45Þ

The corresponding temperature of the visible sector at the
time of dark recombination, Tdr, can be found by inverting
Eq. (23),

Tdr ≃ 3.2T 0
dr

�
10−9

ϵ

�1
2

�
M
me

�1
4

: ð46Þ

B. Binding energy of the dark bound state

To make progress, we need to determine I0 in terms of the
parameters of our model. The bound system of F2 with N
F1 particles is completely analogous to that of nuclei with
N electrons. It follows that the binding energy of the dark
state has the general form,

I0 ¼ Z0
eff

2
α02

2
μR; ð47Þ

where μR is the reduced mass of the F1-Dþ system, given
by μR ¼ mF1

mDþ=ðmF1
þmDþÞ. In the limit where mF2

≫
mF1

one has that I0 ≃ Z02
effα

02mF1
=2.

Naturally exact analytic expressions for Z0
eff are in

general unknown, but it is still possible to make a rough
approximation for Z0

eff and hence determine I0. The charge
Z0
eff depends only on the chemistry (or equivalently on

quantummechanics) of the bound state we are analyzing. In
particular, it depends on shielding effects due to the jZ0j-1
F1 particles partially shielding the charge of the F2 particle
from the last F1 which is about to combine. The problem of
determining Z0

eff is therefore identical to that of determining
the shielding of an ordinary nucleus of atomic number Z ¼
jZ0j due to Z-1 electrons. It essentially only depends on the
way the fermions arrange themselves in orbitals, which in
turn is determined solely by quantum mechanics.
Under these assumptions the binding energy I0 of the

dark bound state can be derived simply by scaling the
binding energy I of the corresponding ordinary element
with atomic number Z ¼ jZ0j via

I0 ¼
�
α0

α

�
2
�
mF1

me

�
I: ð48Þ

A plot of the binding energies of the elements of the
periodic table as a function of the atomic number Z is
shown in Fig. 6. One notes from Fig. 6 that, apart from
isolated cases such as He, the binding energies of the
various elements reside in a fairly narrow range centered at
about 10 eV, within a factor of approximately 2. For
Z ≳ 10, the dependence of I on Z is even weaker. This
means that Z0

eff ≈ 1 in Eq. (47) and I0 ≈ α02mF1
=2.
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FIG. 6. Ionization energy as a function of the atomic number for
ordinary elements.
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C. Exclusion limits

Recall the validity of our model requires Tdr ≳ Teq,
where Teq is the temperature of the visible sector at matter-
radiation equality. This condition is required for successful
LSS formation (e.g. [48]). The redshift of matter-radiation
equality is zeq ¼ 3200� 130 [51], which leads to a lower
limit on the matter-radiation equality temperature of
about Teq ¼ 0.72 eV.
We can now scan the parameter space of this model and

set constraints on its parameters. In principle the model
presents five parameters: mF1

, mF2
, α0, ϵ and Z0. A

numerical analysis of the solution, Tdr ≳ Teq, shows a
weak dependence on mF2

. This can be understood by
noting that an iterative solution of Eq. (44) displays a
loglike dependence on the value of the constant A, which is
the only place where mF2

comes into play. The dependence
on Z0 is also relatively minor, since as previously noted it
only affects the binding energy in a modest way.
To summarize, the physics of dark recombination, to a

rough approximation, depends on just three parameters:
mF1

, α0 and ϵ (being relatively insensitive to Z0 and mF2
).

We now derive constraints on these three parameters.
As already discussed, we derive exclusion limits by

requiring Tdr ≳ Teq, and using Eqs. (44), (45), (46), and
(48) [we take I ¼ 10 eV in Eq. (48)]. In Fig. 7 we give the
results for a fixed mF1

and varying α0. The dependence on
α0, mF1

shown in Fig. 7 can easily be understood by
analytical considerations. Recall that to constrain the model
we look for the value of parameters for which
Tdr ≳ Teq ≃ 0.72 eV. From Eqs. (45) and (48) we have
that T 0 ∝ I0 ∝ α02mF1

, while Eq. (23) implies

Tdr ¼ T 0
drTdr=T 0

dr ∝ α02mF1
M

1
4=

ffiffiffi
ϵ

p
. It follows therefore

that the upper limit on ϵ scales as α04m2
F1

ffiffiffiffiffiffi
M

p
. In fact,

the numerical results shown in Fig. 7 give the upper bound
on ϵ, coming from dark recombination,

ϵ≲ 10−8
�
α0

α

�
4
�
mF1

MeV

�
2
�
M
me

�1
2

: ð49Þ

The above upper bound also includes a factor of ∼2
uncertainty on ϵ arising from the uncertainty
on I½I ¼ ð10� 5Þ eV�.

V. GALACTIC STRUCTURE

In this section we explore small-scale phenomenology of
this dissipative dark matter model, focusing on the structure
of spiral and irregular galaxies at the present epoch. In these
galaxies the dark matter halo is (currently) assumed to be in
the form of a dissipative plasma composed of F1 and F2

particles. Such a plasma can be approximately spherical
and extended even in the presence of substantial energy loss
due to dissipative processes (such as dark bremsstrahlung)
provided there exists a substantial heat source. Spiral and
irregular galaxies exhibit ongoing star formation making it
possible for ordinary core-collapse supernovae to be this
halo heat source (with the halo having evolved as a
consequence of the assumed dynamics so that the heating
and cooling rates balance). This mechanism requires
kinetic mixing with ϵ ∼ 10−9 to convert a significant
fraction of the supernovae core collapse energy into the
production of light F1; F̄1 particles and ultimately into dark
photons. Here, we provide a fairly simplistic analytic
treatment of the problem adapting and expanding aspects
of previous work in the MDM context [11,12]. This will, of
course, only represent a zeroth-order approximation which
could be improved in a more sophisticated treatment.
Nevertheless, this simple analytic approach provides useful
insight and should be adequate for the purposes of
extracting the parameter space region of interest.
We will also briefly consider elliptical and dwarf

spheroidal galaxies. These galaxies must have a different
dark matter structure from spirals and irregulars (at least at
the present epoch) as these galaxy types have little current
star formation activity. We will briefly comment on how
these galaxy types might fit into this picture. The detailed
structure of larger systems such as galaxy clusters is of
course very important but will be left for future work.

A. Dynamical halo model and halo scaling relations

The physical picture of spiral galaxies is that of a flat
disk of baryonic matter surrounded by a dark matter halo.
In our model, the dark matter halo is formed by a plasma of
F1 and F2 particles, where energy is lost to dissipative
interactions, such as thermal dark bremsstrahlung. To
account for the observed halo structure, a heat source that
can replace this energy lost has to exist. In the MDM
context, it has been argued that ordinary supernovae can
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FIG. 7. Exclusion limits from the constraint on the temperature
of dark recombination (discussed in text). The limits are for fixed
values of mF1

for (going from upper to lower line) mF1
¼ 100,

10, 1, 0.1, 0.01 MeV (excluded region is above the line).
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supply this energy [11,12,17]. The mechanism involves
kinetic mixing induced processes (eē → e0ē0, γ → e0ē0;…)
in the supernovae core, which can convert ∼1=2 of the core
collapse energy into γ0, e0, ē0 for ϵ ∼ 10−9 [25,26] (see also
[52]). Ultimately this energy is reprocessed into mirror
photons in the region around the supernovae. Essentially
the same mechanism can take place in our generic two-
component dissipative dark matter model provided
that mF1

≲ few × TSN ≈ 100 MeV.
The physical properties of the dark matter halo are then

governed by the Euler equations of fluid dynamics, which
take the form

∂ρ
∂t þ∇ · ðρvÞ ¼ 0;

∂v
∂t þ ðv ·∇Þv ¼ −

�
∇ϕþ∇P

ρ

�
;

∂
∂t

�
ρðv

2

2
þ EÞ

�
þ∇ ·

�
ρðv

2

2
þ P

ρ
þ EÞv

�
− ρv ·∇ϕ

¼ dΓheat

dV
−
dΓcool

dV
: ð50Þ

Here P, ρ and v denote the pressure, mass density and
velocity of the fluid. E is the internal energy per unit mass
of the fluid, so that ρðv2=2þ EÞ is the energy per unit
volume. Finally, Γheat and Γcool are the heating and cooling
rates. Significant simplifications occur if the system
evolves to a static configuration. In this limit, all time
derivatives in Eqs. (50) vanish, and if one also assumes
spherical symmetry,10 then Eqs. (50) reduce to just two
equations:

dΓheatðrÞ
dV

¼ dΓcoolðrÞ
dV

ð51Þ

and

dPðrÞ
dr

¼ −ρðrÞgðrÞ: ð52Þ

Here gðrÞ ¼ ∇ϕ is the local gravitational acceleration.
The quantities gðrÞ, PðrÞ can be related to the density

ρðrÞ via

gðrÞ ¼ v2rot
r

¼ G
r2

Z
r

0

dr04πr02ρTðr0Þ;

PðrÞ ¼ ρðrÞTðrÞ
m̄

; ð53Þ

where we have assumed local thermal equilibrium
in order to relate P to T and m̄ is the mean mass of
the particles forming the dark plasma. [m̄ ¼
ðnF1

mF1
þ nF2

mF2
Þ=ðnF1

þ nF2
Þ for a fully ionized

plasma.] Here ρTðrÞ is the total mass density which, in
addition to the dark plasma component, ρðrÞ, includes
baryonic components (stars and gas) and possibly compact
dark “stars.”
A few comments on Eqs. (51) and (52) are in order.

Equation (51) represents energy balance at every point in
the halo, while Eq. (52) is the hydrostatic equilibrium
condition. Both conditions are required for a static con-
figuration. Whether the system is able to evolve to such a
static configuration is not certain, but seems possible.
Assuming that the system, at an early time prior to the
onset of ordinary star formation (t≲ few Gyr), was in a
more compact configuration, then the subsequent star
formation activity would expand and heat the halo (that
is, Γheat − Γcool > 0 initially), which in turn would modify
Γheat − Γcool via various feedback processes. The idea is that
these feedback processes can reduce Γheat − Γcool as the
halo expands until Γheat − Γcool ¼ 0 is reached. For exam-
ple, as the halo expands, the ordinary supernovae rate
reduces in response to the weakening gravity, as expressed
by the Schmidt-Kennicutt empirical law, which relates the
star formation rate to the gas density in spiral galaxies [53],

_Σ⋆ ∝ nNgas; N ∼ 1–2: ð54Þ

This mechanism and others can potentially lead to a net
reduction in Γheat − Γcool as the halo expands, until even-
tually the static limit is reached where Γheat ¼ Γcool.
To gain insight, we initially solve Eq. (52) assuming an

isothermal halo, i.e. dT=dr ¼ 0, and approximating
ρTðrÞ ¼ ρðrÞ. Both of these approximations can be roughly
valid in the outer regions of the galaxy. Combining
Eqs. (52) and (53) and taking into account the isothermal
approximation, the hydrostatic equilibrium equation can be
expressed as

dρ
dr

¼ −
m̄ρðrÞG
Tr2

Z
r

0

dr04πr02ρðr0Þ: ð55Þ

Equation (55) can be solved by a polynomial of the form
ρ ¼ λ=rp. Substitution into Eq. (55) yields p ¼ 2 and
λ ¼ T=2πGm̄, that is,

ρðrÞ ¼ T
2πGm̄r2

: ð56Þ

10For the most part we assume spherical symmetry. This is a
simplifying approximation which we expect will lead to reason-
able zeroth order results. Of course, the halo cannot be exactly
spherically symmetric; deviations from spherical symmetry
might be important and future work could attempt to incorporate
these. Two main sources of asymmetry are the supernova heat
source, distributed within the galactic disk, and possible bulk
rotation of the halo. The latter effect depends on the size of the
halos angular momentum, which is unknown and may be difficult
to estimate reliably from theoretical considerations.
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Combining Eqs. (53) and (56) gives us the rotational
velocity profile, which we can relate to the temperature
of the halo,

v2rot ¼
G
r

Z
r

0

dr04πr02
T

2πGm̄r02
¼ 2T

m̄

⇒ T ¼ 1

2
m̄v2rot ≡ 1

2
m̄v2∞: ð57Þ

The rotational velocity is found to be independent from the
distance to the center of the galaxy, consistent with the
observed asymptotically flat rotational curves of spiral
galaxies, with asymptotic velocity v∞.

1. Toy model

Is the assumption of an isothermal halo justified? Let us
consider a toy model, where we consider all supernovae as
acting as a point source at the Galactic center (r ¼ 0)
producing a total dark photon luminosity LSN. Clearly
this model is unphysical and will have to be refined later.
To apply Eq. (51) to the system, we have to match the
energies absorbed and dissipated within a volume
element dV.
Supernovae are presumed to be a source of dark photons,

resulting from kinetic mixing induced processes (e.g.
γ → F1F̄1, eē → F1F̄1) occurring in the supernovae cores.
The resulting interactions in the region around the super-
novae convert this energy into dark photons of an uncertain
spectrum. These dark photons can eventually escape and
ultimately transport and inject the energy into the halo. Two
possible mechanisms can be envisaged: dark photoioniza-
tion and dark Thomson scattering. We show in Appendix B
that dark Thomson scattering is an unimportant heating
mechanism for the parameter space we are focusing
on (mF1

≳ 0.1 MeV).
Assuming, then, that the heating of the halo takes place

via a dark photoionization process with cross section σDP,
the energy per unit time being absorbed in a given volume
element, dV, is given by11

dΓheat ¼
LSNe−τ

4πr2
σDPnF2

dV; ð58Þ

where τ is the optical depth. We have assumed that the two
K-shell atomic F1 states are occupied, which means that the
plasma cannot be completely ionized. We shall here assume
that the remaining ðjZ0j − 2Þ F1 states are free, and we
will comment more on these consistency conditions in
Sec. V B 2. Evidently, the validity of our model then
requires jZ0j ≥ 3.

Energy is lost via dark bremsstrahlung of F1 off F2. The
energy dissipated per unit time within a volume element dV
is given by

dΓcool ¼ ΛðTÞnF1
nF2

dV; ð59Þ

where ΛðTÞ is the cooling function for dark bremsstrahlung
(defined more precisely in Sec. V B) and nF1

(henceforth)
denotes the free F1 particles number density. There are
other sources of dissipation, such as line emission and
recombination, which could be included by modifying Λ
(see e.g. [54]).12 Although they might be important, for the
purposes of this discussion they will be neglected.13

Matching of heating and cooling corresponds to equating
the right-hand sides of Eqs. (58) and (59), which yields

nF1
¼ LSNe−τ

ΛðTÞ4πr2 σDP: ð60Þ

If, in addition, we make the assumption that the halo is
optically thin (τ ≪ 1), we recover nF1

∝ 1=r2. This also
means that ρ ∝ 1=r2.
The end result is that the assumption of an isothermal

halo provides a solution to both energy balance [Eq. (51)]
and the hydrostatic equilibrium condition [Eq. (52)]. This
suggests that an isothermal halo can be a reasonable
approximation at large distances from the Galactic center,
where the supernova heat source can be modeled as a point
source and where, in addition, ρTðrÞ≃ ρðrÞ.

2. A refined model: Solution to the core-cusp problem

The toy model described above is unphysical at r ¼ 0.
To refine it, we smear the supernova energy source over a
finite volume, on a distance scale rD. Since we are dealing
with ordinary supernovae, it is reasonable to assume they
are distributed similarly to the mass of the galactic disk.
One therefore expects the ρ ∝ 1=r2 solution to hold only
for r ≫ rD. The mass distribution of the galactic disk can
be approximated by a profile known as the Freeman disk,
with surface density [55]

11In principle one has to integrate over the frequency spectrum
of dark photons, as in [12], but this detail is not essential for the
current discussion.

12One could also consider inverse Compton scattering,
F1γD → F1γD, where γD is a dark microwave background
photon. For the range of parameter space and physical conditions
we are examining, we find that inverse Compton scattering can be
neglected except possibly at an early epoch, z≳ 3.

13A more comprehensive discussion of cooling would have to
take into account the cooling efficiency. In general not all
bremsstrahlung dark photons will have a mean free path
sufficiently long as to escape the halo. Whether they can escape
(and hence cool) the halo depends on their location of production
and their wavelength. These effects could be incorporated by
means of a cooling efficiency function which depends on these
variables. However, such a discussion is beyond the scope of our
paper and will be left for future work.
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Σð~rÞ ¼ mD

2πr2D
e−

~r
rD ; ð61Þ

with rD being the disk scale length and mD its total mass.
We can now follow the same steps as in [17]. Using

cylindrical coordinates (~r; ~θ; ~z) and setting the disk at
~z ¼ 0, the flux at a point P ¼ ðr1; 0; z1Þ within an optically
thin halo is given by

fðr; cosϕÞ ¼ LSN

4πmD

Z
d~θ

Z
d~r ~r

Σð~rÞ
~r2 − 2~rr1 cos ~θþ r21 þ z21

;

ð62Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ z21

p
and cosϕ≡ r1=r. It is not hard to

show that

fðr; cosϕÞ ∝
�
log r; r≲ rD;
1
r2 ; r ≫ rD:

ð63Þ

The energy lost per unit time due to thermal dark
bremsstrahlung is once again given by Eq. (59), while
the energy absorbed per unit time within a volume element
dV now takes the form

dΓheat ¼ fðr; cosϕÞσDPnF2
dV: ð64Þ

Again equating dΓheat ¼ dΓcool, using Eqs. (59)
and (64), implies nF1

¼ fðr; cosϕÞσDP=ΛðTÞ. That is,
ρ ∝ fðr; cosϕÞ.
The above considerations regarding the behavior of

fðr; cosϕÞ [Eq. (63)] then suggest that ρðrÞ can be
approximated by a quasi-isothermal dark matter profile,

ρðrÞ≃ ρ0r20
r2 þ r20

; ð65Þ

where r0 ∼ rD, since the latter is the only length scale
present in the problem. In Fig. 8 we compare the radial
dependence of the solution ρ ∝ fðr; cosϕÞ with the quasi-
isothermal profile given by Eq. (65), finding good agree-
ment up to r≃ rD. (Differences at low radii, r≲ rD, are not
so important as baryons typically dominate the matter
density in this region.)
Note that the dark matter density profile obtained in

Eq. (65) is cored rather than cuspy (as it would be if
ρ ∝ 1=r2), with the cored profile arising from having
smeared the supernova energy source over a finite volume.
This suggests a simple explanation for the inferred exist-
ence of dark matter cores in disk galaxies. The inability to
explain the cored dark matter profile is one of the short-
comings of collisionless CDM and is referred to as the core-
cusp problem (for a review see e.g. [56]). In addition, the
scaling relation r0 ∼ rD is actually implied by measure-
ments of high resolution rotation curves [57],

log r0 ¼ ð1.05� 0.11Þ log rD þ ð0.33� 0.04Þ: ð66Þ

Equation (65) and the scaling relation r0 ∼ rD have been
derived by considering the energy balance within a given
galaxy. There is another piece of information we have yet to
utilize. That is, demanding that the total energy input must
match the total energy output for every disk galaxy.

3. Tully-Fisher relation

If the system evolves to a static configuration, where the
heating and cooling rates balance, then the properties of
galactic halos will be constrained. Moreover, since heating
is proportional to the supernovae rate and cooling is related
to the properties of dark matter, energy balance will imply a
connection between the baryonic and dark matter compo-
nents in spiral galaxies. The heating rate of the halo in a
given spiral galaxy can be expressed as

Γheat ¼ fSNhESNiRSN; ð67Þ

where ESN is the total energy output from each supernova,
and RSN is the rate at which supernovae occur. The fraction
of energy which is absorbed by the halo, fSN, is given by

fSN ¼ RγDhð1 − e−τÞi; ð68Þ

where the fraction of the total energy output in dark
particles is RγD ≡ ED=ESN, ED being the amount of energy
released from the supernova which is ultimately converted
into the creation of dark photons. As a measure of the
average optical depth, we consider dark photons propagat-
ing from the Galactic center to the edge of the galaxy
(approximated as r → ∞),
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FIG. 8. Comparison between the radial dependence of
ρ ∝ fðr; cosϕÞ, the quasi-isothermal profile given by Eq. (65),
and a cuspy profile ρ ∝ 1=r2 (in arbitrary units). The dotted lines
correspond to fðr; cosϕÞ for (going from the upper to the lower
line) ϕ ¼ π=4, π=3, π=2. The solid line corresponds to a cored
density profile (with r0=rD ¼ 1.4), while the dot-dashed line
corresponds to the cuspy profile.
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τ ¼
Z

∞

0

drσDPnF2
¼

Z
∞

0

drσDPρκ ¼
πσDPκρ0r0

2
; ð69Þ

where we have made use of the density profile given in
Eq. (65) and related the density to the F2 number density
via

ρ ¼ nF2
ðmF2

þ jZ0jmF1
Þ≡ nF2

κ
: ð70Þ

Combining Eqs. (67) and (70) it follows that, in the
optically thin limit, the heating rate for the halo of a given
spiral galaxy is

Γheat ¼
πRγDσDPκhESNi

2
ρ0r0RSN: ð71Þ

The differential cooling rate of the halo is given by
Eq. (59). To obtain the total cooling rate Eq. (59) has to be
integrated into the volume element. In doing so, note that
the differential cooling rate depends on the parameters
defining the dark matter density profile, ρ0 and r0, through
nF1

≈ ρκðjZ0j − 2Þ and nF2
¼ ρκ.14 Integrating Eq. (59)

yields

Γcool ¼ ΛðTÞκ2ðjZ0j − 2Þρ20r40
Z

∞

0

dr0
4πr02

ðr02 þ r20Þ2
¼ π2κ2ðjZ0j − 2ÞΛðTÞρ20r30: ð72Þ

Under the assumption that the main source of dissipation is
thermal dark bremsstrahlung, ΛðTÞ ∝ ffiffiffiffi

T
p

(see e.g. [54]).
The temperature T is related to the rotational velocity of the
galaxy far from the center, v∞, via Eq. (57), so that
ΛðTÞ ∝ ffiffiffiffi

T
p

∝ v∞. The rotational velocity profile (having
neglected baryonic contributions), vrotðrÞ, can be related to
ρ0 and r0 via Eq. (53),

v2rot ¼
G
r

Z
r

0

dr04πr02
ρ0r20

r02 þ r20

¼ 4πGρ0r20

�
1 −

r0
r
tan−1

�
r
r0

��
: ð73Þ

For r ≫ rD, we then have

v∞ ¼ ð4πGρ0r20Þ
1
2: ð74Þ

Imposing the energy balance condition [Eq. (51)], and
hence equating Γheat ¼ Γcool, with Γheat and Γcool given by
Eqs. (71) and (72), we find

ΛðTÞρ0r20 ¼
RγDσDPhESNi
2πκðjZ0j − 2ÞRSN: ð75Þ

This represents a scaling relation connecting dark matter
properties (ρ0 and r0) with baryonic properties, such as RSN
(and is independent of the previously obtained r0 ∼ rD
relation). We show below that it is roughly equivalent to the
empirical Tully-Fisher relation. Combining Eqs. (74) and
(75) and recalling that ΛðTÞ ∝ v∞ ∝ ðρ0r20Þ

1
2 results in a

scaling relation connecting the supernovae rate and the
asymptotic rotational velocity in a given spiral galaxy,

RSN ∝ v3∞: ð76Þ
Supernovae observational studies have found the relation
RSN ∝ ðLBÞ0.73 [58], where LB is the galaxy B-band
luminosity. Combining this relation with that in Eq. (76)
yields

LB ∝ v4∞: ð77Þ

Equation (77) is one of the forms of the Tully-Fisher
relation (see e.g. [59]), an empirical relation that is
observed to hold for spiral galaxies [60] and used exten-
sively as a rung on the cosmic distance ladder (see for
instance [61]). The general form of the Tully-Fisher relation
is L ∝ ðvrotÞα, where the power α depends on the lumi-
nosity band under consideration. For instance, for the K
band (near infrared) α ¼ 4.35� 0.14 is determined [59],
while for the optical B band α ¼ 3.91� 0.13 is found [59].
The Tully-Fisher relation is currently unexplained,
although it suggests a deep connection between the
baryonic and dark matter components of spiral galaxies.
Our model seems to supply such a connection via the
nontrivial dissipative dynamics: the Tully-Fisher relation is
the energy balance condition, Eq. (51), where Γheat
arises from supernovae heating and Γcool from dissipative
dynamics.15 This scenario is expected to hold within
irregular galaxies as well, since these galaxies have
ongoing star formation–like spirals.

4. Elliptical galaxies: The Faber-Jackson relation

The dynamical halo model, with heating powered by
kinetic mixing induced processes in the core of ordinary
supernovae balancing the energy loss due to dissipative
processes in the halo, seems to be viable for galaxies with
ongoing star formation: that is, spiral and irregular galaxies.
This picture cannot be directly applied to elliptical galaxies
or dwarf spheroidal galaxies as these galaxies are devoid of

14The relation nF1
≈ ρκðjZ0j − 2Þ assumes the plasma is not

fully ionized, but has the K-shell states occupied, so that dark
photoionization can occur. More generally, nF1

¼ fρκðjZ0j − 2Þ,
where f ≤ 1 accounts for partial ionization of the remaining
atomic states.

15It is worth mentioning that a third relation, not independent
from the other two (r0 ∝ rD and LB ∝ v4∞ ∝ ρ20r

4
0), can be

obtained. Observational studies have shown that mD ∝ ðLBÞ1.3
[62] and rD ∝ ðmDÞ0.38 [63]. Combining these relations yields
ρ0r0 ≈ const (which is observed to hold in spiral galaxies
[64,65]).
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baryonic gas and exhibit suppressed star formation.
Focusing first on ellipticals (we briefly discuss dwarf
spheroidals in the following subsection) it is possible that
these galaxies could have evolved from spirals. In particu-
lar, spirals may have a final evolutionary stage where they
have exhausted their baryonic gas to the point where the
ordinary supernova rate is insufficient to support the dark
halo from collapse.
Consider the limiting case where tcool ≪ tff , with tcool

and tff being the cooling and free-fall time scales, respec-
tively. In this limit, the dark halo can cool and potentially
fragment into dark stars. Imagine a point in time where the
heating suddenly stops and the halo cools but does not have
time yet to collapse (consistently with tcool ≪ tff ). The total
energy at this time can be approximated as just the
gravitational potential energy and is given by

Ui ¼ −
Z

R

0

dr4πr2
GMr

r
ρðrÞ; ð78Þ

where the mass enclosed within a radius r is

Mr ¼
Z

r

0

dr04πr02ρðr0Þ≃ 4πρ0r20r: ð79Þ

In evaluating Mr above, we have used the density profile
given by Eq. (65). In the limit where tcool ≪ tff , this should
be a good approximation, as the dark matter density profile
has no “time” to change. Evaluating the integral in Eq. (78)
then gives

Ui ¼ −4πρ0r20GMt; ð80Þ

where the total mass is Mt ¼
R
R
0 dr4πr2ρ≃ 4πρ0r20R.

As the system contracts, and assuming dark stars form,
these stars would attain kinetic energy as they fall into the
gravitational potential well. The virial theorem can then be
used to relate their eventual kinetic energy, in terms of the
eventual potential energy: Uf ¼ −2Tf. Thus, equating this
final energy with the initial energy gives

Ui ¼ Uf þ Tf ¼ −Tf: ð81Þ

By using Tf ¼ 3Mtσ
2
v=2, where σv is the average velocity

dispersion of the dark stars, we find that

σ2v ¼
8πGρ0r20

3
: ð82Þ

If, in addition, we make the assumption that the ordinary
stars “thermalize” with the dark stars, it follows that their
velocity dispersion will also be approximately σ2v. Given
that the elliptical galaxy in the picture evolved from a spiral
galaxy, the ρ0; r0 parameters obey the scaling relations
derived earlier. Using the scaling relation ρ0r0≈ const and
r0 ∝ rD ∝

ffiffiffiffiffiffi
LB

p
, which follows from mD ∝ ðLBÞ1.3 [62]

and rD ∝ ðmDÞ0.38 [63], we obtain a relation between the
B-band luminosity of a given elliptical galaxy and its
velocity dispersion,

LB ∝ σ4v: ð83Þ

Such a scaling relation, known as the Faber-Jackson
relation [66], is observed to roughly hold for elliptical
galaxies.
This picture of elliptical galaxies might help explain

some of their distinctive properties. In particular, if the dark
stars produce dark supernovae, then kinetic mixing induced
processes in the core of these dark supernovae can generate
a large flux of ionizing ordinary photons, which can heat
ordinary matter, thereby potentially explaining why ellip-
tical galaxies are observed to be devoid of baryonic gas.

5. Dwarf spheroidal galaxies

Dwarf spheroidal galaxies, like ellipticals, are also
devoid of baryonic gas and show little star formation
activity (at the present epoch). It is possible that they
reach this point in their evolution in a manner broadly
analogous to the picture just described above for ellipticals
(although their formation may have been very different).
That is, at an earlier stage in their evolution these galaxies
had a dark matter plasma halo which had dynamically
evolved into a steady state configuration featuring hydro-
static equilibrium and with heating and cooling rates
balanced. Then at some point, perhaps due to insufficient
star formation to keep up with the heating requirements, the
halo collapsed and fragmented into dark stars. If this dark
star formation rate is rapid enough, the dark matter
structural properties of the galaxy can be preserved. In
this manner it might be possible to explain why dwarf
spheroidal galaxies, irregular and spiral, and ellipticals all
have broadly similar dark matter structural properties as
indicated from observations (e.g. the inferred dark matter
surface density, ρ0r0, is roughly constant independent of
galaxy type [65]).
Although the middle and latest stages in the evolution of

dwarf spheroidal and elliptical galaxies might be similar (as
discussed above), their formation may have been very
different. Studies of the dwarf spheroidal population
around the Andromeda (M31) galaxy show that a large
fraction of these satellites orbit in a thin plane [67].
(A similar planar structure of satellites, although not quite
so impressive, has also been observed around the
Milky Way [68].) These observations can potentially be
explained if the dwarf spheroidal galaxies formed during a
major merger event, so that they are in fact tidal dwarf
galaxies [69]. Even if a significant fraction of dwarf
spheroidal galaxies formed in this way, they can still be
dark matter dominated and have evolved via the dissipative
dynamics so that their current structural properties are
consistent with observations (e.g. with scaling relations

R. FOOT AND S. VAGNOZZI PHYSICAL REVIEW D 91, 023512 (2015)

023512-16



such as the roughly constant dark matter surface density,
ρ0r0). At the earliest stages of galaxy formation, prior to
ordinary star formation, the dark matter which seeded the
galaxy may have collapsed into a disk due to the dissipative
processes. Subsequently the ordinary baryons also formed
a disk. Gravitational interactions between the two disks can
cause them to merge on a fairly short time scale, cf. [24].
A major galaxy merger event around this time could have
produced tidal dwarf galaxies with a large dark matter
fraction (as the dark matter particles in the disk have
velocities correlated with the baryonic particles). The
observed alignment of the satellite galaxies around M31
can thereby be potentially explained, as was discussed for
the mirror dark matter case [70]. Of course, the formation
of the ordinary disk and consequent ordinary star gener-
ation and supernovae will lead to the production of dark
photons (via kinetic mixing induced processes). This
energy is presumed to eventually heat and expand the disk
dark gas component of the host galaxy (in this case M31)
into its current state: a roughly spherical halo.

B. Consistency conditions and energy balance

The assumption that the system evolves to a static
configuration has allowed us to establish a connection
between the baryonic and dark matter components in disk
galaxies, in the form of scaling relations which are
consistent with observations. We now wish to understand
how this energy balance argument can constrain the five-
dimensional parameter space of our dark matter model.
This requires a more quantitative understanding of the exact
heating and cooling mechanisms.
As previously discussed, thermal dark bremsstrahlung of

F1 off F2 is assumed to be the dominant dissipation avenue.
The energy lost per unit time per unit volume due to this
process is given in e.g. [54]

dΓcool

dV
¼ 16α03ð2πTÞ12

ð3mF1
Þ32 Z02nF1

nF2
ḡB; ð84Þ

where ḡB ≃ 1.2 is the frequency average of the velocity-
averaged Gaunt factor for thermal bremsstrahlung.
The temperature, T, in Eq. (84), is related to the mean

mass of the dark plasma. In the limit where mF2
≫ mF1

,
and assuming the two K-shell atomic states are occupied,
neutrality of the plasma implies that the number density of
free F1 states is nF1

¼ ðjZ0j − 2ÞnF2
. In this circumstance

the mean mass can be approximated by

m̄ ¼ nF1
mF1

þ nF2
mF2

nF1
þ nF2

≈
mF2

jZ0j − 1
: ð85Þ

Using Eqs. (57), (65), (70), (74), (84), and (85), the total
cooling rate can be expressed as

Γcool¼32π3ḡBα03Z02ðjZ0j−2Þκ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GmF2

27ðjZ0j−1Þm3
F1

s
ðρ0r0Þ52r

3
2

0:

ð86Þ

In the MDM framework it has been argued that photo-
ionization of K-shell mirror electrons in a mirror metal
component can replace the energy lost due to dissipation.
This process can take place because the mirror metals in
question retain their K-shell mirror electrons [17]. If we
assume that in our model D0 (the dark bound state),
albeit being close to fully ionized, retains its K-shell F1

particles, then a similar mechanism, which we call dark
photoionization, can efficiently heat the halo. The cross
section for dark photoionization, σDP, can easily be
obtained from that of ordinary photoionization, found in
e.g. [54]

σDP ¼
g016

ffiffiffi
2

p
π

3mF1

2
α06jZ0j5

�
mF1

EγD

�7
2

; ð87Þ

where g0 ¼ 1; 2 counts the number of K-shell F1 particles
present.
For the picture we have just presented to be valid, a series

of consistency conditions will have to hold. We will now
proceed to discuss what these conditions are and how they
constrain the available parameter space for our model.

1. Cooling time scale

The dynamical halo picture, governed by a balance
between heating and cooling rates, could only hold
provided the cooling time scale is much less than the
Hubble time. This requirement constrains the available
parameter space and, as one can see from Eq. (86), will set
an upper bound on the mass of F2 [recall κ−1 ¼
ðmF2

þ jZ0jmF1
Þ]. If nT is the total number density of dark

particles, the cooling time scale is given by

tcool ≈
3
2
nTT

ΛðTÞnF1
nF2

≈
3T

2ΛðTÞnF2

; ð88Þ

where we have approximated nT ≈ nF1
. Making use of

Eqs. (57), (70), (84), and (85), we can write

tcool ≈
9

ffiffiffi
3

p

64ḡB
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mF2

m3
F1

jZ0j − 1

s
vrot

κρα03Z02 : ð89Þ

Observe that the cooling time scale can be defined locally,
i.e. tcoolðrÞ, through the dependence on ρðrÞ. Less dense
regions cool more slowly, so the most stringent limit occurs
where ρðrÞ is lowest. Of course we have little knowledge
about halo properties far from the Galactic center. As a
rough limit, we shall require tcoolðrÞ≲ few billion years, for
r≲ 3.2rD ∼ 2r0 (3.2 rD is the optical radius where most of
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the baryons reside, defined in e.g. [71]). Note that the most
stringent limits occur for the largest disk galaxies, where
ρðr ¼ 2r0Þ ≈ ρ0=5 and vrot ≈ 300 km=s. Here we have
taken the typical values (for large disk galaxies)
ρ0r0 ≃ 100 M⊙=pc2 and r0 ≃ 20kpc and hence ρ0=5≃
10−3 M⊙=pc3. In this case, the requirement tcoolðr ¼ 2r0Þ≲
few billion years gives the upper limit on the mass
of F2,

mF2
≲ 200

�
MeV
mF1

��
α0

10−2

�
2
�jZ0j
10

�5
3

GeV: ð90Þ

2. Ionization state of the halo

The scenario described earlier assumed that the halo is
ionized but the dark bound state, D0, retains its K-shell F1

particles. The former requirement allows for efficient
cooling via dark bremsstrahlung, while the latter is a
necessary condition for dark photoionization to take place.
Here we require such a picture to hold for all disk galaxies,
regardless of size. Were this not the case, one would expect
significant observational differences in moving along the
spectrum of disk galaxies, depending on whether their
dark plasma is ionized or D0 retains its K-shell F1

particles. Hence we require the temperature of the halo,
given in Eq. (57), to be high enough to ensure that D0 is
ionized (at least one free F1 particle per bound state), while
being low enough to allow the K-shell F1 particles to be
retained.
By comparing the appropriate ionization and capture

cross sections, in Appendix A we estimate that, given the
ionization energy I, the transition from an ionized to a
neutral halo occurs at a temperature T ¼ I=ξ, where
ξ ≈ 7 − 28. Of course, in the process of obtaining a
conservative lower bound on the mass of the F2 particle,
we are interested in the maximum value ξ can assume,
that is, ξmax ≈ 28. Similarly, to obtain a conservative upper
bound on mF2

, we are interested in the minimum value
ξ can assume in relation to the process of K-shell
photoionization. In Appendix A we estimate that
ξmin ≈min½1=ðα03Z04Þ; 1�, and hence, denoting by J the
relevant ionization energy, we obtain the rough conditions,

T ≳ I
ξmax

⇒
mF2

GeV
≳
�jZ0j
10

��
α0

10−2

�
2
�
mF1

MeV

��
50 km=s

vrot

�
2

;

T ≲ J
ξmin

⇒
mF2

GeV
≲ 100

�jZ0j
10

�
3
�

α0

10−2

�
2
�
mF1

MeV

��
300 km=s

vrot

�
2

× gðα0; Z0Þ; ð91Þ

where gðα0; Z0Þ≡maxðα03Z04; 1Þ. Clearly the most strin-
gent lower bound onmF2

arises from the smallest spiral and
irregular galaxies, with vrot ≈ 50 km=s, while the most
stringent upper bound comes from the biggest disk gal-
axies, for which vrot ≈ 300 km=s, and thus

�jZ0j
10

��
α0

10−2

�
2
�
mF1

MeV

�
≲ mF2

GeV

≲ 100

�jZ0j
10

�
3
�

α0

10−2

�
2
�
mF1

MeV

�

× gðα0; Z0Þ: ð92Þ

In addition, we have to require that the upper bound onmF2

[Eq. (90)] be greater than the respective lower bound
[Eqs. (91)]. Doing so yields

jZ0j≳ 4

�
mF1

10 MeV

�
3

: ð93Þ

It is conceivable that the ionization physics sets the
physical scale of spiral and irregular galaxies (i.e. sets either
or both vmax

rot , vmin
rot ), which means that either or both the

limits in Eq. (92) are equalities. Equating the two bounds in
Eq. (92) we obtain that this limiting situation occurs
for jZ0j ∼ 1.

3. Energy balance

We now turn to the energy balance condition, Γheat ¼
Γcool [Eq. (51)]. As previously discussed, we have
assumed that the galactic system evolves such that this
condition is currently satisfied for disk galaxies. Given the
observed properties of disk galaxies, we can use this
condition to constrain the fundamental parameters of
our model.
The cooling rate, assuming the main dissipation process

being dark bremsstrahlung, is readily found [Eq. (86)]. For
the heating rate the situation is more complicated. Details
about Γheat require a detailed understanding of the fre-
quency spectrum of the dark photons which, it is alleged,
heat the halo. Nevertheless, we can set an upper limit on the
value of this heating rate,

Γheat ≲ RγDRSNhESNiminðτmax; 1Þ; ð94Þ

where τmax is the maximum value the optical depth
[Eq. (69)] can take after allowing for all possible forms
of the γD spectrum. Equations (69) and (87) suggest that the
optical depth is maximized when EγD ¼ I0, where I0 ≈
Z02α02mF1

=2 is the ionization energy of the relevant K-shell
F1 particle; hence
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τmax ¼
256π2

3

ρ0r0
m2

F1
mF2

α0Z02 : ð95Þ

Assuming the nominal value ρ0r0 ≈ 100 M⊙=pc2 ≃ 4.6 ×
10−6 GeV3 and taking the upper bound on mF2

given in
Eq. (92), we get

τmax ≳ 40

�
MeV
mF1

�
3
�
10−2

α0

�
3
�
10

jZ0j
�

5 1

gðα0; Z0Þ : ð96Þ

Equation (96) suggests τmax ≳ 1 holds for a significant
fraction of parameter space.
Let us now assume parameters where τmax ≳ 1 and

evaluate an upper limit for Γheat [note that even with
parameters where τmax ≲ 1, the derived limit will still be
valid, given that minðτmax; 1Þ ≤ 1]. For ϵ≲ 10−9, RγD ∝ ϵ2,
while for ϵ≳ 10−9, RγD actually saturates at ∼1=2. By
inserting numbers into Eq. (94), we get

Γheat ≲
�

ϵ

10−9

�
2
� hESNi
3 × 1053 erg

��
RSN

0.03 yr−1

�
1044

erg
s
;

ð97Þ
which holds for ϵ≲ 10−9. Similarly, inserting numbers
into Eq. (86), we obtain the cooling rate for a given
galaxy,

Γcool ≃
�

α0

10−2

�
3
�
MeV
mF1

�3
2

�jZ0j
10

�5
2

�
10 GeV
mF2

�3
2

×

�
ρ0r0

100
M⊙
pc2

�5
2

�
r0

5 kpc

�3
2

1044
erg
s
: ð98Þ

The comparison of Eqs. (97) and (98) requires the
following approximate relation holds:

C
�
10−9

ϵ

�
2
�

α0

10−2

�
3
�
MeV
mF1

�3
2

�jZ0j
10

�5
2

�
10 GeV
mF2

�3
2 ≲ 1;

ð99Þ

where

C≡
�

ρ0r0
100

M⊙
pc2

�5
2

�
r0

5 kpc

�3
2

�
3 × 1053 erg

hESNi
��

0.03 yr−1

RSN

�
:

ð100Þ

We expect C ≈ 1 to hold for all spirals on account of
scaling relations. In addition, Eqs. (90) and (99) provide us
with a rough lower bound on ϵ,

ϵ≳ 10−10: ð101Þ

Note that this lower bound is consistent with the upper
bounds on ϵ derived previously from early universe
cosmology.

VI. SUMMARY OF THE BOUNDS
ON THE MODEL

Having studied the early universe cosmology and galac-
tic structure implications of the model, we can now make
use of our analyses to constrain the five-dimensional
parameter space in question. We start by looking at the
kinetic mixing parameter, ϵ. The validity of our picture of
galaxy structure requires core-collapse supernovae to
produce a considerable energy output in light dark particles
(specifically, F1F̄1 pairs initially) via kinetic mixing
induced processes. We have found that ϵ≳ 10−10 is
required for the energy output to successfully heat the
halo [Eq. (101)]. An upper bound on ϵ was derived in
Sec. III from δNeff ½CMB� and δNeff ½BBN� constraints
(Fig. 5), which indicate ϵ≲ 5 × 10−8.
As discussed in Sec. II, mF1

is required to be
bounded above by about 100 MeV; otherwise F1F̄1 pair
production becomes exponentially (Boltzmann) suppressed
in the core of core-collapse supernovae, where the maxi-
mum temperature which can be reached is about 30 MeV. A
lower limit of around mF1

≳ 0.01 MeV arises from white
dwarf cooling and red giants helium flash considera-
tions [26].
A constraint on the dark recombination temperature (so

that dark acoustic oscillations do not modify the early
growth of LSS) also provided a useful constraint on
parameters. This constraint, Eq. (49), together with the
above limits on mF1

, ϵ, suggest a lower bound: α0 ≳ 10−4.
Further, our analyses implicitly assumed that perturbation
theory could reliably be used to calculate cross sections,
ionization energies, and so forth, which is valid only if α0 is
sufficiently small: α0 ≲ 10−1.
Constraints on mF2

were derived from galactic structure
considerations in Sec. V. There it was shown that a
successful picture of spiral and irregular galaxies could
be achieved within this two-component hidden sector
model provided mF2

satisfies the constraints given by
Eqs. (90), (92), and (99).
Below, we summarize the bounds obtained in this

work:
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8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ϵ≲min

�
3.5 × 10−9

�
M
me

�1
2

; 10−8
�

α0
α

�
4
�

mF1
MeV

�
2
�

M
me

�1
2

�
;

ϵ≳ 10−10;

0.01 MeV≲mF1
≲ 100 MeV;

mF2
≳
�

jZ0j
10

��
α0

10−2

�
2
�

mF1
MeV

�
GeV;

mF2
≲min

�
200

�
MeV
mF1

��
α0

10−2

�
2
�

jZ0j
10

�5
3

; 100

�
jZ0j
10

�
3
�

α0
10−2

�
2
�

mF1
MeV

�
gðα0; Z0Þ

�
GeV;

10−4 ≲ α0 ≲ 10−1;

jZ0j≳max

�
3; 4

�
mF1

10MeV

�
3
�
;

ð102Þ

where M≡maxðme;mF1
Þ and gðα0; Z0Þ≡maxðα03Z04; 1Þ

(me ¼ 0.511 MeV is the electron mass).
There is a finite, but certainly restricted, region of

parameter space consistent with all of the above constraints.
For example, if we fix mF1

¼ 1 MeV, α0 ¼ 10−2;
jZ0j ¼ 10, the above constraints are all satisfied for
10−10 ≲ ϵ≲ 5 × 10−9 and 1 GeV≲mF2

≲ 100 GeV.

VII. CONCLUDING REMARKS

Dark matter can be accommodated without modifying
known Standard Model physics by hypothesizing the
existence of a hidden sector. That is, an additional sector
containing particles and forces which interact with the
known Standard Model particle content predominantly via
gravity. We have considered a hidden sector containing two
stable particles, F1 and F2, charged under an unbroken
Uð1Þ0 gauge symmetry, hence featuring dissipative inter-
actions. The associated massless gauge field, the dark
photon, can interact via kinetic mixing with the ordinary
photon. Our analysis indicates that such an interaction, of
strength ϵ ∼ 10−9, is required in order to explain galactic
structure. We calculated the effect of this new physics on
BBN and its contribution to the relativistic energy density
at hydrogen recombination. Subsequently we examined the
process of dark recombination, during which neutral dark
states are formed, which is important for LSS formation.
We then analyzed the phenomenology of our model in

the context of galactic structure. Focusing on spiral and
irregular galaxies, we modeled their halos (at the current
epoch) as a plasma composed of dark matter particles, F1

and F2. This plasma has a substantial ongoing energy loss
due to dissipative processes such as dark bremsstrahlung.
Kinetic mixing induced processes in the core of ordinary
supernovae can convert a substantial fraction of the
gravitational core-collapse energy into dark sector particles
(and eventually into dark photons) that ultimately provide
the halo energy which compensates for the dissipative
energy lost. We found that such a dynamical picture can

reproduce several observed features of spiral and irregular
galaxies, including the cored density profile and the Tully-
Fisher relation. We also discussed how elliptical and dwarf
spheroidal galaxies might fit into this framework which we
argued has the potential to explain many of their peculiar
features.
The above considerations constrain the five Lagrangian

parameters of our model, as summarized in Eqs. (102).
Note, in particular, that the kinetic mixing coupling, ϵ, is
constrained to lie within the range 10−10 ≲ ϵ≲ 5 × 10−8.
A correct simultaneous explanation of both early Universe
cosmology and galactic structure typically requires one
fermion, F1, to be in the MeV range (or just below) and the
other to be heavier, in the GeV (or possibly TeV) range.
The allowed mass range of the two fermions means they

can be, at least in principle, detected in direct detection
experiments. Two types of interactions are of particular
interest in this context: F1-electron scattering and F2-nuclei
scattering. The self-interacting nature of the F1 and F2

particles enhances the capture rate of these particles within
the Earth, giving rise to a unique signature: a diurnal
modulation in the interaction rate. Such an effect is
expected to be particularly evident for experiments located
in the Southern Hemisphere, giving rise to suppressions in
the interaction rate which could be as large as 100% [72].
Although an explanation of the DAMA annual modu-

lation signal [13] in terms of nuclear recoils appears
disfavored given the null results of the other experiments,
recent work (in the context of MDM) has shown that it
might be possible to explain it in terms of dark matter
scattering off electrons if the mass of the dark matter
particle is in the MeV range [16]. Within the framework of
our two-component model, a similar explanation seems
possible; that is, the observed annual modulation signal in
the DAMA experiment might be due to F1-electron
scattering.
Hidden sector dark matter models can be quite appealing

from a theoretical point of view and, as we have shown, can
provide a satisfactory explanation for dark matter
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phenomena on both large and small scales. In our study we
have constrained the parameter space of a particularly
simple two component hidden sector model and have
indicated potential ways of testing such a model in the
context of direct detection experiments.
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APPENDIX A: IONIZATION TRANSITION
TEMPERATURE

We estimate the quantity ξ in Sec. V B 2. Recall that ξ is
defined in terms of the transition temperature between two
states, at the relevant ionization energy I0, T ¼ I0=ξ.
Consider, for instance, the process relevant for D0 ioniza-
tion, with cross section σI ,

F1 þD0 → Dþ þ F1 þ F1; ðA1Þ

which is opposed by the corresponding capture process,
with cross section σC,

F1 þDþ → D0 þ γD: ðA2Þ

The number density of Dþ is governed by the following
rate equation:

dnDþ

dt
¼ nF1

nD0hσIvF1
i − nF1

nDþhσCvF1
i: ðA3Þ

It follows that in a steady-state situation nDþ=nD0 ¼
hσIvF1

i=hσCvF1
i, and hence we compare the relevant

thermally averaged ionization and capture cross sections,

hσIvF1
i ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

mF1
π

s �
2

T

�3
2

Z
∞

I0
dEF1

EF1
e−

EF1
T σI;

hσCvF1
i ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

mF1
π

s �
2

T

�3
2

Z
∞

0

dEF1
EF1

e−
EF1
T σC: ðA4Þ

The ionization and capture cross sections are given in
[73,74] and are roughly16

σI ∼
α02

EF1
I0
;

σC ∼
α05Z04

EF1
ðEF1

þ I0Þ : ðA5Þ

The relevant transition will occur when the quantity
hσIvF1

i=hσCvF1
i is of order 1, that is,

hσIvF1
i

hσCvF1
i ∼

I0 þ T
I0

e−
I0
T

α03Z04 ∼ 1; ðA6Þ

and hence when
�
1þ 1

ξ

�
e−ξ ∼ α03Z04; ðA7Þ

where ξ≡ I=T.
For the process of D0 ionization, we can safely take

jZ0j ≈ 1. Solving Eq. (A7) shows that a value of ξ ∼ 7–28 is
the solution within the allowed range of parameter space
(10−4 ≲ α0 ≲ 10−1). In Sec. V B 2, Eqs. (91), we obtain the
most conservative lower bound on the mass of F2

when ξ ¼ ξmax ≈ 28.
When analyzing the process of K-shell dark photoioni-

zation, Eqs. (91), we obtain the most conservative upper
bound on the mass of F2 when ξ assumes its lowest
possible value. In this case we find that, to a reasonable
approximation, ξmin ≈min½1=ðα03Z04Þ; 1�.

APPENDIX B: DARK THOMSON SCATTERING
AND HALO HEATING

In the paper we assumed that the dark photons arising
from kinetic mixing induced processes in the core of
ordinary supernovae heat the halo via a dark photoioniza-
tion process. In principle, one could consider dark
Thomson scattering (γDF1 → γDF1, where F1 denotes a
free F1 particle) as an equally viable heating mechanism.
However, we will show below that this is not expected to be
the case for the parameter space of interest.
The optical depth for dark Thomson scattering, consid-

ering a dark photon propagating from the center of the
galaxy to infinity, is given by

τ ¼
Z

∞

0

drσDTnF1

¼
Z

∞

0

drσDTρκðjZ0j − 2Þ

¼ 4π2α02κðjZ0j − 2Þρ0r0
3m2

F1

; ðB1Þ

where we have related the free F1 number density to the
density profile via the relation nF1

≈ ρκðjZ0j − 2Þ and made
use of the expression for the dark Thomson scattering cross
section σT ¼ 8πα02=ð3m2

F1
Þ.

16The following expressions assume the F1 particles are
nonrelativistic, that is, T ≲mF1

. If we demand that the non-
relativistic approximation is valid for all spirals
(vrot ≲ 300 km=s), then we require mF2

=mF1
≲ 106ðjZ0j − 1Þ.
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Assuming the spectrum of dark photons that heat the
halo has energy spectrum that peaks well below the electron
mass, kinematic considerations dictate that dark Thomson
scattering can only efficiently impart energy to the scattered
F1 particles provided that τ ≫ 1 (i.e. the dark photon
becomes trapped within the galaxy), and hence if

mF2
≪

4π2ρ0r0
3

α02jZ0j
m2

F1

: ðB2Þ

Here we have used κ ≈ 1=mF2
[from Eq. (70)]. Recall that

the basic requirement that the halo be ionized gave a lower
bound on mF2

[Eqs. (91)]. Requiring that the above upper
bound on mF2

[Eq. (B2)] be greater than the lower bound
found in Eqs. (91), we find

m3
F1

≪
4π2ρ0r0v2rotξmax

3
: ðB3Þ

Equation (B3) reduces to

mF1

MeV
≪

�
ρ0r0

100
M⊙
pc2

�1
3

�
vrot

300 km=s

�2
3

: ðB4Þ

This is the condition for dark Thomson scattering to be a
viable heating mechanism. It follows that dark Thomson
scattering is not expected to be an important heating
mechanism for any spirals (vrot ≲ 300 km=s) if
mF1

≳ 0.1 MeV, which is the parameter range we are
focusing on.
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