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We discuss eternal inflation in the context of classical probability spaces defined by a triplet: sample
space, σ-algebra, and probability measure. We show that the measure problem is caused by the countable
additivity axiom applied to the maximal σ-algebra of countably infinite sample spaces. This is a serious
problem if the bulk space-time is treated as a sample space which is thought to be effectively countably
infinite due to local quantum uncertainties. However, in semiclassical description of eternal inflation the
physical space expands exponentially which makes the sample space of infinite trajectories uncountable
and the (future) boundary space effectively continuous. Then the measure problem can be solved by
defining a probability measure on the continuum of trajectories or holographically on the future boundary.
We argue that the probability measure which is invariant under the symmetries of the tree-like structure of
eternal inflation can be generated from the Lebesgue measure on unit interval. According to Vitali theorem
the Lebesgue measure leaves some sets without a measure which means that there are certain probabilistic
questions in eternal inflation that cannot be answered.
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I. INTRODUCTION

One of the most (if not the most) important unresolved
problem in modern cosmology is the problem of assigning
probabilities to cosmological observations. In the context
of the big bang theory the problem is known as the problem
of initial conditions [1–4] and in the context of eternal
inflation the problem is known as the measure problem
[5–8]. In this paper we will concentrate on the measure
problem for semiclassical models of eternal inflation where
the underlying geometry is treated completely classically.
For most of the discussion we will remain within the
axiomatic framework of the classical probability spaces,
but possible departures form the realm of classical prob-
abilities will also be discussed.
The classical probability spaces consist of three essential

ingredients: a sample space of elementary events, a
σ-algebra of events, and a probability measure [9]. In
the models of eternal inflation the sample space is usually a
single (but infinite) realization of the classical space-time,
and the remaining task (or the everlasting measure problem
[10]) is to define a σ-algebra and a probability measure
which would not suffer from the many problems and
paradoxes including entropy problem [11–16], youngness
paradox [17–19], Boltzmann brains problem [20–22],
Guth-Vanchurin paradox [23–26], etc. The most obvious
choice is to construct a maximal σ-algebra which is a power
set of the sample space, but that does not work for
(countably) infinite sample spaces as will be discussed
in the next section. This indeed would be a serious (or ill-
defined) mathematical problem if our sample space was a
set of disconnected elementary events with no additional

structure, but in eternal inflation (or at least in a semi-
classical model of eternal inflation) the events live in the
same space-time and the isometries of the space-time must
be respected in constructing probability spaces. In this
paper we will use the treelike structure of eternal inflation
to define a sample space of trajectories, to construct a
σ-algebra on the space of trajectories and to derive a
probability measure which is invariant under the symmetry
transformations. The measure will leave some of the sets
nonmeasurable, which is the price we pay for defining
probabilities on a continuum of infinite trajectories.
The paper is organized as follows. In the next section we

define classical probability spaces, identify the measure
problem for countably infinite sets, and discuss possible
generalizations of the classical probabilities. In Sec. II we
study the structure of binary trees, calculate cardinalities of
different sets, and construct Lebesgue measure on the tree. In
the Sec. III we apply the framework of classical probabilities
to the treelike structure of eternal inflation by defining a
nonmaximal σ-algebra and a uniform probability measure.
The main results are summarized in Sec. IV.

A. Probability spaces

The probability spaces are usually (but not always)
defined by a triplet ðΩ;F ; PÞ, where the sample space,
Ω, is a set of elementary events, the F is a set of subsets of
Ω, and the probability measure, P, is a map from F to the
unit interval [0,1]. An important requirement on the set of
subsets F that it must be a σ-algebra, i.e., nonempty
(F ≠ ∅) and closed under complementation (e ∈ F ⇒
Ωne ∈ F ) and countable union (ei ∈ F ⇒ ∪∞

i¼1ei ∈ F ).
One example of the σ-algebra F over Ω is a set of all
subsets (also known as a power set) usually denoted by 2Ω.*vvanchur@umn.edu
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For the triplet ðΩ;F ; PÞ to be regarded as a classical
probability space it must also satisfy Kolmogorov’s prob-
ability axioms:
Positivity: Probability of any one event is a non-negative

real number:

PðeÞ ≥ 0 ∀ e ∈ F ; ð1:1Þ

Unitarity: Probability of all of the events is unity:

PðΩÞ ¼ 1; ð1:2Þ

Additivity: Probability of disjoint events is additive:

Pð∪∞
i¼1eiÞ ¼

X∞
i¼1

PðeiÞ ∀ ei ∈ F and

i ≠ j ⇒ ei∩ej ¼ ∅: ð1:3Þ

For example, the classical probability space of a fair
coin or of a fair random bit is described by Ω ¼ f0; 1g,
F ¼ f∅; f0g; f1g; f0; 1gg and Pð∅Þ ¼ 0; Pðf0gÞ ¼ 1=2;
Pðf1gÞ ¼ 1=2; Pðf0; 1gÞ ¼ 1 and it is a straightforward
exercise to check that all three probability axioms are
satisfied. Here F is the maximal σ-algebra which is the
power set of the sample space, but this need not be the case
in general.
Given a countably infinite sample space (as is often

assumed in context of eternal inflation, but will be disputed
later in the paper), the next step could have been the
construction of a probability measure P∶F → ½0; 1� with
σ-algebra F defined as a power set 2Ω, but we immediately
encounter a problem. The problem is that if we are to assign
equal and finite probabilities to a countable infinity of
elementary events, i.e.,

PðfωgÞ ¼ const > 0 ∀ ω ∈ Ω ð1:4Þ

then the (countable) additivity axiom (1.3) would imply
PðΩÞ ¼ ∞ in conflict with the axiom of unitarity (1.2).
On the other hand if we assign zero probability to all of the
elementary events, i.e.,

PðfωgÞ ¼ 0 ∀ ω ∈ Ω ð1:5Þ

then the (countable) additivity axiom (1.3) would imply
PðΩÞ ¼ 0 which is once again in a conflict with (1.2).
The problem could be avoided if the additivity axiom (1.3)
is weakened or replaced [27], for example, with
Finite Additivity:

Pðe1∪e2Þ ¼ Pðe1Þ þ Pðe2Þ ∀ e1; e2 ∈ F and

e1∩e2 ¼ ∅ ð1:6Þ

or with

Independent Additivity:

Pðe1∪e2Þ ¼ Pðe1Þ þ Pðe2Þ − Pðe1ÞPðe2Þ
∀ e1; e2 ∈ F : ð1:7Þ

Then if we assign zero probability to all of the elementary
events (1.4), the finite additivity (1.6) or independent
additivity (1.7) conditions would imply that the size of
all finite sets of the elementary events or finite subsets of
Ω is exactly zero. Moreover, the unitarity axiom (1.2) and
the independent additivity (1.7) combined imply that all of
the infinite subsets must have probability one, i.e.,

PðeÞ ¼
�
0 if jej < ∞
1 if jej ¼ ∞

: ð1:8Þ

Also note that when compared with the standard addition
rule

Pðe1∪e2Þ ¼ Pðe1Þ þ Pðe2Þ − Pðe1∩e2Þ
∀ e1; e2 ∈ F ð1:9Þ

the independent additivity axiom (1.7) suggests that the
probabilities of the intersection of events must be calculated
not as the intersections of subsets, but as if the events are
statistically independent.1

Although the possible modifications of the classical
probabilities deserve to be explored further, in this paper
we will restrict our attention on the probabilities defined by
the Kolmogorov axioms (1.1), (1.2), and (1.3). Evidently,
the most problematic axiom in defining uniform probability
measures on a countable set of elementary events is the
additivity axiom due to the countable sums and unions
which appear in (1.3). This suggests that within the
framework of classical probabilities the problem can be
avoided if the sample space contains either a finite or an
uncountable number of elements. Since the former case is
trivial, let us study the latter case when the sample space
forms a continuum of real numbers between 0 and 1. There
exists a well-known uniform measure on the unit interval
known as Lebesgue measure, PL, which assigns zero
probability to all elementary events (i.e., real numbers

1For the sake of completeness note that the problem of defining
probabilities on a countable set of elements can also be addressed
in the context of the non-Archimedean numbers such as hyper-
reals (or nonstandard) reals [28]. In addition to real numbers
the hyperreal numbers includes infinitesimals which are strictly
greater than zero, but smaller than 1=n for any n ∈ N. Then one
can assign equal infinitesimal probabilities to all of the elemen-
tary events and at the same time demand that the additivity axiom
holds in such a way that the probability of a countable union of
elementary events is a finite number. The study of such non-
Archimedean probability spaces in the context of eternal inflation
is certainly interesting avenue to explore, but is beyond the scope
of this paper.
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on the unit interval) and as a consequence of the additivity
axiom (1.3) to all countable collections of elementary
events. For example the measure of all rational numbers
on the unit interval is exactly zero, PLð½0; 1�∩QÞ ¼ 0. The
reason it is no longer in a conflict with unitarity axiom (1.2)
is that according to the Lebesgue measure only (but not all)
subsets with uncountable number of elements, such as
the entire sample space, can have nonzero measure,
PLð½0; 1�Þ ¼ 1. However, the Lebesgue σ-algebra is not a
maximal σ-algebra, as there are sets of real numbers (e.g.,
Vitali sets) that are not in the Lebesgue σ-algebra and thus
are not measurable with respect to the Lebesgue measure
[29]. It was also shown by Hausdorff that such non-
measurable sets must exist for any measure on real numbers
which is invariant under symmetry transformations such as
translations.

II. BINARY TREE

Let us highlight the two most important points that we
discussed in the previous section. The first point is that the
measure problem is due to the countable additivity axiom
(1.3) applied to the maximal σ-algebra of countably infinite
sample spaces in eternal inflation. Thus to avoid the
problem one must either construct a nonmaximal σ-algebra
or to define a different sample space with either a finite or
uncountably many elementary events. The second point is
that the probability measure must respect the isometries of
the sample space even if the construction leaves certain sets
nonmeasurable. In what follows we will define an uncount-
able sample space, a nonmaximal σ-algebra and construct
an invariant probability measure on an infinite binary tree
whose internal structure resembles the most essential
isometries in eternal inflation [30].
To discuss classical probability spaces on a sample space

of infinite rooted tree it will be convenient to label all of the
nodes and edges of the tree. We will describe the procedure
for a binary tree, T2, but it can be easily generalized for an
arbitrary k-ary tree, Tk. First we label each edge with either
0 or 1 in such a way that each node has a single 0 edge (or
“left edge”) and a single 1 edge (or “right edge”) connected
to its children nodes. Then we label the root node of the tree
with 0 (it could have been 1 without loss of generality) and
all other nodes inductively with the same label as the label
of its parent node concatenated with either 0 or 1 depending
on whether the connecting edge is labeled with 0 or 1.
(See Fig. 1)
For example, the first three generations (or levels or

depth) of nodes will have the following labels: 0,00,01,
000,001,010,011. What is different now, compared to the
discussion of the previous section, is that the nodes are no
longer equivalent (or symmetric) to each other. Although
the large symmetry is broken by the structure of the graph
there is a residual symmetry that we must take into account
when classical probability spaces are defined on the tree.
In particular, we will demand that the permutation of edges

of any node (or the exchange of 0 and 1 edges) would leave
the probability measure invariant.
The cardinality of the set of nodes in the infinite rooted

binary tree (as well as k-ary tree) is that of a countable
infinity,

jT2j ¼ ℵ0: ð2:1Þ

This can be shown explicitly by constructing a one-to-one
map between labels of all nodes, x, and the set of natural
numbers,

fðxÞ ¼ 2lðxÞ−1 þ nðxÞ ð2:2Þ

where lðxÞ is the length of the word x and nðxÞ is the
numerical value of the word x written in binary code. Then
the cardinality of the power set of the set of nodes is a
continuum,

j2T2 j ¼ 2ℵ0 : ð2:3Þ

Moreover, the cardinality of the set of infinite trajectories
(or paths of infinite depth) in the binary tree is also a
continuum. This could not be anticipated from considering
finite portions of the tree as is usually done in the context of
eternal inflation: for any finite cutoff at depth l the number
of nodes, 2l − 1, is greater or equal than the number of
trajectories, 2l−1, which start at the root and terminate at the
cutoff. In the limit of large l the number of nodes is twice as
much as the number of trajectories and one could have
(naively) expected that the number of infinite trajectories
cannot be larger than the number of nodes, but this turns out
not to be the case.

FIG. 1. Binary Tree.
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To prove that the set of infinite trajectories is much
bigger than the set of nodes we can use Cantor’s diagonal
argument. The arguments starts with an assumption that
there is a one-to-one map S from natural numbers k to all of
the infinite trajectories SðkÞ which in our case are labeled
by infinite words. Let us also denote the value of the k’s
digit (or letter) by xk, the concatenation operation (i.e.,
½i; n; f; l; a; t; i; o; n� ¼ inflation) and the logical “not”
function (i.e., ¬0 ¼ 1 and ¬1 ¼ 0). Then we can construct
a word

X ¼ ½0;¬Sð1Þ2;¬Sð2Þ3;¬Sð3Þ4…� ð2:4Þ

which was not mapped to by the map S and thus a
contradiction is reached. This means that the cardinality
of the set of infinite trajectories is bigger than ℵ0 and in fact
is the same as the cardinality of a continuum, 2ℵ0 . Then we
could try to generate the smallest σ-algebra of the sample
space of nodes which contains all of the sets of infinite
trajectories, but unfortunately such σ-algebra is maximal
which comes with the baggage of problems discussed
above. However, the fact that the set of infinite trajectories
forms a continuum of configurations suggests that we
might what to use this set as a sample space instead of
the set of nodes. (We denote both sets with T2, but the
distinction would be clear from the context.)
Given that the cardinality of the set of infinite trajectories

in T2 is the same as the cardinality of the set of real
numbers on unit interval [0,1] we should be able to
construct a one-to-one map between the two sets. For
example, one could define a map

gðxÞ≡ nð½0; :; x2; x3;…�Þ; ð2:5Þ

but this map is not one-to-one since there are different
trajectories that are mapped to the same real number,
e.g., 0111... and 1000... are mapped to gð0111…Þ ¼
gð1000…Þ ¼ 0.1. Fortunately there is only a countable
number of such reals

A ¼
�
0; 1;

1

2
;
1

4
;
3

4
;
1

8
;
3

8
;
5

8
;
7

8
;…

�
ð2:6Þ

and only a countable number of such trajectories

B ¼ f00000…; 01111…; 01000…; 00111…;

00100…; 00011…;…g: ð2:7Þ
and, thus, we can modify gðxÞ to make it one-to-one

~gðxÞ≡
�
nð½0; :; x2; x3;…�Þ if x∉B
An if ∃n ∈ N∣x ¼ Bn:

ð2:8Þ

However, the fact that the two maps ~g and g differ only in
the way a small (countable) number of elements is mapped

we can use either map to define a probability measure on
the tree.
For example, we can use the map g∶T2 → ½0; 1� to

generate a σ-algebra

LðT2Þ ¼ fg−1ðeÞ∣e ∈ Lð½0; 1�Þg ð2:9Þ

[where g−1ðeÞ is the preimage of e] and a probability
measure on infinite trajectories,

PLðT2ÞðeÞ ¼ PLðgðeÞÞ ∀ e ∈ LðT2Þ ð2:10Þ

where Lð½0; 1�Þ and PL is respectively the Lebesgue
σ-algebra and the Lebesgue measure on unit interval. We
will refer to this measure on the tree as Lebesgue measure
since it is generated from the Lebesgue measure on unit
interval, but it remains to be checked that the measure is
invariant under the symmetry transformations of the tree.
The symmetry group on the graph of the binary tree is quite
large and is generated by operations of swapping 0 and 1
labels on edges from parent node to its children. However,
due to the symmetry of our construction all of these
transformations must leave the Lebesgue measure on the
binary tree invariant similarly to how translations leave the
Lebesgue measure on the real line invariant. Then according
to Vitali theorem the Lebesgue σ-algebra is not maximal and
thus there are sets of infinite trajectories that are also
nonmeasurable (not to be confused with sets of measure
zero). The existence of nonmeasurable sets, also known as
Vitali sets, relies on the axiom of choice and is also known to
lead to the famous Banach-Tarski paradox of how a single
ball can be decomposed and resembled into two balls
identical to the original [31].
Let us stop for a second to emphasize this important

result. In the first section when measures were constructed
on infinite sets of elementary events with no additional
structure the only reasonable σ-algebra of events seems to
be the maximal σ-algebra. Then the construction of a
uniform probability measure was not possible within the
frameworks of classical probabilities unless some of the
axioms were weakened or replaced. Now that we have the
additional treelike structure it seems possible to define a
Lebesgue measure on the sample space of infinite trajec-
tories, but the corresponding Lebesgue σ-algebra is not
maximal which leads to nonmeasurability of certain events.

III. ETERNAL INFLATION

We are now ready to define a sample space of the
elementary events, on the space-time generated by eternal
inflation. Since the elementary events will be associated
with possible observations there are quantum and gravita-
tional limitations that should be taken into account.
The Hilbert spaces of a single harmonic oscillator can
be described with a countable number of orthonormal basis
and thus is separable. If we take a finite collection of such
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oscillators (coupled or uncoupled) the dimensionality of the
Hilbert space remains only countably infinite. However, if
we consider an infinite lattice of countably many harmonic
oscillators in each lattice point (as in field theories) the
dimensionality becomes uncountably infinity. The same
thing happens for a countable collection of quantum bits
whose Hilbert space has an uncountably infinite dimen-
sionality. This implies that the space of all possible out-
comes of measurements or the sample space is uncountable
and is the same as the cardinality of the power set of a
countable set (i.e., a continuum).
This is what one would generically expect from a

quantum theory, but there are certain limitations which
come from gravity. First of all it is believed that the
countable dimensionality of the Hilbert space can be
reduced to a finite number once the gravitational effects
are taken into account. The way it usually works is that
certain states have energies (and thus masses) that would
have collapsed into a black hole and therefore must be
excluded from counting. This might reduce the number of
states within a finite volume to a finite number, but that
does not reduce the uncountable-dimensionality of the
Hilbert space in infinite space-time and thus the uncount-
able size of the corresponding sample space. There is also
an additional gravitational effect which limits the informa-
tion that can in principle be measured by a local observer.
This does not apply to Minkwoski space-time, but it does
apply to the space-time we study here. In eternal inflation
the local degrees of freedom seem to constantly fall out of
causal contact with a local observer due to exponential
stretching of space in eternal inflation. One attitude is that
these degrees of freedom do not disappear from the Hilbert
space of the observer, but become encoded in the de Sitter
radiation. In this view the dimensionality of the Hilbert
space of local observers remains always finite which is all
that we need to define a good sample space without having
to deal with the oddities of the countable additivity axiom
discussed above. Another attitude (that we will assume
here) is that the new degrees of freedom are constantly
stretched out from under the Planck scale and thus must be
included in the Hilbert space of a local observer. Then the
dimensionality of the Hilbert space and the cardinality of
the sample space of local observations remains uncountably
infinite and the measure problem can be reduced to the
problem of defining a measure on a continuum of sequen-
ces of observations (or what we call infinite trajectories)
which is invariant under whatever symmetries the eternal
inflation may possess.
For example, it is expected that eternally inflating space-

time resembles the treelike structure similarly to what was
discussed in the previous section. (See Ref. [30] for the
discussion of the treelike structure of eternal inflation gen-
erated from either the scale-factor [32] or light-cone time [33]
coordinates using the square-bubble approximation.)
Although we have only studied the binary tree, T2, the

analysis can be easily generalized to an arbitrary k-ary
tree, Ω ¼ Tk, given that k is finite and the same for all
node. For more general models of eternal inflation with
terminal vacua more general trees with perhaps a variable
number of edges might be required, but it is expected that
the generalization should not be too difficult. Moreover,
the presence of terminal vacua would require specification
of measures on fractals in which case the Lebesgue
measure would have to be replaced with something like
Sinai-Ruelle-Bowen measure [34]. We will intentionally
avoid all these complication and will assume that eternal
inflation (or at least a toy model of eternal inflation) can be
reduced to the study of a rooted k-ary tree with local
measurements corresponding to nodes of the tree and
edges corresponding to the exponential growth. Then our
sample space of elementary events is a set of infinite
trajectories (or paths) originating from the root and going
all the way to the future boundary.2

Then to define a probability space ðTk;LðTkÞ; PLðTkÞÞ on
the k-ary tree we first map the infinite trajectories x ∈ Tk of
the tree to the unit interval using (2.5) where now the digits
can have a bigger range

xn ∈ f0; 1;…; k − 1g ∀ n ∈ N ð3:1Þ
and then use the Lebesgue σ-algebra and Lebesgue measure
to generate a σ-algebra and to define a probability measure
on the tree

LðTkÞ ¼ fg−1ðeÞ∣e ∈ Lð½0; 1�Þg ð3:2Þ

PLðTkÞðeÞ ¼ PLðgðeÞÞ ∀ e ∈ LðTkÞ: ð3:3Þ
Similarly to the case with binary tree the Lebesgue measure
on k-ary tree satisfies all of the symmetries of permutations
of edges at every node, but it once again leaves some sets
(i.e., Vitali sets) without a measure.
Once the classical probability space ½Tk;LðTkÞ; PLðTkÞ�

is defined we can define classical random variables (or
observables) as real-valued functions on the sample space

O∶ Tk → R ð3:4Þ

that are measurable with respect to the σ-algebra LðTkÞ and
whose statistical moments are calculated by

E½On� ¼
Z
Tk

OnðωÞdPLðTkÞðωÞ ∀ n ∈ N: ð3:5Þ

Although we are not going to discuss the observational
prediction of the Lebesgue measure in details it is

2A possibility of defining holographic measures on a boundary
is not entirely new and was considered in a number of recent
publications. See for example Refs. [35–39]. Likewise the
cosmological measures on infinite trajectories were considered
in Refs. [34,40–44].
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expected that its phenomenology will be similar to
phenomenology of the scale-factor measure [32,45] or
light-cone measure [33,46], due to the similarities of these
measures and the tree-like structure discussed in [30],
with some important differences. First of all, the proba-
bility of all finite trajectories, whose cardinality can be
shown to be that of a countable infinity, should be exactly
zero. Second, as was already noted, the nonmeasurability
of the Vitali sets should put constraints to what can in
principle be observed. And finally, since the Lebesgue
measure is not defined using cutoff prescriptions we
expect that the many paradoxes of the cutoff measures
may be avoided.

IV. SUMMARY

We conclude with a summary of the main results:
(i) Additivity axiom: The classical probability spaces

are defined by a triplet: sample space, σ-algebra, and
probability measure, which must satisfy the posi-
tivity (1.1), unitarity (1.2), and additivity (1.3)
axioms. In context of eternal inflation the measure
problem is caused by the additivity axiom applied to
the maximal σ-algebra of countably infinite sample
spaces. There are however other frameworks such as
noncountably-additive [27] or non-Archimedian
[28] where the problem can be avoided.

(ii) Continuum of trajectories: The quantum uncertain-
ties make the bulk space-time effectively discrete
and the corresponding sample space of local obser-

vations effectively countable, but the exponential
expansion makes the future boundary space effec-
tively continuous and the corresponding sample
space of infinite trajectories effectively uncountable.
Then the measure problem can be solved by defining
a σ-algebra and a probability measure on the
continuum of infinite trajectories or holographically
on the future boundary.

(iii) Lebesgue measure: σ-algebra and probability mea-
sure on a continuum of infinite trajectories can be
constructed by demanding that the measure is
invariant under the symmetries of eternally inflating
space-time. We use the symmetries of the tree-like
structure of eternal inflation to derive a probability
measure which is generated from the Lebesgue
measure on unit interval.

(iv) Nonmeasurable sets: According to Vitali theorem
there exist sets (e.g., Vitali sets) which are non-
measurable with respect to the Lebesgue measure.
This means that there are certain probabilistic ques-
tions in eternal inflation that cannot be answered.
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