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We apply the convolved Lagrangian perturbation theory (CLPT) formalism, in which one can express
the matter density power spectrum in terms of integrals over a function of cumulants of the displacement
field, allowing for a resummation of the terms, to evaluate the full one loop power spectrum. We keep the
cumulants up to third order, extending the Zel’dovich approximation and providing the power spectrum
analogous to the calculations recently performed for the correlation function. We compare the results to the
N-body simulations and to the Lagrangian perturbation simulations up to the second order. We find that the
analytic calculations are in a good agreement with the Lagrangian perturbation theory simulations, but
when compared to full N-body simulations, we find that, while one loop calculations improve upon the
Zel’dovich approximation in the power spectrum, they still significantly lack power. As found previously in
the correlation function one loop CLPT improves slightly against Zel’dovich above 30 Mpc=h but is
actually worse than Zel’dovich below that. We investigate the deficiencies of the CLPTapproach and argue
that main problem of CLPT is its inability to trap particles inside dark matter halos, which leads to an
overestimate of the small-scale power of the displacement field and to an underestimate of the small-scale
power from one halo term effects. We model this using the displacement field damped at a nonlinear scale
(CLPTs). To explore this in more detail we decompose the power spectrum and correlation function into
three additive components: Zel’dovich, residual baryon acoustic oscillation (BAO) wiggle, and residual
broadband. One loop CLPT predicts small modifications to BAO wiggles that are enhanced in CLPTs, with
up to 5% corrections to correlation function around BAO scale. For the residual broadband contribution
CLPTs improves the broadband power in the power spectrum but is still insufficient compared to
simulations and makes the correlation function agreement worse than CLPT.
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I. INTRODUCTION

Clustering of dark matter particles under gravity repre-
sents one of the building blocks in the study of large-scale
structure. Understanding the nonlinear effects of dark
matter clustering is crucial for improving the theoretical
modeling for many current cosmological probes like galaxy
surveys, weak lensing, etc. The current paradigm is that
large-scale structure grows through a process of gravita-
tional instability, starting from a nearly scale-invariant
spectrum of Gaussian fluctuations at early times. Since
dark matter particles are assumed to be nonrelativistic, at
scales smaller than the Hubble scale, the general relativistic
description of gravity can be reduced to Newtonian
description. On large scales (but inside the Hubble horizon)
the matter distribution is well modeled by linear perturba-
tion theory. Conversely, on small scales, or Fourier modes
with k > 0.1h=Mpc, the dynamics starts to be nonlinear.

One way to address this is the numerical simulations of the
N-body type which offer a reliable way to understand the
nonlinear clustering of matter.
An alternative approach to the nonlinear scales (at least

in the quasilinear regime) is to extend the perturbation
theory beyond the linear order. The main advantages of this
approach are twofold. From a practical side perturbation
theory offers a faster way of evaluating the observables for
a given set of cosmological parameters. These observables
are then used for comparison with the measurements in
order to put the constraints on cosmological parameters.
From a theoretical perspective perturbation theory offers an
additional and/or complementary physical insight into the
effects of nonlinear clustering. A better physical under-
standing would also be useful to model higher order
correlations, such as modelling the covariance matrix of
dark matter two-point correlations, etc.
Consequently, numerous approaches have been intro-

duced for computing statistical properties of the matter
distribution. The standard perturbation theory (SPT) in the*zvlah@physik.uzh.ch
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Eulerian framework has been extensively studied and has
achieved some success (see for example Refs. [1–5]).
Various resummation schemes have been proposed
[6–16] in order to extend the validity of the perturbative
expansion. Numerical implementations of some of these
methods have become available [17,18]. Also, a number of
alternative methods has been suggested (e.g. Refs. [19–24])
that use different levels of approximation. Alternatively,
one can also consider Lagrangian picture as starting point
of Lagrangian perturbation theory (LPT), e.g. Refs. [25–
37], where the focus is on perturbing the displacement field
rather than overdensity and velocity fields themselves.
Recent work has emphasized the fundamental failure of
ab initio perturbation theory on small scales, where effects
are nonperturbative (e.g. Refs. [38–47]). In this approach,
called the effective field theory of large-scale structure,
small-scale contributions are integrated out, and one is left
with the effective theory formulation with free coefficients
which are incorporating small-scale contribution.
In this paper we first follow the recent work done in

studying the Lagrangian picture in the context of LPT
where the cumulants are kept in the exponent, convolved
Lagrangian perturbation theory (CLPT) [28,35] (also sche-
matically presented in Ref. [31]), extending the analytic
calculation methods and exploring the accuracy and per-
formance of this approach for the matter power spectrum
and correlation function. We test the performance of one
loop analytical calculations against the N-body simulations
in both Fourier and configuration space. We then connect
these calculations to the standard perturbation theory and
show the connection between the two. We identify the main
shortcomings of the approach and propose the decompo-
sition of the power spectrum in three additive parts: the
Zel’dovich part, residual contribution to the baryon acous-
tic oscillation (BAO) wiggles, and residual contribution to
the broadband power. We show that the CLPT based
approach is well suited for analyzing the residual wiggle
contribution. We show how the corrections of the displace-
ment field of the two point function (see e.g. Ref. [48]),
which we call CLPTs, affect the residual contributions to
the BAO wiggles. For the residual broadband part we
follow a similar approach investigating the effects of
CLPTs on the power spectrum and correlation function.
Finally, we show the relative effects of these contributions
and the comparison to the N-body simulations in both
Fourier and configuration space.
This paper is organized as follows. In Sec. II we present

the framework for the dark matter power spectrum and
review the Lagrangian perturbation theory for the displace-
ment field. We present the methods to compute the one loop
power spectrum and show the corresponding low k limit
result. In Sec. II F we look at various cross-power spectra at
2LPT level and compare it to the grid 2LPT numerical
results. In Sec. II G the correlation function results are
presented and compared to the N-body measurements. In

Sec. III we study the improvement of the CLPT results
by decomposing it into three additive parts, and we show
the extent of agreement of these results with N-body
simulations on the power spectrum and the correlation
function. Finally, we conclude our findings in Sec. IV.
In Appendices A, B, C, and D we show some details of the
calculations and write explicit forms of the terms contrib-
uting to the power spectra.
For this work, the flat ΛCDM model is assumed

Ωm ¼ 0.272, ΩΛ ¼ 0.728, Ωb=Ωm ¼ 0.167, h ¼ 0.704,
ns ¼ 0.967, σ8 ¼ 0.81. The primordial density field is
generated using the matter transfer function by CAMB.
The positions and velocities of all the dark matter particles
are given at the redshifts z ¼ 0.0, 0.5, 1.0, and 2.0.

II. CLUSTERING IN LAGRANGIAN PICTURE

A. Overdensity field evolution and power spectrum

A central quantity in the Lagrangian picture is the
displacement field Ψðq; τÞ. It represents the mapping of
a particle from its initial position q, to the Eulerian-space
coordinate at a given moment in time r,

rðq; τÞ ¼ qþΨðq; τÞ: ð1Þ

From this we see that Ψðq; τÞ can also be understood as the
velocity field integral along the worldline of the particle,
starting from the origin,

Ψðq; τÞ ¼
Z

τ
dτ0vðrðq; τ0Þ; τ0Þ: ð2Þ

We are interested in the density field of dark matter
particles and how it evolves with time. The continuity
equation and the assumption that we have a uniform initial
density field give the relation of the overdensity field in
the volume element d3r at the position r with initial
conditions,

ð1þ δðrÞÞd3r ¼ d3q

→ 1þ δðrÞ ¼
Z

d3qδDðr − q −ΨðqÞÞ:

In Fourier space this relation gives

ð2πÞ3δDðkÞ þ δðkÞ ¼
Z

d3qeik·q exp ðik ·ΨÞ; ð3Þ

where we are following the Fourier conventions:

~fðkÞ ¼ F ½fðxÞ�ðkÞ ¼
Z

d3x expðik · xÞfðxÞ;

fðxÞ ¼ F−1½ ~fðkÞ�ðxÞ ¼
Z

d3k
ð2πÞ3 expð−ik · xÞ ~fðkÞ:
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The simplest and thus the most interesting statistical
quantity that can be constructed from this field is a two
point correlation function or its Fourier space analog, the
power spectrum. Since we assume a homogeneity and
isotropy of the dark matter distribution we can define the
power spectrum,

ð2πÞ3PðkÞδDðkþ k0Þ ¼ hδðkÞδðk0Þi: ð4Þ

Using Eq. (3) it follows that the power spectrum in terms of
the displacement field is given by

ð2πÞ3δDðkÞ þ PðkÞ ¼
Z

d3qe−iq·khexpð−ik · ΔÞi; ð5Þ

where we have introduced the differential displacement
vector field

Δ ¼ Ψðq2Þ −Ψðq1Þ ð6Þ

and define the separation vector q ¼ q2 − q1. Following
the notation from Ref. [28] we can introduce the generating
function of the differential displacement vector field,

KðqÞ ¼ hexpð−ik · ΔÞi: ð7Þ

As a consequence of spatial homogeneity and isotropy,
generating function K is a function of separation vector q
only, rather than q2 and q1. In this way the translational
invariance remains manifestly imposed at every step of this
approach.

B. Cumulant expansion and the hierarchy

The cumulant expansion theorem allows expansion of
the expected value of the exponential function,

K ¼ he−ik·Δi ¼ exp

�X∞
N¼1

ð−iÞN
N!

hðk · ΔÞNic
�
; ð8Þ

where hðk · ΔÞNic stands for Nth cumulant of a random
variable. In diagrammatic representation this means that
only connected terms contribute to the correlation. We can
write [28]

logK ¼
X∞
N¼1

ð−iÞN
N!

hðk · ΔÞNic

¼
X∞
N¼1

ð−iÞN
N!

ki1…kiN hΔk1…ΔkN ic: ð9Þ

To get the full power spectrum an infinite sum of these
terms should be computed. However, since this is an
expansion in powers of k, the series is convergent for
sufficiently small values of k, in which case we can truncate
the sum at a given order that meets our required accuracy.

By isotropy we have that the N ¼ 1 term vanishes. At the
first order the displacement field is Gaussian, and this gives
the Zel’dovich approximation, for which only the N ¼ 2
cumulant is nonvanishing. In his paper we expand the
displacement field to third order and keep only one loop
terms, which means the fourth cumulant vanishes, and
hence we evaluate the summation to the third cumulant of
Δ field, which leaves two cumulants to evaluate:

AijðqÞ ¼ hΔiΔjic;
WijkðqÞ ¼ hΔiΔjΔkic: ð10Þ

This gives

logK ¼ −
1

2
kikjAijðqÞ þ

i
6
kikjklWijlðqÞ:

Using this we have for the expression for the power
spectrum given up to the third cumulant

ð2πÞ3δDðkÞ þ PðkÞ

¼
Z

d3qe−iq·k exp

�
−
1

2
kikjAijðqÞ þ

i
6
kikjklWijlðqÞ

�
:

ð11Þ

The next step is to evaluate the contributing cumulants in
CLPT. The displacement cumulants AijðqÞ andWijkðqÞ can
be decomposed into irreducible components relative to the
pair separation vector q,

AijðqÞ ¼ XðqÞδKij þ YðqÞq̂iq̂j;
WijkðqÞ ¼ VðqÞq̂fiδKjkg þ TðqÞq̂iq̂jq̂k; ð12Þ

and here, we have introduced the four scalar functions
XðqÞ, YðqÞ, VðqÞ, and TðqÞwhich depend on the amplitude
of separation q. Angular brackets on the summation indices
imply that the summation is to be taken over all of the
cyclic permutations. This follows from the fact that theWijk
cumulant is symmetric under a permutation of its indices.
Contracting indices on these tensors and solving the system
we get

A0 ≡ δKijAij ¼ 3X þ Y

Ā≡ q̂iq̂jAij ¼ X þ Y

�
→

X ¼ 1
2
ðA0 − ĀÞ

Y ¼ 1
2
ð3Ā − A0Þ

ð13Þ

for the second cumulant, and similarly

W0 ≡ q̂iδKjkWijk ¼ 5V þ T

W̄ ≡ q̂iq̂jq̂kWijk ¼ 3V þ T

�
→

V ¼ 1
2
ðW0 − W̄Þ

T ¼ 1
2
ð5W̄ − 3W0Þ

ð14Þ

for the third cumulant. Using this we can rewrite the power
spectrum into the form
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ð2πÞ3δDðkÞ þ PðkÞ

¼
Z

d3qeiμkðq−1
2
k2VÞ exp

�
−
1

2
k2ðX þ μ2YÞ − i

6
μ3k3T

�
;

ð15Þ

where we have introduced the angle between the given
k-mode and separation vector μ ¼ q̂ · k̂.
It is worth keeping in mind that Aij is the two point

correlator of the difference of the displacement field and so
contains a zero lag component; one can write

AijðqÞ ¼ hΔiΔjic
¼ 2ðσ2δKij − hΨiðq1ÞΨjðq2Þiq2−q1¼qÞ; ð16Þ

where σ2δKij ¼ hΨiðqÞΨjðqÞi ¼ 1
2
Xðq → ∞Þ is the squared

zero lag rms displacement, i.e. displacement dispersion.
Because it is a zero lag quantity it is susceptible to
nonlinear effects down to very small scales, where pertur-
bation theory is unlikely to be reliable. Since this quantity
does not depend on q its Fourier transform is zero except
for k ¼ 0. Because of this we will see below that it does not
enter the final density power spectrum at the lowest order in
Aij, but it does enter at the quadratic order in Aij even in the
low k limit. In fact, due to its large value it dominates
the nonlinear effects in this limit and is responsible for the
smoothing of the BAO, among other effects. We will return
to this discussion below.

C. Perturbation theory of the displacement fields

We use LPT up to one loop to compute the contributions
to scalar functions X, Y, V, and T. This has in most parts
been derived in Ref. [28], and we summarize it here for
completeness and in order to set up a framework for the
later Sec. II F, when we look at the cross power spectra of
2LPT. Detailed derivation of the X, Y and V, T terms is also
given in Appendixes A, and B, respectively.
We start from the ansatz for the displacement field in

Fourier space (see e.g. Ref. [25]),

Ψiðp; τÞ ¼
X∞
n¼1

ΨðnÞ
i ðp; τÞ

¼ −i
X∞
n¼1

DðnÞðτÞ
n!

Z Yn
l¼1

�
d3pl

ð2πÞ3 δLðplÞ
�

× ð2πÞ3δ3
�Xn

j¼1

pj − p

�
LðnÞ
i ðp1;…;pnÞ; ð17Þ

where δL is the linear dark matter density field. Plugging
this ansatz into the equation of motion and consis-
tently solving order by order one gets the solution for
the vector displacement kernels LðnÞðplÞ. This gives (see
e.g. Refs. [3,25,29,30,49,50])

Lð1Þ
i ¼ ki

k2
;

Lð2Þ
i ðp1;p2Þ ¼

3

7

ki
k2

�
1 −

�
p1 · p2

p1p2

�
2
�
;

Lð3Þ
i ðp1;p2;p3Þ ¼

5

7

ki
k2

�
1 −

�
p2 · p3

p2p3

�
2
�

×

�
1 −

�
p1 · ðp2 þ p3Þ
p1jp1 þ p2j

�
2
�

−
1

3

ki
k2

�
1–3

�
p1 · p2

p1p2

�
2

þ 2
ðp1 · p2Þðp2 · p3Þðp3 · p1Þ

p2
1p

2
2p

2
3

�

þ ϵijlkjKlðp1;p2;p3Þ; ð18Þ

where k ¼ p1 þ � � � þ pn for LðnÞ and Kl is the transverse
part which does not enter at the lowest order. For the last
Lð3Þ kernel it is useful to make it fully symmetrical in all the
pi variables. In general we can also solve for the time
evolution of these kernels, i.e. solve the second order
differential equation for eachDðnÞðτÞ (see e.g. Ref. [3]), but
for simplicity we assume the logarithmic growth rate to be
fðτÞ ¼ d lnD=d ln a ¼ Ω1=2

m ðτÞ. This simplifies the situa-
tion so the growth rate at each order in perturbations can be
written as powers of linear growth rate DðnÞðτÞ ¼ Dn

LðτÞ.
As done in Ref. [25] it is useful to define multispectra of

the displacement field,

hΨi1ðp1Þ…ΨiN ðp1Þic ¼ ð2πÞ3δDðp1 þ � � � þ pNÞ
× iN−2Ci1…iN ðp1;…;pNÞ; ð19Þ

whereΨiðpÞ are the Fourier transforms of the displacement
fields.
Using this we can compute the X, Y, V, and T terms up to

one loop. Details of this calculation are presented in
Appendixes A and B and can also be found in e.g.
Ref. [28]. In Fig. 1 we show the result of up to one loop
prediction of these terms at redshift z ¼ 0.0. We see that
going beyond the Zel’dovich calculation introduces the
corrections to the X and Y terms where for the Y term we
see that corrections are restricted to the scales below
∼100 Mpc=h, while for the X term on the other hand
we have a correction on very large scales, which means that
the one loop calculation gives a considerable contribution
to the zero lag rms displacement. V and T terms are pure
one loop terms which are zero in the linear approximation.
Both terms asymptote to zero at large and small scales. For
Y, V, and T terms we see that they have a peak at the scales
of around ∼30 Mpc=h.

D. Expansion in the angular moments

It is known that evaluating the matter power spec-
trum even in the Zel’dovich approximation is not as
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straightforward as doing the direct two dimensional inte-
gral. Direct numerical integration is not the optimal
approach since the integral function can be highly oscil-
latory. In Ref. [51] the method is proposed to solve the
Zel’dovich approximation power spectrum. Here we gen-
eralize this method to evaluate the higher order power
spectrum.
We can express the power spectrum in the spherical

frame where k is along the ẑ direction,

PðkÞ ¼ 2π

Z
∞

0

q2dq
Z

1

−1
dμeiμkq

�
e−

1
2
k2Xe−

i
2
μk3V

× exp

�
−
1

2
μ2k2Y −

i
6
μ3k3T

�
− e−

1
2
k2σ2

�
; ð20Þ

where in the last term we added the zero lag term, which
is an extra contribution that is a constant and hence
vanishes for all k except k ¼ 0. It is introduced to cure
the oscillatory integration problems. It depends on σ2, the
squared rms displacement, which can be evaluated in high
q limit of XðqÞ (Fig. 1). We will return to this in the next
section where we will focus on the low k limit of the power
spectrum. Direct evaluation of equation (20) is difficult
because of fast oscillating terms. Instead we first rewrite
Eq. (15) in more convenient form for evaluation,

PðkÞ ¼ ZðkÞ þ VðkÞ þ T ðkÞ; ð21Þ

where we have

ZðkÞ ¼
Z

d3qeiμkqðe−1
2
k2ðXþμ2YÞ − e−

1
2
k2σ2Þ;

VðkÞ ¼
Z

d3qeiμkqe−
1
2
k2ðXþμ2YÞðe−i

2
μk3V − 1Þ;

T ðkÞ ¼
Z

d3qeiμkðq−1
2
k2VÞ

× e−
1
2
k2ðXþμ2YÞðe−i

6
μ3k3T − 1Þ: ð22Þ

Note that the first contribution Z is the nonlinear
Zel’dovich case where only the two point contribution in
the cumulant expansion is considered. To evaluate these
terms we can use the expansion formula presented in
Appendix C. For the first two terms above, Z and V,
we can use the expansion

Z
1

−1
dμeiAμ expðBμ2Þ ¼ 2eB

X∞
n¼0

�
−
2B
A

�
n
jnðAÞ; ð23Þ

and for the third term we use the generalized equation (C1),

Z
1

−1
dμeiAμ expðBμ2 þ iϵμ3Þ

¼ 2eB
X∞
n¼0

�
−
2B
A

�
n
JnðA; ϵÞ; ð24Þ

where JnðA; ϵÞ is the generalization for the spherical Bessel
function jnðAÞ which we had in the previous case. The
explicit form for Jn is given by Eq. (C6). Note that in the
limit of ϵ → 0 we retrieve the result above, i.e.
JnðA; ϵÞ → jnðAÞ. We see that integrals in Eq. (22) can
be expressed in terms of these expansions using

Aðk; qÞ ¼ k

�
q −

1

2
k2VðqÞ

�
;

Bðk; qÞ ¼ −
1

2
k2YðqÞ;

ϵðk; qÞ ¼ −
1

6
k3TðqÞ: ð25Þ

Doing so we have reduced the equation (22) integrals from
three dimensional integrals to a quickly converging sum of
one dimensional integrals. Typically the sum over n can be
truncated at n < 15 for k < 1h=Mpc (in Ref. [51] it was
argued n ¼ 3 is good enough for k < 0.3h=Mpc). Since
one dimensional integration over q for a given k is fast we

FIG. 1 (color online). Scale dependence of two and three point functions of the displacement field, Eqs. (12), which contribute to the
cumulant expansion, shown at redshift z ¼ 0.0. Linear (dashed) and one loop (dotted) contributions to the X (blue) and Y (red) terms
(solid line is linear þ one loop) are shown on the left panel. On the right panel we show tree level contribution to the V (red) and T (blue)
terms (solid lines).
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use a conservative value of n ¼ 25. We also developed an
alternative expansion in spherical harmonics, which is
presented in Appendix D. This gives equivalent numerical
results and will not be discussed here in more detail.
In Fig. 2 we show the results of the one loop CLPT

power spectrum for four different redshifts, z ¼ 0.0, 0.5,
1.0, and 2.0. Also shown are the results when three point
functionWijk in Eq. (10) is neglected and only the Aij term
remains. We compare these to the N-body results as well as
one loop SPT results. We see that CLPT at low redshifts is
significantly below the N-body results. We also investigate
the corresponding result presented in Ref. [28], where the
exponent with three point term Wijk is expanded and only
the first term is kept. On the mildly nonlinear scales that we
are showing this is a good approximation, and it can hardly
be distinguished from the full result presented in the same
Fig. 2. Comparison of this linear approximation to the full
result is shown in Appendix D and in Fig. 8. Adding the
three point function helps in the sense that it adds power,
but the effect is relatively small. We also see that the effect
of adding one loop corrections to Zeldovich leads to an
increase in power at higher redshifts and also at lower
redshifts for low k, as desired, but actually reduces power at
higher k for lower redshifts. This can be interpreted as a
sign of things gone astray in this approach. We will address
this issue again below, pointing out that the zero lag rms
displacement correction in one loop calculations yields too
large a contribution.

E. Low k limit

In this section we expand our result in Eq. (15) in k
powers to get the k2 corrections to the linear theory.
Expanding Eq. (11) it follows

ð2πÞ3δDðkÞ þ PðkÞ

¼ ð2πÞ3δDðkÞ − 1

2
kikj

Z
d3qeiq·kAij

−
i
6
kikjkl

Z
d3qeiq·kWijl

þ 1

8
kikjklkm

Z
d3qeiq·kAijAlm þ � � � ð26Þ

Evaluating each of these terms using Eqs. (A9) and (B7)
and the standard identities for spherical Bessel functions
(e.g. Refs. [54,55]) gives

−
1

2
kikj

Z
d3qeiq·kAij ¼ pðkÞ

−
i
6
kikjkl

Z
d3qeiq·kWijl ¼

3

7
ðQ2ðkÞ þ 2R2ðkÞÞ

1

8
kikjklkm

Z
d3qeiq·kAijAlm ¼ 1

2
Q3ðkÞ − k2σ2pðkÞ; ð27Þ

where we use

FIG. 2 (color online). Power spectrum result obtained by several methods at redshift z ¼ 0.0, 0.5, 1.0, and 2.0. The full CLPT result of
Eq. (15) at one loop is shown (solid red line) together with the approximations where three point contributions of V and T terms are
dropped and two point terms X and Y remain at one loop (long-dashed blue line). Shown is also the corresponding result presented in
Ref. [28] (long-dashed red line), where the exponent with three point termWijk is expanded and only the first term is kept. This turns out
to be a good approximation on scales shown here, and the difference is hardly noticeable. We also show the Zel’dovich result (short-
dashed purple line), usual one loop SPT (dot-dashed light-blue line), one loop LPT (dashed green line) as presented in Ref. [25], as well
as linear theory (dotted black line). For comparison we show the N-body simulation results (black dots) and cosmic emulator results [52]
(orange connected dots). All the spectra are divided by the no-wiggle linear power spectra [53] in order to reduce the range of scales.
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pðkÞ ¼ PLðkÞ þ
9

98
Q1ðkÞ þ

10

21
R1ðkÞ: ð28Þ

Here all Qi and Ri are as defined in Ref. [25]. For example,
we have

Q̄3ðkÞ ¼
Z

d3k0

ð2πÞ3
ðk · k0Þ2

k04
ðk · ðk − k0ÞÞ2

ðk − k0Þ4
× pðk0Þpðjk − k0jÞ: ð29Þ

We note that Q̄3 differs from Q3 (as defined in Ref. [25]) in
that the linear power spectrum PLðkÞ in the integrand is
replaced by the one loop displacement power spectrum
pðkÞ given by the equation (28).
It is useful to define the projector operator P which acts

on a function by projecting the full one loop result to its
perturbation components: linear part PL, convolution part
PQ, and the propagator part PR. As an example, the result
of applying the PQ to the full one loop result of bispectrum
term T given in Eq. (B7) is

PQTðqÞ ¼ 3

Z
dk
2π2k

�
−
3

7

�
ðQ1ðkÞ þ 2Q2ðkÞÞj3ðqkÞ:

ð30Þ

Note that summing the three different operators gives the
identity operation, i.e. PL þ PQ þ PR ¼ I. It follows

σ2 ¼ σ2L þ σ21loop ¼
1

3

Z
d3k
ð2πÞ3

pðkÞ
k2

: ð31Þ

Here we have used the labels for the dispersion contribu-
tions σ2L ¼ PLσ

2 and σ21loop ¼ ðPQ þ PRÞσ2. If we also
define the new contributions,

Q3Q;LðkÞ ¼
Z

d3k0

ð2πÞ3
ðk · k0Þ2

k04
ðk · ðk − k0ÞÞ2

ðk − k0Þ4
× PQ;Lpðk0ÞPQ;Lpðjk − k0jÞ: ð32Þ

This gives the correction to the one loop SPT power
spectrum

PðkÞ ¼ PSPT
1loopðkÞ þ

1

2
ðQ3ðkÞ −Q3LðkÞÞ − k2PLðkÞσ21loop:

ð33Þ

The last part here gives the correction to the k2 SPT
propagator which suppresses the power. In the high k limit
this term is cancelled by the second term due to the fact
that relative displacement field vanishes in the limit of a
small separation (the so-called Galilean invariance), but
in the low k limit the last term dominates. At z ¼ 0 the
linear theory value of σ2L ¼ 36.55 ðMpc=hÞ2, and σ21loop ¼
7.00 ðMpc=hÞ2, so the one loop correction is quite large.
In this paper we argue that zero lag quantities are

difficult to evaluate perturbatively because they receive
contributions from all scales, including very small scales
not amenable to the perturbation theory. Both the linear
Zel’dovich and its one loop generalization suffer from the
adhesion problem; while in simulations particles stop its
displacement streaming because they are trapped inside
the dark matter halos, in Zeldovich approximation and its
higher order LPT extensions this does not happen, and the
particles keep streaming along their paths. Because of this
the displacement field will be filtered out on small scales,
which is the regime where one loop calculation predicts
a large contribution. As a consequence, one loop LPT
is unreliable in its rms displacement prediction: results
from N-body simulations (see e.g. Refs. [48,56]) suggest
that the full nonlinear value should be comparable or
slightly higher than the linear prediction σ2L. This is
because most of the linear Zel’dovich contribution comes
from rather large scales, where the predictions are
reliable. If we erase both of the last two terms in
Eq. (33) we obtain precisely the one loop SPT result
in this limit. If, instead, we neglect the second term and
allow for a free σ2 in the last term of Eq. (33); i.e. if we
replace σ2 with a free parameter, we retrieve the same
correction form to the SPT as in one loop effective field
theory (e.g. Ref. [42]).

F. Cross- and autopower at 2LPT

A natural question that emerges by looking at the
equation (11) is related to how good the truncation of
the cumulant expansion is and how well equation (11)
preforms assuming perfectly modeled X, Y, V, and T terms.
To answer that one would need accurate simulation

TABLE I. Cross and autopower spectra up to 2LPT.

Pzz Pzl Pzt Pll Plt Ptt

Xαβ PLX ðPL þ PQÞσ2 PLX þ PQσ
2 PQX PQX þ PLσ

2 ðPL þ PQÞX
Yαβ PLY 0 PLY PQY PQY ðPL þ PQÞY
Vαβ 0 1

2
PQV

1
2
V 0 1

2
PQV V

Tαβ 0 1
2
PQT 1

2
T 0 1

2
PQT T
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measurements of all these terms. An alternative is to
perform a similar test on different (simpler) X, Y, V,
and T terms for which the solution of Eq. (11) can be
obtained, and the final result can be cross-checked with
direct numerical calculation of the power spectrum on the
grid. In this scenario we assume that chosen terms X, Y, V,
and T do not differ from the previous (nonlinear evolution)
case in any pathological way, which might alter the final
conclusion.
To perform this test we can use LPT displacements to

compare the performance of the analytical solution of the
integral in Eq. (11), to the cross- and autopower spectra
obtained from “initial condition” code [57] at redshift
z ¼ 0, where the nonlinear effects are most apparent.
For this purpose let us first introduce labeling that we will
use in analyzing all of the cross- and autospectra. Let us
identify the set of indices fz; l; tg ¼ fzel; 2lpt; zelþ 2lptg,
where in the first case we use the Zel’dovich result,
followed by the sole 2LPT result and finally a sum of
the two. Using the same formalism as when deriving
Eq. (11), we can write

ð2πÞ3δDðkÞþPαβðkÞ

¼
Z

d3qe−iq·k×exp

�
−
1

2
kikjA

αβ
ij ðqÞþ

i
6
kikjklW

αβ
ijlðqÞ

�
:

ð34Þ
Both, α and β, indices can take the values from the set
fz; l; tg in representing the Zel’dovich, 2LPT, or combined

result. Note that the Pzz result is the standard Zel’dovich
power spectrum, using the linear displacement. In Table I
we show the result for all the combinations of cross- and
autospectra up to the 2LPT. We show the results in terms of
how the decomposition coefficients of X, Y, V, and T
change when using a different combination of perturbation
theory (PT) approximation levels. Using Eqs. (26) and the
result of the Table I we also can find the low k limit for each
of the cross-power spectra. We have

Pzz ¼ ð1 − k2σ2LÞPL þ 1

2
Q3;

Pzl ¼ e−
1
2
k2ðσ2Lþσ2QÞ 3

14
Q2;

Pzt ¼ e−
1
2
k2σ2Q

�
ð1 − k2σ2LÞPL þ 3

14
ðQ2 þ 2R2Þ þ

1

2
Q3

�
;

Pll ¼ ð1 − k2σ2QÞ
9

98
Q1 þ

1

2
Q3Q;

Plt ¼ e−
1
2
k2σ2L

�
ð1 − k2σ2QÞ

9

98
Q1 þ

3

14
Q2 þ

1

2
Q3Q

�
;

Ptt ¼ ð1 − k2ðσ2L þ σ2QÞÞ
�
PL þ 9

98
Q1

�

þ 3

7
ðQ2 þ 2R2Þ þ

1

2
Q3: ð35Þ

In Fig. 3 we show the results of six different cross- and
autospectra up to the 2LPT approximations. We compare

FIG. 3 (color online). Cross- and autopower spectrum results from Table I using up to the 2LPT displacement at redshift z ¼ 0.0. The
result of Eq. (15) up to the 2LPT is shown (solid red lines) together with the low-k limit results (dashed blue lines). For comparison we
show the measured 2LPT simulation power spectrum (black dots) obtained by displacing particle on the grid with the initial condition
codes [57]. All the spectra are divided by the no-wiggle linear power spectra [53] in order to reduce the range in the plots.
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these results with numerical results obtained from meas-
uring the power spectra on the grid from the initial
condition code [57]. For N-body grid results we use
1000 Mpc=h box size with 10243 particles. Since we are
dealing with the finite box size there are some residual
effects. For example there will be effects coming from the
Nyquist frequency cutoff in the N-body result which we do
not account for in analytical calculations. Up to these
numerical effects we see that overall, for all of the cross-
spectra we are considering, the analytical calculations and
numerical measurements agree well with each other. In
addition to the numerical effects mentioned above in some
of the spectra like Pll, Plt, and Ptt the contribution of the
2LPT bispectrum term hΨð2ÞΨð2ÞΨð2Þi can be considered.
Since this is formally a two loop term it does not enter into
our analytic result, but it is present in the numerical N-body
result.
From the results in Fig. 3 we conclude that Eq. (11)

agrees well with the N-body grid solution, given the same
X, Y, V, and T terms. Differences observed between these
two solutions are significantly smaller than what we have

seen in the fully nonlinear when compared to full N-body
simulation in Fig. 2. This leads to the conclusion that in
order to improve the modeling of the analytic solution we
need to turn to more accurate modeling of the displacement
field power spectra that contribute to X, Y, V, and T terms.

G. Correlation function

Any well-defined PT model should allow for a com-
parison of results both in Fourier space and in configuration
space. The correlation function is defined as the two point
correlation of the density field in configuration space, and it
is a Fourier transform of the power spectrum

ξðrÞ ¼
Z

d3k
ð2πÞ3 expð−ik · rÞPðkÞ

¼
Z

k2dk
2π2

PðkÞj0ðkrÞ: ð36Þ

We Fourier transform the main results shown in Fig. 2. In
Fig. 4 we show the results for the correlation function at
redshifts z ¼ 0.0, z ¼ 0.5, z ¼ 1.0, and z ¼ 2.0. We show

FIG. 4 (color online). Correlation function obtained by numerically Fourier transforming the results from Fig. 2 at redshift z ¼ 0.0,
0.5, 1.0, and 2.0. In the upper panel we show the correlation function, and in the lower panel the same result is divided by the Zel’dovich
result (short-dashed purple line in the upper panel). The full result of Eq. (15) at one loop is shown (solid red line) together with the
approximations where the three point contribution of V and T terms are dropped and two point terms X and Y remain at one loop (long-
dashed blue line). For comparison we also show one loop LPT (short-dashed green line) as presented in Ref. [25] as well as linear theory
(dotted black line). For comparison we also show the N-body simulation results (black dots).
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the results of the equation (15) at one loop together with the
approximations where the three point contribution of V and
T terms are dropped and two point terms X and Y remain at
one loop. For comparison we also show the one loop LPT
from Ref. [25], where PT terms are not kept in the
exponential but expanded and which is preforming worse
than both the one loop calculation CLPT and Zel’dovich.
As mentioned before, formally the result in this paper
differs from the one presented in Ref. [28] in the respect
that there the exponent with three point function is
expanded and only the leading term (linear in V and T)
is kept, and in this work we keep all the terms in the
exponent. In practice though these two methods give very
similar results since the corrections coming from the
expansion terms above the leading one are small on scales
shown in the plots, and thus the results agree.
From Fig. 4 we see that one loop results improve the

comparison against N-body simulations relative to
Zel’dovich on scales around 40 Mpc=h and larger. The
agreement around 40–60 Mpc=h is particularly impressive.
Around BAO one loop CLPT does better than Zel’dovich
but seems to still be missing something. Below 40 Mpc=h
one loop CLPT does considerably worse than Zel’dovich,
even though in the power spectrum it showed an improve-
ment at higher k relative to Zel’dovich. We will address this
further in the next section, where we present a model that
improves upon our one loop calculations.

III. BEYOND CLPT

The results presented in the previous section have shown
that one loop CLPT is an improvement over Zel’dovich in
the power spectrum, but one loop CLPT is still well below
full power spectrum in simulations. On the other hand, the
correlation function results shown in Fig. 4 paint a different
picture, one where the Zel’dovich approximation gives a
much better agreement with the N-body simulations than
linear theory, and in some cases even better than one loop
CLPT. This manifests itself particularly in the BAO
smoothing, where little excess power remains in the

N-body simulation data against Zel’dovich. The difference
between the power spectrum and correlation function
suggests that the power spectrum is strongly affected by
very small-scale correlations, which is difficult to get right
in CLPT. As an example, in the limit of a large contribution
from small-scale correlations limited to zero lag this
becomes a shot noise term, which can completely change
the power spectrum at all k, while not changing the
correlation function at any nonzero lag value of r. The
effects on the power spectrum can thus be very different
from those on the correlation function.
A second, and separate, issue is that the realistic power

spectrum has narrow BAO features that also get modified
by nonlinear evolution. To a large extent this is an easier
problem in the context of CLPT since the Zel’dovich
approximation already reproduces nonlinear BAO effects
quite well. We will split this problem from the broadband
problem and decompose the total power spectrum into the
Zel’dovich contribution, the residual BAO wiggle, and
residual broadband contributions. We can write

PðkÞ ¼ PZelðkÞ þ PWðkÞ þ PBBðkÞ; ð37Þ

where the first term is the Zel’dovich power spectrum, the
second PW term is the BAO wiggle residual, and PBB is the
residual broadband power.
From the comparison of power spectrum results with

N-body simulation results found in Refs. [48,58] we have
learned that one loop LPT overestimates the displacement
power spectrum at small scales (see Fig. 4 in Ref. [48]). As
a consequence the total rms displacement field is also
overestimated. In the left panel in Fig. 5 we show the result
for the rms displacement field measured in N-body sim-
ulations and compared to linear theory and one loop LPT
prediction. We see that the one loop LPT prediction
overestimates the displacement field at all redshifts up to
z ¼ 2.0. We note that for all redshifts simulations suggest
that rms displacement is closer to linear theory than one
loop LPT. This indicates that the result in Eq. (33) does
not provide a correct low k limit. Physically this is a

FIG. 5 (color online). On the left panel we show the ratio of nonlinear displacement dispersion σ2 and linear theory prediction, as a
function of redshift z. We show the results measured in the N-body simulations (blue dots and dashed line) as well as one loop LPT
results (orange dots and dashed line). On the right panel we show predictions of σ2kmax

at z ¼ 0.0, as a function of the integration cutoff
kmax, using linear theory (black dotted line), one loop LPT (blue solid line), and LPTs (orange dotted line).
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consequence of dark matter particles being trapped inside
the dark matter halos, rather than streaming along their
Zel’dovich or LPT trajectories. This effect is not captured at
one loop LPT. On the right panel of Fig. 5 we show the
contribution to the rms displacement as a function of scale,

σ2ðkmaxÞ ¼
Z

kmax

0

d ln k
6π2

kpðkÞ; ð38Þ

where pðkÞ is the displacement field power spectrum [for
the one loop LPT result see Eq. (28)]. We can see that a
significant contribution to the one loop part of rms
displacement comes from scales typically considered to
be nonlinear (k > 0.2h=Mpc), while the linear part is
mostly determined by k < 0.2h=Mpc. As a result, we
can trust the linear prediction better than the one loop
part. There is a small part of the one loop contribution that
comes from k < 0.2h=Mpc, which we can reliably com-
pute and which adds to the linear rms displacement while
most of the one loop part is suppressed by the halo
formation. There is also a small part of linear displacement
that comes from k > 0.2h=Mpc and is suppressed by the
halo formation just as its one loop counterpart. Relative to
the linear displacement, we thus have one positive correc-
tion from one loop LPT (mostly at k < 0.2h=Mpc), and
one correction that reduces the linear displacement for
k > 0.2h=Mpc, and that is effectively negative relative to
linear value. It appears the two cancel each other so that the
total is very close to a linear value to a level of 1–1.5%,
almost independent of redshift.
We note in passing that this has an implication to the

effective field theory (EFT) of the large-scale structure
approach [39,46]. In the Eulerian approach the high k part,
which PT cannot reliably evaluate, is parametrized with a
free parameter α in the αk2Plin term. This term is then
added to the one loop PT power spectrum result. The value
of this correction obtained from fits to the simulation power
spectrum is estimated to be of order of 10% of σ2 at z ¼ 0
[39]. As shown earlier [Eq. (33)], Eulerian SPT can be
obtained from expanding LPT at given order (in the SPT
sense). At one loop level, leading low k corrections ∼k2Plin
come from combining several terms in LPT: R1, R2, and
σ2k2Plin. For the displacement field dispersion σ2, we have
seen above that the nonlinear correction to linear value has
to be very small. To compute the low k Eulerian EFT
results, leading corrections to the terms like R1 and R2 from
LPT also need to be computed. This offers, thus, an
independent consistency check of EFT approach in the
Lagrangian and Eulerian framework. To perform this
check, EFT corrections to the two, three, and possibly
four point displacement cumulants need to be calibrated
from the simulation measurements of these cumulants.
Since the decomposition of the power spectrum in

Eq. (37) is additive in all of its contributions, it follows
for the total correlation function

ξðrÞ ¼ ξZelðrÞ þ ξWðrÞ þ ξBBðrÞ; ð39Þ

where each of the constituents is respectively the Fourier
transform of the terms in (37).
We investigate the consequence of adopting a simple

Lorentzian-like damping of the displacement field power
spectrum suggested in Ref. [48], pðkÞ → pðkÞ=ð1þ αknÞ,
where α and n are free parameters evaluated in simulations
(see Ref. [48] for numerical values). The correction above
also changes the leading low k dependence of the dis-
placement spectrum. Since there is no reason to do this we
apply this correction only at the scales higher than k ¼
0.1h=Mpc and smoothly interpolate to no correction below
that k. Using this result, we correct the X and Y functions
but not V and T which would require separate N-body
analysis of a displacement bispectrum. We call this result
CLPTs. As shown on the right panel of Fig. 5 this reduces
the rms displacement variance σ2 to a value close to linear.

A. BAO wiggles: Beyond CLPT

Let us focus first on the residual wiggle part, PW , for
which we can use the CLPT and CLPTs results discussed
above. The key in extracting just the wiggle information is
in the construction of a reliable no-wiggle power spectrum.
To achieve this we use the b-spline smoothing method
similar to the one used in Ref. [59]. We first obtain the
smooth version of the linear power spectrum by smoothing
a realistic linear power spectrum. This is most easily
achieved when the linear power spectrum is first divided
by the no-wiggle fitting spectra from Ref. [53], then
smoothed, and then multiplied again with the no-wiggle
fitting spectra. We then use this smoothed linear power
spectrum as input to compute Zel’dovich and one loop
CLPT result. Since there is no unique way in obtaining the
smoothed line we construct a family of smooth approx-
imations and construct the final result as a linear compo-
sition of those. Further on we impose two integral
constraint requirements; i.e. we want σ8 and σv to be the
same in the case of the smoothed spectrum and the one with
BAO wiggles. This guarantees that any no-wiggle non-
linear power spectrum obtained in this way will agree well
with the spectrum containing wiggles even for high k
values. Using this smoothing on the Zel’dovich and one
loop CLPT result we extract the residual wiggle spectrum

PWðkÞ ¼ ðPCLPT − PZelÞ − ðPCLPT − PZelÞnw; ð40Þ

where PCLPT is the one loop CLPT power spectrum and
PZel is the Zel’dovich one. Subscript “nw” stands for the
no-wiggle spectrum, i.e. the one with smoothed BAO
wiggles. To obtain the wiggles results for the CLPTs
we just replace the CLPT power spectrum with the
corresponding CLPTs power spectrum in Eq. (40) above.
The wiggle results obtained by this procedure are shown

in Fig. 6. In the upper panel we show the results for the
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power spectrum divided by the corresponding smooth
spectrum (so e.g. linear divided by the smooth linear,
Zel’dovich by the smooth Zel’dovich, etc.) and similar for
the correlation function. We notice that, while CLPT and
CLPTs are almost indistinguishable in the power spectrum
in the correlation function, one can notice slight
differences. To see these effects better, in the middle panels
of the same figure we show the individual PW and ξW
contributions and in the bottom panels the same wiggle
contribution relative to the Zel’dovich result. We see that
the BAO correlation function feature does not change much
around BAO, which is in agreement with the one loop
CLPT result presented in Fig. 4. One can see that the
nonlinear effects beyond Zel’dovich are at a level of 1% in
the CLPT case and 2–3% in CLPTs in the correlation
function, while in the power spectrum they appear to be ten
times smaller (0.1–0.3%) in the amplitude compared to the
Zel’dovich power spectrum. As seen in Fig. 4, and later on
in Fig. 7, simulation measurements of the correlation
function tend to favor the CLPTs wiggle results. We
emphasize, however, that we are exploring very small
effects, and it is not clear whether these wiggle effects
beyond Zel’dovich can even be observable: the deviations
are of order of a few percent in amplitude in the correlation
function at 100 Mpc=h, where the sampling variance errors

are very large. In the power spectrum the effects appear
even smaller in amplitude although less localized. We also
show the results where V and T terms are neglected which
has the effect of slightly raising the amplitude of wiggles in
both the CLPT and CLPTs cases. We can thus say that V
and T contribute to the smoothing of the BAO wiggles. We
conclude that CLPTs are probably an improvement over
one loop CLPT for wiggles, but the effects are small when
compared to the dominant Zel’dovich effects.

B. Broadband power: Beyond CLPT

As discussed in the previous section, one loop CLPT is a
poor model for the power spectrum although it improves
upon Zel’dovich. In Fig. 7 we show the power spectrum
and correlation function results comparing CLPTs and
CLPT. We find that CLPTs improves upon CLPT in the
power spectrum but still fails to reach a good agreement
with the N-body simulations. This suggests that modeling
of the X and Y term by CLPTs introduces positive change
but is not sufficient, and a similar procedure would need to
be preformed on V and T terms and possibly also higher
cumulants. Physically, both Zel’dovich and one loop CLPT
fail to make halos, and they can only create the onset of
halo formation. CLPT is unable to adhere dark matter

FIG. 6 (color online). Upper panels: On the left panel, we show the power spectrum divided by the corresponding no-wiggle power
spectrum, which was constructed to give the limits of 1 at both low and high k for all the lines. We show the results for the linear theory
(black dotted line), Zel’dovich (purple dotted line), one loop CLPT (blue solid line), and CLPTs (red dashed line). On the right panel, we
show the same results for the correlation function divided by the corresponding no-wiggle version.Middle panels: On the left panel, we
show the residual wiggle power spectrum PW ; one loop CLPT-2pt (blue dashed line) and CLPTs-2pt (orange dashed line) results do not
include the bispectum terms V and T, and one loop CLPT-3pt (blue solid line) and CLPTs-3pt (orange solid line) results do include V
and T terms. On the right panel we show the corresponding results in the correlation function r2ξW . Bottom panels: The same lines are
shown as in the middle panels divided by the Zel’dovich result in order to highlight the relative effects.
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particles inside the halos. This is a well-known problem for
the Zel’dovich approximation, where the particles simply
stream straight on their trajectories set by initial conditions.
Because the halo formation is missing one cannot expect
CLPT to do well in the power spectrum, where halo terms
are a dominant contribution to the power spectrum already
at a relatively low k [60].
In the same figure we also show the correlation function

results for one loop CLPT, which achieves a good agree-
ment with simulations above 30 Mpc=h. Interestingly, this
is not improved by CLPTs, which performs worse on the
broadband part ξBB than CLPT. Below 30 Mpc=h, however,
both one loop CLPTand CLPTs are worse than Zel’dovich.
CLPT and CLPTs are therefore not an obvious improve-
ment over Zel’dovich for the correlation function.

IV. CONCLUSIONS

In this paperwe use theLagrangian perturbation theory for
evaluation of the displacement fields in order to compute up
to one loop contributions to the cumulants in the resulting
power spectrum. We start by reviewing the Lagrangian
framework of describing the overdensity of dark matter
particles and present the framework of computing the two
point function in Fourier space, i.e. the power spectrum. In
this framework (first suggested inRef. [28] for the correlation
function) the power spectrum is given as a sum of N-point
cumulants of the difference of the displacement field in two
points Δ ¼ Ψ2 −Ψ1. In this form the translation invariance
is given explicitly in each of the cumulants (see also
Ref. [35]). Only the first two cumulants (two point and

three point) have contributions at one loop, and we show the
scale dependence of each of these. A computationally
difficult part of integrating a highly oscillatory integrand
is overcome by angular moment expansion. This yields the
result expressed as the sum of integrals with spherical Bassel
functions, which ensure the quick convergence rate of the
sum. An alternative scheme of solving these equations by
expanding the integrand into spherical harmonics gives
identical results. We note that the convergence rate of the
first expansion method is somewhat better since it involves a
partial resummation of some of the terms. We compare the
final result to the N-body simulations. A similar analysis to
ours has been presented in Ref. [35], and wherever it is
comparable, the results agree. We Fourier transform our
result for the one loop power spectrum to obtain the
correlation function predictions. The CLPT results found
in this paper, when Fourier transformed, agreewithRef. [28].
For low redshifts, our power spectrum results do not

agree well with the N-body simulations. We argue that one
of the main reasons is that perturbation theory for the
displacement field overpredicts the rms displacement at
small scales. A possible improvement is to implement the
suppression of the displacement field power spectrum,
motivated by simulations [48], which we call CLPTs.
This offers a consistent treatment of the two point displace-
ment functions X and Y. We evaluate the rms displacement
σv in simulations and compare it to this model, finding a
good agreement. We note that the numerical value of the
zero lag rms displacement is nearly identical to the linear
value, this appears to be a result of a cancellation between a
small positive one loop contribution and the high k

FIG. 7 (color online). (Left panels:) Comparison of the power spectrum using CLPT (blue lines) and CLPTs (orange lines) at redshift
z ¼ 0.0 and z ¼ 1.0. We show the contributions in both cases when three point terms V and T are neglected (dashed blue and orange
lines) and taken into account using CLPT prediction for the three point function (solid blue and orange lines). We show also the results of
linear theory (black dotted line), the Zel’dovich approximation (purple solid line), N-body simulation (black dots), and the cosmic
emulator (orange dots). All the lines are divided by the no-wiggle linear theory. (Right panels:) Comparison of the correlation function
using CLPT (blue lines) and CLPTs (orange lines) at redshifts z ¼ 0.0 and z ¼ 1.0. Color labeling is the same as for the left panels.
Results are divided by the Zel’dovich correlation function.
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suppression of the small linear contribution. In the absence
of any available guidance from simulations we do not
modify the three point functions V and T. The result of this
procedure improves the overall broadband behavior of the
power spectrum but still fails to reproduce the final N-body
simulations result. Neither CLPT nor CLPTs has a large
effect on BAO wiggles in the power spectrum.
We look at the cross- and auto-spectrum at 2LPT level,

i.e. up to the second order expansion of the displacement
field. In this way, we can directly compare the performance
of our analytic solution with the measurements of the
spectrum on the grid obtained by displacing the particles
using the initial conditions code [57]. We compare six
different power spectra: three auto spectra, Zel’dovich,
2LPT (second order only) and Zel’dovichþ 2LPT, and
similarly three cross-spectra. We find a very good agree-
ment of the analytic and measured predictions in all of the
spectra. Differences that are noticeable as we approach
higher scales (k ∼ 0.4h=Mpc) are due to resolution effects
of grid measurements which start to affect the results. In
addition, even though both calculations are of the same
perturbative order in the displacement field, in our analytic
approach we truncate the cumulant expansion at one loop
order, while grid measurements in principle have contri-
butions from higher orders of cumulant expansion for some
of the spectra. These differences observed between the
analytic solutions and the solution on the grid are signifi-
cantly smaller than what we have seen earlier in the fully
nonlinear case when comparing to the full N-body simu-
lations. This suggests that truncating the cumulant expan-
sion leads to a very good approximation of the nonlinear
power spectrum. More accurate modeling of the analytic
power spectrum thus requires a more accurate modeling of
the displacement field spectra in the cumulant expansion
(i.e. X, Y, V, and T terms).
While for the power spectrum all of the models lack

power compared to simulations, with power increasing
from Zel’dovich to CLPT to CLPTs, in the correlation
function the picture is that Zel’dovich approximation is a
remarkably accurate model of the correlation function (see
also Ref. [37]), with deviations from simulations at a few
percent level for r > 5 Mpc=h, especially at higher red-
shifts. CLPT and CLPTs do not significantly improve upon
it and in fact are worse that Zel’dovich at smaller radii.
There are residual BAO wiggle effects beyond Zel’dovich
at a level of a few percent; these appear to be improved by
CLPT and improved further by CLPTs. These effects are at
a few percent level on 100 Mpc=h scale, so it is unclear
how observable they are, given the large sampling variance
fluctuations in a realistic survey. We conclude that
Zel’dovich, CLPT, and its CLPTs extension give very
different results in the power spectrum vs the correlation
function, and neither of them agrees with simulations in all
aspects. CLPTs uses the (approximately) exact two point
correlator of the displacement field, so the fact that it still

gives inaccurate results implies the higher order displace-
ment field correlators play a role, starting from the V and T
terms. A model that would give correct results both in the
power spectrum and in the correlation function therefore
remains elusive.
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APPENDIX A: PT COMPUTATION
FOR THE Aij TERM

In this section we show the one loop LPT calculation of
the Aij ¼ hΔiΔjic; a similar result can be found in
Ref. [28]. From the definition of Δ we have

Δi ¼ Ψiðq2Þ −Ψiðq1Þ

¼
Z

d3p
ð2πÞ3 ðe

−ip·q2 − e−ip·q1ÞΨiðpÞ: ðA1Þ

From Eq. (19) the two point function is given by

h ~Ψiðp1Þ ~Ψjðp2Þic ¼ ð2πÞ3δDðp1 þ p2ÞCijðp1Þ; ðA2Þ

where the CijðkÞ are the two point displacement power
spectra. The one loop LPT prediction for these spectra
gives the contributions

Cð11Þ
ij ðkÞ ¼ kikj

k4 PLðkÞ ðA3Þ

Cð22Þ
ij ðkÞ ¼ 9

98

kikj
k4 Q1ðkÞ ðA4Þ

Cð13Þ
ij ðkÞ ¼ Cð31Þ

ij ðkÞ ¼ 5
21

kikj
k4 R1ðkÞ; ðA5Þ

where Rn and Qn terms are defined as in Refs. [25,28]. We
can simplify this result by writing Cij ¼ ðkikj=k4ÞpðkÞ,
where pðkÞ is the one loop displacement spectra defined in
Eq. (28). We have

ZVONIMIR VLAH, UROŠ SELJAK AND TOBIAS BALDAUF PHYSICAL REVIEW D 91, 023508 (2015)

023508-14



Aij ¼ 2

Z
d3k
ð2πÞ3 ð1 − cos ðk · qÞÞ

×
kikj
k4

�
PLðkÞ þ

9

98
Q1ðkÞ þ

10

21
R1ðkÞ

�
: ðA6Þ

Contracting this quantity first by δij and then by q̂iq̂j, we
obtain the system of equations

A0 ≡ δKijAij ¼ 3X þ Y

Ā≡ q̂iq̂jAij ¼ X þ Y

�
→

X ¼ 1
2
ðA0 − ĀÞ

Y ¼ 1
2
ð3Ā − A0Þ:

ðA7Þ

Defining the μ ¼ k̂ · q̂ and by performing the angular
integrations, we get

XðqÞ ¼
Z

∞

0

dk
π2

�
PLðkÞ þ

9

98
Q1ðkÞ þ

10

21
R1ðkÞ

�

×

�
1

3
−
j1ðkqÞ
kq

�
; ðA8Þ

YðqÞ ¼
Z

∞

0

dk
π2

�
PLðkÞ þ

9

98
Q1ðkÞ þ

10

21
R1ðkÞ

�

× j2ðkqÞ: ðA9Þ

In the small q limit X and Y vanish, while in a large q limit
Y → 0 and X → σ2, where σ is defined in Eq. (32). Full q
dependence of X and Y terms at z ¼ 0 is shown in the left
panel of Fig. 1.

APPENDIX B: PT COMPUTATION
FOR THE Wijk TERM

As in the previous section using the Fourier transform of
the field ΨðqÞ we have

WijkðqÞ ¼
Z Y3

n¼1

d3pn

ð2πÞ3 ðe
−iq2·pn − e−iq1·pnÞhΨiðp1ÞΨjðp2ÞΨkðp3Þi

¼ ið2πÞ3
Z Y3

n¼1

d3pn

ð2πÞ3 ðe
−iq2·pn − e−iq1·pnÞδD123Cijkðp1;p2;p3Þ

¼ ið2πÞ3δ
�

ijk

nmr

�Z Y3
n¼1

d3pn

ð2πÞ3 ðe
−iq2·pn − e−iq1·pnÞδD123Cð112Þ

nmr ðp1;p2;p3Þ; ðB1Þ

where in the last line we have expanded Cijk in terms of the one loop contributions and symmetrized the indices. We use the
abbreviation for the Dirac delta function δD123 ¼ δDðp1 þ p2 þ p3Þ, as well as for the symmetrized sum of Kronecker deltas,

δ

�
ijk

nmr

�
¼ δKinδ

K
jmδ

K
kr þ δKknδ

K
imδ

K
jr þ δKjnδ

K
kmδ

K
ir: ðB2Þ

Contracting the tensor we get

W̄ðqÞ ¼ 3ið2πÞ3
Z Y3

n¼1

d3pn

ð2πÞ3 ðe
−iq2·pn − e−iq1·pnÞδD123q̂iq̂jq̂kCð112Þ

ijk ðp1;p2;p3Þ;

W0ðqÞ ¼ ið2πÞ3
Z Y3

n¼1

d3pn

ð2πÞ3 ðe
−iq2·pn − eiq1·pnÞδD123ð2q̂iCð112Þ

ijj ðp1;p2;p3Þ þ q̂iC
ð112Þ
jji ðp1;p2;p3ÞÞ: ðB3Þ

Before we evaluate these integrals one by one let us first do some general simplifications. First we use the delta function to
integrate out the p3 momentum which gives

ið2πÞ3
Z Y3

n¼1

d3pn

ð2πÞ3 ðe
−iq2·pn − e−iq1·pnÞδD123Cijkðp1;p2;p3Þ

¼ 2

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 ðsin ðq · p1Þ þ sinðq · p2Þ − sinðq · ðp1 þ p2ÞÞÞCijkðp1;p2;p3Þ: ðB4Þ

After some straightforward computation these integrals can be written in the form
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W̄ðqÞ ¼ 6

5

Z
dk
2π2k

�
−
3

7

�
ðQ1ðkÞ − 3Q2ðkÞ þ 2R1ðkÞ − 6R2ðkÞÞj1ðqkÞ þ

6

5

Z
dk
2π2k

�
−
3

7

�
ðQ1ðkÞ þ 2Q2ðkÞ

þ 2R1ðkÞ þ 4R2ðkÞÞj3ðqkÞ; ðB5Þ

and

W0ðqÞ ¼ 2

Z
dk
2π2k

�
−
3

7

�
ðQ1ðkÞ − 3Q2ðkÞ þ 2R1ðkÞ − 6R2ðkÞÞj1ðqkÞ; ðB6Þ

where Rn and Qn terms are defined as in Refs. [25,28].
Using the transformations from Eq. (14) we get the final
one loop estimate of the displacement bispectrum contri-
bution to the density power spectrum,

TðqÞ ¼ 3

Z
dk
2π2k

�
−
3

7

�
ðQ1ðkÞ þ 2Q2ðkÞ

þ 2R1ðkÞ þ 4R2ðkÞÞj3ðqkÞ;

VðqÞ ¼ 1

5
ðW0ðqÞ − TðqÞÞ: ðB7Þ

Note that each of these quantities approaches 0 as q → 0 as
well as in the q → ∞ limit. Full q dependence of V and T
terms at z ¼ 0 is shown in the right panel in Fig. 1.

APPENDIX C: ANGULAR
INTEGRATION: METHOD I

As shown in Ref. [51] the angular integral that appears in
Zel’dovich limit can be expressed as

Z
1

−1
dμeiAμ expðBμ2Þ ¼ 2eB

X∞
n¼0

�
−
2B
A

�
n
jnðAÞ; ðC1Þ

where jn are the spherical Bessel functions. We can define
the kth moment of the integral function Mk as

MkðA;BÞ ¼
Z

1

−1
dμμkeiAμ expðBμ2Þ: ðC2Þ

If we take the k-derivative of this integral with respect to A
we get the expression for the kth moment,

MkðA;BÞ ¼ 2ð−iÞkeB
X∞
n¼0

ð−2BÞn
�

d
dA

�
k
A−njnðAÞ; ðC3Þ

where we can use the relation for the spherical Bessel
functions,

�
1

ν

d
dν

�
k
ðν−njnðνÞÞ ¼ ð−1Þkν−n−kjnþk: ðC4Þ

Finally, we are interested in the case where we have the iϵμ3

term in the exponent. Expanding the left-hand side in ϵ we
get

Z
1

−1
dμeiAμ expðBμ2 þ iϵμ3Þ

¼
X∞
l¼0

ðiϵÞl
l!

M3lðA; BÞ

¼ 2eB
X∞
n¼0

�
−
2B
A

�
n
JnðA; ϵÞ; ðC5Þ

where we have defined a new function Jn which deviates
from the spherical Bessel function jn depending on the
values of parameter ϵ and is given in the form of a series,

JnðA; ϵÞ ¼
X∞
l¼0

ð−1Þl ϵ2l

ð2AÞ3l
�
Fðn;lÞ
1 ðAÞ

− 3ð3lþ 1Þð6lþ 1Þ ϵ
A
Fðn;lÞ
2 ðAÞ

�
; ðC6Þ

with the additional auxiliary functions defined as

Fðn;lÞ
1 ðAÞ ¼ ð6lÞ!

ð2lÞ!
X3l
p¼0

ð−2AÞp
ð2pÞ!ð3l − pÞ! jnþ3lþpðAÞ;

Fðn;lÞ
2 ðAÞ ¼ ð6lÞ!

ð2lÞ!
X3lþ1

p¼0

ð−2AÞp
ð2pþ 1Þ!ð3l − pþ 1Þ! jnþ3lþpþ2ðAÞ:

ðC7Þ
We can approximate the result at a first order in ϵ, which
would correspond to the solution presented in Ref. [28] for
the correlation function. We have

Z
1

−1
dμeiAμþBμ2ð1þ iϵμ3Þ

¼ 2eB
X∞
n¼0

�
−2B
A

�
n
�
Fðn;0Þ
1 ðAÞ−3

ϵ

A
Fðn;0Þ
2 ðAÞ

�

¼ 2eB
X∞
n¼0

�
−2B
A

�
n
�
jnðAÞ−

ϵ

A
½3jnþ2ðAÞ−Ajnþ3ðAÞ�

�
:

ðC8Þ

In the limit ϵ → 0 it is clear that we regain the old result in
Eq. (C1). If we compare our full integral (15) to the
equation (C5) we get the correspondence
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Aðk; qÞ ¼ k

�
q −

1

2
k2VðqÞ

�
;

Bðk; qÞ ¼ −
1

2
k2YðqÞ;

ϵðk; qÞ ¼ −
1

6
k3TðqÞ: ðC9Þ

From Eqs. (C5) and (C1) we see that the expansion
parameters of the series are −2B=A, −ϵ2, and −ϵ=A. We
find that the bispectrum terms V and T start to be relevant
for higher k as one would expect, as we see from low-k
calculation in Sec. II E.

APPENDIX D: ANGULAR INTEGRATION:
METHOD II

In this section we present an alternative derivation of the
solution of the equation (C5) integral. The idea is to
generalize the plane wave expansion (for review see e.g.
Ref. [63]) in order to obtain the solution of the integral. We
start from a well-known formula of the plane wave
expansion,

eik·r ¼
X∞
l¼0

ilð2lþ 1ÞPlðcos θÞjlðkrÞ; ðD1Þ

where θ is the angle between k and r. Expanding this, it
follows that for the powers of the plane wave variable we
have

ðixÞn ¼
�
dn

dαn
eiαx

�
α¼0

¼
X∞
l¼0

ilð2lþ 1ÞPlðxÞ
�
dnjlðαÞ
dαn

�
α¼0

: ðD2Þ

This gives us the Taylor expansion of the spherical Bessel
function around the zero,

jlðαÞ ¼
X∞
n¼0

αn

n!

�
dnjlðαÞ
dαn

�
α¼0

: ðD3Þ

We can compare this expansion to the well-known form of
the series representation of spherical Bessel functions (for
reference see e.g. Refs. [54,55]),

jlðαÞ ¼ αl
X∞
k¼0

ð−Þk
2kk!

α2k

ð2lþ 2kþ 1Þ!! ; ðD4Þ

which gives the coefficients of the Taylor expression above:

bln ¼
�
dnjlðαÞ
dαn

�
α¼0

¼

8>><
>>:

in−ln!ffiffi
2

p
n−lð1

2
ðn−lÞÞ!ðnþlþ1Þ!! ; if n ≥ l& n and

l both even or odd;

0; otherwise:

ðD5Þ

Using these coefficients we have

ðixÞn ¼
X∞
l¼0

ilð2lþ 1ÞPlðxÞbln; ðD6Þ

from which follows

eBx
2 ¼

X∞
l¼0

ilð2lþ 1ÞPlðxÞ
X∞
n¼0

ð−BÞn
n!

bl2n;

eiϵx
3 ¼

X∞
l¼0

ilð2lþ 1ÞPlðxÞ
X∞
n¼0

ð−ϵÞn
n!

bl3n: ðD7Þ

After some calculation we have the solution of the integral
(C1) in form of the series

Z
1

−1
dμeiAμ expðBμ2Þ

¼ 2
X∞
n¼0

ð2nÞ!
2nn!

Bn ×
Xn
p¼0

ð−2Þp

×
4pþ 1

ðn − pÞ!ð2nþ 2pþ 1Þ!! j2pðAÞ; ðD8Þ

where we have used the properties of bln coefficients and
orthogonality of Legendre polynomials,

Z
1

−1
dμPl1ðμÞPl2ðμÞ ¼

2

2l1 þ 1
δDl1l2 : ðD9Þ

Finally for the integral in Eq. (C5) it follows

Z
1

−1
dμeiAμ expðBμ2 þ iϵμ3Þ

¼ 2
X∞
p1¼0

ð−Þp1ðð4p1 þ 1ÞF1ðp1; B; ϵÞj2p1
ðAÞ

þ ð4p1 þ 3ÞF2ðp1; B; ϵÞj2p1þ1ðAÞÞ; ðD10Þ

where we define the functions

F1ðp1; B; ϵÞ ¼
X∞
n¼0

X∞
r¼0

c1ðp1; n; rÞBnϵ2r;

F2ðp1; B; ϵÞ ¼
X∞
n¼0

X∞
r¼0

c2ðp1; n; rÞBnϵ2rþ1; ðD11Þ
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and the coefficients are given by

c1ðp1; n; rÞ ¼
ð−Þr
2nþ3r

ð2nÞ!ð6rÞ!
n!ð2rÞ!

Xn
p2¼0

2p2ð4p2 þ 1Þ
ðn−p2Þ!ð2nþ 2p2 þ 1Þ!!

Xminfp1þp2;3rg

p3¼jp1−p2j

2p3h2p1;0;2p2;0j2p3;0i2
ð3r−p3Þ!ð6rþ 2p3 þ 1Þ!! ;

c2ðp1; n; rÞ ¼
ð−Þrþ1

2nþ3rþ1

ð2nÞ!ð6rþ 3Þ!
n!ð2rþ 1Þ!

Xn
p2¼0

2p2ð4p2 þ 1Þ
ðn−p2Þ!ð2nþ 2p2 þ 1Þ!!

Xminfp1þp2;3rþ1g

p3¼1
2
ðj2ðp1−p2Þþ1j−1Þ

2p3h2p1 þ 1;0;2p2;0j2p3 þ 1;0i2
ð3r−p3 þ 1Þ!ð6rþ 2p3 þ 5Þ!! :

ðD12Þ

Here we have used the properties of bln coefficients
and introduced the Clebsch–Gordan coefficients hl1; m1;
l2; m2jL;Mi, which appeared as a solution of the integral
over three Legendre polynomials,

Z
1

−1
dμPl1ðμÞPl2ðμÞPl3ðμÞ ¼

2

2l3 þ 1
hl1; 0; l2; 0jl3; 0i2:

ðD13Þ

We stress that c1 and c2 are coefficients and do not depend
on the values of A, B, or ϵ. Moreover, the sums that they
contain are finite; thus, these coefficients are finite numbers
themselves and can be precomputed. In this way, they do
not pose any computational obstacle, even though the
expressions look somewhat formidable. Also note that in
this expansion the A term appears only as an argument of
the spherical Bessel functions, and the rest of the expansion
is in powers of B and ϵ. In comparison with method I in
Sec. C we note that the advantage of method I is in partially
resumming the contribution of term B. In our case A, B, and

ϵ are given by relations (C9), and given the range of values
for variables q, k, and terms X, Y, V, and T (see Fig. 1)
resummation of B gives method I certain computational
advantage. Finally, once convergence is reached methods I
and II give the same results, as can be easily checked by
comparison with the direct numerical evaluation of inte-
grals on the lhs of Eq. (C5) or (D10) for some arbitrary real
values of A, B, and ϵ.
We also address the question of the difference of full

result for terms V and T [in Eq. (22)] obtained using
method I or/and II from the linearized version. In the
linearized versions of integrals V and T only the leading
order in terms V and T are kept. In Fig. 8 we show the
difference between the full and linearized result. We also
show this difference relative to the two point power
spectrum [labeled Z in Eq. (22)]. As expected, the differ-
ence starts to appear at higher values of k, but since the total
result is suppressed relative to the leading contribution it is
hard to distinguish it on the total power spectrum, as we
have mentioned earlier (see Sec. II D and Fig. 2).

FIG. 8 (color online). (Left panel:) Terms V (red lines) and T (blue lines), from Eq. (22). Full results (solid lines) are obtained using
method I or II described in Secs. C and D. In the linearized version (dashed line) only the leading contribution of V and T terms is kept.
(Right panel:) The relative contribution of the sum V þ T to the two point contribution Z is shown in the fully nonlinear case (solid
lines) and in the linearized version (dashed lines). Results are shown at redshift z ¼ 0.0.
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