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Bayesian model comparison penalizes models with more free parameters that are allowed to vary over a
wide range, and thus offers the most robust method to decide whether some given data require new
parameters. In this paper, we ask a simple question: do current cosmological data require extensions of the
simplest single-field inflation models? Specifically, we calculate the Bayesian evidence of a totally
anticorrelated isocurvature perturbation and a running spectral index of the scalar curvature perturbation.
These parameters are motivated by recent claims that the observed temperature anisotropy of the cosmic
microwave background on large angular scales is too low to be compatible with the simplest inflation
models. Both a subdominant, anticorrelated cold dark matter isocurvature component and a negative
running index succeed in lowering the large-scale temperature power spectrum. We show that the
introduction of isocurvature perturbations is disfavored, whereas that of the running spectral index is only
moderately favored, even when the BICEP2 data are included in the analysis without any foreground
subtraction.
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I. INTRODUCTION

Suppose that we wish to decide whether some data
require the addition of a new parameter to a model. We may
compare the logarithms of the likelihood values evaluated
at the best-fit parameters. For example, the conventional χ2

method uses Δχ2 ≡ −2 lnðL1=L2Þ. The obvious problem
of this approach is that the addition of a new parameter is
guaranteed to improve the fit, yielding a smaller χ2 value.
But then, what does Δχ2 mean when we find, say, Δχ2 ¼
−7 by adding one more parameter? Do the data require
such a parameter?
To address this issue, some criteria for comparing

models have been discussed in the literature. The Akaike
information criterion (AIC) [1] and the Bayesian information
criterion (BIC) [2] penalize models with more parameters by
adding to χ2 a term proportional to the number of parameters.
These criteria penalize all parameters equally regardless of
predictability. For example, consider two parameters, one
being allowed to vary from −1 to 1, and the other from 0 to
1010. While AIC and BIC penalize both parameters equally,
a more sensible criterion should penalize the latter more
strongly.

In this paper, we shall apply Bayesian model comparison
[3] to test whether extensions of the simplest inflation
models are required by the current cosmological data. The
Bayesian model comparison penalizes models with more
free parameters that are allowed to vary over a wide range.
Specifically, we compute the Bayesian evidence, Z,
defined by

Z ≡
Z

dNθLðdatajθÞPðθÞ; ð1Þ

where LðdatajθÞ is the likelihood of the data given the
model parameters θ, and PðθÞ is the prior probability. We
then compare two models by computing the logarithm of
the ratio of their evidences, lnB≡ lnðZ1=Z2Þ. Since the
prior probability is normalized as

R
dNθPðθÞ ¼ 1, PðθÞ at a

given set of θ becomes small when a model contains more
parameters varying over a wide range. This gives that
model a small Z, hence penalizing it more strongly. The
factor lnB can be interpreted as the mathematical odds
between the models given the data, which can also be
expressed heuristically using the so-called “Jeffrey’s scale,”
according to which the evidence for (or against) a model
is said to be weak, moderate, and strong if lnB > 1, 2.5,*t.giannantonio at ast.cam.ac.uk
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and 5, respectively [4]. We shall adopt Jeffrey’s scale
throughout this paper.
Why consider extensions of the simplest inflation

models? Here, the “simplest inflation models” refer to
inflation models driven by a single scalar field with a
simple potential yielding approximately a power-law power
spectrum of the scalar curvature perturbation.
A detection of isocurvature modes of any form would

rule out all single-field inflation models. Moreover, a
detection of a cold dark matter (CDM) isocurvature mode
would shed light on the nature of CDM, e.g., axions [5].
Given that the measured deviation of the scalar curvature

power spectrum from scale invariance is 1 − ns ≃ 0.04
[6,7], the running spectral index, ρs ≡ dns=d ln k, is typ-
ically of order ð1 − nsÞ2 ¼ Oð10−3Þ; however, larger val-
ues are possible if the third derivative of the potential of a
scalar field driving inflation is large [8]. Thus, a large
running index of order 10−2 necessarily requires a new
energy scale in the potential (either in the kinetic term of the
field [9] or in the initial vacuum state [10]), making the
models more complicated.
A motivation to consider these extensions of the simplest

single-field inflation models comes from the observational
data of the cosmic microwave background (CMB). The
Planck Collaboration claims that the CMB temperature
power spectrum data that they obtain at low multipoles are
too low to be compatible with the best-fit power-law
(ρs ¼ 0) adiabatic curvature perturbation spectrum [7].
Both a negative running index and a nearly scale-invariant
CDM isocurvature component that is anticorrelated with
the curvature perturbation can lower the low-multipole
power, reducing this apparent “tension” in the Planck
temperature data [11].
This tension is exacerbated [12], if a significant fraction

of the B-mode polarization detected at degree angular
scales by the BICEP2 Collaboration [13] originates from
the primordial, nearly scale-invariant gravitational waves
generated during inflation, as such gravitational waves add
extra power to the temperature power spectrum at low
multipoles [14]. Then, do the Planck and BICEP2 data
require either a negative running index or an anticorrelated
CDM isocurvature perturbation? This is the question that
we shall address in this paper using Bayesian model
comparison.
The authors of Ref. [15] computed the Bayesian evi-

dence of a running index, showing that evidence for
running is insignificant. Our results differ from theirs
because of the choice of the data set and the prior
probability on the amplitude of gravitational waves.
The authors of Refs. [16–19] computed Δχ2 for inflation

models which produce modifications of the primordial
power spectrum at small wave numbers, but did not
perform a Bayesian model comparison. The authors of
Ref. [20] computed Δχ2 for isocurvature perturbations, but
did not perform a Bayesian model comparison. Thus, they

were unable to conclude whether the data require such
extensions of the simple inflation models.
The structure of this paper is as follows: We describe the

models in Sec. II, and present the data sets we use and the
analysis method in Sec. III. We describe our results in
Sec. IV, and conclude in Sec. V.

II. MODELS

A. Model I: Running scalar spectral index

We write the scalar curvature power spectrum as

PRðkÞ ¼ Ask̄ns−1þ
1
2
ρs ln k̄; ð2Þ

where ns and ρs are the scalar spectral index and its
running, respectively, and k̄≡ k=ð0.05 ×Mpc−1Þ is the
normalized wave number. The tensor power spectrum is

PhðkÞ ¼ r0.05Ask̄−r0.05=8; ð3Þ
where r0.05 is the tensor-to-scalar ratio defined at
k ¼ 0.05 Mpc−1.
In the top panel of Fig. 1 we compare the temperature

power spectrum data, Dl ≡ lðlþ 1ÞCl=ð2πÞ, measured by
Planck [21] with three representative models. The solid line
shows the best-fit six-parameter adiabatic ΛCDM model
with ρs ¼ 0 and r0.05 ¼ 0. The short-dashed line is the sum
of the solid line and the tensor temperature power spectrum
with r0.05 ¼ 0.2, showing how adding the tensor power
spectrum with the tensor-to-scalar ratio suggested by the
BICEP2 data (without foreground subtraction) exacerbates
the tension between the model and the Planck temperature
data. The long-dashed line has r0.05 ¼ 0.2 and a negative
running index of ρs ¼ −0.03, which brings the model back
in agreement with the data. The dot-dashed line has a
positive running index, yielding a bad fit.

B. Model II: CDM isocurvature

When we study an isocurvature component, we use
Eq. (2) for the scalar curvature power spectrum with
ρs ≡ 0. We continue to use the same tensor power spectrum
as Eq. (3). We write the power spectrum of an isocurvature
component, S, as

PSðkÞ ¼ αAsk̄niso−1; ð4Þ
where niso is the corresponding spectral index, and α is the
isocurvature-to-curvature power ratio at k ¼ 0.05 Mpc−1.
We shall assume that R and S are totally anticorrelated
(or correlated) throughout this paper. We thus write the
cross-correlation power spectrum between R and S as

PRSðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðkÞPSðkÞ

p
: ð5Þ

To minimize the number of parameters, we set niso ¼ ns.
In the lower panel of Fig. 1, the solid line shows the best-

fit six-parameter adiabatic ΛCDM model with α ¼ 0 and
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r0.05 ¼ 0. The short-dashed line is the sum of the black line
and the tensor temperature power spectrum with
r0.05 ¼ 0.2, again showing that the BICEP2 data without
foreground subtraction exacerbate the tension. The long-
dashed line has r0.05 ¼ 0.2 and a totally anticorrelated
isocurvature component with α ¼ 0.01, which brings the
model back in agreement with the data. The dot-dashed line
has a totally correlated isocurvature component with
α ¼ 0.01, yielding a bad fit.

III. DATA AND ANALYSIS METHOD

We use the Planck temperature power spectrum from the
2013 public release [21], with the addition of the WMAP
9-year polarization data [22] as combined in the default
analysis by the Planck Collaboration, as well as the
B-mode polarization power spectrum released by the
BICEP2 Collaboration [13].

We also include a suite of baryon acoustic oscillation
(BAO) distance scale measurements by the BOSS and 6dF
collaborations, using the BOSS data release 9 (DR9)
measurement at z≃ 0.57 [23], the DR7 measurement at
z≃ 0.35 [24], and 6dF result at z≃ 0.1 [25]. We do not use
any supernovae or H0 data.
We perform a Bayesian Monte Carlo exploration of the

parameter space, using nested sampling as implemented in
the public code MULTINEST [26,27], used as an alternative
sampler within the COSMOMC/CAMB code [28,29]. This
method allows us to directly estimate the Bayesian evidence
of each model and its uncertainties, and to compare them.
We let the parameters vary freely within the ranges

described in Table I. As the nested sampling algorithm
starts from uniform sampling over the whole parameter
space, it is desirable to choose tight prior ranges such that the
sampling is efficient. We thus choose a prior distribution for
the standard ΛCDM parameters that is narrow, while being
sufficiently broad so that the posterior likelihood of the six
parameters is zero near the edges of the prior.
The prior distribution of the new parameters, i.e., r0.05,

α, and ρs, is chosen such that the power of tensor or
isocurvature perturbations does not exceed that of the scalar
curvature perturbation (r0.05 ∈ ½0; 1� and α ∈ ½0; 1�), and
that the running spectral index is not too much bigger than
j1 − nsj (ρs ∈ ½−0.1; 0.1�). These prior distributions make
physical sense and are compatible with expectations from
inflation.
In addition to the parameters shown in Table I, we

include the entire list of the standard Planck nuisance
parameters, over which we marginalize. As in the standard
Planck analysis, we account for massive neutrinos with a
total mass fixed at

P
mν ¼ 60 meV.

IV. RESULTS

A. Frequentist analysis: Δχ 2

Let us first show the results from the frequentist analysis
using the usual Δχ2 statistics. The sixth column of Table II
shows Δχ2 values between ΛCDMþ r0.05 and the other
models. Negative values indicate a better fit over the former

FIG. 1 (color online). Comparison of the ΛCDM and extended
models. In both panels, the solid lines show the scalar CMB
power spectrum of the six-parameter ΛCDM model, while the
short-dashed lines show the sum of the solid lines and the tensor
power spectrum with a tensor-to-scalar ratio of r0.05 ¼ 0.2. The
symbols with error bars show the Planck measurements [21].
Top panel: The long-dashed and dot-dashed lines show the sum
of the tensor power spectrum and the scalar power spectrum with
negative and positive running indices, respectively, with
jρsj ¼ 0.03. Bottom panel: The long-dashed and dot-dashed
lines show the sum of the short-dashed line and totally anti-
correlated and correlated CDM isocurvature components, re-
spectively, with an isocurvature-to-curvature ratio of α ¼ 0.01.

TABLE I. Parameters considered and prior ranges. In addition
to these, all standard Planck nuisance parameters are left free and
marginalized over.

Parameter Description Priors

ωb ≡ Ωbh2 Baryonic energy density [0.020, 0.025]
ωc ≡ Ωch2 Dark matter energy density [0.080, 0.16]
100ϑ Sound horizon at last scattering [1.034, 1.045]
τ Optical depth [0.05, 0.18]
ns Scalar spectral index [0.90, 1.05]
logð1010AsÞ Scalar amplitude [2.9, 3.35]
r0.05 Tensor-to-scalar ratio [0.0, 1.0]
α Isocurvature-to-curvature ratio [0.0, 1.0]
ρs Scalar running spectral index [−0.1, 0.1]
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model. The first column shows the data combinations.
When the BICEP2 data are included, we find Δχ2 ¼ −7.2
and −4.2 for the running spectral index and the anticorre-
lated CDM isocurvature models, respectively.1 The iso-
curvature mode gives a smaller improvement because,
while it reduces the low-multipole temperature power
spectrum, it also reduces the power at l ∼ 300 slightly,
which is disfavored by the data.
Both models contain one more free parameter than

ΛCDMþ r0.05. While the Δχ2 values tell us that introduc-
ing one more parameter improves the fit, they do not tell us
whether the data require such a parameter.

B. Bayesian evidences

Next, we show the results from the Bayesian analysis
using the logarithms of the evidence ratio, lnB. The seventh
column of Table III shows lnB values between ΛCDMþ
r0.05 and the other models. Positive values indicate that the
other models are favored over ΛCDMþ r0.05. When the
BICEP2 data are included, we find lnB ¼ 2.52 and −2.26
for the running spectral index and the CDM isocurvature
models, respectively. These results clearly show the power
of Bayesian model comparison: despite an improved χ2, the
anticorrelated CDM isocurvature model is disfavored by
the data. The running spectral index model is still favored,
and it is “moderately favored” according to Jeffrey’s scale.
We have also tested the effect of changing the priors by
reducing the assumed range on running by a factor of 2 to
ρs ∈ ½−0.05; 0.05�. We have found that in this case the

result simply reflects the change in the prior volume: the
Bayes factor grows by a factor of Δ lnB≃ ln 2 from
lnB ¼ 2.5 to lnB ¼ 3.1. Furthermore, we have tried for
the isocurvature case a uniform logarithmic prior:
Log10α ∈ ½−6; 0�. We find that also in this case the model
with isocurvature is not strongly favored compared with the
ΛCDM case, as lnB ¼ 1.23� 0.05, which is weakly
favored on Jeffrey’s scale. Broader choices of the loga-
rithmic prior would further penalize the model, while
narrower choices would be fine-tuned and would quickly
exclude parts of the parameter space near the best-fit point.
We show the marginalized 2D posteriors on the param-

eters of interest in Fig. 2, where we can see a visual
confirmation of the 95% confidence intervals shown in the
third column of Table III: the scalar running is favored at
the 2σ level, while the amount of anticorrelated CDM
isocurvature is consistent with zero.
We have tested the stability of our results when including

the Planck CMB lensing likelihood, removing BAOs, and
using Ph ∝ k̄0 instead of k̄−r=8. We find that the results
are relatively robust, although the evidence in favor of
running is reduced in some of these cases: the addition
of CMB lensing in particular reduces the evidence
to lnB ¼ 1.8, which is “weak” on Jeffrey’s scale. The

FIG. 2 (color online). Marginalized 2D posteriors on the tensor-
scalar ratio, running, and isocurvature parameters.

TABLE II. Frequentist analysis results.

Data Model Best fits Best-fit χ2 Δχ2 w.r.t. ΛCDM Δχ2 w.r.t. rΛCDM

Planck þWP ΛCDM � � � 9804.1 � � � 0.0
þBAO þr0.05 r0.05 ¼ 5.6 × 10−4 9804.1 0.0 � � �

þα α ¼ 7.1 × 10−4 9803.2 −0.9 −0.9
þρs ρs ¼ −0.012 9802.8 −1.4 −1.4

þr0.05 þ α r0.05 ¼ 1.7 × 10−4; 9803.2 −0.9 −0.9
α ¼ 6.5 × 10−4

þr0.05 þ ρs r0.05 ¼ 0.0020; 9802.8 −1.4 −1.4
ρs ¼ −0.013

Planck þWPþ ΛCDM � � � 9860.2 � � � 40.2
BICEP2 B-mode þr0.05 r0.05 ¼ 0.16 9820.0 −40.2 � � �
þBAO þα α ¼ 1.1 × 10−3 9858.8 −1.3 38.8

þρs ρs ¼ −0.015 9858.1 −2.0 38.1
þr0.05 þ α r0.05 ¼ 0.17; 9815.7 −44.4 −4.2

α ¼ 0.0036
þr0.05 þ ρs r0.05 ¼ 0.19; 9812.7 −47.4 −7.2

ρs ¼ −0.032

1Notice that, while we reproduce the best-fit values of Ref. [20]
for the anticorrelated isocurvature case, we find a smaller χ2

improvement than these authors: we findΔχ2 ¼ −4.7when using
their same settings, while they quote −5.8. After private com-
munications, we have found that this discrepancy is due to
numerical inaccuracies in the best-fit search of Ref. [20].
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Planck Collaboration also finds a reduced significance of a
running index when using the CMB lensing data [7].
Our results change more significantly if the same method

of Ref. [15] is used, where the posterior likelihood of
the tensor-to-scalar ratio obtained by the BICEP2
Collaboration was used as a prior instead of calculating
the full BICEP2 likelihood for each model. If we use their
method, we reproduce their results, which show an even
smaller evidence ratio for the running spectral index model,
lnB ¼ 1.1. While applying the BICEP2 posterior distri-
bution on r0.05 as a prior is reasonable when constraining
the tensor amplitude only, the results will be only approx-
imately recovered if both r0.05 and ρs are varied simulta-
neously. This is because the BICEP2 posterior was
obtained for a model without running, so that any degen-
eracy between r0.05 and ρs will be missed if using this
approach. We thus conclude that Ref. [15] underestimated
the evidence ratio for the running spectral index model.

V. CONCLUSIONS

There are at least three easy ways to reduce the apparent
“tension” between the simplest inflation models with a
tensor mode and the current CMB data including Planck
and BICEP2: first, a subdominant CDM isocurvature

perturbation anticorrelated with the dominant curvature
perturbation [20,30]; second, a negative running spectral
index [13]; and third, a modification of the large-scale
primordial power spectrum [15–19,31,32].
We have performed a Bayesian model comparison of the

former two extensions against the simplest inflation mod-
els. The anticorrelated CDM isocurvature component
reduces the CMB temperature power spectrum at low
multipoles, improving the agreement with the tensor model
with r0.05 ¼ 0.2 suggested by the BICEP2 data without any
foreground subtraction. Nonetheless, we have found that
such an improvement is Bayesianly disfavored, i.e., the
data do not support such an extension of the inflation
model, despite the fact that it gives an improved χ2 by
Δχ2 ¼ −4.2. This shows the power of the Bayesian model
comparison method. While this result necessarily depends
on the chosen prior on the amount of isocurvature, i.e.,
α ∈ ½0; 1�, this prior is physically motivated, and there is
little room for ambiguity on the prior choice.
We have then tested a model with a running spectral

index, as a negative running can also reduce the temper-
ature power spectrum at low multipoles. We have found
that a negative running spectral index is moderately favored
with the log evidence ratio of lnB ¼ 2.52.

TABLE III. Bayesian analysis results.

Data Model
95% C.L.
posteriors lnðZÞ lnB ¼ Δ lnZ

Jeffrey’s
scale

lnB w.r.t.
rΛCDM

Jeffrey’s
scale

Planck þWP ΛCDM � � � −4940.94� 0.05 � � � � � � 2.82� 0.06 Moderate
in favor

þBAO þr0.05 r0.05 ∈ ½0; 0.12� −4943.76� 0.03 −2.82� 0.06 Moderate
against

� � � � � �

þα α ∈ ½0; 0.0073� −4945.71� 0.04 −4.77� 0.06 Moderate
against

−1.95� 0.05 Weak against

þρs ρs ∈ ½−0.031; 0.0033� −4941.89� 0.03 −0.95� 0.06 Inconclusive 1.87� 0.04 Weak
in favor

þr0.05 þ α r0.05 ∈ ½0; 0.19�; −4947.66� 0.07 −6.72� 0.09 Strong
against

−3.90� 0.08 Moderate
against

α ∈ ½0; 0.010�
þr0.05 þ ρs r0.05 ∈ ½0; 0.24�; −4943.65� 0.04 −2.71� 0.06 Moderate

against
0.11� 0.05 Inconclusive

ρs ∈ ½−0.043;−0.00035�
Planck þWPþ ΛCDM � � � −4969.07� 0.01 � � � � � � −17.39� 0.04 Strong

against
BICEP2
B-mode

þr0.05 r0.05 ∈ ½0.093; 0.23� −4951.68� 0.04 17.39� 0.04 Strong
in favor

� � � � � �

þBAO þα α ∈ ½0; 0.0079� −4973.42� 0.10 −4.35� 0.10 Moderate
against

−21.74� 0.11 Strong
against

þρs ρs ∈ ½−0.035; 0.00044� −4969.58� 0.02 −0.51� 0.02 Inconclusive −17.90� 0.04 Strong
against

þr0.05 þ α r0.05 ∈ ½0.11; 0.26�; −4953.94� 0.01 15.13� 0.01 Strong
in favor

−2.26� 0.04 Weak
against

α ∈ ½0; 0.013�
þr0.05 þ ρs r0.05 ∈ ½0.12; 0.27�; −4949.16� 0.03 19.91� 0.03 Strong

in favor
2.52� 0.05 Moderate

in favor
ρs ∈ ½−0.050; 0.011�
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Our results are derived assuming that there is no fore-
ground contamination in the BICEP2 data. Any foreground
contributions will lower lnB, and thus the anticorrelated
CDM isocurvature will be even more disfavored, and
the evidence for a negative running spectral index will
likely turn out to be “weak” (lnB < 2.5). The BICEP2
Collaboration finds that the polarized dust emission could
account for 30% of the measured B-mode power spectrum,
while others argue that 100% could be accounted for by
dust [33,34]. Therefore, we conclude that the current data
do not require these particular extensions of the simplest
inflation models.
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