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The simplest inflationary models present us with few observable parameters to discriminate between
them. A detection of features in the spectra of primordial density perturbations could provide valuable
insights and lead to stringent tests of models of the early Universe. So far, searches for oscillatory features
have not produced statistically significant results. In this work we consider a combined search for features
in the power spectrum and bispectrum. We show that possible dependencies between the estimates of
feature model amplitudes based on the two- and three-point correlators are largely statistically independent
under the assumption of the null hypothesis of a nearly Gaussian featureless cosmic microwave
background. Building on this conclusion we propose an optimal amplitude estimator for a combined
search and study the look-elsewhere effect in feature model surveys. In particular we construct analytic
models for the distribution of amplitude estimates that allow for a reliable assessment of the significance of
potential findings. We also propose a well-behaved integrated statistic that is designed to detect evidence

for models exhibiting features at multiple frequencies.
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I. INTRODUCTION

The recent Planck results have further cemented the
place of the inflationary paradigm as the best explanation of
how our Universe began. The key observational predictions
of this model are flat, isotropic and homogeneous universe
with an approximately scale-invariant primordial power
spectrum. Traditionally there are only two observable
parameters which we can use to discriminate between
differing inflationary models, the spectral tilt, n,, and the
tensor to scalar ratio, r. Despite the observational evidence
that n; =~ 0.96 (see Ref. [1]), this constraint has not proved
to be a significant barrier to model building with a
plethora of viable candidates. The possible detection of
r could have a more decisive impact but this has yet to be
verified [2,3]. For this reason attention has also been
focused on other observables which may be able to
differentiate between models. One of the most promising
is non-Gaussianity. The simplest slow-roll single-field
inflationary models predict the primordial density fluctua-
tions to be Gaussian to a high degree but this so-called
standard model is arguably poorly motivated in funda-
mental theory. On the other hand, more realistic infla-
tionary models can produce characteristic non-Gaussian
signals whose form is closely related to the specific
dynamics underlying the theory.

Non-Gaussianity is commonly constrained by measuring
the bispectrum (the Fourier transform of the three-point
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correlator) of the cosmic microwave background (CMB).
This was the focus of the recent Planck cosmology paper
on non-Gaussianity [4], which found no evidence for a
significant bispectrum for a wide range of scale-invariant
non-Gaussian models. The only “hints” of deviations
from Gaussianity were those with a non— Bunch-Davies
(NBD) or excited initial vacuum state and those with
oscillatory-type oscillations, both observed at a signifi-
cance level of about 2¢ (see also earlier feature model
searches in the WMAP bispectrum [5]). While we will
have to wait for improved data sets to improve con-
straints on NBD-type models, oscillatory-type models
predict perturbations to the power spectrum which could
also be observed. This was first discussed for models that
arise from features in the inflationary potential in [6] and
for models where there is a resonance with oscillatory
features in the inflationary potential in [7]. Subsequently,
detailed studies of the effects of features in the infla-
tionary potential and the speed of sound have been
undertaken [8—12]. It has been shown that for a wide
range of parameter space the power spectrum and the
bispectrum oscillate with the same underlying frequency.
This special frequency relationship between polyspectra
has been found to be a robust property of oscillatory-type
models; see the review article [13] and subsequent
references [9,12,14-19]. We can approximate it with
the following relation between the power spectrum and
the bispectrum:

Pr(k) = Pro(k)(1 + Apsin(w(2k) + ¢p)), (1)
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sin(wK + ¢p), (2)
where K = k; + k, + k3, Pg (k) is the power spectrum in
the absence of any feature, A% (k) = k*/(27%) P (k) is the
dimensionless power spectrum and k, is a fiducial momen-
tum scale. Here, we define five model-dependent parame-
ters, the common frequency w, the relative amplitudes
Ap, Ap and the relative phases ¢p, ¢pp. This is our exemplar
model for which we will mainly consider a generic frequency
signal search with unknown relations between the feature
polyspectra amplitudes and phases, though we will also
consider the implications of fixing both the amplitude ratio
Ap/Ap and the relative phase ¢z — ¢pp. Many searches for
similar oscillatory features in the CMB power spectrum
based on WMAP and Planck data have been performed
elsewhere (see for example [20-27]). Our primary purpose is
to discuss the implications of positive results at the same
frequency for both the power spectrum and bispectrum as
evidence for this type of model. We note that specific
oscillatory models will typically have additional parameters
when compared with (1)—(2), such as those which define the
feature signal envelope. So apart from the additional free
parameters, they will generically have a narrower effective
domain over which they can be detected, with less signal to
noise (S/N) at a given amplitude. For this reason, our
discussion of statistical issues, like the “look elsewhere”
(LE) effect, using the simple feature model defined above
with 3-5 parameters should be considered conservative;
more complicated models may have to cross a higher
threshold in terms of raw statistical significance.

Despite the apparent simplicity of the exemplar model, we
emphasise that it is well motivated physically. In the context
of single-field slow-roll models, it is possible to quantita-
tively predict the periodic excitations in all polyspectra
caused by features in the slow-roll parameters (see, for
example, Ref. [9]). These models typically have a damping
envelope and, in the sharp feature limit, the damping
weakens so the solution approximates1 (1)—(2). The relative
amplitude Az/Ap and other parameters are feature depen-
dent. Hence, the detectability of the bispectrum relative to the
power spectrum depends on the particular feature model
under consideration.

Feature signals arising from multifield models are even
more model dependent, in particular in terms of the relative
power spectrum and bispectrum amplitudes. However,
there are interesting special cases in certain limits that

'For simplicity, we ignore possible scalings of the oscillation
amplitudes with wave number in this work. In the case of the
power spectrum the leading order behavior is usually a constant
cosine oscillation like in our exemplar model, while the sine
mode comes with a factor of 1/(kw). Typically feature models
produce a bispectrum with a cosine oscillation of amplitude
(Kw)?, while the sine oscillation only scales as Kw. Despite the
scalings, these oscillations are clearly highly correlated with the
sine and cosine templates of our simple model.
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have been studied and make definite predictions. In
Ref. [18], it was shown that the effect of additional heavy
fields could be integrated out in certain limits, yielding a
reduced sound speed. A nontrivial trajectory could induce
features in the power spectrum, with a corresponding signal
in the bispectrum calculated from the power spectrum and its
two derivatives. In Ref. [28,29], the idea of distinguishing
inflation from other scenarios focused on the possibility of
exciting several heavy fields with a sharp feature; these fields
then oscillate around their minima creating several corre-
sponding feature signals in both power spectrum and bispec-
trum. Like models in which the inflationary potential contains
multiple features, this is a model in which multiple feature
peaks could appear in the power spectrum and bispectrum,
motivating our final sections which will discuss this case.

Given that estimators for feature models based on the power
spectrum and bispectrum are based on the same set of
multipoles a,,,, an important aspect of a combined search is
to exclude the possibility of dependencies between the con-
straints. Naively, if we consider a single multipole a, then the
random variable P:=a? and B:=a> are clearly uncorrelated as a
is Gaussian with zero mean. However, P and B are obviously
highly dependent and contain no complementary information
(apart from the sign). Similarly, while we know that the
estimators for connected parts of different correlators should
be close to uncorrelated (as we know the a,,, are approximately
Gaussian) we also know that they are not entirely independent.
A main focus of this paper will be to determine the degree to
which estimators for oscillatory models based on different
correlators are independent and can be combined to enhance
our ability to detect feature models.

This paper is organized as follows. In Sec. II we describe
the simulation setup and pipelines used to study possible
dependencies between estimates of feature model ampli-
tudes in the power spectrum and bispectrum. Using standard
measures of statistical dependence we go on to show that the
measurements can be considered independent to a very good
approximation in Sec. III. We also provide analytic argu-
ments why this is expected in the large sample (large /,,,x)
limit. Building on this result we study the implications for a
combined search for feature models in Sec. IV. We develop
analytic models for the distributions of amplitudes under the
null hypothesis that allow us to judge the LE adjusted
significances of potential findings. Section V extends these
results to a survey allowing for feature models with multiple
frequencies. In particular we suggest a simple integrated
statistic that we found to provide a good assessment of
whether a survey provides evidence for such multifrequency
models. We also briefly discuss the possible inclusion of
polarization measurements and higher order correlators. We
summarize and discuss our results in Sec. III.

II. METHODS

To answer the question whether or not there exist
significant correlations between estimates of the amplitudes
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of feature models in the power spectrum and bispectrum it
is necessary to obtain amplitudes for a large number of
simulated CMB realizations. In the following sections we
describe the two sets of simulations underlying our results
and outline the pipelines used for the power spectrum and
bispectrum analysis.

A. CMB simulations

To study whether there is any kind of correlation in the
simplest scenario, we generate 10000 noiseless, unlensed
full-sky CMB realizations of the Planck best-fit ACDM
model. Each map is then processed by the two pipelines
described in the following sections. We restrict the analysis
in both cases to the multipole range 2 </ < 2000.

We also test whether incomplete sky coverage and
instrumental noise can give rise to correlations. We gen-
erate 400 unlensed CMB realizations of the Planck best-fit
ACDM model at a HEALPix resolution of N, = 2048. We
multiply the multipoles by the beam window function for a
5 arcmin Gaussian beam and the pixel window function
at resolution N, = 2048. Anisotropic colored noise is
obtained by first drawing a random number from a normal
distribution for each pixel. The resulting noise realizations
are then rescaled with an appropriate pixel variance map to
introduce anisotropy. The resulting noise realizations have
a flat unity power spectrum. To introduce correlations
between pixels we transform to multipole space and rescale
each multipole with a noise power spectrum N;.
Transforming back to pixel space we arrive at colored
anisotropic noise maps. By adding two different noise
realizations to each CMB map we produce two maps for
each of the 400 CMB realizations. We refer to these as half-
noise (HN) maps. This allows us to employ cross-
correlators between the two maps in the power spectrum
analysis. These have the advantage that the noise does not
lead to a bias and is preferable in practice over autocorre-
lators. The noise power spectrum and directional depend-
ance is chosen such that the average of the two HN maps
approximately mirrors the noise found in the Planck
Spectral Matching Independent Component Analysis
(SMICA) map [30]. This implies that each HN map is
generated with twice the noise power spectrum extracted
from the SMICA map.

The effect of incomplete sky coverage is incorporated by
masking the maps with the union mask U73 [4,30] as well
as two larger masks we constructed by extending the
galactic cut of the U73 mask. The latter have sky coverage
of 56 and 38% respectively and we refer to these modified
union masks as the MU56 and MU38 masks.

B. Power spectrum pipeline

As has become standard we use a pseudo-C; (PCL)
likelihood based on cross-correlators to analyze the power
spectrum [1,31,32]. Below we outline how the procedure
works in the more complicated case of the 400 pairs of HN

PHYSICAL REVIEW D 91, 023502 (2015)

maps. The analysis of the 10000 noiseless full-sky maps is
simply obtained by setting the noise to zero, the mask to
unity and replacing each HN map with the single realiza-
tion of the noiseless CMB.

To minimize leakage of power we apodize the masks
by approximate convolution with a Gaussian beam of
FWHM .5° using the procedure outlined in [33]. From
the masked HN maps we extract the respective sets of
multipole coefficients a}, and a7, and construct an
unbiased power spectrum estimate given by

o ~ ~ 1
C, =M;,C, C= mza}ma%ﬂ (3)

where M, ;, is the standard PCL coupling matrix [34]. We
approximate the PCL log likelihood with the fiducial
Gaussian approximation [32,35,36]

—2log £ = (C;, — C;))A; 1 (C, = Cpy). (4)

where A, = (AC‘,IAC‘,) is the covariance of the PCL
estimates assuming the fiducial model is correct. We
employ the analytic approximations from [35] to calculate
the covariance matrices. These approximations assume an
approximately constant power spectrum and thus do not
properly account for leakage effects. This typically leads to
an underestimate of the variance that we correct for
using an improved analytic approximation [33]. Due to
significant deviations from a Gaussian distribution at
low [ the fiducial Gaussian approximations are not reliable
in this region. We thus only consider the multipole
range 50 </ < 2000.

In linear theory, in particular ignoring lensing, the
observed CMB power spectrum given the six ACDM
parameters p; and a feature model with a certain w, ¢ is
given by

Ci(pi,A) = C}PM(p;) + ApsCi(pi @, ¢).  (5)

Determining the ML estimate for the amplitude Ap = AME
in principle requires all parameters to be varied simulta-
neously, i.e. for each point of the w-¢ grid one has to vary
the amplitude as well as the six ACDM parameters. This is
a computationally intensive task. Elaborate searches for
oscillations in the power spectrum have been performed
elsewhere (see for example [21-25,27]). Rather than trying
to obtain the best-fit amplitude to very high precision we
implement a pipeline that should provide reliable results for
a given map with reasonable computational effort and
sufficient accuracy to be able to make statements about
statistical dependencies of measurements. It needs to be fast
enough to allow the processing of a large number of CMB
realizations. We neglect the effect of varying the cosmo-
logical parameters on the perturbation to the observed
power spectrum 0C;. Instead, we precompute it employing
CAMB [37] with sufficiently high precision settings for
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each w, ¢ using the Planck best-fit ACDM parameters.
Using the precomputed oscillatory component means that
we can run CAMB with lower precision settings for finding
the ML point as the remaining ACDM varies relatively
slowly. Varying all parameters for each point on the grid
still remains a challenging task and we adopt a further
simplification. At the lowest frequencies where oscillatory
features are to some extent degenerate with changes in the
cosmological parameters a joint ML estimate is certainly
the only reliable option. However, one expects that the ML
amplitude AP should decouple from the cosmological
parameters at higher frequency in the sense that we can
first search for the best-fit ACDM model setting the
amplitude to zero and then obtain the amplitude keeping
the cosmological parameters fixed. The second option
has the advantage that once we find the best-fit ACDM
model, the best-fit amplitudes can be found as a simple
quadratic estimate”

A 2 A
Ag = N(SCI] AZ_I}Z (C12 - CgCDM’ML) (6)
Np = 25C, AT1.5C), (7)

for each point (w, ¢). This reduces the computational effort

tremendously. Figure 1 compares the amplitudes Ag and
those obtained as a ML estimate by varying cosmological
parameters and the amplitude simultaneously AME We plot
the ratio of variance of the difference and the variance of the
joint ML estimates for various frequencies and ¢p = 0.
One can clearly see that the degeneracies between cosmo-
logical parameters and the feature models at low frequen-
cies lead to differences in these amplitude estimates. This is
true in particular at @ ~ 70 and @ ~ 140 (peaks of decreas-
ing height also appear at w ~ 210,280, ... but are barely
visible in this plot). The oscillation in the power spectrum
due to the acoustic peaks is determined by the comoving
sound horizon at last scattering rg and resembles a
primordial oscillation with @ ~ 140 (roughly the value of
rg in Mpc) or equivalently3 an oscillation in / with 4; ~ 300.
Thus this is an intuitive result reflecting that changes in the
ACDM cosmology can mimic the effect of a feature
particularly well when 2w ~ nr, for some integer n because

*We introduce a redundant factor of 2 in the definition of the
quadratic estimator here for consistency with the standard
optimal power spectrum estimator and the optimal bispectrum
estimator later on. This definition implies (A2) = 2!/Np in line
with (A%) = 3!/Ny for the bispectrum.

Projection relates a mode at last scattering with comoving
scale k to an [ scale roughly given by [/ ~ Ayk where Ay is the
comoving distance to last scattering. Hence, a feature in the
power spectrum with frequency @ gives rise to oscillations in /
with wavelengths A, ~ 7An/w. With Ay ~ 1.4 x 10* Mpc we see
that @ ~ 140 produces oscillations with an approximate wave-
length of 4; ~ 300 that mimics the acoustic peak structure.
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FIG. 1 (color online). Ratio of the variance of the difference
between the full ML estimate AM" and an approximation based
on first finding the best-fit cosmological parameters in the
absence of features and then using a quadratic estimator A}Q, to
obtain the amplitudes. We obtain the variance at various frequen-
cies w for assuming a phase ¢p = 0.

such a feature either increases (or decreases) the height of
the peaks or changes the relative height of neighboring
peaks. Beyond @ ~ 140 any differences become very small.

We conclude that first finding the best-fit ACDM
cosmology and then using a quadratic estimate to find
the amplitudes is a relatively accurate method to determine
the ML amplitudes. It certainly offers enough accuracy
for the present study so that we adopt it as our power
spectrum pipeline.

Note that using these simplifications there is a close link
between the amplitudes A, and the corresponding like-
lihood improvement that is often studied to search
for oscillatory features. After the best-fit ACDM model
has been found, the improvement in the likelihood
from varying the amplitude alone is simply given
by —2Alog £ = —N/2(AMY)2,

Summing up, for each map we first find the best-fit
cosmological parameters using the optimization routine
BOBYQA [38] and CAMB. With appropriate settings we
find that the routine is able to determine the ML point of the
likelihood to sufficient accuracy with O(10%) calls of
CAMB, making this procedure fast enough to be performed
on a large number of CMB realizations. We then determine

the best-fit amplitudes AME using a quadratic estimator as
outlined above.

C. Bispectrum pipeline

To constrain feature models via the bispectrum we use
the modal polynomial pipeline that was used in the 2013
Planck analysis [4,39—41]. This is an implementation of the
standard optimal bispectrum estimator. The optimal esti-
mator for the bispectrum amplitude of a feature model A
reads
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) g, (@1 @ A, = 3@ ) A )s (8)

where b is the theoretical bispectrum of the feature model defined by

<al, my alzmz al3m3 >

Ll
= Bititm, =

1Lyl
mymyms b[][2[3 ’ (9)

and G is the Gaunt integral, which is the projection of the angular part of the primordial delta function

l l [
111 . R . 1 bhh
GHtms = [ A (8)Y 1, ()Y 1, () = ( )m,

mp  nmp; ms

.\ \/(211+1)(212+1)(213+1)<11 L 13)
Ll = .
0

47

The normalization of the estimator is

INAA -1 -
NB—E Gmlm2m3b111213(c )lll’lmlm’l(c

Ll

The pipeline employs separable basis functions to dramati-
cally simplify the calculation and allow us to constrain all
models simultaneously. The approach was first described in
[42] and a fully realized version was first implemented in
[43], when it was applied to WMAP data. It was recently
extended to polarization in preparation for the next round of
Planck papers in [44], which also included many other small
advances. It is the temperature only version of this pipeline
that was used here and we refer the interested reader to the
previous reference for a full description of the method. This
pipeline has proved very efficient for scanning large param-
eter spaces quickly for a broad selection of models and was
extensively validated as part of the Planck analysis. This
version has undergone significant optimization since then
and so we were able to increase the number of basis functions
from 601 to 2001, doubling our frequency coverage.

III. RESULTS

The pipelines described in Sec. Il produce amplitudes A ; for
each point on the w-¢ grid. Here, i = P for the power spectrum
andi = B for the bispectrum. We use a grid covering the range
@ = 10-600 in steps of Aw = 10 and 10 steps in phase with
¢ =0,7/10,...,9/10z. Due to correlations between nearby
frequencies increasing the resolution beyond Aw = 10 has
little benefit (atleast given an /-range 50 < [ < 2000) as will be
discussed below. The central question we are trying to answer is
whether or not there are any significant statistical dependencies
between the amplitudes A p(wp, ¢p) measured in the power
spectrum and the amplitudes A g(wp, ¢pp) measured in the
bispectrum. We know that the amplitudes must be uncorrelated,
Corr(Ap, Ag) = 0. To investigate more complicated depend-
encies we use two different measures. The standard correlation

0 0 (10)

IR

12
G

mymlym’,

(11)

1 —1
)lzl’zmzm’2 (C )I;l’ m3m bl’ Bl

coefficient of the absolute values of the amplitudes
Corr(|A ) and the
cient dCorr(Ap, Ap).

distance correlation coeffi-

A. Correlation between amplitude measurements

Given a set of N simulations we estimate the correlation
between the absolute values of different amplitudes as

SN = ) (A2 = 1))
VA = 1) S, (A7) - 1y)?

where 12\? refer to the amplitudes obtained from simulation
n and p; = (3 |A?|)/N is simply the mean of the mea-
surements. Note that y; # 0 because we are studying the
absolute values of the amplitudes. We obtained the corre-
lation matrix for both sets of simulations. Figure 2 shows
the results in the case of the 10000 simple noiseless full-sky
simulations. To visualize the results better, for each pair wp,
wg we plot the maximum magnitude correlation found in
the sample for any choice of ¢p, ¢pp. We see that there is
some off-diagonal structure at the O(10%) in the power
spectrum-power spectrum (PP) correlation plots. This is to
be expected as there is clearly some degeneracy between
different oscillatory models. The correlation shows up as
narrow stripes parallel to the diagonal with the most
pronounced stripe at a distance of about Aw ~ 140. This is
approximately the frequency of the acoustic peaks in the
power spectrum as we discussed in Sec. II. We can
understand this by recalling that sin(wk + ¢;) sin(w,k +
$r) = cos((w) — )k + (1 — ¢2)) + cos((w) + wa)k+
(¢1 + o)), so that if @ —w, ~ 140 there is some
resonance with the acoustic peaks that gives rise to excess
correlation for appropriate choices of the relative phases of the

Corr(|A;]. 14;]) = (12)
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FIG. 2 (color online).
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Correlation matrices obtained from 10000 noiseless full-sky CMB realizations. For each frequency combination

we plot the largest absolute value of the correlation Corr(|A;|, |A_,~|) found amongst all the possible combinations of phases.

features. The bispectrum-bispectrum (BB) correlations are
very nearly diagonal up to @ ~ 400 implying that different
feature models are almost independent. The off-diagonal
structure visible at high w is due to insufficient convergence of
the modal expansions of the corresponding shapes using 2000
modes. The fact that modulations close in frequency are
strongly correlated in both the power spectrum and the
bispectrum so that the diagonals have finite width suggests
that there is an effective stepwidth Aw,g 2 10. This will be of
importance later on when we study the statistics of feature
model surveys.

For a joint analysis it is important to study correlations
between the two measurements. Crucially, we see that there
is no sign of any power spectrum-bispectrum (PB) correla-
tion at the 1% level that we can resolve with 10000 samples.

Knowing that there is no significant correlation between
the measurements in the simplified case of full-sky
noiseless CMB realizations a natural question to ask is
whether features of real CMB experiments such as
complicated instrumental noise or incomplete sky cover-
age might change this conclusion. We investigated this
question using the 400 realistic simulations described in
Sec. II. Figure 3 shows the corresponding correlation
plots. The MC noise in these plots is clearly larger,
allowing a reliable detection of correlations down to the
5% level. Barring the higher noise level, for each mask
the plots agree extremely well with the correlation plots in
the simplified case suggesting that the inclusion of
anisotropic noise and masking of parts of the sky has
little effect. The PP and BB correlations between measure-
ments using different masks show less correlation when the
difference in sky fraction is larger. This is intuitive given that
the amount of data that is included in one of the measure-
ments but not in the other increases.

B. Distance correlation between amplitude
measurements

In the previous section we showed that if there exist any
correlations between the absolute values of the amplitudes

A p and A p they must be at the <1% level, the level at which
we can hope to detect correlations on the basis of 10000
samples. While the correlation matrix is a useful and
familiar tool to detect statistical dependencies, a vanishing
correlation coefficient does not imply statistical independ-
ence. To investigate whether there are any detectable
dependencies in the sets of simulations that do not cause
linear correlation we also calculated the distance correlation
matrix of the amplitudes. Distance correlation has the
property that it vanishes if and only if the random variables
are truly independent. It is defined as

A AL
dCOfr(Al,Aj)_ Zk’l Kk (13)

AP

where

Al = ;‘d_Zm ;;m_Zm f/nl+Zmn5£nn

kl — N N N2 (14)
W= AT - All. (15)

As this expression is relatively tedious to calculate owing to
the fact that the distance between all pairs of amplitudes
from different samples enters this expression we evaluated
it only on the first 1000 samples of full-sky noiseless CMB
realizations. The results are shown in Fig. 4. The result is
qualitatively very similar to Fig. 2. The main differences are
a somewhat smaller noise level, a consequence of summing
over O(10%) pairs of samples, and slightly different
correlation coefficients. Slight differences in the correlation
coefficients are to be expected because there is no direct
correspondence between the precise values of correlation
and distance correlation except for the case of statistically
independent variables in which both give 0 and the case of
fully linearly dependent variables in which both are unity.
Figure 5 shows the distance correlation matrices obtained
from the 400 realistic simulations. Again, the plot is
qualitatively very similar to the corresponding correlation
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FIG. 3 (color online).
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1.0

Correlation

Correlation matrices obtained from 400 CMB realizations with anisotropic noise. The results are shown for

complete sky coverage as well as using the U73, MU56 and MU38 masks. As in Fig. 2 we plot the largest absolute value of
Corr(|A;|, |A;|) for a given @ combination found amongst all the possible combinations of phases.

plots in Fig. 5 and confirms the conclusions drawn at the
end of the previous section.

C. Analytic estimate

Having found no detectable dependencies between
amplitude measurements it is desirable to have an analytic
understanding of this fact. Heuristically we could make the

following point. While the amplitudes A and Az might not
be jointly Gaussian distributed for finite sample sizes, we
could argue that as we increase /.,,, according to the
general expectation from the multidimensional central limit
theorem (CLT), we expect the amplitudes to approach a
joint distribution close to Gaussian. This is clearly not a
proof as strictly speaking the requirements of the CLT are not
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FIG. 4 (color online).
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Distance correlation matrices obtained from 1000 noiseless full-sky CMB realizations. For each combination of

frequencies @ the largest absolute value of dCorr(4;, J) for any combination of phases is plotted.

met. Nonetheless, if we assume that the joint distribution
approaches a Gaussian, uncorrelatedness implies statistical
independence. As the estimators for the power spectrum and
bispectrum amplitude are always uncorrelated, this argument
leads us to conclude that the power spectrum and bispectrum
amplitudes should be asymptotically independent.

To gain further insight we are going to derive an estimate
for the degree of dependence in the simple isotropic
Gaussian case. Rather than the absolute values we study
the variance of the square of the amplitudes

1

Cov[A3, AZ]

Corr[Az,A%;] = _ .
(Var[A3]Var[Ag]):

(16)

For independent amplitudes we obviously have
Corr[A%, A%] = 0 but we are faced with a ten-point function
so we cannot conclude that it must vanish just because the
CMB is Gaussian. However, the only possible contribu-
tions to the variance are either of the form d; or §, where

5C,, 5C),

51 = WBllmﬂzrVLzhmg CZICZICZIBllmllzmzlsm C—lz Cl3 (17)
1 5C,\2
" (NpNg)? BllmlbmzlSmgCl‘ Clz Cllellmllzrnzlgmw (ﬁj) (18)

with some combinatorical prefactors. Now in general we
expect 6C;/C;~N P/ 2 / lmax Furthermore we assume

Var[A3] ~ Var[Ap]* ~ N2 and similarly for the bispectrum
so that as an order of magnitude estimate we have

2 aan (NBNR) Np 1
Corr[AZ,A%;]N%(Bc-lc-lc-lze) LA
NPNB _}([—’ max Thax
—VB

(19)

Thus we expect & ~ [72,.

This argument strictly holds only for the square of
the amplitudes but it strongly suggests that we expect
any dependencies between the amplitudes themselves
to be suppressed by a factor [;l, and in particular
Corr[|A ] ~dCorr[Ap, Ag] = O(I;ly). Hence any
correlations should be of the order 10 and thus too small

|

to be detected with 10* samples and certainly too small to
be relevant for the detection of feature models. This
argument should add further credibility to the results
presented above.

IV. COMBINED STATISTICS

A. Combined search for feature models

Having shown that we can expect largely independent
constraints on feature models from the power spectrum and
bispectrum the natural question is how we design a
combined search for feature models. One route would be
to pursue a combined likelihood analysis. We write the
contribution of the feature model to the two- and three-
point correlator as

= Cllmllzmz

-

ymylym;

<allmlallm1>

+ 5Cll mylymy (20)
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FIG. 5 (color online). Distance correlation matrices obtained from 400 CMB realizations with anisotropic noise. The results are §hown
for complete sky coverage as well as using the U73, MU56 and MU38 masks. Again we plot the largest absolute value of dCorr(A;, A j)
for a given combination of ®.

1 Lyl expression for the full non-Gaussian likelihood using the
<allm1alzm2al3Wl3> = Bmlmsz (21) . . . .
Edgeworth expansion in the connected n-point functions
where C° is the two-point correlator in the absence  (see for example [45,46] and references within for
of any feature model. We can write down a formal details),

n 11
1 a a ) exp ( 2 Cllmllzmzallmlal2m2) (22)

P(alm) = exXp (Z; <a11m1 "'alnmn>c 8allm1 801 m 2 det(C)
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0 0 0

1
= exp <1 — __Bhhb

mymyms
3! 8a,lml aa,]ml aallml

This expression needs to be expanded to high enough order
in the characteristic amplitude of deviations from Gaus-
sianity denoted by fy; to guarantee sufficient accuracy.
Note that it is not enough to know the three-point function
of the feature model for an accurate likelihood. We need
knowledge of the contributions to higher order connected
correlation functions as well.

Without calculating the full likelihood there is another
natural statistic to consider. Assuming the feature model
has an overall amplitude A as a parameter, i.e.
(aa) = C° + ASC, {aaa) = AB where 6C and B depend
on other parameters of the feature model that are scanned
over, we can easily construct the optimal unbiased esti-
mator for said amplitude at A ~ 0. To do so we assume that
A is not degenerate with other cosmological parameters
influencing C° so that we can estimate these parameters
separately in a first step and take C° to be a fixed fiducial
covariance. As we have seen in Sec. II this is the case
except at low . The optimal amplitude estimator is then
simply given by

~ 1 (A A
A=—(Z24+2E (24)
N\Vp Vg
11
N=—+—. 25
Ve Vs (25)

Here AP, AB are the standard amplitude estimators dis-
cussed above for the power spectrum modulation 6C and
the bispectrum B with variances Vp = (A3) = 2/Np and
Vy = (A%) = 3!/Npg. The optimality of this estimator can
be simply seen from the Edgeworth expansion above just
like it is argued in [45] for the case of the bispectrum-only
estimator. Expanding to first order in A we obtain

alOgP NPA NBA AP AB
0A |,y 2 TR AR TR T (26)
so the Fisher information is
Olog P\ 2 A Ag\?
A= (o) M= () ) e
0A A—0 Vp Vg 420

At A = 0 we have (ApAp) = 0 because this is effectively a
five-point function that must vanish in the case of a
Gaussian distribution so that 7, = N and

(28)
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exp(_lc_}n mallmlalzmz)
o)) S G ni)

/2 det(C)

(23)

and A indeed saturates the Cramer-Rao bound for unbiased
estimators.

As we are considering models that have individual
amplitude parameters for the power spectrum and bispec-
trum Ap and Ag, they can be easily parametrized by an
overall amplitude A. If we define a relative amplitude
ri=Ag/Ap, then for a given r the optimal amplitude
estimator is

Ap/Vp + rAg/Vp

A =
Vil + V!

(29)

where AP, AB, Vp and Vp now refer to the amplitude
estimators for the bare sine modulations in the power
spectrum and bispectrum.

B. Quantifying the look-elsewhere effect
in feature model surveys

After the discussion in the last section it is of interest to
answer the question whether there is any hope of finding
significant evidence for feature models in a combined
survey when individual searches both produced no con-
vincing evidence. Whether one studies likelihood improve-
ments or optimal amplitude estimates, a sensible question
to judge whether one should get excited about the results or
not is to compare the findings to what one would expect
from simply fitting a random Gaussian realization. As
feature model surveys typically scan a large number
of models there is a significant look-elsewhere effect
involved, i.e. we expect to see naively significant results
simply because we tried many different models. So far
surveys for the power spectrum and bispectrum have not
produced any results that exceed the significances one
would expect from a featureless Gaussian realization.
A central goal of this section is to show that even with
additional tunable parameters such as the relative amplitude
and the relative phase of feature models that are introduced
in the generic combined search proposed here it is possible
to substantially lower the threshold for a significant
detection of feature models that contribute to both the
power spectrum and the bispectrum. In what follows it will
be useful to introduce the notation

X

X=—"
Var[X]

(30)

o=

for any estimator or more generally random variable X.
Let us start by quantifying the look-elsewhere effect in
an individual survey. We will use a subscript i = P, B to
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indicate that the discussion applies to both the power
spectrum and the bispectrum. We are interested in the
distribution of the maximum amplitude expected from
fitting the noise, i.e. we study the distribution of

Ai‘mx = IgaXAi(w, &) (31)

under the null hypothesis that there are no underlying

feature models. Of course we could use MC simulations to

answer this question but rather than choosing this route we
will try to derive an analytic model for this distribution
that gives more insight and allows an easy generalization
to a joint significance later on.

To derive an analytic model we make two assumptions
that should both be conservative:

(a) The maximum amplitude at each @ given by
max A;(w, ¢;) follows a chi distribution with two
degrees of freedom for each value of w.

(b) Amplitude measurements at sufficiently separated
frequencies are independent.

We can justify assumption (a) as follows. Neglecting minor

effects coming from first finding the best-fit ACDM model

in the power spectrum we can write the maximum
amplitude at a given o in both the power spectrum and
the bispectrum as

_ K.+ sin ¥,
maxA;(@. ¢;) = max P AIIT ()

¢ ((cos pX; + sing¥;)?)2

where X, ¥, are Gaussian distributed. This simply follows
from sin (wk + ¢) = sin (wk) cos ¢ + cos (wk)) sin¢p and
the fact that the amplitude estimates are linear in the
theoretical models. X; corresponds to the estimate for
the sine mode whereas ¥; corresponds to the estimate of
the cosine mode. Now if we assume that (X;¥;) =0 we

simply have
n}paxA,-(a), b)) =/ X} + Y2 (33)

This is exactly a chi distribution with two degrees of
freedom. Even though the assumption (X;¥;) = 0 might
not be exactly satisfied we expect correlations between the
Gaussian random variables will change the chi distribution
to something that should generally produce smaller p-
values or equivalently assign larger significances to
observed amplitudes. In this sense working with the chi
distribution with two degrees of freedom is conservative.
The second assumption makes a statement about the
amount of independent information at different . We
know from Sec. III that correlations are generally not large
for our stepsize in @ but obviously there are some.
Especially if we decrease the step size in @ and use a
finer grid the correlations between neighboring bins will

PHYSICAL REVIEW D 91, 023502 (2015)

3 - Analytic result
— MC estimate PS
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FIG. 6 (color online).  Analytic prediction for the significance of
results in the individual surveys compared to exact results from
10000 MC samples.

become more pronounced. We will later introduce a

parameter for the effective number of independent bins

that will account for these correlations and assume they are

uncorrelated for now to derive an analytic expression.
With these two assumptions we simply have

P(AP® > x)=1-P(A]™ <x)
= 1=(P(A?(0) <)V =1=(F,,(x))"

it =1 (1-en(2))

(34)

where N is the number of frequencies observed and F, ,
and F ., are the cumulative distribution functions of the
chi distribution and chi-squared distribution with two
degrees of freedom respectively. As mentioned above we
can now introduce an effective number of independent
frequencies Ny instead of the fixed number N above to
account for correlations between frequency bins. This
parameter can then be chosen such that the analytic
significances agree well with MC simulations. Rather than
working with the p-values calculated above we translate
them into significances S in units of standard deviations of
a normal distribution via

S = 2Erf~![1 - p). (35)

Figure 6 compares the significances we obtained from
10000 MC runs with the significances predicted from our
analytic model using N = 35. This is a sensible value for
N indicating that there are some dependencies among the
41 frequencies used in this survey. Ny is related to the
effective bin width Aw.; mentioned previously. The fact
that N is less than the number of bins included agrees
with Awgy 2 10, a rough estimate that we based on the
covariance matrices studied in Sec. III. The agreement
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between the analytic model and the MC results is good
especially in the tail that we care about most when judging
potentially interesting results. At lower significances the
analytic model underestimates the exact result which is
plausible given that our treatment does not account for
correlations in an entirely rigorous fashion.

For a combined survey the look-elsewhere effect
depends on the number of free parameters of the model.
In our case the most extreme look-elsewhere effect occurs if
we allow both the relative amplitude r and the relative
phase ¢pp — ¢p to vary. The normalized combined ampli-
tude is given by the optimal combined amplitude estimate
introduced in the last section A divided by its variance
which gives

i AA :AP+RA? (36)
Var(A) (14 R?)

where we introduced a variance weighted relative ampli-

tude R = rV%; / V%. Maximizing with respect to r is
evidently the same as maximizing with respect to R. We
have to find the distribution of the maximum of this
amplitude in a survey maximizing with respect to R, ¢p,
¢p and w,

Amax = max A(CO,¢P,¢B,R). (37)
R.pp.pp.@

Maximization with respect to R following exactly the same
reasoning as before for ¢ in the individual surveys gives

max A = (/A2 + A3, (38)

Maximization over the ¢; can be done individually giving

max A =/X}+ Y} + X3+ Y3 (39)
Rp.dp

This is a chi distribution with four degrees of freedom and
as before p-values for the full survey are given by

Actual theories might predict a specific phase relation so
that there is less opportunity for a look-elsewhere effect. To
study this possibility let us simply assume ¢p = ¢pp = ¢
and look for the maximum amplitude found for any
common phase ¢ so that in this case

Amax — gl/axA(w, ¢.R). (41)
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Obviously we are likely to be faced with more complicated
phase relations in searches for feature models but this
should have little effect on the look-elsewhere effect. We
found that in this case the resulting distribution is not a
simple chi distribution with three degrees of freedom as one
might expect based on the previous cases. However, we
show in Appendix A that we can approximate the resulting
cumulative distribution function (CDF) F(x) of the exact
distribution well with

F(x) ~ Fy35(x) (42)

where we assume for simplicity (¥2)/(X3) ~ (Y3)/(X3).

Figure 7 compares the significances we obtained from
10000 MC runs with the significances predicted from our
analytic models in both cases using Ny = 35. Again, the
agreement is good, particularly in the most interesting
region of high significance. It is evident that the look-
elsewhere effect resulting from not assuming a phase
relation is rather small and the joint signficances assigned
to findings are very similar in both cases.

Summing up the results of this section, we conclude that
a combined search for a single frequency model can reveal
interesting results even if the power spectrum and bispec-
trum show no statistically significant signals on their
own. If we find a pair of amplitudes Ap and Ay at some
frequency @ we can assign it a significance based on the
expectation for fitting a featureless Gaussian realization.
The look-elsewhere adjusted joint significance S (in units
of sigma) in the most conservative case, i.e. assuming no
phase relation and maximizing over the relative amplitude,
is then given by

S = 2~ [1 - P(A™ > (A} + A)')]  (43)

= DErf~V[(F 4 (A2 4 A3))Ner]. (44)

Analytic result w/ ¢ rel
3 - Analytic result w/o ¢ rel
— MC estimate w/ ¢ rel
— MC estimate w/o ¢ rel

Significance [o]
N

20 25 30 35 40 45 5.0 55
Maximum A

FIG. 7 (color online). Analytic predictions for the significance
of results in the combined survey compared to exact results from
10000 MC samples. We show the case of not assuming a phase
relationship between the power spectrum and bispectrum and also
the case of assuming ¢p = ¢pp = ¢h.
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Joint significance [o7]

FIG. 8 (color online). Contour plot of the look-elsewhere
adjusted significances of finding amplitudes Ap and Ap at the
same .

The resulting contour plot using N = 35 is shown in
Fig. 8. As an example if we find matching 3.5 sigma peaks
at some frequency @ in both the power spectrum and the
bispectrum then their joint significance from Fig. 8 is at the
3.1 sigma level while the two results on their own are at
the 1.8 sigma level as is evident from Fig. 6. Note that the
possible boost in significance can increase with the range of
the survey as the chances of the largest peaks in the noise
occurring at the same @ decreases. An advantage of having
analytic expressions for the look-elsewhere adjusted
significances is that we can easily extrapolate to obtain
predictions for surveys covering a much larger o range. For
an w range of ~400 we obtained N ~ 35. Recent surveys
of oscillations in the power spectrum (for example [24,25])
cover frequencies up to @~ O(10*) which should be
equivalent to Ng ~ O(10%). A 1.8 sigma result in an
individual survey with N 4 = 1000 requires a 4.35 sigma
peak at some @. Matching peaks in both surveys at this
level now give a 3.8 sigma result. This shows how bigger
boosts in significance are possible for higher N .

It is of some interest to compare the obtained signifi-
cances to a scenario where we are simply given twice as
much data and combine two power spectrum or bispectrum
surveys. Given the approximate independence of the power
spectrum and bispectrum amplitude estimates discussed in
the previous sections, this situation is clearly equivalent to a
combined search where we are only looking for models that
predict variance weighted amplitude ratios R =1 and a
fixed phase relation ¢p = ¢p. It also applies to some extent
to combining temperature and polarization measurements
where we generally expect very robust theoretical predic-
tions relating features in the temperature and polarization

PHYSICAL REVIEW D 91, 023502 (2015)

Joint significance [o7]
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FIG. 9 (color online). Contour plot of the look-elsewhere
adjusted significances of finding amplitudes Ap and Ap at the
same @ in a survey where we only consider models with R = 1

and ¢p = ¢p.

power spectra. Obviously this is a simplified statement as it
neglects that temperature and polarization fluctuations are
correlated and also assumes that the S/N of the feature
models is comparable which is not necessarily the case. We
will briefly discuss the inclusion of polarization in Sec. V. C.
For R =1 and ¢p = ¢ the contour plot for the resulting
significances is shown in Fig. 9. As we significantly
constrained the range of models under consideration there
is less opportunity for noise to produce apparently signifi-
cant results meaning that finding large amplitudes in both
surveys gives a more significant look-elsewhere adjusted
result. However, finding a large signal in one survey and
much less signal in the other gives a less significant result as
this would be evidence against a model with R = 1.

While there can be some loss of significance involved
in considering models with different R and relative phases
it seems hard to motivate a strong theoretical prior for
these quantities. If anything, we expect R << 1 for most
models. Thus it is more reasonable to consider the general
class of models allowing R to vary and we saw that gains
in significance can still be made. This is encouraging but
we can clearly not expect highly significant results after a
proper look-elsewhere correction if the individual surveys
show no interesting look-elsewhere adjusted results at
all. In the example above we assumed that there are 1.8
sigma results above the expectation from noise present in
both surveys which is already a relatively big signal.
However, there is the possibility that significant evidence
for feature models can be found pursuing various other
routes. We will briefly discuss different options in the next
section.
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V. REFINING THE SEARCH FOR OSCILLATORY
FEATURES

A. Multifrequency models

Some feature models can generate modulations at
multiple, well-separated, frequencies. This could be due
to multiple sharp features at different locations in the
potential or some other mechanism (see for example
[28,29]). Looking for these types of models is sensible
both in the context of individual surveys as well as
combined searches. We will introduce a useful statistic
for multifrequency models focusing on a combined search
but the results readily apply to the individual surveys with
appropriate changes as discussed below. As a phenomeno-
logical model for this class of features we take

P(k)~1+ ZM:APJ sin(@;(2k) + ¢p.;) (45)

M
B(ki ky k3) ~ > Apisin(wK +dg;)  (46)
=1

=

where as usual K = k; + k, + k3 and the sum is over the
M different frequencies contributing to the model. This
model is clearly very general. At each frequency @ we allow
for any combination of phases and any relative amplitude.
If the features are for example due to well-separated steps in
the potential we do not expect their properties to be related so
that this is a reasonable assumption.

Let us assume for a moment that the survey is made up of
N uncorrelated frequency bins rather than an arbitrary
number of correlated bins that depends on the resolution of
the w grid used in the survey. Following the same reasoning
as in the previous sections for a given M, the maximum
significance for any optimal estimate for the overall
amplitude is then

i (M) @

i=1

where as before A p.; and A p.; are the maximum normalized
amplitudes found in the power spectrum and bispectrum at
a given w; and the set of frequencies w; is obtained by
picking the M largest A% + A% amongst all frequencies. A
sensible way to assign a significance to an amplitude AT
in this case is a two-step process and rather tedious. First we
obtain the distributions of amplitudes AT for each choice
of M. Comparing a given value of A, to this distribution
produces a significance o,,. This significance indicates how
unlikely it is to find an optimal amplitude estimate this
large given a model with M distinct frequencies in a
featureless realization of the data. However, M is a
parameter that we can choose freely so we need to take
another look-elsewhere effect into account. We do so by
comparing the o,, to the distribution of
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oM = Maxoy. (48)

This procedure assigns a total look-elsewhere adjusted
significance to a given multifrequency model.

While this method is a rigorous and reliable measure of
significance for multiple peaks in the data, it is rather
tedious in practice due to the need of having to calculate the
distributions for every possible M which can only be done
accurately using a vast amount of MC simulations. It is also
complicated to incorporate correlations between frequency
bins in an actual survey. These correlations have to be
accounted for in the construction of the optimal estimator
for the amplitude of a given model. We thus investigated
whether there is a simpler way to arrive at significances that
approximately reproduce the results of the procedure out-
lined above for the case of uncorrelated bins and allow for
an easy generalization.

A simple and rather natural measure that is sensitive to
the existence of multiple large amplitudes in a survey is
obtained in the following way. We simply take the root of
the sum of squares of the significances assigned to each
frequency ® using the method described in Sec. IV. A for
the case of maximizing over relative amplitudes and
phases. More precisely we define the integrated statistic
S; given by

Aw
Aeff

52 = 2Bt~ [(F 2 4(A3,, + AR ,))Nr]? (49)

@

and obtain significances for a given survey by comparison
to the distribution of this statistic. Here, Aw is the stepwidth
of the frequency grid and A is the effective stepwidth that
we define as

A — Omax — Omin ] 50
eff Neff -1 ( )
In our case we have A ~ 11.5. Note that in the expression
for §7 A po and A po are the maximum normalized
amplitudes found at a given w. While it might not be clear
at first sight that the integrated statistic is a roughly
equivalent way of assessing evidence for multifrequency
models in a survey, we show in Appendix B that this is
indeed the case for uncorrelated bins as long as we are
mainly looking for models with a relatively small number
of frequencies M.

The same reasoning applies to the individual surveys

giving rise to a corresponding multipeak statistic
$7 = 20 S AR I(F oA, )T (51)

eff "

where as before i = P, B. These multifrequency statistics
have a number of interesting properties. The distributions
of S; for the individual and combined surveys are shown in
Fig. 10 where we plotted significances obtained via
Eq. (35) rather than the distributions themselves. We see
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FIG. 10 (color online). Distribution of the integrated statistics
S; for the individual and combined surveys given as signifi-
cances. As discussed in the main text the distributions are nearly
identical and well fit with a simple expression.

that the distributions are almost identical. This is somewhat
unsurprising given that we sum over significances. The
CDFs for the statistics Fg, are all well fit using the simple
expression

Fg,(x) =1 —exp(—(ax* + bx + ¢)) (52)
with a = .0921, b = .8762 and ¢ = .1022 for x> 0 so
that we can confidently extrapolate to study highly sig-
nificant results in the tail of the distributions.

On top of being a good measure of whether or not there
is evidence for multifrequency models in the data as
discussed above, we find that the scaling with the survey
range is largely absorbed in the parameter N.;. This is
convenient as results for different survey ranges can be
simply compared to the distribution in Fig. 10 as a first
check rather than having to obtain a distribution from a
large number of MC simulations for each case. Furthermore
|

A 1 AN
_ 10203104 —1 —1 —1
AT — A7 Tm,m2m3m4(c )Ill’lmlm’] (C )lzl’zmzm’z(c

X (apm, am, AL, AL, m,

where N7 is the appropriate normalization factor rendering
the estimator unbiased. Note that this estimator is uncorre-
lated with both the power spectrum and bispectrum
amplitude estimators as can be checked easily. Based on
the intuition gained from studying the case of combining
amplitude measurements from the former two, we expect
this estimator to produce statistically nearly independent
constraints for large enough /... In the same sense as
discussed above we could interpret this as a consequence of
the multivariate CLT stating that uncorrelatedness implies
asymptotic independence in the large sample limit. The

= 64w Ay ) A A, + (a0 Ay, A Q)
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the statistic has a well-defined infinite resolution limit.
Taking Aw — 0 the statistic S; simply becomes an integral
where N takes its asymptotic value. We evaluated the
statistics in this limit and found that N.; increases, or
equivalently w. decreases, by a small amount < 10%
compared to the value obtained with stepwidth Aw = 10
that we used above. Hence, a stepwidth of Aw ~ 10 is
already close to the infinite resolution limit. Moreover the
distributions of the statistics §; are virtually identical to
those plotted in Fig. 10.

Having constructed a sensible statistic to search for
multiple peaks it is useful to estimate how many peaks at a
given height are needed to present statistically significant
evidence for a multifrequency model. For this purpose we
simply assume that there are M peaks of a given amplitude
o in both the power spectrum and bispectrum, each with
width Awgg. Simply setting contributions from all other
frequencies to zero we then calculate the significance
assigned to this realization using the integrated statistic
S;. The results are shown in Fig. 11. While the appearance
of multiple peaks with low amplitudes does not greatly
enhance the overall significance, several marginally sig-
nificant results at different @ can constitute strong evidence
for multifrequency models.

B. Incorporating higher order correlators

Another possibility to increase the S/N for a given
feature model is to include observations of higher order
correlators. Of course, this strategy is limited to models that
produce not only a large observable bispectrum but also
observable higher order correlation functions. As an
example it is conceivable to include measurements of
the amplitude of the contribution to the connected part
of the four-point correlator, the trispectrum of the feature
model 7, using the estimator [47]

)l;lgm3mg (C_l )l4lﬁlm4m;

(53)

optimal estimator for the overall amplitude of a given
feature model is then a linear combination of these three
amplitude estimators with coefficients determined by the
relative amplitudes and the variances of the estimators just
as we discussed in Sec. IV.

C. Including polarization

Oscillatory primordial features are clearly not only
imprinted in the temperature fluctuations (T) but should
also be visible in the polarization of the CMB, in particular
the E-mode fluctuations (E). Both the fluctuations in
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FIG. 11 (color online). Estimate of the significances assigned to
pairs of peaks of a given amplitude at M frequencies @ in a
combined survey for various values of M.

temperature and polarization originate from the same pri-
mordial fluctuations and are simply convolved with different
transfer functions to obtain the observed CMB anisotropies.
Thus any model that exhibits a TT power spectrum modu-
lation necessarily also produces a modulation in the EE
power spectrum and the TE cross-spectrum. In this sense
polarization is a more stringent test for oscillatory features
and there is no need to include additional tunable parameters
like a relative amplitude R discussed above in a combined
temperature and polarization search.

Another very attractive feature of polarization measure-
ments is that the polarization transfer functions are
narrower due to projection effects [48]. In the case of
temperature a fluctuation with a given wave vector k nearly
parallel to the line of sight will not only contribute to
fluctuations with / ~ kAn but also contribute to [ < kAy.
This effect is much less prominent for polarization and the
projection is sharper. For features that oscillate with high
frequency this means that we generally expect the damping
of the oscillation due to the convolution with the transfer
functions to be less severe and signals should stand out
more in the polarization data (see for example [49]).

However, polarization measurements are complicated by
foregrounds and typically only a smaller [ range is
accessible. Furthermore the information in the polarization
data is not entirely independent. There are strong correla-
tions between the E and T fluctuations that reduce the
amount by which we can hope to improve the S/N of
feature models. Figure 12 shows a rough estimate what we
can expect from a joint 7 and E analysis. The figure
assumes 40% sky coverage4 and uses noise levels typical
for the Planck mission while simply taking N¥ ~ 2NT (for

*We account for incomplete sky coverage simply by multi-
plying with fg, = .4. This neglects the fact that masking
introduces correlations between nearby multipoles. These corre-
lations can further decrease the signal to noise when looking for
oscillatory modulations of the power spectrum.
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FIG. 12 (color online). A rough estimate of the primordial
oscillation amplitude needed to obtain S/N = 1 (solid) and a 3-
sigma look-elsewhere adjusted detection (dashed) in a Planck-
like experiment using only power spectrum constraints. Both T
only and T+ E surveys are considered where we crudely
estimated the foreground and noise contamination of E mode
to be twice that of the temperature data.

the purpose of this simple calculation foregrounds can be
thought of as being included in the noise power spectra).
Cross-correlations are accounted for but have a relatively
small effect. Several points should be highlighted. First of
all this figure clearly shows how it is generally extremely
difficult to observe high-frequency oscillations in the CMB.
Assuming that the oscillations extend over the entire
[-range we would naively expect an amplitude A ~ [}, =
O(107?) to produce S/N of unity. However, the smoothing
due to the transfer functions as well as lensing of the power
spectra suppresses the amplitude by orders of magnitude.
As is indicated by the dashed lines in the figure, we would
need primordial oscillations with amplitudes O(.1) and
higher for a significant detection at high @ after the look-
elsewhere effect is taken into account. Also, if the feature
originated for example from steps in the potential that are not
infinitely sharp we have to take into account that modes that
were deep in the horizon at the time of the feature are
unaffected. Thus the oscillation is damped for larger k£ and
does not extend over the full /-range. This would lead to
further considerable reduction of the S/N of the feature.

Even though we can only observe polarization well over
a much smaller /-range due to higher noise levels and
foregrounds as well as a much smaller signal, the fact that
the polarization spectra are less affected by smoothing
makes significant gains in S/N for feature models possible.
Obviously this conclusion depends on how badly fore-
grounds affect the polarization signal.

VI. SUMMARY AND CONCLUSIONS

Searches for oscillatory feature models in the CMB have
been undertaken focusing on both the power spectrum and
the bispectrum. In both cases various interesting oscillation
scales have been identified. Given that feature models
typically predict a power spectrum modulation as well as a
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bispectrum the question arises of how to combine results.
This is particularly interesting given the fact that we
generally expect the oscillation scales predicted by theory
to be closely related so that finding evidence of an
oscillation at the same scale in both the power spectrum
and the bispectrum could present us with evidence for a
feature model. However, before we can get excited about
matching signals at a given w we need to investigate
possible dependencies between measurement based on the
power spectrum and bispectrum. Given that the measure-
ments are based on the same set of data at some level these
dependencies are expected to exist.

Evaluating the quadratic power spectrum estimator for
the feature model amplitude and the corresponding bispec-
trum estimator on the same set of CMB simulations we
showed that there is no evidence of correlation between the
absolute values of the amplitudes. In particular we found no
evidence for any correlations using 10* simple noiseless
full-sky simulations which implies that correlations must be
below the % level in this case. We also studied the case of
incomplete sky coverage and anisotropic colored noise,
evaluating the estimators on 400 more realistic CMB
realizations. Again no correlations between the amplitudes
above the noise level were observed, implying that masking
and anisotropic noise do not introduce significant correla-
tions. To exclude the possibility of more complicated
dependencies we also calculated the distance correlation
for our sets of simulations. This is a measure of statistical
dependence that only vanishes for statistically independent
quantities. We observed no evidence of dependencies at the
level we could resolve with the amount of simulations
available to us. To support this conclusion we provided an
analytic estimate for the simplest scenario suggesting that
any dependencies between the amplitudes should be sup-
pressed by a factor of /;.,. For the case of Planck resolution
with /.. ~ 2000 that we studied, this suggests that any
correlations and other dependencies should be of the order
1073, This is clearly consistent with the results of the
simulations as correlations of this order are far below the
MC noise level expected from 10* samples. We conclude
that any dependencies between measurements of feature
models in the power spectrum and bispectrum are very
nearly statistically independent. Any dependencies can be
ignored to a very good approximation in a combined search
for feature models. This is a key result of this paper.

Building on this conclusion we proposed an optimal
amplitude estimator for a combined search using both the
power spectrum and the bispectrum. Given that it is
generally hard to construct an accurate likelihood that
incorporates higher order correlators we believe that this is
the most natural statistic to consider when attempting to
combine power spectrum and bispectrum estimators.

We went on to study the look-elsewhere effect in feature
model surveys. For the generic model that we focused on in
this work the distribution of amplitude estimates can be
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largely modeled analytically. The results can be applied to
the individual surveys as well as a combined search. While
we refer the reader to the main text for details we highlight
that there are generally large look-elsewhere effects
involved when searching for feature models. As we vary
the frequency parameter @ amplitude estimates for different
feature models become largely independent as soon as they
are separated by more then an effective frequency step-size
Aw,g which is mainly set by the resolution limit of the CMB
experiment /... For generic models considered here at
Planck resolution we have Aw.g; ~ 10. This implies that a
typical survey covering a frequency range of order 10°~10*
tests a large O(10°) number of independent models. This
implies that we expect to see naively very significant results
> 40 in a majority of realizations of a featureless Gaussian
CMB even for the simplest class of models. This has to be
taken into account properly to judge the significance of
results. While we focused on look-elsewhere effects coming
from frequency, phase and relative amplitude parameters,
more complicated models can also have tuneable envelope
parameters for example. This will exacerbate this problem.

Generalizing the model to allow for multiple frequencies
o we constructed a simple integrated statistic §; that
performs well at picking up on evidence for these kinds
of models. The statistic gives rise to adjusted significances
that allow for a reasonable judgement of whether or not the
observation of large amplitudes at multiple frequencies in
the data should be considered interesting.

The approximate independence of the feature model
estimates based on the power spectrum and bispectrum
should also extend to higher order correlators. For models
that predict observable higher correlation functions this
provides opportunity for further, more stringent, tests
following the spirit of this work.

The Planck polarization data is being released in due
course and will provide us with yet another powerful tool to
constrain feature models.
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APPENDIX A: DISTRIBUTION OF A™2* FOR A
FIXED PHASE RELATION

We assume a fixed phase relation ¢p = ¢pp = ¢ and
maximize with respect to the common phase ¢ so that
|

PHYSICAL REVIEW D 91, 023502 (2015)
A" = max A(w, ¢, R). (A1)
R.p.w

As in the other cases we assume that the amplitudes for
the sine and cosine modulations are independent at
each omega. Furthermore we assume for simplicity
(¥3)/(53) ~ (¥3)/(%3) and obtain

1

a
R.$ 2

The X; and Y; are independent Gaussian random variables
with unit variance. This is not simply a chi distribution of
degree three as one might expect based on the cases
discussed in the main text. However, we find that we
can fit the probability density function (PDF) of this
distribution f(x) well with the PDF of the chi distribution
with 3.5 degrees of freedom, f, 3 5. Figure 13 compares this
analytic approximation with the exact distribution obtained
from 10° random samples. This implies that we can simply
approximate the CDF of the exact distribution as

F(x) ~ Fy35(x) (A3)

to extract the significances.

APPENDIX B: MULTIFREQUENCY STATISTICS

We outlined a rigorous procedure for assigning signifi-
cances to amplitudes of multifrequency models found in the
data in Sec. V. A. The purpose of this appendix is to show
that the much simpler integrated statistic S; from Sec. V. A
reproduces the significances to good accuracy for moderate
values of the number of frequencies of the model M. To
show this we assume that there are M peaks with height o at

10°
.._..nn....... « MC result
"l l... 'F,Y«3-5
10* i ey
I. .'.
«® °s
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= | ]
3 = M
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FIG. 13 (color online). Exact distribution obtained from 10°
random samples compared to a prediction based on the PDF of a
chi distribution with 3.5 degrees of freedom.

maxA = (30 + 7345+ B34 [(Fr 4 Ko+ (X =TT = X+ (Xp £ 75) )

(A2)

|
the same frequencies in both the power spectrum and the
bispectrum in the data. A corresponding M-frequency
model will give an amplitude estimate with raw signifi-
cance (2Mo?)2 that needs to be compared to the distribution
of maximum amplitudes for an M-frequency model just
from noise to obtain a significance o,,. As discussed in the
main text this needs to be adjusted again to account for the
fact that M is a free parameter of the model to obtain a final
significance o. The corresponding analysis using the
integrated statistic S; simply involves calculating the
p-value for the value of the statistic obtained for M peaks
with height o given by

S; = ZMEI'f_l[(F12.4(262))N5ff]2. (B1)
Note that this way of calculating the value of S; neglects
contributions from other frequencies that occur in every
survey. These contributions are typically very small and do
not have a significant effect on the significance assigned
to a set of large peaks. We performed both ways of

— Exact M=1
Exact M=2
Exact M=3
Exact M=4

- Integrated M=1
Integrated M=2
Integrated M=3
Integrated M=4

[} ()

Adjusted significance [o7]

Peak significance [o7]

FIG. 14 (color online). Significances assigned to M
peaks of height ¢ at the same frequencies in both the power
spectrum and the bispectrum using a rigorous look-elsewhere
analysis and the simple integrated statistic. The significances are
obtained from 10* realizations of an idealized survey with
N independent @ bins.
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assigning significances based on 10* realizations of a mock
survey that we obtained by drawing N ¢ = 35 independent
samples from a chi distributicl)n of degree 4 corresponding

to the values of (A% —I—A%)i for each of the N4 = 35
independent @ bins in the survey. Figure 14 compares the

PHYSICAL REVIEW D 91, 023502 (2015)

adjusted significances extracted for M peaks with given raw
significance for various small values of M. The agreement
is very good indicating that using the integrated statistic to
extract significances for multifrequency models is a valid
way of analyzing the data.
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