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The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to the closed
Friedmann-Lemaître-Robertson-Walker cosmological model. We show that the phase space average for the
surface of the apparent horizon is quantized in units of the Planck’s surface, and that the total entropy of the
Universe is also quantized. Taking into account these two concepts, it is shown that ’t Hooft conjecture on
the cosmological holographic principle in radiation and dust dominated quantum universes is satisfied as a
manifestation of quantization. This suggests that the entire Universe (not only inside the apparent horizon)
can be seen as a two-dimensional information structure encoded on the apparent horizon.
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I. INTRODUCTION

Deformation quantization, which is presented as Weyl-
Wigner-Groenewold-Moyal phase space quantization,
describes a quantum system in terms of the classical
number (c-number) variables [1,2]. Operators are mapped
into the c-number functions so that their compositions
could be obtained by the star product that is noncommu-
tative but associative. Therefore, the observables would be
classical functions of the phase space. Quantum structure is
constructed by replacing pointwise products of classical
observables of the phase space, by star product [3,4]. The
product of two smooth functions, say f and g, on a Poisson
manifold is given by

f � g ≔
X∞
n¼0

ðiℏÞnCnðf; gÞ ¼ fgþ iℏC1ðf; gÞ þOðℏ2Þ; ð1Þ

where ℏ plays the role of the deformation parameter. The
first term denotes the common product of f and g. Also, the
coefficients Cnðf; gÞ are bidifferential operators, where
their product is noncommutative [5]. These coefficients
satisfy the following properties:

8>><
>>:

C0ðf; gÞ ¼ fg;

C1ðf; gÞ − C1ðg; fÞ ¼ ff; gg;P
iþj¼n

CiðCjðf; gÞ; hÞ ¼
P

iþj¼n
Ciðf; ðCjðg; hÞÞ;

ð2Þ

where ff; gg denotes the Poisson bracket. In Eq. (2) the first
expression means that in the limit, ℏ → 0, the star product of
f and g agrees with the pointwise products of these two
functions. The second expression shows that, at the lowest
order of the deformation parameter, the commutator
½f; g�� ≔ f � g − g � f tends to the Poisson bracket:

limℏ→0
1
iℏ ½f; g�� ¼ ff; gg. The last expression implies that

the star product is associative: ðf � gÞ � h ¼ f � ðg � hÞ.
One of the most important components of deformation

quantization is the Wigner quasiprobability distribution
function (WF) [6,7]. In fact, it is a generating function for
all spatial autocorrelation functions of a given quantum
mechanical wave function [8,9]. The WF in a ð2DÞ-
dimensional phase space is given by

Wnðx;pÞ≔
1

ð2πÞD
Z

ψ�
n

�
x−ℏ

2
y

�
e−ip:yψn

�
xþℏ

2
y

�
dDy;

ð3Þ

where ψn is the state of the system. The distribution is real
and the normalization is expressed as

R
dDxdDpWnðx;pÞ¼1.

In flat spaces, the special star product has long been
known. In this case, the components of the Poisson tensor
Jij can be considered constant. The coefficient C2 could be
chosen as antisymmetric so that

C2ðf; gÞ ¼
1

2
Jij∂if∂jg ¼

1

2
ff; gg: ð4Þ

In canonical coordinates, the poisson tensor J is repre-
sented by the matrix

J ¼
�

0 −ID
ID 0

�
; ð5Þ

where ID is the D ×D identity matrix. The higher order
coefficients may be obtained by exponentiation of C2.
This procedure yields the following Moyal star product [1]:

fðx;pÞ�M gðx;pÞ≔ f exp

�
iℏ
2
ð⃖∂q ⃗∂p− ⃖∂p ⃗∂qÞ

�
g

¼ f

�
xþ iℏ

2
~∂p;p− iℏ

2
~∂x
�
gðx;pÞ; ð6Þ
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where in the last step we used the Bopp shift argument. An
alternative integral representation of the Moyal star product
is given by [10]

f �M g¼ 1

ð2πℏÞ4D
Z

d2Dvd2Dv0fðvÞgðv0Þei
ℏðutJvþvtJv0þv0tJuÞ;

ð7Þ

where u ¼ ðx; pÞt, v ¼ ðx0; p0Þt and v0 ¼ ðx00; p00Þt. As a
direct consequence, the Moyal star product is a nonlocal
product. As a result, we haveZ

dDxdDpf �g¼
Z

dDxdDpg�f¼
Z

dDxdDpfg: ð8Þ

The WF is closely tied to the wave function. Therefore, it is
necessary to define the phase space integrals corresponding
to the expectation values of the operator formalism. The
expectation value or “phase space average” of a phase space
function, say Aðx; pÞ, is given by

hAðx; pÞi ¼
Z

Wðx; pÞ � Aðx; pÞdDxdDp

¼
Z

Aðx; pÞ �Wðx; pÞdDxdDp; ð9Þ

where in the last step we have used the property expressed
by Eq. (8). The �M-genvalue equation for WF is given
by [8]

H �M Wnðx; pÞ ¼ EnWnðx; pÞ; ð10Þ

or equivalently

H

�
xþ iℏ

2
~∂p; p − iℏ

2
~∂x

�
Wnðx; pÞ ¼ EnWnðx; pÞ; ð11Þ

where H is the Weyl correspondence to the Hamiltonian
and En is the spectrum of energy. The dynamical equations
in this picture are given by Moyal’s equation

∂f
∂t ¼

1

iℏ
½H; f��M : ð12Þ

In fact, it is the generalization of Liouville’s theorem of
classical mechanics. The Moyal dynamical equation is
similar to Heisenberg’s equation of motion for operators.
But here, H and f, as was said previously, are phase space
functions, not operators. Another point in this formulation
of quantum mechanics is the absence of the wave function.
This plays an important role in the construction of quantum
cosmology. In quantum cosmology, problems occur in two
ways. First, when the Copenhagen interpretation is imple-
mented, and second when the working tool is the wave
function. In the former, the observer itself is also an element

of the quantum cosmology, where the Copenhagen inter-
pretation requires an external observer, while the whole
Universe has nothing external to it. For the latter, we must
ask how it is possible to construct a wave packet that would
peak around the classical trajectories in the configuration
space; the wave function describing this universe must
approach a wave packet that characterizes the presently
observed cosmological data. The advantage of deformation
quantization is that it makes quantum cosmology look like
the Hamiltonian formalism of cosmology. This is done by
avoiding the operator formalism.
The holographic principle is a feature of string theory

and, in principle, implies that the degrees of freedom in a
spatial region can all be encoded on its boundary. Note that
the holographic principle was first proposed by Gerard ’t
Hooft [11], where it is worth seeing [12] if the reader is
interested in a string theory interpretation. The holographic
principle has since been applied in the context of pre–big
bang scenarios [13], the singularity problem [14], and
inflation [15], typically for a flat universe. Also, it is
investigated regarding the standard big bang cosmology by
Fischler and Susskind (FS) [16]. They have found that if
our Universe is flat or open, it obeys this principle. This FS
version of cosmological holographic principle (CHP)
demands that the entropy contained in a volume of particle
horizon should not exceed the area of the horizon in Planck
units. Lately, there have been two further proposals for the
completion of the holographic principle by Easther and
Lowe, based on the second law of thermodynamics [17],
and by Bak and Rey, using the cosmological apparent
horizon instead of the particle horizon [18]. In both of these
completions, the closed Universe also obeys the holo-
graphic principle naturally. Therefore, these proposals are
perhaps more natural compared to the FS proposal.
In this paper we investigate the quantum cosmology of a

closed Friedmann-Lemaître-Robertson-Walker (FLRW)
universe, filled with radiation or dust. In the first step,
we investigate the deformation quantization of the model.
UsingWF we show that the deformed cosmology predicts a
good agreement with the corresponding classical cosmol-
ogy. Also, we demonstrate that the phase space average of
apparent horizon is quantized. This leads us to conclude
that the total entropy of radiation or a dust dominated
quantum universe satisfies ’t Hooft conjecture. The paper
consists of the following sections. In Sec. II we present the
classical model. Section III provides quantum cosmological
description of the model and quantization rules. In Sec. IV,
we summarize our results.

II. THE CLASSICAL MODEL

A useful cosmological model that agrees well with
observations is the homogeneous and isotropic FLRW
universe. In this model the line element for a closed
universe is given by
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ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdΩ2
ð3Þ; ð13Þ

whereNðtÞ is the lapse function, aðtÞ is the scale factor, and
dΩ2

ð3Þ is the standard line element of the unit three-sphere.
The action functional that consists of a gravitational part
and a matter part when the matter field is considered as a
perfect fluid is given by [19]

I ¼ M2
P

2

Z
M

ffiffiffiffiffiffi−gp
Rd4xþM2

P

Z
∂M

ffiffiffiffiffiffiffi
gð3Þ

q
Kd3x

−
Z
M

ffiffiffiffiffiffi−gp
ρd4x; ð14Þ

where MP ¼ 1ffiffiffiffiffiffi
8πG

p ¼ 1
LP

is the reduced Planck mass in

natural units ðc ¼ ℏ ¼ kB ¼ 1Þ, M ¼ I × S3 is the space-
time manifold, ∂M is equal to S3, K is the trace of extrinsic
curvature of the spacetime boundary, and the overdot
denotes differentiation with respect to t. If we assume a
universe filled with noninteracting dust ρ ¼ ρ0mða=a0Þ−3
and radiation ρ ¼ ρ0γða=a0Þ−4, and redefining the scale
factor and the lapse function as

�NðtÞ ¼ 12π2MPaðtÞ ~NðtÞ;
aðtÞ ¼ xðtÞ þ M

12π2M2
P
¼ x − x0;

ð15Þ

the total Lagrangian will be [20]

L ¼ − 1

2 ~N
MP _x2 þ

~N
2
MPω

2x2 − E ~N; ð16Þ

where we have defined

E ¼ 12π2N γMP þ
M2

2MP
; ω ¼ 12π2MP: ð17Þ

Besides, we introduce M and N γ as

�
M ¼ R

∂M
ffiffiffiffiffiffiffi
gð3Þ

p
ρ0ma30d

3x ¼ 2π2ρ0ma30;

N γ ¼
R
∂M

ffiffiffiffiffiffiffi
gð3Þ

p
ρ0γa40d

3x ¼ 2π2ρ0γa40;
ð18Þ

where M is the total mass of the dust content of the
Universe and N γ could be related to the total entropy of
radiation; see Eq. (38). The conjugate momentum to
the shifted scale factor x and the primary constraint are
given by

(
Πx ¼ ∂L

∂ _x ¼ −MP
~N
_x;

Π ~N ¼ ∂L
∂ _~N

¼ 0:
ð19Þ

Consequently, the Hamiltonian corresponding to
Lagrangian (16) will be

H ≔ − ~NH ¼ − ~N

�
1

2MP
Π2

x þ
1

2
MPω

2x2 − E
�
: ð20Þ

In Hamiltonian (20), ~N is a Lagrange multiplier; therefore,
it enforces the Hamiltonian constraint

H ¼ 1

2MP
Π2

x þ
1

2
MPω

2x2 − E ¼ 0: ð21Þ

Equation (21) for any value of E shows the elliptical
patterns in two-dimensional phase space. By choosing the
gauge ~N ¼ 1

ω the Hamiltonian equations of motion will be

_x ¼ fx;Hg ¼ 1

ωMP
Πx; _Πx ¼ fΠx; Hg ¼ −ωMPx;

ð22Þ
which leads us to

�
xðtÞ ¼ xðt0Þ cosðtÞ þ 1

ωMP
Πxðt0Þ sinðtÞ;

ΠðtÞ ¼ Πðt0Þ cosðtÞ − ωMPxðt0Þ sinðtÞ:
ð23Þ

If we assume that the origin of cosmic time is t0 ¼ 0 and
xð0Þ ¼ x0, where x0 is defined in (15), we obtain the well-
known classical solution

8>>><
>>>:

aðtÞ ¼ amax
1þsecϕ ½1 − secϕ cosðtþ ϕÞ�;

amax ≔ M
12π2M2

P
þ
�

2E
MPω

2

	1
2;

cosðϕÞ ≔ Mffiffiffiffiffiffiffiffiffi
2EMP

p ;

ð24Þ

where amax is the maximum radius of the closed Universe.

III. DEFORMATION QUANTIZATION

The deformation quantization of this simple model is
accomplished straightforwardly by replacing the ordinary
products of the observables in phase space by the Moyal
product. Therefore, Hamiltonian constraint (21) becomes
the Moyal-Wheeler-DeWitt (MWDW) equation by replac-
ing the classical Hamiltonian (21) with its deformed
counterpart [21]

H �M Wnðx;ΠxÞ ¼ H
�
xþ iℏ

2
~∂Πx

;Πx − iℏ
2
~∂x
�
Wnðx;ΠxÞ

¼ 0: ð25Þ

For the simple Hamiltonian defined in (21), this equation
has turned into two simple partial differential equations
[5,7]. The imaginary part of this equation restricts WF
to depend on 1

2
ð 1
MP

Π2
x þMPω

2x2Þ. The real part yields
Laguerre’s equation. Hence, one can easily find the
following solution of the MWDW equation for the closed
FLRW cosmology
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Wnðx;ΠxÞ ¼
ð−1Þn
π

exp

�
− Π2

x

MPω
−MPωx2

�
Ln

×

�
2Π2

x

ωMP
þ 2MPωx2

�
; ð26Þ

where LnðzÞ represents the Laguerre polynomials. Figure 1
shows the WF of the model for the third excited state.
It will be observed that there exists a pattern for the extrema
in the vicinity of classical loci defined in Eq. (21). Also, the
Moyal evolution equations (12) will be

(
_x ¼ 1

i ðx �M H −H �M xÞ ¼ 1
ωMP

Πx;

_Πx ¼ 1
i ðΠx �M H −H �M ΠxÞ ¼ −ωMPx:

ð27Þ

The solutions of the above deformed cosmology are

�
xðtÞ ¼ xðt0Þ cosðtÞ þ 1

ωMP
Πxðt0Þ sinðtÞ;

ΠðtÞ ¼ Πðt0Þ cosðtÞ − ωMPxðt0Þ sinðtÞ:
ð28Þ

These look similar to the classical equations of motion (23).
These equations of motions show that the functional form
of WF is preserved along classical phase space trajectories.
Let us define in the unconstrained phase space the

complex-valued holomorphic functions

8>><
>>:

A ¼
ffiffiffiffiffiffiffi
ωMP
2

q �
xþ iΠx

ωMP

	
;

Ā ¼
ffiffiffiffiffiffiffi
ωMP
2

q �
x − iΠx

ωMP

	
:

ð29Þ

Then the classical Hamiltonian (21) will be

H ¼ ωAĀ − E: ð30Þ

On the other hand, the Moyal commutation relation
between these new variables is

½A; Ā��M ¼ A �M Ā − Ā �M A ¼ 1; ð31Þ

where the Moyal star product is redefined as �M ≔
e
1
2
ð ⃖∂A ~∂Ā − ⃖∂Ā ~∂AÞ [5]. The Moyal star product between A

and Ā leads us to the following relation between star
and ordinary products of holomorphic variables:

Ā �M A ¼ Āe
1
2
ð ⃖∂A ⃗∂Ā −⃗∂Ā ⃗∂AÞA ¼ ĀA − 1

2
: ð32Þ

Consequently, by combining Eqs. (32) and (30) we obtain
the Hamiltonian for the model as

H ¼ ω

�
Ā �M Aþ 1

2

�
− E: ð33Þ

In addition, the Wigner function (26), in terms of the
holomorphic variables, will be

WnðA; ĀÞ ¼
1

n!
ðĀÞn �M W0 �M ðAÞn; ð34Þ

where W0 ¼ 2e−2AĀ denotes the ground state of the WF.
Note that for the ground state we have A �M W0 ¼ 0 ¼
W0 �M Ā. Now, the MWDW Eq. (25) will be

H �M Wn ¼ ω

�
Ā �M Aþ 1

2
− E

�
�M Wn

¼
�
ω

�
nþ 1

2

�
− E

�
Wn ¼ 0; ð35Þ

which leads to

En ¼ ω

�
nþ 1

2

�
: ð36Þ

A. Cosmological holographic principle in a radiation
dominated universe

Let us first assume that the Universe is radiation
dominated, where M ¼ 0. In this case, Eq. (36) and the
definition of E in (17) give

N γ ¼ nþ 1

2
: ð37Þ

As was mentioned at the beginning of this section, N γ

could be related to the total entropy of radiation. Recalling
the relation of the energy density of radiation ργ , the
entropy density sγ, and the scale factor a with temperature,

FIG. 1 (color online). Wigner function for the third excited
state, n ¼ 3, (Mp ¼ 1

2π). The corresponding classical trajectory is
denoted by redline loci.
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ργ ¼ π2

30
gT4, sγ ¼ 4

3
ρ
T, aðtÞ ∼ 1

T [22], and using these rela-
tions in the definition of N γ in (18), we find

N γ ¼
�
5 × 35

28π4g

�1
3ðSγÞ43; ð38Þ

where Sγ ¼ 2π2a3sγ denotes the total entropy and g is the
internal degrees of freedom. Now, by inserting (37) into
Eq. (38), we obtain

Sγ ¼
�
28π4g
5 × 35

�1
4

�
nþ 1

2

�3
4

; ð39Þ

which shows that the total entropy of radiation is quantized.
Let us now deal with the relation between the total entropy
and the phase space average of the apparent horizon. First,
note that in definition (15), for a radiation dominated
universe, we have xðtÞ ¼ aðtÞ. Hence, Eq. (29) leads us
to obtain the scale factor in terms of holomorphic variables
aðtÞ ¼ 1ffiffiffiffiffiffiffiffiffi

2MPω
p ðAþ ĀÞ. One can easily show that the phase

space average of the biquadratic scale factor is

ha4i ¼ 1
4M2

Pω
2 hðAþ ĀÞ4i ¼ 3

2M2
Pω

2

�
n2 þ nþ 1

2

�
: ð40Þ

On the other hand, the apparent horizon of a radiation
dominated universe is given by R2

ah ¼ ðH2 þ 1
a2Þ−1 ¼

6π2M2
P

N γ
a4, where H is the Hubble parameter. Therefore,

the phase space average of the area for the apparent horizon
becomes

hAahi ≔ 4πhR2
ahi ¼

L2
P

4π

�
1þ n2

nþ 1
2

�
; ð41Þ

where LP is the reduced Planck length. Hence, the phase
space average of the apparent horizon is quantized. By
comparing Eqs. (39) and (41) for large values of the
quantum number n, we obtain

Sγ ≃ g
1
4

�hAahi
4G

�3
4

: ð42Þ

The above equation is in the form conjectured by ’t
Hooft [11].

B. ’t Hooft conjecture in a dust dominated universe

Let us now return to a universe filled only with dust,
(N γ ¼ 0). In this case, comparing Eqs. (17) and (36)
implies the following quantization rule for the total mass
of the Universe:

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24π2

�
nþ 1

2

�s
MP: ð43Þ

We now estimate the total entropy of the dust dominated
universe. Consider the case where a system has a total of Ω
states of equal likelihood. Then the entropy will be

S ¼ lnðΩÞ; ðkB ¼ 1Þ: ð44Þ

Further, let us assume that all the particles are identical.
ThenΩ ¼ ~nN , where ~n is the number of states accessible to
a single particle; hence,

S ¼ N lnð ~nÞ: ð45Þ

Evaluating the one particle phase space, one finds [23] for
an ideal gas with N free particles

SðidealÞ ¼ N ln

�
V
N

�
mT
2π

�3
2

e
5
2

�
; ð46Þ

where V is the volume and m denotes the mass of particles.
For the case of a continuous fluid, let us rewrite Eq. (46).
To this end, we consider an ideal gas contained within a
small volume element dV. The number of particles inside
dV is

dN ¼ ρ

m
dV: ð47Þ

Inserting expression (47) into Eq. (46), the entropy asso-
ciated with the volume element, in terms of the density of
the fluid, can be written as

dSðdustÞ ¼ ρ

m
ln
�
KT

3
2

ρ

�
dV; ð48Þ

where K ¼ ðm5e5
2π Þ12 [24]. For a dust dominated universe, the

density and temperature are ρ¼ ρ0ð aa0Þ−3 and T ¼ T0ð aa0Þ−2.
Hence, we have SðdustÞ ¼ lnðKT3

2

0=ρ0ÞN. We use the simple
approximation

SðdustÞ ≃ N ¼ M
m

; ð49Þ

which is accurate within two orders of magnitude because,
as noted by Fermi, all large logs are less than a thousand
even in cosmology. Therefore, from Eqs. (43) and (49) we
obtain

SðdustÞn ≃MP

m
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24

�
nþ 1

2

�s
: ð50Þ

Let us investigate the ’t Hooft conjecture for this model.
The apparent horizon of a dust dominated universe using
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the definition of total mass in Eq. (18) and the Friedmann
equation is given by

R2
ah ¼

6π2M2
P

M
a3: ð51Þ

Moreover, using definition (10), the phase space average of
the cubic scale factor will be

ha3i¼ hðx−x0Þ3i¼ hx3i−3x0hx2iþ3x20hxi−x30; ð52Þ

where from definition (29) we have x ¼ 1ffiffiffiffiffiffiffiffiffi
2ωMP

p ðAþ ĀÞ.
Hence, with an eye on the definition of x0 in (15), we obtain

ha3i ¼ 3Mðnþ 1
2
Þ

M2
Pω

2
þ
�

M
MPω

�
3

: ð53Þ

Eqs. (43) and (53) lead us to

ha3i ¼ 5
ffiffiffi
2

p

ðMPωÞ32
�
nþ 1

2

�3
2

: ð54Þ

Therefore, the phase space average of squared apparent
horizon becomes hR2

ahi ¼ ð30π2
ω2 Þðnþ 1

2
Þ, which shows that

the area of the apparent horizon is quantized,

hAahi ¼ 4πhR2
ahi ¼

�
5L2

P

6π

��
nþ 1

2

�
: ð55Þ

Furthermore, from Eqs. (43) and (55) the total mass of the
Universe is

M ¼ MP
12πffiffiffiffiffi
10

p
�hAahi

4G

�1
2

: ð56Þ

Substituting (56) into (49), the entropy of dust will be

SðdustÞ ≃MP

m

�hAahi
4G

�1
2

: ð57Þ

For further simplification, we use the well-known relation
between the radius of the Universe (herein the radius of
apparent horizon defined via Lah ≔

ffiffiffiffiffiffiffiffiffiffiffihAahi
p

=4π) and mass
of nucleons, m, as a result of the uncertainty principle [25]

Lah ≃
ffiffiffiffi
N

p 1

m
¼

ffiffiffiffiffi
M
m

r
1

m
: ð58Þ

By substituting Eqs. (43) and (55) in Eq. (58) we obtain

m≃MP

�
nþ 1

2

�−1
6

: ð59Þ

Also combining Eqs. (55), (57), and (59) we obtain

SðdustÞ ≃
�hAahi

4G

�2
3

; ð60Þ

which again is in agreement with ’t Hooft conjecture.
Let us investigate this result for large values of quantum
number n; according to the correspondence principle, the
behavior of the model should reduce to its corresponding
classical region. For very large values of n, we can estimate
from relation (39) the following value for the entropy of
radiation:

Sγ ≃ n
3
4: ð61Þ

On the other hand, the entropy of the dust content of the
Universe will be

SðdustÞ ≃ n
2
3: ð62Þ

Let us examine our model for the present epoch of the
Universe. The current entropy density of radiation in the
Universe is s0γ ¼ 2970ð T0

2.5KÞ3 1
cm3. Therefore, the entropy of

radiation is S0γ ≃ 1088. This estimation leads us to obtain
the approximate value of the quantum number n as
n≃ 10117. Hence, by inserting the obtained value of the
quantum number n in Eq. (62), we obtain SðdustÞ ≃ 1079.
This is in agreement with the classical estimation of the
entropy of dust in the Universe [26]. At the end of this
section, let us concentrate on the relation of our simple
quantum cosmology model with the large number hypoth-
esis (LNH). For very large values of quantum number n,
Eqs. (43), (55), and (59) simplify to the following well-
known scaling relations:

8<
:

M ≃ β3MP;

Lah ≃ β3LP;

m≃ β−1MP;

ð63Þ

where β ≔ n1=6 ≃ 1019. As showed by Marugan and
Carneiro [27], the scaling relations that lie behind the
LNH can be expressed in the same way as the above
relations. Also, they have shown that if one assumes a flat
universe dominated by the cosmological constant Λ, then
Dirac’s LNH can be explained in terms of the holographic
conjecture. On the other hand, our results show that the
CHP could be the result of the quantum nature of
the Universe. Consequently, it seems to be natural that
the LNH could be embedded in quantum cosmology as one
can see in relations (63). Eliminating β from the two last
scaling relations in (63), we obtain

m≃
�

1

GLah

�1
3

: ð64Þ
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This equation is equivalent to the empirical Weinberg
formula for the mass of the pion [28].

IV. CONCLUSION

In this paper we studied the deformation quantization or
phase space quantization of a closed quantum FLRW
model, whose matter is either a fluid of radiation or dust.
Our results show that the peaks of the WF coincide with the
classical trajectory of the Universe. Our main upshot is that
the CHP can be achieved by means of quantization of
cosmological models. According to the CHP the entropy of
nonblack hole configurations is given by relation S≃ ðA

4GÞ
3
4,

where A denotes the area of containing volume. We
showed that the same result is maintained for a radiation
dominated universe, where A is replaced by the phase
space average of apparent horizon hAahi, and S is the total
entropy (inside and outside). On the other hand, for a dust
dominated universe, we obtained S≃ ðhAahi

4G Þ23. It seems that

the power of apparent horizon in units of Planck’s surface is
different for various matter configurations: for black holes
this value is equal to 1, for radiation it is equal to 3=4, and
for dust it is equal to 2=3. We are aware that our results are
obtained within a very simple cosmological model.
Nevertheless, we think they are intriguing and provide
motivation for subsequent research works. Possible exten-
sions to test the CHP may include the following:

(i) Considering various Bianchi cosmological models.
(ii) Considering other perfect fluids besides radiation

and dust.
(iii) Exploring the modified theories of gravity, like

string cosmology and fðRÞ theories.
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