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In this paper, we introduce a Lemaître-Tolman-Bondi (LTB) Bianchi type I (plane symmetric) model of
the Universe. We study and solve Einstein field equations. We investigate the effects of such a model of the
Universe; in particular, these results are important in understanding the effect of the combined presence of
an inhomogeneous and anisotropic universe. The observational magnitude-redshift data deviated from the
UNION 2 catalog have been analyzed in the framework of this LTB anisotropic universe, and the fit has
been achieved without the inclusion of any dark energy.
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I. INTRODUCTION

A very important assumption of the standard model of
cosmology (ΛCDM) is based on the homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker solutions
of Einstein’s equations. The homogeneity and the isotropy
are considered on a large scale in the Universe. The
Universe is not isotropic or spatially homogeneous on
local scales.
The question of whether the Universe is homogeneous

and isotropic is of fundamental importance to cosmology,
but we have no decisive answers. On the other hand, neither
observations of luminosity distance combined with galaxy
number counts nor isotropic cosmic microwave back-
ground radiation is able to say if the Universe is spatially
homogeneous and isotropic.
The fundamental question consists of a simple observa-

tion: is this geometry the only one that is able to explain and
to be compatible with experimental data? Are we sure that
the assumption of homogeneity and isotropy is a logical
and comforting way of thinking, or better, is it an a priori
assumption?
This is a pertinent question because we need more than

96% of the content of our Universe to be dark (energy and
matter) in order to have a compatible model with obser-
vations. The solution of the dark energy puzzle is the
keystone of modern cosmology.
Are there observables that can prove the Universe is

homogeneous and isotropic on large scales? Very interest-
ing studies have been done in this direction [1–3].
The ΛCDM model of the Universe is remarkably

successful, but we have important tensions between the
model and the experimental data [4,5]. On the other hand,
dark energy is the biggest puzzle in cosmology. There are
many papers with more detailed discussions about dark
energy that are outside the scope of this paper; see, for

example, Refs. [6,7] and references therein. There are many
reasons that consider the ΛCDM model full of theoretical
problems [8]: one is that Λ has a value that is absurdly
small in quantum physics. Moreover, we cannot expect that
dark energy will have locally observable effects in the
future.
The cosmic microwave background (CMB) has high

isotropy, and this is considered strong evidence of the
homogeneity and isotropy of the Universe; that is to say,
the Universe is well described by means of a Friedmann-
Lemaître-Robertson-Walker (FLRW) model. The main
indication for this model is due to the theorem of
Ehlers, Geren, and Sachs [1] from 1968. This theorem is
due to an earlier paper by Tauber and Weinberg [9] in 1961.
In the Ehlers-Geren-Sachs theorem, we consider the
observers in an expanding universe, the dust universe
measures isotropic CMB, and this implies that the
FLRW metric is valid and that the cosmological principle
is also valid. This theorem is important because it permits
us to have the homogeneity and isotropy not from exper-
imental measurements of the isotropy of the Universe but
from the CMB. But, as we will discuss later, CMB radiation
has small anisotropies with 10−5 amplitude.
As regards the homogeneity of the Universe, it is

important to note that the mass density of the Universe
is not inhomogeneous on scales much smaller than the
Hubble radius; in other terms, the homogeneity is not true
at all orders, but we can assume it to be valid on distances
greater that 100 Mpc. Many papers indicate this feature;
see, for example, Ref. [10] (and references therein), where
the author indicates evidence that galaxy distribution is
spatially inhomogeneous for r < 100 Mpc=h.
The strong interest in inhomogeneous cosmological

models, in particular, the so called Lemaître-Tolman-
Bondi (LTB) model [11–13] (for more details, see
Ref. [14] and references therein), which represents a
spherically symmetric exact solution to the Einstein’s
equations with pressureless ideal fluid, is due to its
simplicity, and it is very useful. In fact, it allows for
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studies of inhomogeneities that cannot be analyzed as
perturbative deviations from FLRW and it permits us to
evaluate the effect of inhomogeneities. In particular, it has
been studied that LTB models without dark energy can fit
observed data.
The high precision cosmology is able to understand by

more details about our study of the Universe. When we
consider the isotropy of the CMB, we must not forget that
it is not sufficient to say that our region of space is
isotropic [15].
We have two very important observational pieces of

evidence showing that we do not have exact isotropy [16].
Both pieces of evidence may be caused by an anisotropic
phase during the evolution of our Universe; in other terms,
the existence of anomalies in the CMB suggests the
presence of an anomalous plane-mirroring symmetry on
large scales [17,18]. The same anomalous features in seven
years of WMAp data and Planck data seem to suggest that
our Universe could be nonisotropic.
The first is the presence of small anisotropy deviations as

regards the isotropy of the CMB. In fact, we have small
anisotropies with 10−5 amplitude.
The second is connected with the presence of large angle

anomalies [19]. These anomalies can be considered in four
families: (1) the alignment of quadrupole and octupole
moments [20–23], (2) the large-scale asymmetry [24,25],
(3) the very strange cold spot [26], and (4) the low
quadrupole moment of the CMB that is very important
because it may indicate an ellipsoidal Bianchi type I
anisotropic evolution of the Universe [27–30]. This is
due to the fact that the low quadrupole moment is sup-
pressed at large scales and this suppression cannot be
explained by the common cosmological model.
Some years ago, it has been shown [31] that if we start

with a FLRW universe, it is possible to have small
deviations from homogeneity and isotropy taking into
account small deviations in the CMB. In particular, if
we consider a homogeneous and anisotropic universe, the
small quadrupole anisotropy in CMB implies a very small
anisotropy in the Universe. Next, general results have been
established [32,33], in which the authors do not assume
a priori homogeneity, and they found that small anisotro-
pies in CMB imply that the cosmos is not exactly FLRW
but it is almost FLRW. Limits on anisotropy and inhomo-
geneity can be found starting from CMB.
The cosmological model that takes into account all these

and stimulates much interest is the “anisotropic Bianchi
type I model” that can be an intriguing alternative to the
standard model FLRW, in which small deviations from
the isotropy are able to explain the anisotropies and the
anomalies in the CMB.
The anisotropy considered in this work might be

interpreted as an imprinting, a primordial relic of a early
anisotropy that appears in the context of a multidimensional
cosmological model of unified string theories.

In this paper, our goals are to study an anisotropic and
inhomogeneous model of the Universe. In particular, we
introduce a new approach to a universe in which inhomo-
geneities and anisotropies coexist; therefore, we study in
order to obtain the relative Einstein’s equations. These
models of an inhomogeneous and anisotropic universe have
been studied in different physical situations as the role of
the diffusion forces in governing the large-scale dynamics
of an inhomogeneous and anisotropic universe [34].
The supernova observations are good tests about the

structure of the space-time on different scales. This is a very
important point; in fact, some years ago, Zel’dovich [35]
studied the importance of the effects of the inhomogeneities
on light propagation, which continued in later years
[36–42]. To check this model, we calculate the luminosity
distance in order to compare the theoretical approach with
experimental data. We explain the acceleration of the
Universe without invoking the presence of a cosmological
constant or dark energy.
The structure of this paper is the following. In the next

section, we calculate the metric for this LTB Bianchi type I
model of the Universe. In Sec. III, after providing the
calculation of various symbols, we write the Einstein’s
equations taking into account this geometry. Section IV is
dedicated to calculating the luminosity distance, and in
Sec. V, we compare the theoretical data with experimental
data. Finally, the discussion and conclusion are summa-
rized in Sec. VI.

II. LTB BIANCHI TYPE I METRIC

In order to find the anisotropic LTB metric, let us start
with a Bianchi type I space-time metric, spatially homo-
geneous, described by the metric

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2Þ − b2ðtÞdz2 ð1Þ
with two expansion parameters a and b that are the scale
factors normalized in order that aðt0Þ ¼ bðt0Þ ¼ 1 and t0
present cosmic time. The metric (1) considers the xy plane
as a symmetry plane. To our aim, we write the Bianchi
type I metric in polar coordinates ðx ¼ r sin θ cosϕ;
y ¼ r sin θ sinϕ; z ¼ r cos θÞ:

ds2 ¼ dt2 − ½a2ðtÞsin2θ þ b2ðtÞcos2θ�dr2
− r2½a2ðtÞcos2θ þ b2ðtÞsin2θ�dθ2
− 2r½a2ðtÞ − b2ðtÞ� sin θ cos θdrdθ
− r2a2ðtÞsin2θdϕ2: ð2Þ

In order to have a LTB Bianchi type I metric, we make the
following substitutions:

raðtÞ → A∥ðr; tÞ≡ A∥; ð3Þ

rbðtÞ → A⊥ðr; tÞ≡ A⊥: ð4Þ
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In this way, it is possible to obtain the general LTB Bianchi
type I metric in polar coordinates, observing that aðtÞ ¼ A0
and 2r0a2ðtÞ ¼ ðA2

∥Þ0, where 0≡ ∂=∂r; we have

ds2 ¼ dt2 − ðA02
∥sin

2θ þ A02⊥cos2θÞdr2
− ðA2

∥cos
2θ þ A2⊥sin2Þdθ2

− ðA2
∥
0 − A2⊥0Þ sin θ cos θdrdθ þ −A2

∥sin
2θdϕ2: ð5Þ

It is important to observe that Eq. (5) brings us back to the
known cases:

8<
:

A∥ðr; tÞ ¼ raðtÞ andA⊥ðr; tÞ ¼ rbðtÞ Bianchi type I
A∥ðr; tÞ ¼ A⊥ðr; tÞ LTB
A∥ðr; tÞ ¼ A⊥ðr; tÞ ¼ raðtÞ FLRW:

ð6Þ

Therefore, the metric (5) is a nonhomogeneous metric with
axial symmetry that is simply referable to the pure
homogeneous or the pure isotropic case.
Let us define the following quantity

ϵðr; tÞ ¼ A⊥ − A∥ ð7Þ

that represents the degree of anisotropy of the Universe.
From the definition of ϵ, we obtain

A0⊥ ¼ A0
∥ þ ϵ0; ð8aÞ

A0⊥2 ¼ A0
∥
2 þ ϵ02 þ 2A0

∥ϵ
0; ð8bÞ

A2⊥ ¼ A2
∥ þ ϵ2 þ 2A∥ϵ; ð8cÞ

ðA2⊥Þ0 ¼ ðA2
∥Þ0 þ ðϵ2Þ0 þ 2A0

∥ϵþ 2A∥ϵ
0: ð8dÞ

Let us introduce these relations in the metric (5) in order to
show it as a function of ϵ and A∥ (or ϵ and A⊥). Putting it all
together, we have

ds2 ¼ dt2 − ½A0
∥
2 þ ðϵ02 þ 2A0

∥ϵ
0Þcos2θ�dr2

− ½A∥
2 þ ðϵ2 þ 2A∥ϵÞsin2θ�dθ2

þ ½ðϵ2Þ0 þ 2A0
∥ϵþ 2A∥ϵ

0� sin θ cos θdrdθ
− A∥

2sin2θdϕ2

≡ ðgðLTBÞ∥μν þ ΔgðANÞ∥μν Þdxμdxν; ð9Þ

with our metric given by

gμν ≡ gðLTBÞ∥μν þ ΔgðANÞ∥μν ; ð10Þ

where

gðLTBÞ∥μν ¼

0
BBBBB@

1 0 0 0

0 −A0
∥
2 0 0

0 0 −A2
∥ 0

0 0 0 −A2
∥sin

2θ

1
CCCCCA; ð11aÞ

ΔgðANÞ∥11 ¼ − cos2θðϵ02 þ 2A0
∥ϵ

0Þ; ð11bÞ

ΔgðANÞ∥12 ¼ sin 2θ
2

½ðϵ2Þ0 þ 2A0
∥ϵþ 2A∥ϵ

0�; ð11cÞ

ΔgðANÞ∥22 ¼ − sin2θðϵ2 þ 2A∥ϵÞ: ð11dÞ

The script “(LTB)” (super- or subscripts are the same)
means that the quantity refers to a Lemaître-Tolman-Bondi
universe, while “(AN)” refers to an anisotropic universe. In
other words, the metric (9) is able to describe the inho-
mogeneity and axial anisotropy of the Universe; on the
other hand, a very interesting thing is that it has been
decomposed in the sum of a LTB metric with null curve
and a term that contains all information about the
anisotropy ϵðr; tÞ.
For reasons of completeness, it is possible to rewrite the

metric in the symmetric way as

gμν ≡ gðLTBÞ⊥μν þ ΔgðANÞ⊥μν ; ð12Þ

where gðLTBÞ⊥μν is obtained by Eq. (11a) with the substitution
of A⊥ instead of A∥ and

ΔgðANÞ⊥11 ¼ sin2θðϵ02 − 2A0⊥ϵ0Þ; ð13aÞ

ΔgðANÞ⊥12 ¼ sin 2θ
2

½ðϵ2Þ0 − 2A0⊥ϵ − 2A⊥ϵ0�; ð13bÞ

ΔgðANÞ⊥22 ¼ cos2θðϵ2 − 2A⊥ϵÞ; ð13cÞ

ΔgðANÞ⊥33 ¼ sin2θðϵ2 − 2A⊥ϵÞ: ð13dÞ

III. EINSTEIN’S EQUATIONS IN LTB BIANCHI
TYPE I UNIVERSE

In this section, we want to write the Einstein’s equations
taking into account the LTB Bianchi type I metric. To this
end, we suppose a very small anisotropy of the Universe, in
order to have

ϵðr; tÞ ≪ A∥ðr; tÞ; ð14aÞ

ϵ0ðr; tÞ ≪ A0
∥ðr; tÞ: ð14bÞ

These positions permit us to expand our results to the first
order in ϵ, in other terms:
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ΔgðANÞμν → δgðANÞμν ð15Þ

with

δgðANÞ∥11 ¼ −2A0
∥ϵ

0cos2θ; ð16Þ

δgðANÞ∥22 ¼ −2A∥ϵsin2θ; ð17Þ

δgðANÞ∥12 ¼ 2A∥ϵ
0 sin θ cos θ: ð18Þ

At this point, we can calculate the Christoffel connection to
the first order in ϵ [we repeat that the scripts (LTB) and
(AN) are indifferently written as super- or subscripts]:

Γα
μν ¼

1

2
gαρð∂μgνρ þ ∂νgρμ − ∂ρgμνÞ

≃ 1

2
ðgαρðLTBÞ þ δgαρðANÞÞ½∂μðgðLTBÞνρ þ δgðANÞνρ Þ

þ ∂νðgðLTBÞρμ þ δgðANÞρμ Þ − ∂ρðgðLTBÞμν þ δgðANÞμν Þ� ð19Þ

that, neglecting the second order terms in ϵ2, becomes

Γα
μν ≃ 1

2
gαρðLTBÞð∂μg

ðLTBÞ
νρ þ ∂νg

ðLTBÞ
ρμ − ∂ρg

ðLTBÞ
μν Þ

þ 1

2
gαρðLTBÞð∂μδg

ðANÞ
νρ þ ∂νδg

ðANÞ
ρμ − ∂ρδg

ðANÞ
μν Þ

þ 1

2
δgαρðANÞð∂μg

ðLTBÞ
νρ þ ∂νg

ðLTBÞ
ρμ − ∂ρg

ðLTBÞ
μν Þ: ð20Þ

The first term in Eq. (20) is just ΓαðLTBÞ
μν , the Christoffel

connection with the metric tensor gðLTBÞμν , and putting

Σα
μν ≡ 1

2
gαρðLTBÞð∂μδg

ðANÞ
νρ þ ∂νδg

ðANÞ
ρμ − ∂ρδg

ðANÞ
μν Þ ð21Þ

and

Θα
μν ≡ 1

2
δgαρðANÞð∂μg

ðLTBÞ
νρ þ ∂νg

ðLTBÞ
ρμ − ∂ρg

ðLTBÞ
μν Þ; ð22Þ

it is possible to write the Christoffel connection at the first
order as

Γα
μν ¼ ΓαðLTBÞ

μν þ Σα
μν þ Θα

μν: ð23Þ

Let us calculate the Ricci tensor

Rνα ¼ ∂μΓ
μ
να − ∂νΓ

μ
μα þ Γμ

μρΓρ
να − Γμ

νρΓρ
μα ð24Þ

with Γμ
να given by Eq. (23). Therefore, we have

Rνα ¼ ∂μðΓμðLTBÞ
να þ Σμ

να þ Θμ
ναÞ

− ∂νðΓμðLTBÞ
μα þ Σμ

μα þ Θμ
μαÞ

þ ðΓμðLTBÞ
μρ þ Σμ

μρ þ Θμ
μρÞðΓρðLTBÞ

να þ Σρ
να þ Θρ

ναÞ
− ðΓμðLTBÞ

νρ þ Σμ
νρ þ Θμ

νρÞðΓρðLTBÞ
μα þ Σρ

μα þ Θρ
μαÞ:

ð25Þ

When we multiply in Eq. (25), neglecting the second order
terms ΣΣ, ΘΘ, ΣΘ, and ΘΣ, and putting

RðLTBÞ
να ¼ ∂μΓ

μðLTBÞ
να − ∂νΓ

μðLTBÞ
μα

þ ΓμðLTBÞ
μρ ΓρðLTBÞ

να − ΓμðLTBÞ
νρ ΓρðLTBÞ

μα ; ð26Þ

RðΣÞ
να ≡ ∂μΣ

μ
να − ∂νΣ

μ
μα þ Σμ

μρΓρðLTBÞ
να þ ΓμðLTBÞ

μρ Σρ
να

− ΓμðLTBÞ
νρ Σρ

μα − Σμ
νρΓρðLTBÞ

μα ; ð27Þ

RðΘÞ
να ≡ ∂μΘ

μ
να − ∂νΘ

μ
μα þ Θμ

μρΓρðLTBÞ
να þ ΓμðLTBÞ

μρ Θρ
να

− ΓμðLTBÞ
νρ Θρ

μα − Θμ
νρΓρðLTBÞ

μα ; ð28Þ

the Ricci tensor to the first order in δ can be written as

Rνα ¼ RðLTBÞ
να þ RðΣÞ

να þ RðΘÞ
να : ð29Þ

In order to consider the perturbations of the energy-
momentum tensor, we consider a general anisotropic
density energy given by

ρmatðr; t; θÞ≡ ρ∥matðr; tÞsin2θ þ ρ⊥matðr; tÞcos2θ
¼ ρ∥matðr; tÞ þ δmatðr; tÞcos2θ; ð30Þ

where δmat ≡ ρ⊥mat − ρ∥mat. The density that we choose has
a planar symmetry because of the consistency with the
metric that we are working with. This choice allows us to
rewrite the energy-momentum tensor and its trace as

Tν
μ ≡ TνðLTBÞ

μ þ ΔTν
μ; ð31Þ

T ≡ TðLTBÞ þ ΔT; ð32Þ

where, in general,

TνðLTBÞ
μ ¼ diag½ρðr; tÞ;−pðr; tÞ;−pðr; tÞ;−pðr; tÞ�: ð33Þ

However, all these definitions must be viewed as a first
order correction to the usual energy-momentum tensor in
the LTB case. This point of view becomes clear if we look
at the usual perturbation theory provided by Ref. [43]. In
fact, our particular definition is fully consistent with
Mukhanov’s one whether we fix δp ¼ V ¼ σ ¼ 0 in
Eq. (5.1) of Ref. [43]: this means that we are only
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considering the perturbation in the energy density, and we
neglect the effect of a different pressure along two
directions (in particular, we continue using a pressureless
matter fluid everywhere). For sure, what we did is a strong
constraint. By the way, the particular choice of the
perturbation is not relevant for the purposes of this paper.
In order to be explicit, we write

Tν
μ ¼ TνðLTBÞ

μ þ δTνðANÞ
μ ð34Þ

and

Tνα ¼ ðgðLTBÞνμ þ δgðANÞνμ ÞðTμðLTBÞ
α þ δTμðANÞ

α Þ
≃ TðLTBÞ

να þ δgðANÞνμ TμðLTBÞ
α þ gðLTBÞνμ δTμðANÞ

α : ð35Þ

As regards the energy conditions, we consider the general
energy-momentum tensor:

Tμν ¼ ρuμuν þ pð−gμν þ uμuνÞ ð36Þ

with uμuμ ¼ 1. Hence, energy conditions state the
following:

(i) the weak energy condition is Tμνuμuν ≥ 0,
(ii) the dominant energy condition can be shown by

defining Wμ ¼ Tμνuν, WμWμ ≥ 0,
(iii) the strong energy condition is Tμνuμuν ≥

1
2
Tuμuμ, and

(iv) the null energy condition is Tμνkμkν ≥ 0, where kμ is
a lightlike vector.

As is well known, the hierarchy among these conditions
is the following: strong implies null, dominant implies
weak, and weak implies null. In this way, by providing that
the dominant condition holds, weak and null are also
satisfied as well. In particular, for energy-momentum (36),
with p ¼ 0, they become

(i) weak: ρmat ≥ 0,
(ii) dominant: ρ2mat ≥ 0,
(iii) strong: ρmat ≥ 0, and
(iv) null: ρmat ≥ 0.
The Einstein’s equations in this universe are

RνðLTBÞ
μ þ RðLTBÞ

μν δgαν þ ðRðΣÞ
μα þ RΘ

μαÞgναðLTBÞ

¼ 8πG½TνðLTBÞ
μ þ δTνðANÞ

μ þ 1

2
δνμðTðLTBÞ þ δTðANÞÞ�: ð37Þ

IV. LUMINOSITY DISTANCE

The concept of distance depends on the assumed model
of the Universe and on the matter distribution in it. The
measured distances are influenced by inhomogeneities and
anisotropy of the Universe; see, for example, Refs. [44,45].
The luminosity distance is one of the most important

quantities for understanding the presence of dark energy in
the Universe, considering the photon coming from type Ia

supernovae. In this section, we want to calculate the
luminosity distance for our metric Eq. (9). The reciprocity
theorem by Etherington [46] and popularized by Ellis [47]
connects the angular diameter distance dA and the lumi-
nosity distance dL by

dL ¼ ð1þ zÞ2dA; ð38Þ

where

dðln dAÞ ¼
1

2
∇αpαdτ ð39Þ

with τ the temporal affine parameter and pα ¼ dxα=dτ the
quadrimomentum of a generic signal that is started from
the supernova and reaches us. To our end, it is necessary to
calculate ∇αpα ≡ ∂αpα þ Γαμ

αpμ:

∇αpα ¼ ∂αpα þ Γαμ
αpμ ¼ ∂αpα þ ∂μ

ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp pμ

¼ ∂0p0 þ ∂1p1 þ ∂0

ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp p0 þ ∂1

ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp p1 ð40Þ

with

−g ¼ A2
∥ðg11g22 − g212Þsin2θ≡ A2

∥B
2ðt; r; θÞsin2θ; ð41Þ

where we define

Bðt; r; θÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11ðt; r; θÞg22ðt; r; θÞ − g212ðt; r; θÞ

q
: ð42Þ

In this way, we obtain

∂0

ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp ¼ ð∂0A∥Bþ A∥∂0BÞ sin θ
A∥B sin θ

¼ ∂0A∥

A∥
þ ∂0B

B
; ð43aÞ

∂1

ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp ¼ ð∂1A∥Bþ A∥∂1BÞ sin θ
A∥B sin θ

¼ ∂1A∥

A∥
þ ∂1B

B
: ð43bÞ

This permits to write Eq. (40) as

∂0p0 þ ∂1p1 þ
�∂0A∥

A∥
þ ∂0B

B

�
p0 þ

�∂1A∥

A∥
þ ∂1B

B

�
p1

¼ ∂0p0 þ ∂1p1 þ 1

A∥

dA∥

dτ
þ
�∂0B

B
p0 þ ∂1B

B
p1

�
: ð44Þ

In the last equation, we have considered the general relation
between partial derivatives in the coordinates xα and total
derivatives in the affine time τ. In fact, if Φ is a generic
function that depends from the coordinates, it is possible to
write
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dΦðxαðτÞÞ
dτ

¼ ∂ΦðxαÞ
∂xβ

dxβ

dτ
≡ ∂βΦpβ: ð45Þ

On the other hand, as regards B, we must write dB
dτ ¼∂0Bp0 þ ∂1Bp1 þ ∂2Bp2, but we are considering the

radial signal; therefore, p2 ≡ dθ=dτ—that is to say,
θðτÞ ¼ cost. In this way, we can consider θ as a parameter
that is able to locate the trajectory of propagation of light.
This employment permits us to write

Bðr; t; θÞ ≈ BðrðτÞ; tðτÞ; θÞ ⇒ dB
dτ

≈ ∂0Bp0 þ ∂1Bp1:

ð46Þ

Therefore, Eq. (40) becomes

∇αpα ¼ ∂0p0 þ ∂1p1 þ 1

A∥

dA∥

dτ
þ 1

B
dB
dτ

: ð47Þ

As regards the partial derivative of pα, remembering that
we are considering the radial propagation of signals, the
relevant components are

dp0þΓ00
0dx0p0þΓ10

0ðdx1p0þdx0p1ÞþΓ11
0dx1p1¼ 0;

ð48aÞ

dp1þΓ00
1dx0p0þΓ10

1ðdx1p0þdx0p1ÞþΓ11
1dx1p1¼ 0;

ð48bÞ

from which we have

∂0p0 ¼ −ðΓ00
0p0 þ Γ10

0p1Þ; ð49aÞ

∂1p1 ¼ −ðΓ10
1p0 þ Γ11

1p1Þ: ð49bÞ

In order to complete the analysis, observe that Γ00
0 ¼

Γ10
0 ¼ 0 and

Γ10
1 ¼ 1

2
g11ð∂1g01 þ ∂0g11 − ∂1g10Þ

þ 1

2
g12ð∂1g02 þ ∂0g21 − ∂2g10Þ

¼ −ðg11X∂0X þ g12F∂0FÞ; ð50Þ

Γ11
1 ¼ 1

2
g11ð∂1g11 þ ∂1g11 − ∂1g11Þ

þ 1

2
g12ð∂1g12 þ ∂1g21 − ∂2g11Þ

¼ −ðg11X∂1X þ 2g12F∂1F − X∂2XÞ; ð51Þ

where we have put

g11 ≡ X2; g22 ≡ Y2; g12 ≡ F2: ð52Þ

Now, we work in a small approximation of anisotropy, in
order to use Eq. (23) to the lower order; in this way, it is
possible to write

Γ10
1 → Γ1ðLTBÞ

10 ¼ ∂0∂1A∥

∂1A∥
; ð53aÞ

Γ11
1 → Γ1ðLTBÞ

11 ¼ ∂2
1A∥

∂1A∥
; ð53bÞ

where ∂2
1 ≡ ∂2

∂r2. Therefore, Eq. (47) is

∇αpα ≈ −
�∂0∂1A∥

∂1A∥
p0 þ ∂2

1A∥

∂1A∥
p1

�
þ 1

A∥

dA∥

dτ
þ 1

B
dB
dτ

:

ð54Þ

Taking into account Eq. (45), it is possible to write the first

two terms in Eq. (54) as 1
∂1A∥

dA∥
dτ .

Inserting Eq. (54) into Eq. (39), it is possible to obtain
dA; in fact, we have

ddA
dA

≈
1

2

�
1

A∥

dA∥

dτ
þ 1

B
dB
dτ

−
1

∂1A∥

d∂1A∥

dτ

�
dτ; ð55Þ

and integrating in τ, we obtain

dAðr; t; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A∥ðr; tÞBðr; t; θÞ

∂1A∥ðr; tÞ

s
: ð56Þ

This expression of the luminosity distance reduces to the
isotropic limit of the LTB metric; in fact, we have

Xðr; t; θÞ → ∂1A∥ðr; tÞ;
Aðr; t; θÞ → A∥ðr; tÞ;
Fðr; t; θÞ → 0; ð57Þ

therefore, we obtain the limit

Bðr; t; θÞ → A∥ðr; tÞ∂1A∥ðr; tÞ ⇒ dAðr; t; θÞ
→ dðLTBÞA ðr; tÞ ¼ A∥ðr; tÞ: ð58Þ

V. RELATION BETWEEN COORDINATES
AND REDSHIFT

In this section, we want to calculate the luminosity
distance in order to obtain an operative expression and
therefore to apply it to experimental data. Equation (56)
gives us the luminosity distance
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dL ¼ ð1þ zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A∥ðr; tÞBðr; t; θÞ

∂1A∥ðr; tÞ

s
; ð59Þ

but this expression is not directly applicable because it
depends on ðr; tÞ coordinates and on the redshift.
Therefore, it is necessary to find the relations rðzÞ and
tðzÞ. To this end, let us consider the definition of redshift
and let us use the static observator classes that are also
geodetic (Γ00

μ ¼ 0). We consider light signal, that is to say,
p0 ∝ 1=δt; in this way, we write

1þ z≡ ðgμνuμpνÞem
ðgμνuμpνÞoss

¼ p0
em

p0
oss

¼ δtoss
δtem

⇒ 1þ zðτÞ ¼ δtoss
δtðτÞ ;

ð60Þ

where uμ ¼ ð1; 0; 0; 0Þ and g00 ¼ 1. Now, we derive with
respect to τ and we have

dzðτÞ
dτ

¼ −
δtoss
δtðτÞ2

dδtðτÞ
dτ

≡ −
1þ zðτÞ
δtðτÞ

dδtðτÞ
dτ

⇒
dδt
dτ

¼ −
δt

1þ z
dz
dτ

: ð61Þ

On the other hand, for geodetic radial signals, we have
ds2 ¼ 0 and dθ ¼ dϕ ¼ 0 that give

dt2 − Xðr; t; θÞ2dr2 ¼ 0 ⇒ dt ¼ �Xðr; t; θÞdr: ð62Þ

As regards the ambiguity of the sign, we must consider the
minus sign; because of increasing the distance (dr > 0), we
have a more ancient signal (dt < 0). When we consider the
signals that, respectively, start at time t and tþ δt, Eq. (62)
must be valid; therefore, we have

dt
dτ

¼ −Xðr; t; θÞ dr
dτ

; ð63aÞ

dðtþ δtÞ
dτ

¼ −Xðr; tþ δt; θÞ dr
dτ

: ð63bÞ

Equation (63b) can be written as

dt
dτ

þ dδt
dτ

≈ −½Xðr; t; θÞ þ δt∂0Xðr; t; θÞ�
dr
dτ

ð64Þ

that, taking into account Eq. (63a), can be written as

dδt
dτ

≈ −δt∂0Xðr; t; θÞ
dr
dτ

¼ −δt∂0Xðr; t; θÞ
dr
dz

dz
dτ

: ð65Þ

Now, Eqs. (61) and (65) are equal; therefore, we have

dr
dz

¼ 1

1þ z
1

∂0Xðr; t; θÞ
: ð66Þ

As regards tðzÞ, it is important to remember that

dt
dτ

¼ dt
dz

dz
dτ

and
dr
dτ

¼ dr
dz

dz
dτ

; ð67Þ

in this way, taking into account Eq. (63b), we obtain the
relation

dt
dz

¼ −
1

1þ z
Xðr; t; θÞ
∂0Xðr; t; θÞ

: ð68Þ

Putting it all together, we are able to write the luminosity
distance as a function of the redshift z and the angle θ:

dLðz;θÞ¼ ð1þ zÞ2
�

A∥ðrθðzÞ; tθðzÞÞ
∂1A∥ðrθðzÞ; tθðzÞÞ

BðrθðzÞ; tθðzÞ;θÞ12
�1

2

;

ð69aÞ

drθðzÞ
dz

¼ 1

1þ z
1

∂0XðrθðzÞ; tθðzÞ; θÞ
; ð69bÞ

dtθðzÞ
dz

¼ −
1

1þ z
XðrθðzÞ; tθðzÞ; θÞ
∂0XðrθðzÞ; tθðzÞ; θÞ

: ð69cÞ

It is important to observe that the subscript θ reminds us
that the functions r and t are determined by the resolution
of the system given by Eqs. (69b) and (69c), where the
angle θ is fixed and considered as a constant parameter
during the propagation of light.

VI. COMPARISON WITH EXPERIMENTAL DATA

The accelerating expansion of the Universe is driven by
mysterious energy with negative pressure known as dark
energy. In spite of all the observational evidence, the nature
of dark energy is still a challenging problem in theoretical
physics; therefore, there has been a new interest in studying
alternative cosmological models [14].
In the context of FLRW models, the acceleration of the

Universe requires the presence of a cosmological constant.
But, it does not appear to be natural to introduce the
presence of a cosmological constant and does not appear to
be natural to introduce the dark energy.
In this section, we consider the comparison between

experimental data, in particular, with the UNION 2 data
set of type Ia supernovae and our inhomogeneous and
anisotropic Universe. Let us suppose a small anisotropy in
order to write the functions A∥ and A⊥ as solutions of a LTB
universe with null curvature and matter dominated. We have

A∥ðr; tÞ ¼ r

�
1þ 3

2
H∥ðrÞt

�2
3

; ð70aÞ

A⊥ðr; tÞ ¼ r

�
1þ 3

2
H⊥ðrÞt

�2
3

; ð70bÞ
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where we have considered the following parametrization:

H∥=⊥ðrÞ ¼ H∥=⊥ þ ΔH∥=⊥ exp

�
−

r
r∥=⊥

�
: ð71Þ

In this way, we have the possibility to obtain again the
simple model in which H∥ ¼ H⊥, ΔH∥ ¼ ΔH⊥, and
r∥ ¼ r⊥. Let us consider that today, and in our position
in the Universe (t ¼ 0 and r ¼ 0), the Hubble constant is
67.3� 1.2 km

s =Mpc [48]. We have the following conditions
H∥ þ ΔH∥ ¼ H⊥ þ ΔH⊥ ¼ 67.3; therefore, we have

H∥ ¼ 67.3 − ΔH∥; ð72aÞ

H⊥ ¼ 67.3 − ΔH⊥: ð72bÞ

In this way, we do not have the six parameters of the model;
now, they are four:ΔH∥;ΔH⊥; r∥, and r⊥. At this point, we
remember the limits given by (14); therefore, for ϵ ∼ 0, we
have

A⊥ðr; tÞ ≈ A∥ðr; tÞ ⇒ H∥ðrÞ ≈ H⊥ðrÞ: ð73Þ

This condition must be transferred to the four parameters.
The condition Eq. (73) is obtained when α ∼ 1 and

ω ∼ 1. On the other hand, it also must be ϵ0 ∼ 0. Therefore,
we have

A0
∥=⊥ ¼

�
1þ 2

2
H∥=⊥t

�2
3 þ rH0

∥=⊥t
ð1þ 3

2
H∥=⊥tÞ13

¼ A∥=⊥
r

þ r
3
2H0

∥=⊥t
A∥=⊥

; ð74Þ

from which we obtain

α≡ r⊥
r∥

; ð75aÞ

ω≡ ΔH⊥
ΔH∥

; ð75bÞ

A0
∥ − A0⊥ ¼ A∥ − A⊥

r
þ r

3
2t

�
H0⊥
A⊥

−
H0

∥

A∥

�

¼ ϵ

r
þ r

3
2t

�
−
ΔH⊥
A⊥r⊥

þ ΔH∥

A∥r∥

�
: ð76Þ

In this way, for ϵ ∼ 0 and ϵ0 ∼ 0, we must write

ΔH⊥
ΔH∥

¼ A⊥
A∥

r⊥
r∥

⇒ ω ¼ A⊥
A∥

α: ð77Þ

Therefore, A⊥=A∥ ≈ 1, from which we obtain ω ≈ α. In
conclusion, we also have three parameters: ΔH∥; r∥, and α.
The advantage of this parametrization is that we can change
ΔH∥ and r∥ as we want, taking into account that α≃ 1.
In our work, we have changed α in the range [0.9, 1].
In Table I, we have the best-fit values of the parameters

for ~χ2 ¼ 0.95. In Fig. 1, we have the Hubble diagram for
the 557 type Ia supernovae of the UNION 2 catalog. The
best-fit curve is in the same diagram. The fit of the
cosmological observational data is in very good agreement,
without using any dark energy.
According to our ansatz, it is important to stress that

ρmat ¼ ρ∥mat þ δmatcos2θ, so the dominant energy condition
up to first order gives

δmatcos2θ ≥ −
ρ∥mat

2
ð78Þ

while the other ones give

δmatcos2θ ≥ −ρ∥mat: ð79Þ

Furthermore, δmat ¼ ρ⊥mat − ρ∥mat, so, from the
Einstein’s equation, we have that

ρ∥mat ¼
1

8πG

�� _A∥

A∥

�2

þ 2
_A∥

A∥

_A0
∥

A0
∥

�
;

δmat ¼
1

8πG

��
_A⊥
A⊥

�2

þ 2
_A⊥
A⊥

_A0⊥
A0⊥

−
� _A∥

A∥

�2

− 2
_A∥

A∥

_A0
∥

A0
∥

�
:

ð80Þ

Hence, we have from solutions (70a) and (70b), with
conditions (75a), (75b), and (77), that Eq. (78) gives a

TABLE I. Best-fit values for the parameters.

ΔH∥½kmðsMpcÞ−1� r∥½Gpc� α

25.4 2.88 1.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

34

36

38

40

42

44

46

z

FIG. 1 (color online). Hubble diagram for type Ia supernovae in
the UNION 2 catalog. The curve is the best fit.
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constraint on parameters which must be satisfied. In
particular, by using the best-fit values for r∥ and ΔH∥,
the dominant energy condition requires α < 1.5, which is in
full agreement with our analysis.

VII. CONCLUSION

In the present paper, we have studied the possible effects
of anisotropy and inhomogeneity in the expansion of the
Universe.
The motivation behind this choice is that singly, inho-

mogeneous cosmological models and the Bianchi type I
cosmological model of the Universe have motivations of
truth that must not be left out for one of the two models.
Both models may be unified in an anisotropic expansion of
the inhomogeneous Universe. The LTB Bianchi type I
model possesses important specific properties, and at the
same time, this is not too complicated from a physical and
mathematical point of view.
In particular, we have connected this model on present-

day observations as the luminosity distance of type Ia
supernovae. We fit observational data from the UNION 2
catalog of type Ia supernovae with a LTB Bianchi type I
model of the Universe. The agreement is good. We have no
dark energy in this model.
We are sure that the voids in the Universe dominate,

while matter is distributed in a filamentary structure.
Therefore, photons must travel through the voids and the
presence of inhomogeneities can alter the observable with
respect to the corresponding FLRW model of the Universe,
which is homogeneous and isotropic.
The key point is that in this model, we have two

contributions to the Hubble diagram of type Ia supernovae:

inhomogeneity to the large-scale geometry and anisotropy
can dynamically generate effects that may remove the need
for the postulate of dark energy.
This model must be intended as a first step towards a

most general case. The model is oversimplifying for
different reasons. First, we have considered only the first
order in ϵ. Second, it is necessary to generalize this paper;
a very interesting open question that we will study in the
future is to obtain how to treat a light-cone average in a
more realistic cosmological calculation. Third, we have
considered the simple LTB model of the Universe, but it
may be very interesting to study a more completed
inhomogeneous model such as, for example, the Swiss
cheese model. Note, finally, that several possibilities are
allowed by our model; it will be interesting to compare this
model with other experimental cosmological data.
In the future, we will study the possibility that inhomo-

geneity and anisotropy can have significant effects on the
propagation of light, with potentially very important effects
on cosmological observations, and we want to study
different observational tests that may confirm this model
of the Universe.
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