
Quark magnetar in the three-flavor Nambu–Jona-Lasinio model with vector
interactions and a magnetized gluon potential

Peng-Cheng Chu,1,2,* Xin Wang,1,† Lie-Wen Chen,1,3,‡ and Mei Huang2,4,§
1Department of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics

and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator,

Lanzhou 730000, China
4Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China

(Received 4 October 2014; published 12 January 2015)

We investigate properties of strange quark matter in the framework of the SU(3) Nambu–Jona-Lasinio
model with vector interactions under strong magnetic fields. The effects of vector-isoscalar and vector-
isovector interactions on the equation of state of strange quark matter are investigated, and it is found that
the equation of state is not sensitive to the vector-isovector interaction; however, a repulsive interaction in
the vector-isoscalar channel gives a stiffer equation of state for cold dense quark matter. In the presence of a
magnetic field, gluons will be magnetized via quark loops, and the contribution from magnetized gluons to
the equation of state is also estimated. The sound velocity square is a quantity to measure the hardness or
softness of dense quark matter, and in the Nambu–Jona-Lasinio model without vector interaction at zero
magnetic field, the sound velocity square is always less than 1=3. It is found that a repulsive vector-
isoscalar interaction and a positive pressure contribution from magnetized gluons can enhance the sound
velocity square, which can even reach 1. To construct quark magnetars under strong magnetic fields, we
consider anisotropic pressures and use a density-dependent magnetic field profile to mimic the magnetic
field distribution in a quark star. We also analyze the parameter region for the magnitude of vector-isoscalar
interaction and the contribution from magnetized gluons in order to produce two-solar-mass quark
magnetars.
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I. INTRODUCTION

Investigating properties of strong interaction matter is one
of the main topics of quantum chromodynamics (QCD). It is
believed that there will be deconfinement phase transition
from hadronic matter to quark-gluon plasma at sufficiently
high temperatures and from nuclear matter to quark matter
(or color superconductor) at high baryon densities. The hot
quark-gluon plasma is expected to be created in heavy ion
collisions at the Relativistic Heavy Ion collider (RHIC) and
the Large Hadron Collider (LHC). The hot and dense quark
matter might be created in heavy ion collisions at FAIR in
GSI and the Nuclotron-based Ion Collider Facility (NICA) at
JINR, while the cold and dense quark matter may exist in the
inner core of compact stars.
In the inner core of compact stars, the baryon density can

reach or even be larger than about six times the normal
nuclear matter density n0 ¼ 0.16 fm−3, so there might exist
“exotic” matter like hyperons [1–3], meson condensations
[4–6], and quark matter (normal quark matter or strange
quark matter [7,8] and a color superconductor [9,10]).

Strange quark matter has been conjectured to be the true
ground state of QCD [7,8], and many efforts have been put
on investigating the conversion from a neutron star to a
quark star that consists of strange quark matter that is made
purely by u, d, and s quarks and some leptons like the
electron and muon due to charge neutrality and β equilib-
rium [11–14]. There are also hybrid star conjectures on a
transition from the nuclear phase to quark phase at such
high baryon density, and several authors have studied the
phase transition in a hybrid star [15–23].
The equation of state (EoS) plays a central role in

investigating properties of strong interaction matter, which
is one of fundamental issues in nuclear physics, astrophys-
ics, and cosmology. On the one hand, the EoS generates
unique mass vs radius relations for neutron stars and the
ultradense remnants of stellar evolution. On the other hand,
the mass-radius relation of compact stars can put strong
constraints on the EoS for strong interaction matter at high
baryon density and low temperature.
Recently, the two heaviest neutron stars have been

measured with high accuracy. One is the radio pulsar
J1614-2230 [24] with a mass of 1.97� 0.04M⊙, and the
other is J0348+0432 [25] with mass 2.01� 0.04M⊙. Even
heavier neutron stars have been discussed in the literature
[26,27]. It is suggested that the established existence of
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two-solar-mass neutron stars would prefer a hard EoS
based entirely on conventional nuclear degrees of freedom,
and many soft equations of state, including hybrid stars
containing significant exotic proportions of hyperons, Bose
condensates, or quark matter would be ruled out.
However, it has been pointed out that the repulsive vector

interaction in the Nambu–Jona-Lasinio (NJL) model can
produce a stiff EoS for dense quark matter and thus can
generate a two-solar-mass compact star [28,29]. The role of
the vector interaction in the QCD vacuum and medium
has been discussed in much of the literature [28–46]. The
introduction of the vector interaction within the NJL model
is necessary to describe vector mesons, and the coupling
constant is determined by the vector spectra [30,33].
To describe vector bound states within the NJL model,
the vector interaction must be attractive in the spacelike
components; thus, it is repulsive in the timelike compo-
nents, which is relevant for the number density in the mean
field [34]. The QCD phase diagram and the critical end
point are sensitive to the sign of vector coupling constant as
shown in Refs. [38–41].
Furthermore, the presence of an external magnetic field

can even harden the equation of state of dense quark matter
as shown in Ref. [47]. In recent decades, properties of hot
and dense quark matter under strong magnetic fields have
attracted lots of interest; especially, in the recent several
years, much progress has been made.
Strong magnetic fields with the strength of 1018–1020 G

[equivalent to eB ∼ ð0.1–1.0 GeVÞ2] can be generated in
the laboratory through noncentral heavy ion collisions
[48,49] at the RHIC and the LHC. This offers a unique
opportunity to study properties of hot strong-interaction
matter under a strong magnetic field. The observation of
charge azimuthal correlations at the RHIC and LHC
[50,51] might indicate the anomalous chiral magnetic effect
[52–54] with local P and CP violation. Conventional chiral
symmetry breaking and restoration under external magnetic
fields has been investigated for many years. It has been
recognized for more than 20 years that the chiral con-
densate increases with B, which is called magnetic catalysis
[55–57], and naturally the chiral symmetry should be
restored at a higher Tc with an increasing magnetic field.
However, the Lattice group [58–60] has demonstrated that
the transition temperature decreases as a function of the
externalmagnetic field, i.e., inversemagnetic catalysis around
Tc, which is in contrast to the naive expectation and the
majority of previous results. Itwas shown inRefs. [61,62] that
the chirality imbalance can explain the inverse magnetic
catalysis. It was suggested that in the presence of an external
magnetic field there will be vector condensation in the QCD
vacuum [63,64], and the vector condensation was confirmed
in Refs. [65,66]. The vector condensation in the neutron star
has been discussed in Ref. [67].
Moreover, considerable efforts have also been directed to

the study of the effects of intense magnetic fields on various
astrophysical phenomena. The presence of strong magnetic

fields at the surface of conventional compact stars or
neutron stars is 109–1015 G [68–74], which is a thousand
times stronger than ordinary neutron stars. These strongly
magnetized objects are called magnetars [74]. By using the
scalar virial theorem based on Newtonian gravity [75], it is
predicted that the magnetic field in the inner core of neutron
stars could reach as high as 1018–1020 G. Under such
tremendous magnetic fields, the Oð3Þ rotational symmetry
will break, and the pressure anisotropy of the systemmust be
considered [76–79]. To mimic the spatial distribution
of the magnetic field strength in magnetars, people have
introducedadensity-dependentmagnetic fieldprofile [80,81].
Many efforts have been taken to investigate the existence

of a quark core in neutron stars under a strong magnetic
field [47,82–88]. In this work, we will use the SU(3) NJL
model with vector interaction to investigate the magnetar,
and we will also consider the pressure contribution from
polarized gluons under a magnetic field.
It is known that the NJL model only considers the quark

contribution to the pressure; therefore, the pressure from the
NJL model is smaller than that from lattice calculation at
high temperature and zero chemical potential [89,90].
To consider the gluon contribution to the pressure, the
Polyakov-loop potential was first introduced in the frame-
work of NJL model in Ref. [91] and then in Ref. [92], where
the Polyakov-loop potential is temperature dependent. The
Polyakov loop-Nambu-Jona-Lasinio (PNJL) model can fit
the equation of state at high temperature very well with
lattice QCD results. The extension of the Polyakov-loop
potential to finite chemical potential is not trivial. To use the
PNJL model to describe neutron stars, the Polyakov poten-
tial was modified to have chemical potential dependent in
Refs. [93–97]. However, there is still no extension of the
Polyakov-loop potential under magnetic field. Therefore, we
cannot use the PNJL model for our purpose in this work to
investigate quark matter at high baryon density under an
external magnetic field; thus, we have to find another way to
include the gluon contribution to the pressure at finite
chemical potential and at magnetic fields. In this work,
we will give an ansatz on the potential from magnetized
gluons hinted at from hard thermal/dense loop results.
The paper is organized as follows. In Sec. II, we give a

general description of the SU(3) NJL model with vector
interaction under a magnetic field with β equilibrium, we
make an ansatz of the thermodynamical potential from
magnetized gluons, and we derive the equation of state of
the strange quark matter with β equilibrium. Our numerical
results are shown in Sec. III, and the conclusion and
discussion is given in Sec. IV.

II. THREE-FLAVOR NJL MODEL WITH VECTOR
INTERACTIONS UNDER A MAGNETIC FIELD

We study properties of three-flavor system with external
strong magnetic fields Aext

μ under the β equilibrium con-
dition, which is described by the Lagrangian density
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L ¼ Lq þ Le −
1

4
FμνFμν; ð1Þ

where Lq and Le are the Lagrangian densities for quarks
and electrons, respectively. Fμν ¼ ∂μAext

ν − ∂νAext
μ is the

strength tensor for external electromagnetic field. The
magnetic field B is a static magnetic field along the z
direction, and Aext

μ ¼ δμ2x1B. In this work, we do not
consider contributions from the anomalous magnetic
moments [98].
The electron Lagrangian density is given as

Le ¼ ē½ði∂μ − eAμ
extÞγμ�e: ð2Þ

The Lagrangian density for quarks is described by the
gauged Nf ¼ 3 NJL model with vector interaction [31,32]

Lq ¼ ψ̄f½γμði∂μ − qfA
μ
extÞ − m̂c�ψf þ L4 þ L6; ð3Þ

where L4 indicates four-fermion interaction compatible
with QCD symmetries SUð3Þcolor ⊗ SUð3ÞL ⊗ SUð3ÞR
and L6 is the six-point interaction which is required to
break the axial Uð1ÞA symmetry. ψ ¼ ðu; d; sÞT represents
a quark field with three flavors, m̂c ¼ diagðmu;md;msÞ is
the current quark mass matrix, and qf is the quark electric
charge. The four-fermion interaction includes scalar, pseu-
doscalar, vector, and axial-vector channels and takes the
form of

L4 ¼ LS þ LV þ LI;V: ð4Þ

The scalar part takes the form of

LS ¼ GS

X8
a¼0

½ðψ̄fλaψfÞ2 þ ðψ̄fiγ5λaψfÞ2�; ð5Þ

and the vector part is given as

LV ¼ −GV

X8
a¼0

½ðψ̄γμλaψÞ2 þ ðψ̄iγμγ5λaψÞ2�; ð6Þ

where GS and GV are the coupling constants in the scalar
and vector channels, respectively. λaða ¼ 1;…; 8Þ λa are
the Gell–Mann matrices and the generators of the SU(3)
flavor groups, and λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I with I the 3 × 3 unit

matrix. To describe the nonet of scalars, pseudoscalars,
vectors, and axial-vectors, a convenient representation is
obtained by changing from fλ0; λ1;…; λ8g to the set
fλ0; λ�1 ; λ3; λ�4 ; λ�6 ; λ8g with

λ�1 ¼
ffiffiffi
1

2

r
ðλ1 � iλ2Þ;

λ�4 ¼
ffiffiffi
1

2

r
ðλ4 � iλ5Þ;

λ�6 ¼
ffiffiffi
1

2

r
ðλ6 � iλ7Þ:

Hadrons in the u; d sector exhibit SUð2ÞI isospin
symmetry. Up and down quarks have isospin I ¼ 1=2
and isospin 3-components (I3) of 1=2 and −1=2, respec-
tively. All other quarks have I ¼ 0. For scalars, the
coupling constant in the scalar-isoscalar (σ) and pseudo-
scalar-isovector (π) interactions have to be equal, which is
constrained by chiral symmetry. However, the coupling
constants for the vector-isoscalar (ω) and vector-isovector
(ρ) interactions can be separately invariant and thus can be
chosen independently. The ratio of the coupling constants
of the vector-isosinglet channel ω and vector-isovector
channel ρ to nucleons is empirically given by gωQQ=gρQQ ≃
3 in the chirally broken phase, and gωQQ=gρQQ ¼ 1 in the
chiral symmetric phase [39,98,99]. To distinguish the
isoscalar and isovector for vectors, we introduce an extra
term for the vector-isovector channel with the form of

LIV ¼ −GIV ½ðψ̄γμ~τψÞ2 þ ðψ̄γ5γμ~τψÞ2�: ð7Þ

The coupling constant for vector-isoscalar Gω
V ¼ GV, and

the coupling constant for vector-isovectorGρ
V ¼ GV þ GIV.

In this work, we will investigate the role of the vector-
isovector interaction on the equation of state; therefore, in
our numerical calculations, we choose GIV as a free
parameter.
The six-fermion interaction L6, i.e., the ’t Hooft term,

takes the form of

Ldet ¼ −Kfdetf½ψ̄fð1þ γ5Þψf� þ detf½ψ̄fð1 − γ5Þψf�g;
ð8Þ

which is to break the Uð1ÞA symmetry.

A. Pressure from quark contribution

The equation of state is the most important aspect for
physicists to acquire the properties of quark matter. To get
the pressure and energy density of quark matter, we should
first derive the thermodynamical potential Ωf. In the
procedure, we can calculate the thermodynamical quan-
tities by using finite-temperature field theory. In the mean-
field approximation, the Lagrangian density for quark
part is
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LM ¼ ψ̄f½γμði∂μ − qfA
μ
extÞ − M̂ − 2GIVγ0τ3fnf�ψf

− 2GSðσ2u þ σ2d þ σ2sÞ þ 4Kσuσdσs − 4GVγ0n̂

þ 2GVðn2u þ n2d þ n2sÞ þGIVðnu − ndÞ2; ð9Þ

where

n̂ ¼
 nu 0 0

0 nd 0

0 0 ns

�

and

M̂ ¼

0
B@

Mu 0 0

0 Md 0

0 0 Ms

1
CA:

The quark mass is determined by the gap equation of

Mi ¼ mi − 4GSσi þ 2Kσjσk; ð10Þ

with ði; j; kÞ being any permutation of ðu; d; sÞ, and the
chiral condensate is given as

σf ¼ hψ̄fψfi ¼ −i
Z

d4p
ð2πÞ4 tr

1

ðp −Mf þ iϵÞ : ð11Þ

After introducing Landau quantization and several steps
of finite-temperature field theory calculations, we can get
the thermodynamical potential Ωq of quark matter under
magnetic fields, and the pressure density pq ¼ −Ωq and
takes the form of

pq ¼ −2GSðσ2u þ σ2d þ σ2sÞ þ 4Kσuσdσs

þ 2GVðn2u þ n2d þ n2sÞ þGIVðnu − ndÞ2
þ ðΩu

ln þΩd
ln þΩs

lnÞ; ð12Þ

with the logarithmic contribution

Ωf
ln ¼ −i

Z
d4p
ð2πÞ4 tr ln

�
1

T
½p − M̂f þ γ0 ~μf�

�
; ð13Þ

here,

~μf ¼ μf − 4GVnf − 2GIVτ3fðnu − ndÞ; ð14Þ

where μf is the chemical potential for each flavor of quarks
and τ3f is the isospin quantum number for quarks: τ3u ¼ 1,
τ3d ¼ −1, and τ3s ¼ 0.
Following Ref. [47], one can get the condensates and

pressure for quarks. The logarithmic contribution to the
thermodynamical potential is given by

Ωf
ln ¼ Ωf;vac

ln þ Ωf;mag
ln þΩf;med

ln : ð15Þ

The first term is the vacuum contribution

Ωf;vac
ln ¼ −

Nc

8π2

�
M4

f ln

�
Λþ ϵΛ
Mf

�
− ϵΛΛðΛ2 þ ϵ2ΛÞ

�
; ð16Þ

with ϵ2Λ ¼ Λ2 þM2
f and Λ the noncovariant cutoff.

The magnetic field contribution takes the form of

Ωf;mag
ln ¼ Nc

2π2
ðjqfjBÞ2

�
x2f
4
þ ζ0ð−1; xfÞ

−
1

2
ðx2f − xfÞ lnðxfÞ

�
; ð17Þ

where ζðz; xÞ is the Riemann–Hurwitz function and

ζ0ð−1; xfÞ ¼ dζðz; xÞ=dzjz¼−1; ð18Þ

with xf ¼ M2
f

2jqf jB. The medium contribution reads

Ωf;med
ln ¼

Xkf max

k¼0

αk
ðjqfjBNcÞ

4π2

8<
: ~μf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q

− sfðk; BÞ2 ln

2
64 ~μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q
sfðk; BÞ

3
75
9=
;; ð19Þ

where

sfðk; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2jqfjBk

q
; ð20Þ

and

kf max ¼
~μ2f −M2

2jqfjB
¼ p2

f;F

2jqfjB
ð21Þ

is the upper Landau level with αk ¼ 2 − δk0.
Then, we can also give the condensates for each flavor of

quarks:

σf ¼ σvacf þ σmag
f þ σmed

f ð22Þ

with

σvacf ¼ −
MfNc

2π2

8<
:Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q

−
M2

f

2
ln

2
64ðΛþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
Þ2

ðM2
fÞ

3
75
9=
;; ð23Þ
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σmag
f ¼ −

MfNc

2π2
ðjqfjBÞ

�
ln½ΓðxfÞ�

−
1

2
lnð2πÞ þ lnðxfÞ

2
− xf lnðxfÞ

�
; ð24Þ

σmed
f ¼

Xkf max

k¼0

αk
MfjqfjBNc

π2

×

8<
:ln

2
64 ~μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q
sfðk; BÞ

3
75
9=
;: ð25Þ

B. Pressure from leptons

For strange quark matter (SQM), we assume it is
neutrino free and composed of u, d, and s quarks and
e− in β equilibrium with electric charge neutrality. The
weak β-equilibrium condition can then be expressed as

μu þ μe ¼ μd ¼ μs; ð26Þ

where μi (i ¼ u, d, s, and e−) is the chemical potential of
the particles in SQM. Furthermore, the electric charge
neutrality condition can be written as

2

3
nu ¼

1

3
nd þ

1

3
ns þ ne; ð27Þ

where

nf ¼
Xkf;max

k¼0

αk
jqfjBNc

2π2
kF;f ð28Þ

is the number density for each flavor of quarks with

kF;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q
and

nl ¼
Xkl;max

k¼0

αk
jqljB
2π2

kF;l ð29Þ

is the number density of electrons.
We can also write the leptonic contribution to the

pressure density, which takes the form of

pl ¼
Xkl max

k¼0

αk
ðjqljBNcÞ

4π2

8<
:μl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l − slðk; BÞ2

q

− slðk; BÞ2 ln

2
64μl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l − slðk; BÞ2

q
slðk; BÞ

3
75
9=
;: ð30Þ

C. Pressure from magnetized gluon potential

It is well known that the NJL model only considers the
quark contribution to the pressure, which is smaller than
that from lattice calculation at high temperature and zero
chemical potential [89,90]. In the presence of a strong
magnetic field, not only are quarks polarized along the
direction of B, but also gluons will be polarized via the
quark loop. There are still few calculations of pressure
contributed from magnetized gluon degrees of freedom at
zero temperature and finite chemical potential [60,100].
To consider the gluon contribution to the pressure, on the

one hand, the Polyakov-loop potential was introduced in
the framework of NJL model in Refs. [91,92], in which the
Polyakov-loop potential is temperature dependent. The
PNJL model can fit the equation of state at high temper-
ature very well with lattice QCD results. However, to
extend the Polyakov-loop potential to finite chemical
potential and strong magnetic field is nontrivial, although
a modified version of the Polyakov potential at finite
chemical potential has been proposed in Refs. [93–97].
For our purpose in this work, to describe the magnetar, we
cannot use the PNJL model, but we can estimate the gluon
contribution to the pressure at finite chemical potential and
with magnetic fields from hard-thermal/dense-loop results.
At high temperature and zero chemical potential with zero
magnetic field, the gluon contribution to the pressure in the
PNJL model should merge with hard-thermal-loop result.
Much effort has been given to the perturbation theory

(PT) of hard-thermal-loop (HTL) or hard-dense-loop cal-
culation on the equation of state of strong-interaction
matter at high temperature and density [101–113]. At high
temperature, recent progress up to three-loop HTL calcu-
lations [112] shows that the pressure density, energy
density, and other thermodynamical properties are in good
agreement with available lattice data for temperatures
above approximately 300 MeV. The EoS of cold quark
matter is accessible through perturbative QCD at high
densities and has been determined to order α2s in the strong
coupling constant [110].
The pressure density for the ideal gas of quarks and

gluons has the form of

pSB ¼ pSB
q þ pSB

g ; ð31Þ

pSB
q ¼ NcNf

�
7π2T4

180
þ μ2T2

6
þ μ4

12π2

�
; ð32Þ

pSB
g ¼ ðN2

c − 1Þ π
2T4

90
: ð33Þ

It is noticed that the pressure density for the ideal gas of
gluons is only temperature dependent and with no chemical
potential dependent. Switching on coupling between
quarks and gluons, the gluons will get screening mass
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m2
g ¼

1

6

��
Nc þ

1

2
Nf

�
T2 þ 3

2π2
X
f

μ2f

�
g2eff ; ð34Þ

and the perturbation theory at one loop gives the pressure
density of gluons as

pPT
g ¼ pSB

g − Ng
g2eff
32

�
5

9
T4 þ 2

π2
μ2T2 þ 1

π4
μ4
�
; ð35Þ

and the gluon pressure becomes chemical potential depen-
dent via the quark loop, although the coefficient in front of
μ4 is only 1=54 of that of T4.
Under the strong magnetic field, a massive resonance

∼g
ffiffiffiffiffiffi
eB

p
is excited in the longitudinal (1þ 1) component of

the gluon propagator under strong magnetic fields [114].
The corresponding Debye mass of the longitudinal gluon
fields A∥ has the screening mass

m2
gðeBÞ ¼

X
f

jqfj
g2eff
4π2

jeBj; ð36Þ

at zero temperature and density. One can guess that at
nonzero temperature and density the longitudinal gluon
fields take the screening mass of

m2
gðT; μ; eBÞ ¼ g2ðaT2 þ bμ2 þ ceBÞ; ð37Þ

where a, b, and c are constants. Taking into account the
transverse gluons, the pressure density from magnetized
gluons can be estimated as

pgðT;μ;eBÞ¼ a0μ2eBþb0μ4þc0T2eBþd0μ2T2þe0T4;

ð38Þ

with a0; b0; c0; d0, and e0 being free parameters. At zero
temperature,

pgðT ¼ 0; μ; eBÞ ¼ a0μ2eBþ b0μ4: ð39Þ

Furthermore, for the screening mass of gluons, considering
the coefficients in front of eB is almost the same magnitude
as that of μ2, and we neglect the anisotropy pressure density
caused by the magnetic field with magnitude eB < 1019 G;
for simplicity, in this work, we use the ansatz of the
pressure density of magnetized gluons

pgðT ¼ 0; μ; eBÞ ¼ a0ðμ2eBþ μ4Þ ð40Þ

for our numerical calculations. If we directly extend the
perturbative gluon pressure, Eq. (35), to the nonperturba-
tive region, the gluon pressure density at zero temperature
and finite density should be negative. However, in the
moderate baryon density region, the nonperturbative fea-
ture of gluons should still play an important role as shown

in Refs. [115,116]. The system in the moderate baryon
density can be regarded as compositions of quasiquarks
described by NJL model and quasigluons. To compensate
the quasiquark contribution to the pressure in the NJL
model, the quasigluon contribution to the pressure should
be also positive. In our numerical calculation, we will take
a0 > 0 for the physical case, but we will also take a0 < 0
for reference.

D. Total pressure of SQM with β equilibrium
under a magnetic field

Under strong magnetic fields, the Oð3Þ rotational sym-
metry in SQM is broken, and the pressure for SQM might
become anisotropic; i.e., the longitudinal pressure Pjj,
which is parallel to the magnetic field orientation, is
different from the transverse pressure P⊥, which is
perpendicular to the orientation of magnetic field. The
analytic forms for longitudinal and transverse pressure
densities of the system are given by [76]

pjj ¼ p −
1

2
B2; ð41Þ

p⊥ ¼ pþ 1

2
B2 −MB; ð42Þ

where we have defined

p ¼ pq þ pl þ pg − p0; ð43Þ

with p0 ¼ −Ω0 ¼ −ΩðT ¼ 0; μ ¼ 0; B ¼ 0Þ the vacuum
pressure density, which ensures p ¼ 0 in the vacuum.M is
the system magnetization and takes the form of

M ¼ −∂Ω=∂B ¼
X

i¼u;d;s;l;g

Mi: ð44Þ

The energy density for SQM at zero temperature is given by

ϵ ¼ −pþ
X

i¼u;d;s;l

μini þ
1

2
B2: ð45Þ

One can find that the longitudinal pressure density pjj
satisfies the Hugenholtz–Van Hove theorem [88,117],
while the transverse pressure density p⊥ does not because
of the extra contributions from the magnetic field. We can
see that the magnetic energy density term B2=2 contributes
oppositely to the longitudinal and transverse pressures
under magnetic fields, which will lead to a tremendous
pressure anisotropy when the magnetic field is very strong.

III. NUMERICAL RESULTS AND CONCLUSIONS

For our numerical calculations, following Ref. [47],
the set of parameters we used is Λ ¼ 631.4 MeV,
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mu ¼ md ¼ 5.5 MeV, ms ¼ 135.7 MeV, GΛ2 ¼ 1.835,
and KΛ5 ¼ 9.29.

A. Effect of vector-isovector interaction and vector-
isoscalar interaction under a magnetic field

First, we analyze the effect of vector-isovector and
vector-isoscalar interactions on the equation of state of
strange quark matter, Eq. (12), under zero magnetic field
B ¼ 0. For zero magnetic field, there is no anisotropy in the
system, and the longitudinal pressure density is equal to the
transverse pressure density, i.e., pjj ¼ p⊥ ¼ pðB ¼ 0Þ.
In Fig. 1, we show the pressure density of SQM as a

function of energy density for three cases: 1) GV ¼
GIV ¼ 0, 2) GV ¼ 0.8GS;GIV ¼ 0, and 3) GV ¼ GIV ¼
0.8GS. Comparing cases 1 and 2, one can find that the
repulsive vector-isoscalar interaction GV gives a stiffer
equation of state. However, comparing cases 2 and 3, it is
observed that the equation of states for these two cases are
almost the same, which indicates that the vector-isovector
interaction does not affect the equation of state too much in
SQM. One can find from Eq. (12) that the contribution from
the vector-isovector interaction is mainly dependent on the
u-d quark isospin asymmetry (nu − nd) and the coupling
constant GIV . Since the isospin asymmetry in SQM is
small, the vector-isovector interaction is very tiny with the
parameter set GV ¼ GIV ¼ 0.8GS.
It can be understood as the repulsive vector-isoscalar

interaction shifts the chemical potential to a larger value,
which makes the equation of state stiffer. However, the
interaction in the vector-isovector channel shifts the isospin
chemical potential, and this effect is negligible for the
equation of state under β equilibrium. Therefore, in the
following numerical calculations, we simply take GIV ¼ 0.
Figure 2 shows the chemical potentials for the u, d, and s

quarks as functions of the magnetic field B with GV ¼ 0

and GV ¼ 0.8GS at fixed baryon number density nb ¼
10n0 in SQM. The chemical potential for each flavor with
GV ¼ 0.8GS is enhanced magnificently comparing the
case of GV ¼ 0, which implies that a stiffer EoS can be
generated once considering a large vector-isoscalar cou-
pling constant. One can also observe that, for both cases
with GV ¼ 0 and GV ¼ 0.8GS, the chemical potential for
quarks keeps a constant below the magnitude of 1019 G and
decreases with the constant magnetic field above that.
Figure 3 shows the constituent mass of the u quark and s

quark as functions of baryon density in charge neutral
SQM for B ¼ 0 and B ¼ 2 × 1019 G with GV ¼ 0 and
GV ¼ 0.8GS, respectively. In the case of zero magnetic
field B ¼ 0 and GV ¼ 0, the constituent quark mass for the
u quark decreases from the vacuum mass almost linearly to
50 MeV in the region of baryon number density below
nb ≃ 0.35 fm−3 ≃ 2n0 and then slowly decreases with
baryon number density. The constituent quark mass for
the s quark also drops almost linearly from its vacuum mass
to around 475 MeV in the region of baryon number density

FIG. 2 (color online). Chemical potentials for u; d, and s quarks
as functions of a magnetic field with GV ¼ 0 and GV ¼ 0.8GS at
baryon density nb ¼ 10n0 in SQM.

FIG. 1 (color online). The pressure density of SQM as a
function of energy density under zero magnetic field with three
cases: GV ¼ GIV ¼ 0; GV ¼ 0.8GS, GIV ¼ 0; and GV ¼ GIV ¼
0.8GS.

FIG. 3 (color online). Constituent mass for the u quark (left
figure) and s quark (right figure) as functions of baryon number
density in charge neutral SQM for B ¼ 0 and 2 × 1019 G with
GV ¼ 0 and 0.8Gs, respectively.
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below nb ≃ 0.35 fm−3 ≃ 2n0 and almost keeps as a con-
stant in the region of 0.35 < nb < 0.7 fm−3 (2 < nb=
n0 < 4) and then decreases quickly with baryon number
density. This behavior is similar to Fig. 3.9 in Ref. [34].
When the magnetic field is turned on, under the magnitude
of B ¼ 2 × 1019 G, only a tiny magnetic catalysis effect
can be observed for the u quark and s quark in the low
baryon density region, and at a high baryon density region,
the magnetic field with magnitude of B ¼ 2 × 1019 G
almost has no effect on the constituent quark mass at fixed
baryon density. However, it is noticed that the repulsive
vector-isoscalar interaction can smooth away the saturation
region and make the strange quark mass decrease linearly
with the baryon number density.
As shown in Fig. 3, the magnetic field in the magnitude

of B ¼ 2 × 1019 G does not essentially affect the constitu-
ent quark mass. In Fig. 4, we investigate the vacuum
constituent mass of u; d, and s quarks as functions of
magnetic field in SQM, and one can find that the masses of
three different flavors of quarks do not change so much
when the magnetic field is smaller than 1019 G, while the u
and d quark masses increase drastically when the magnetic
field is bigger than 3 × 1019 G, which indicates the
magnetic catalysis phenomenon. It should also be noticed
that the masses of the d quark and s quark increase more
slowly with the magnetic field compared to the u quark
mass case.

B. Equation of state, sound velocity, and magnetar mass

As it is accepted, the magnetic field strength in the inner
core region of compact stars could be much larger than the
magnetic field at the surface; then, a density-dependent
magnetic field distribution inside the compact star is
usually used to describe this behavior. We use the popular
parametrization for the density-dependent magnetic field
profile in quark stars (QSs) as in Refs. [81,118–121],

B ¼ Bsurf þ B0½1 − exp ð−β0ðnb=n0ÞγÞ�; ð46Þ

where Bsurf is the magnetic field strength at the surface of
compact stars and its value is fixed at Bsurf ¼ 1015 G in this
work; n0 ¼ 0.16 fm−3 is the normal nuclear matter density;
B0 is the constant magnetic field, which is a parameter with
dimension of B; and β0 and γ are two dimensionless
parameters that control how exactly the magnetic field
strength decays from the center to the surface. To reproduce
the magnetic field that is weak below the nuclear saturation
point while getting stronger at higher density, we take
B0 ¼ 4 × 1018 G, β ¼ 0.003, and γ ¼ 3 as the set of
parameters in the following calculations, and this magnetic
field distribution has already proved to be a gentle magnetic
field distribution for SQM inside QSs, which can lead to a
small pressure anisotropy and small maximum mass split-
ting for QSs in a density-dependent quark model [88].
The anisotropic pressure densities in Eqs. (41) and (42)

are calculated in cases B0 ¼ 0 and B0 ¼ 4 × 1018 G with
a0¼−0.01;0;0.01 and GV ¼ 0, GV ¼ 0.4GS, GV ¼ 0.8GS,
and GV ¼ 1.1GS, respectively. We calculate the transverse
pressure density as a function of energy density for SQM
in Fig. 5, while we calculate the longitudinal pressure
case in Fig. 6.
One can see from Fig. 5 that 1) with fixed GV and fixed

a0 the transverse pressure density for B0 ¼ 4 × 1018 G is
higher than that for B0 ¼ 0; 2) with fixed GV the positive
magnetized gluon pressure density (a0 ¼ 0.01) and the
case B0 ¼ 4 × 1018 G always give the hardest equation of
state, while the negative magnetized gluon pressure
(a0 ¼ −0.01) and the case B0 ¼ 0 always give the softest
equation of state; 3) for the case of negative magnetized
gluon pressure (a0 ¼ −0.01) it is found that the equations
of state for both B0 ¼ 0 and B0 ¼ 4 × 1018 G are not
sensitive to the value of GV [however, for the case of
positive magnetized gluon pressure (a0 ¼ 0.01), the EoS
for both B0 ¼ 0 and B0 ¼ 4 × 1018 G are very sensitive to
the value of GV]; and 4) when GV ¼ 0 the magnetic field
contribution to the equation of state is important, while

FIG. 4 (color online). Vacuum constituent masses for u, d, and s
quarks as functions of the magnetic field in SQM.

FIG. 5 (color online). Transverse pressure density as a function
of energy density for SQM in cases B0 ¼ 0 and B0 ¼ 4 × 1018 G
with a0 ¼ 0;0.01;−0.01 and GV ¼ 0, GV ¼ 0.4GS, GV ¼ 0.8GS,
and GV ¼ 1.1GS, respectively.
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when GV increases, the contribution from magnetized
gluon pressure becomes more and more important to the
equation of state.
Shown in Fig. 6 is the longitudinal pressure as a function

of energy density of SQM in cases B0 ¼ 0 and B0 ¼
4 × 1018 G with a0 ¼ 0; 0.01;−0.01 and GV ¼ 0, GV ¼
0.4GS, GV ¼ 0.8GS, and GV ¼ 1.1GS, respectively. From
this figure, one can find that 1) for GV ¼ 0 and fixed a0 the
longitudinal pressure density for B0 ¼ 4 × 1018 G is a little
smaller than that at B0 ¼ 0, which is opposite of the case of
transverse pressure; 2) with fixed GV the positive magnet-
ized gluon pressure (a0 ¼ 0.01) and the case B0 ¼ 0
always give the hardest equation of state, while the negative
magnetized gluon pressure (a0 ¼ −0.01) and the case
B0 ¼ 4 × 1018 G always give the softest equation of state;
3) for the case of negative magnetized gluon pressure
(a0 ¼ −0.01) it is found that the equations of state for both
B0 ¼ 0 and B0 ¼ 4 × 1018 G are not sensitive to the value
of GV . However, for the case of positive magnetized gluon
pressure (a0 ¼ 0.01), the equations of state for both B0 ¼ 0
and B0 ¼ 4 × 1018 G are very sensitive to the value of GV .
Compared to Fig 5, we can find that the pressure anisotropy
for longitudinal and transverse pressure is small when GV
is as big as GV ¼ 0.8GS, GV ¼ 1.1GS for a0 ¼ 0.01, while
the pressure anisotropy gets larger as the decrement of GV
for a0 ¼ −0.01. Compared to the result from Fig. 5, we find
the magnetized gluon pressure contribution is more impor-
tant to stiffen the EoS for SQM than the contribution from
magnetic field, and by using this contribution from the
magnetized gluon, one can describe a heavy QS (about
2M⊙) with small pressure anisotropy (like GV ¼ 0.8GS,
GV ¼ 1.1GS for the a0 ¼ 0.01 cases) under a reasonable
magnetic field distribution inside QSs.
It was pointed out in Ref. [122] that to construct a hybrid

star with mass heavier than 2M⊙ a large sound velocity
square for quark matter, say larger than 1=3, is preferred. It
is known that the sound velocity square for ideal gas or for
strongly coupled conformal theory can be 1=3. However,

for strongly interacting liquid, the sound velocity square is
normally smaller than 1=3. Therefore, it is interesting to
investigate the sound velocity in our current model, and the
results of sound velocity

c2s ¼
dp
dϵ

ð47Þ

directly derived from equations of state in Figs. 5 and 6 are
shown in Figs. 7 and 8. Because the main purpose of this
work is to explore the properties of SQM under a strong
magnetic field by considering the magnetized gluon
contribution, we choose B0 ¼ 4 × 1018 G with a0 ¼ 0;
0.01;−0.01 and B0 ¼ 0 with a ¼ 0 by considering the
vector-isoscalar interaction as GV ¼ 0, GV ¼ 0.8GS and
GV ¼ 1.1GS in the following parts.

FIG. 6 (color online). Longitudinal pressure density as a
function of energy density SQM in cases B0 ¼ 0 and B0 ¼
4 × 1018 G with a0 ¼ 0; 0.01;−0.01 and GV ¼ 0, GV ¼ 0.4GS,
GV ¼ 0.8GS, and GV ¼ 1.1GS, respectively. FIG. 7 (color online). The sound velocity square for transverse

pressure as a function of energy density for SQM in cases B0 ¼ 0
and B0 ¼ 4 × 1018 G with a0 ¼ 0; 0.01;−0.01 and GV ¼ 0,
GV ¼ 0.8GS and GV ¼ 1.1GS, respectively.

FIG. 8 (color online). The sound velocity square for longi-
tudinal pressure as a function of energy density for SQM in cases
B0 ¼ 0 and B0 ¼ 4 × 1018 G with a0 ¼ 0; 0.01;−0.01 and
GV ¼ 0, GV ¼ 0.8GS and GV ¼ 1.1GS, respectively.

QUARK MAGNETAR IN THE THREE-FLAVOR NAMBU–… PHYSICAL REVIEW D 91, 023003 (2015)

023003-9



The sound velocity square of dense quark matter for
transverse pressure density in Fig. 7 in the NJL model
without vector interaction (GV ¼ 0) and at B0 ¼ 0 is
always less than 1=3, which is in agreement with common
sense. It is also understood that when the system is more
strongly coupled, the sound velocity square is getting
smaller and reaches the smallest value at the phase
transition point, where the system is regarded as most
strongly coupled [123].
However, it is observed that under magnetic field with

magnitude of B0 ¼ 4 × 1018 G, even at GV ¼ 0, the sound
velocity square for transverse pressure density case can
increase to 0.6 at most. Also in the case of B0 ¼ 0, if one
switches on a repulsive interaction in the vector-isoscalar
channel, the sound velocity square for transverse pressure
density case also increases and can become bigger than
1=3. The stronger the GV is, the larger sound velocity
square is.
Another factor to increase the sound velocity is from the

magnetized gluons. With a positive contribution from
magnetized gluon pressure, and also taking into account
the repulsive interaction in the vector-isoscalar channel, the
sound velocity for transverse pressure case can be even
larger than 1 (for the GV ¼ 1.1GS, B0 ¼ 4 × 1018 G, and
a0 ¼ 0.01 case), i.e., larger than the speed of light, which is
of course not physical. So we can use the condition c2s < 1
to constrain the EoS.
For the sound velocity square corresponding to longi-

tudinal pressure from Fig. 8, we can find that the sound
velocity square under B0 ¼ 4 × 1018 G with different GV
and a0 are all smaller than those C2

s corresponding to the
transverse pressure case, which is self-consisted with
Figs. 5 and 6. One can also find that all the sound velocity
squares corresponding to longitudinal pressure are smaller
than 1.
Since we have calculated that the pressure anisotropy for

SQM with the contribution from magnetized gluon pres-
sure under the magnetic field distribution inside the QSs
within B0 ¼ 4 × 1018 G, β0 ¼ 0.003 and γ ¼ 3 is not big,
we can approximately use the EoS from the longitudinal or
transverse pressure case to construct the magnetar under a
density-dependent magnetic field. We should first introduce
the Tolman-Opperheimer-Volkoff (TOV) equations [124],
which can give the quark star with isotropic pressure:

dM
dr

¼ 4πr2ϵðrÞ; ð48Þ

dp
dr

¼ −
GϵðrÞMðrÞ

r2

�
1þ pðrÞ

ϵðrÞ
�

×
�
1þ 4πpðrÞr3

MðrÞ
��

1 −
2GMðrÞ

r

�
−1
: ð49Þ

We give the maximum mass of a quark star in Fig. 9
by using transverse pressure and longitudinal pressure,

respectively, and we use B0 ¼ 4 × 1018 G with a0 ¼
0; 0.01;−0.01 and GV ¼ 0, GV ¼ 0.4GS, GV ¼ 0.8GS,
and GV ¼ 1.1GS for the transverse pressure case while
B0 ¼ 4 × 1018 G, a0 ¼ 0.01 with GV ¼ 0.8GS and GV ¼
1.1GS for the longitudinal pressure case. We can read the
following information from Fig. 9:
(1) At B0 ¼ 0 and GV ¼ 0, the three-flavor NJL model

gives the maximum mass of quark star at about
1.4M⊙.

(2) At B0 ¼ 0 but increasing the repulsive interaction
GV in the vector-isoscalar channel, the maximum
mass of a quark star can reach 1.75M⊙ for
GV ¼ 1.1GS.

(3) In the case of GV ¼ 0, when one puts quark matter
under the magnetic field, the maximum mass of a
quark magnetar for the transverse pressure case can
be as heavy as 1.65M⊙, and if one takes into account
a positive pressure density contributed from mag-
netized quasigluons, the mass of a quark magnetar
can reach 1.8M⊙.

(4) For the magnitude of B0 ¼ 4 × 1018 G, the sound
velocity square for transverse pressure case reaches
almost 0.9 for GV ¼ 0.8GS and a0 ¼ 0.01, and the
magnetar mass is 2.17M⊙, while the maximummass
of quark star is 2.01M⊙ for longitudinal pressure
within GV ¼ 0.8GS and a0 ¼ 0.01 under B0 ¼
4 × 1018 G, which is consistent with the recently
discovered large mass pulsar J0348+0432 ð2.01�
0.04ÞM⊙.

To investigate the difference for the maximum mass of
QSs by using longitudinal pressure and transverse pressure,
we define a mass difference parameter,

δm ¼ M⊥ −Mjj
ðM⊥ þMjjÞ=2

; ð50Þ

FIG. 9 (color online). Maximum mass-radius relation for
the quark star for transverse and longitudinal pressure cases
within B0 ¼ 0 and B0 ¼ 4 × 1018 G with a0 ¼ 0; 0.01;−0.01
and GV ¼ 0, GV ¼ 0.4GS, GV ¼ 0.8GS, and GV ¼ 1.1GS,
respectively.
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whereM⊥ (Mjj) represents the maximum mass of QSs with
transverse (longitudinal) orientation pressure, respectively.
We calculate the mass difference for the transverse and
longitudinal pressure within GV ¼ 0.8GS and a0 ¼ 0.01
under B0 ¼ 4 × 1018 G is δm ¼ 7.65%, which implies that
the pressure anisotropy in this case is very small due to the
tiny mass asymmetry, and this is the reason why we can use
the isotropic TOV equation to calculate the properties of
QSs approximately. We can also find the similar results
from the GV ¼ 1.1GS, a0 ¼ 0.01, and B0 ¼ 4 × 1018 G
case that the maximum mass of the QS for transverse
pressure case is 2.30M⊙ while 2.20M⊙ for the longitudinal
pressure case, and the mass difference for this case is
δm ¼ 4.44%, which implies a smaller pressure anisotropy
than the GV ¼ 0.8GS case. Therefore, our results indicate
that we can get a stiffer EoS by considering the contribu-
tions from a density-dependent magnetic field, the repul-
sive interaction in the vector-isoscalar channel, and
magnetized gluon pressure. Since the pressure anisotropy
from a density-dependent magnetic field is not big, we can
calculate the properties of QSs under a magnetic field by
using isotropic TOV equation approximately, and we find
the mass difference of magnetars by using that transverse
and longitudinal pressure is also very small.
In Fig. 10, we show the parameter region for a0 and GV

to produce two-solar-mass QSs under B0 ¼ 4 × 1018 G and
by using longitudinal pressure and transverse pressure,
respectively. The parameter sets of a0 and GV on these two
lines can describe two-solar-mass QSs. One can see that in
order to produce two-solar-mass QSs, if the repulsive
vector interaction is stronger, the needed contribution
from magnetized gluons is smaller, or vice versa. It is also
observed that larger a0 and GV parameters are needed to
produce two-solar-mass QSs if one uses the longitudinal
pressure density. However, when the magnitude of the
repulsive vector interaction increases, it is noticed that the

difference between using longitudinal pressure and trans-
verse pressure to produce two-solar-mass QSs becomes
smaller because the pressure anisotropy decreases when a
large contribution from the repulsive interaction in the
vector-isoscalar channel is considered, which can be read
from Figs. 5 and 6.

IV. CONCLUSION AND DISCUSSION

In this work, we construct quark magnetars in the
framework of the SU(3) NJL model with vector interaction
under a strong magnetic field.
We investigate the effect of vector-isoscalar and vector-

isovector interactions on the equation of state, and it is
found that the equation of state is not sensitive to the vector-
isovector interaction; however, a repulsive interaction in the
vector-isoscalar channel gives a stiffer equation of state for
cold dense quark matter. The result is reasonable because
the interaction in the vector-isovector channel shifts the
isospin chemical potential, and this effect is negligible on
the equation of state under β equilibrium, while the
repulsive vector-isoscalar interaction shifts the chemical
potential to a larger value, which makes the equation of
state stiffer.
In the presence of a magnetic field, the pressure of the

system is shown to be anisotropic along and perpendicular
to the magnetic field direction with the former being
generally larger than the latter. Gluons will be magnetized
via quark loops, and we also estimate the pressure
contributed from magnetized gluons. Normally, the NJL
model only considers the contribution from quark degrees
of freedom on the pressure, which is always underesti-
mated. We estimate the pressure density contributed from
magnetized gluons, which should be positive in order to
compensate the pressure density of quasiquarks described
by the NJL model. It is found that magnetized quarks and
gluons also give a stiffer equation of state.
The sound velocity square is one of the fundamental

properties of hot/dense matter, which measures the hard-
ness or softness of the equation of state. It is known that hot
and dense quark matter in the NJL model without vector
interaction at zero magnetic field is always less than 1=3.
It is also understood that when the system is more strongly
coupled the sound velocity square gets smaller and reaches
the smallest value at the phase transition point, where the
system is regarded as most strongly coupled. However, it is
found that the sound velocity square can be larger than 1=3
when a strong repulsive interaction is introduced, and the
sound velocity square can change a lot when a strong
magnetic field is added. Furthermore, the sound velocity
square corresponding to the transverse pressure density
case can even reach 1 when the magnetized gluon con-
tribution is taken into account.
Since the pressure anisotropy from the density dependent

magnetic field is not large, we approximately calculate the
properties of QSs by using the isotropic TOV equation. We

FIG. 10 (color online). The parameter region for a0 and GV to
produce two-solar-mass QSs under B0 ¼ 4 × 1018 G and by
using longitudinal pressure and transverse pressure, respectively.
The parameter sets of a0 and GV on these two lines can produce
two-solar-mass QSs.
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also find the mass difference of magnetars by using the
transverse and longitudinal pressure is very small. We also
give the parameter region for a0 andGV , which can describe
the two-solar-mass quark star by using longitudinal pressure
and transverse pressure, respectively.

ACKNOWLEDGMENTS

We are thankful for valuable discussions with M. Alford
and A. Schmitt on the sound velocity of quark matter, with
J. Schaffner-Bielich and A. Sedrakian on magnetars, and
with I. Shovkovy and A. Vuorinen on pressure from the
magnetized gluon potential. M. H. is thankful for the
hospitality of Frankfurt University, Tours University, and
TU Viena, where the final stage of this work was performed.
This work is supported by the National Basic Research

Program of China (973 Program) under Contracts
No. 2015CB856904 and No. 2013CB834405 and the
NSFC under Grants No. 11275213, No. 11275125,
No. 11135011, and No. 11261130311 (CRC 110 by DFG
and NSFC). This work was also supported by CAS key
Project No. KJCX2-EW-N01; Youth Innovation Promotion
Association of CAS; the China-France collaboration project
“Cai Yuanpei 2013”; the Shanghai Rising-Star Program
under Grant No. 11QH1401100; the “Shu Guang” project
supported by Shanghai Municipal Education Commission;
and Shanghai Education Development Foundation, the
Program for Professor of Special Appointment (Eastern
Scholar) at Shanghai Institutions of Higher Learning, and
the Science and Technology Commission of Shanghai
Municipality (Grant No. 11DZ2260700).

[1] M. Baldo, G. F. Burgio, and H. J. Schulze, Phys. Rev. C 61,
055801 (2000).

[2] E. Massot, J. Margueron, and G. Chanfray, Europhys. Lett.
97, 39002 (2012).

[3] D. L. Whittenbury, J. D. Carroll, A. W. Thomas, K.
Tsushima, and J. R. Stone, arXiv:1204.2614.

[4] G. E. Brown, V. Thorsson, K. Kubodera, and M. Rho,
Phys. Lett. B 291, 355 (1992).

[5] N. K. Glendenning and J. Schaffner-Bielich, Phys. Rev.
Lett. 81, 4564 (1998).

[6] A. Ramos, J. Schaffner-Bielich, and J. Wambach, Lect.
Notes Phys. 578, 175 (2001).

[7] E. Witten, Phys. Rev. D 30, 272 (1984).
[8] E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).
[9] M. Alford and S. Reddy, Phys. Rev. D 67, 074024 (2003).

[10] I. Shovkovy, M. Hanauske, and M. Huang, Phys. Rev. D
67, 103004 (2003).

[11] I. Bombaci, I. Parenti, and I. Vidaa, Astrophys. J. 614, 314
(2004).

[12] J. Staff, R. Ouyed, and M. Bagchi, Astrophys. J. 667, 340
(2007).

[13] M. Herzog and F. K. Röpke, Phys. Rev. D, 84, 083002
(2011).

[14] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorne, and V. F.
Weisskopf, Phys. Rev. D 9, 3471 (1974).

[15] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353
(1975).

[16] G. Baym and S. A. Chin, Phys. Lett. 62B, 241 (1976).
[17] B. Freedman and L. McLerran, Phys. Rev. D 17, 1109

(1978).
[18] A. Drago, U. Tambini, and M. Hjorth-Jensen, Phys. Lett. B

380, 13 (1996).
[19] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[20] M. Prakash, J. R. Cooke, and J. M. Lattimer, Phys. Rev. D

52, 661 (1995).
[21] H. Müller and B. D. Serot, Nucl. Phys. A606, 508 (1996).
[22] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).

[23] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis,
Phys. Rep. 411, 325 (2005).

[24] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and
J. Hessels, Nature (London) 467, 1081 (2010).

[25] J. Antoniadis et al., Science 340, 1233232 (2013).
[26] J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109

(2007).
[27] J. M. Lattimer and M. Prakash, arXiv:1012.3208.
[28] T. Hell and W. Weise, Phys. Rev. C 90, 045801 (2014).
[29] D. P. Menezes, M. B. Pinto, L. B. Castro, P. Costa, and

C. C. Providncia, arXiv:1403.2502.
[30] V. Bernard, A. H. Blin, B. Hiller, Y. P. Ivanov, A. A.

Osipov, and U. G. Meissner, Ann. Phys. (N.Y.) 249, 499
(1996).

[31] V. Bernard, R. L. Jaffe, and U. G. Meissner, Phys. Lett. B
198, 92 (1987).

[32] V. Bernard, R. L. Jaffe, and U. G. Meissner, Nucl. Phys.
B308, 753 (1988).

[33] M. F. M. Lutz, S. Klimt, and W. Weise, Nucl. Phys. A542,
521 (1992).

[34] M. Buballa, Phys. Rep. 407, 205 (2005).
[35] M. Hanauske, L. M. Satarov, I. N. Mishustin, H. Stoecker,

and W. Greiner, Phys. Rev. D 64, 043005 (2001).
[36] R. Huguet, J. C. Caillon, and J. Labarsouque, Nucl. Phys.

A781, 448 (2007).
[37] R. Huguet, J. C. Caillon, and J. Labarsouque, Phys. Rev. C

75, 048201 (2007).
[38] K. Fukushima, Phys. Rev. D 77, 114028 (2008); 78,

039902(E) (2008).
[39] H. Abuki, R. Gatto, and M. Ruggieri, Phys. Rev. D 80,

074019 (2009).
[40] Z. Zhang and T. Kunihiro, Phys. Rev. D 80, 014015

(2009).
[41] N. M. Bratovic, T. Hatsuda, and W. Weise, Phys. Lett. B

719, 131 (2013).
[42] G. Y. Shao, M. Colonna, M. Di Toro, Y. X. Liu, and B. Liu,

Phys. Rev. D 87, 096012 (2013).

PENG-CHENG CHU et al. PHYSICAL REVIEW D 91, 023003 (2015)

023003-12

http://dx.doi.org/10.1103/PhysRevC.61.055801
http://dx.doi.org/10.1103/PhysRevC.61.055801
http://dx.doi.org/10.1209/0295-5075/97/39002
http://dx.doi.org/10.1209/0295-5075/97/39002
http://arXiv.org/abs/1204.2614
http://dx.doi.org/10.1016/0370-2693(92)91386-N
http://dx.doi.org/10.1103/PhysRevLett.81.4564
http://dx.doi.org/10.1103/PhysRevLett.81.4564
http://dx.doi.org/10.1007/3-540-44578-1
http://dx.doi.org/10.1007/3-540-44578-1
http://dx.doi.org/10.1103/PhysRevD.30.272
http://dx.doi.org/10.1103/PhysRevD.30.2379
http://dx.doi.org/10.1103/PhysRevD.67.074024
http://dx.doi.org/10.1103/PhysRevD.67.103004
http://dx.doi.org/10.1103/PhysRevD.67.103004
http://dx.doi.org/10.1086/423658
http://dx.doi.org/10.1086/423658
http://dx.doi.org/10.1086/519545
http://dx.doi.org/10.1086/519545
http://dx.doi.org/10.1103/PhysRevD.84.083002
http://dx.doi.org/10.1103/PhysRevD.84.083002
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevLett.34.1353
http://dx.doi.org/10.1103/PhysRevLett.34.1353
http://dx.doi.org/10.1016/0370-2693(76)90517-7
http://dx.doi.org/10.1103/PhysRevD.17.1109
http://dx.doi.org/10.1103/PhysRevD.17.1109
http://dx.doi.org/10.1016/0370-2693(96)00479-0
http://dx.doi.org/10.1016/0370-2693(96)00479-0
http://dx.doi.org/10.1103/PhysRevD.46.1274
http://dx.doi.org/10.1103/PhysRevD.52.661
http://dx.doi.org/10.1103/PhysRevD.52.661
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1126/science.1090720
http://dx.doi.org/10.1016/j.physrep.2005.02.004
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://arXiv.org/abs/1012.3208
http://dx.doi.org/10.1103/PhysRevC.90.045801
http://arXiv.org/abs/1403.2502
http://dx.doi.org/10.1006/aphy.1996.0081
http://dx.doi.org/10.1006/aphy.1996.0081
http://dx.doi.org/10.1016/0370-2693(87)90166-3
http://dx.doi.org/10.1016/0370-2693(87)90166-3
http://dx.doi.org/10.1016/0550-3213(88)90127-7
http://dx.doi.org/10.1016/0550-3213(88)90127-7
http://dx.doi.org/10.1016/0375-9474(92)90256-J
http://dx.doi.org/10.1016/0375-9474(92)90256-J
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1103/PhysRevD.64.043005
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.046
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.046
http://dx.doi.org/10.1103/PhysRevC.75.048201
http://dx.doi.org/10.1103/PhysRevC.75.048201
http://dx.doi.org/10.1103/PhysRevD.77.114028
http://dx.doi.org/10.1103/PhysRevD.78.039902
http://dx.doi.org/10.1103/PhysRevD.78.039902
http://dx.doi.org/10.1103/PhysRevD.80.074019
http://dx.doi.org/10.1103/PhysRevD.80.074019
http://dx.doi.org/10.1103/PhysRevD.80.014015
http://dx.doi.org/10.1103/PhysRevD.80.014015
http://dx.doi.org/10.1016/j.physletb.2013.01.003
http://dx.doi.org/10.1016/j.physletb.2013.01.003
http://dx.doi.org/10.1103/PhysRevD.87.096012


[43] T. Klahn, R. Lastowiecki, and D. B. Blaschke, Phys. Rev.
D 88, 085001 (2013).

[44] J. Xu, T. Song, C. M. Ko, and F. Li, Phys. Rev. Lett. 112,
012301 (2014).

[45] J. Steinheimer and S. Schramm, Phys. Lett. B 696, 257
(2011).

[46] J. Steinheimer and S. Schramm, Phys. Lett. B 736, 241
(2014).

[47] D. P. Menezes, M. Benghi Pinto, S. S. Avancini, and
C. Providencia, Phys. Rev. C 80, 065805 (2009).

[48] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009).

[49] W. T. Deng and X. G. Huang, Phys. Rev. C 85, 044907
(2012).

[50] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81,
054908 (2010).

[51] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett.
110, 012301 (2013).

[52] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A797, 67
(2007).

[53] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.
Phys. A803, 227 (2008).

[54] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys.
Rev. D 78, 074033 (2008).

[55] S. P. Klevansky and R. H. Lemmer, Phys. Rev. D 39, 3478
(1989).

[56] K. G. Klimenko, Theor. Math. Phys. 89, 1161 (1991).
[57] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Nucl.

Phys. B462, 249 (1996); B563, 361 (1999).
[58] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D.

Katz, S. Krieg, A. Schafer, and K. K. Szabo, J. High
Energy Phys. 02 (2012) 044.

[59] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D.
Katz, and A. Schafer, Phys. Rev. D 86, 071502
(2012).

[60] G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, and A.
Schaefer, J. High Energy Phys. 04 (2013) 130.

[61] J. Chao, P. Chu, and M. Huang, Phys. Rev. D 88, 054009
(2013).

[62] L. Yu, H. Liu, and M. Huang, Phys. Rev. D 90, 074009
(2014).

[63] M. N. Chernodub, Phys. Rev. D 82, 085011 (2010).
[64] M. N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011).
[65] M. Frasca, J. High Energy Phys. 11 (2013) 099.
[66] H. Liu, L. Yu, and M. Huang, arXiv:1408.1318.
[67] R.Mallick,S.Schramm,V.Dexheimer,andA.Bhattacharyya,

arXiv:1408.0139.
[68] A. Lyne and F. Graham-Smith, Pulsar Astronomy

(Cambridge University Press, Cambridge, England, 2005).
[69] C. Woltjer, Astrophys. J. 140, 1309 (1964).
[70] T. A. Mihara et al., Nature (London) 346, 250 (1990).
[71] G. Chanmugam, Annu. Rev. Astron. Astrophys. 30, 143

(1992).
[72] C. Thompson and R. C. Duncan, Astrophys. J. 473, 322

(1996).
[73] A. I. Ibrahim, S. Safi-Harb, J. H. Swank, W. Parke, and S.

Zane, Astrophys. J. 574, L51 (2002).
[74] R. C. Duncan and C. Thompson Astrophys. J. 392, L9

(1992).
[75] D. Lai and S. L. Shapiro, Astrophys. J. 383, 745 (1991).

[76] E. J. Ferrer, V. de la Incera, J. P. Keith, I. Portillo, and P. L.
Springsteen, Phys. Rev. C 82, 065802 (2010); E. J. Ferrer
and V. de la Incera, Lect. Notes Phys. 871, 399 (2013).

[77] A. A. Isayev and J. Yang, Phys. Rev. C 84, 065802
(2011).

[78] A. A. Isayev and J. Yang, Phys. Lett. B 707, 163 (2012).
[79] A. A. Isayev and J. Yang, J. Phys. G 40, 035105 (2013).
[80] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev.

Lett. 79, 2176 (1997).
[81] D. Bandyopadhyay, S. Pal, and S. Chakrabarty, J. Phys. G

24, 1647 (1998).
[82] D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A.

Perez Martinez, and C. Providencia, Phys. Rev. C 79,
035807 (2009).

[83] R. Casali, L. B. Castro, and D. P. Menezes, Phys. Rev. C
89, 015805 (2014).

[84] M. Strickland, V. Dexheimer, and D. P. Menezes, Phys.
Rev. D 86, 125032 (2012).

[85] M. Sinha, X. G. Huang, and A. Sedrakian, Phys. Rev. D
88, 025008 (2013).

[86] R. Z. Denke and M. B. Pinto, Phys. Rev. D 88, 056008
(2013).

[87] V. Dexheimer, R. Negreiros, and S. Schramm, Eur. Phys. J.
A 48, 189 (2012).

[88] P. C. Chu, L. W. Chen, and X. Wang, Phys. Rev. D 90,
063013 (2014).

[89] P. Zhuang, J. Hufner, and S. P. Klevansky, Nucl. Phys.
A576, 525 (1994).

[90] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,
M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[91] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[92] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73,

014019 (2006).
[93] V. A. Dexheimer and S. Schramm, Phys. Rev. C 81,

045201 (2010).
[94] V. A. Dexheimer and S. Schramm, Nucl. Phys. B, Proc.

Suppl. 199, 319 (2010).
[95] D. Blaschke, J. Berdermann, and R. Lastowiecki, Prog.

Theor. Phys. Suppl. 186, 81 (2010).
[96] G. Y. Shao, Phys. Lett. B 704, 343 (2011).
[97] O. Lourenco, M. Dutra, T. Frederico, A. Delfino, and

M. Malheiro, Phys. Rev. D 85, 097504 (2012).
[98] R. C. Duncan, arXiv:astro-ph/0002442.
[99] C. Sasaki, B. Friman, and K. Redlich, Phys. Rev. D 75,

054026 (2007).
[100] L. Levkova and C. DeTar, Phys. Rev. Lett. 112, 012002

(2014).
[101] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16,

1169 (1977).
[102] V. Baluni, Phys. Rev. D 17, 2092 (1978).
[103] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 63,

065003 (2001).
[104] E. S. Fraga, R. D. Pisarski, and J. Schaffner-Bielich, Phys.

Rev. D 63, 121702 (2001).
[105] E. S. Fraga, R. D. Pisarski, and J. Schaffner-Bielich, Nucl.

Phys. A702, 217 (2002).
[106] J. O. Andersen and M. Strickland, Phys. Rev. D 66,

105001 (2002).
[107] A. Vuorinen, Phys. Rev. D 68, 054017 (2003).

QUARK MAGNETAR IN THE THREE-FLAVOR NAMBU–… PHYSICAL REVIEW D 91, 023003 (2015)

023003-13

http://dx.doi.org/10.1103/PhysRevD.88.085001
http://dx.doi.org/10.1103/PhysRevD.88.085001
http://dx.doi.org/10.1103/PhysRevLett.112.012301
http://dx.doi.org/10.1103/PhysRevLett.112.012301
http://dx.doi.org/10.1016/j.physletb.2010.12.046
http://dx.doi.org/10.1016/j.physletb.2010.12.046
http://dx.doi.org/10.1016/j.physletb.2014.07.018
http://dx.doi.org/10.1016/j.physletb.2014.07.018
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.81.054908
http://dx.doi.org/10.1103/PhysRevC.81.054908
http://dx.doi.org/10.1103/PhysRevLett.110.012301
http://dx.doi.org/10.1103/PhysRevLett.110.012301
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.001
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1007/BF01015908
http://dx.doi.org/10.1016/0550-3213(96)00021-1
http://dx.doi.org/10.1016/0550-3213(96)00021-1
http://dx.doi.org/10.1016/S0550-3213(99)00573-8
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1007/JHEP04(2013)130
http://dx.doi.org/10.1103/PhysRevD.88.054009
http://dx.doi.org/10.1103/PhysRevD.88.054009
http://dx.doi.org/10.1103/PhysRevD.90.074009
http://dx.doi.org/10.1103/PhysRevD.90.074009
http://dx.doi.org/10.1103/PhysRevD.82.085011
http://dx.doi.org/10.1103/PhysRevLett.106.142003
http://dx.doi.org/10.1007/JHEP11(2013)099
http://arXiv.org/abs/1408.1318
http://arXiv.org/abs/1408.0139
http://dx.doi.org/10.1086/148028
http://dx.doi.org/10.1038/346250a0
http://dx.doi.org/10.1146/annurev.aa.30.090192.001043
http://dx.doi.org/10.1146/annurev.aa.30.090192.001043
http://dx.doi.org/10.1086/178147
http://dx.doi.org/10.1086/178147
http://dx.doi.org/10.1086/342366
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/170831
http://dx.doi.org/10.1103/PhysRevC.82.065802
http://dx.doi.org/10.1007/978-3-642-37305-3
http://dx.doi.org/10.1103/PhysRevC.84.065802
http://dx.doi.org/10.1103/PhysRevC.84.065802
http://dx.doi.org/10.1016/j.physletb.2011.12.003
http://dx.doi.org/10.1088/0954-3899/40/3/035105
http://dx.doi.org/10.1103/PhysRevLett.79.2176
http://dx.doi.org/10.1103/PhysRevLett.79.2176
http://dx.doi.org/10.1088/0954-3899/24/8/046
http://dx.doi.org/10.1088/0954-3899/24/8/046
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.89.015805
http://dx.doi.org/10.1103/PhysRevC.89.015805
http://dx.doi.org/10.1103/PhysRevD.86.125032
http://dx.doi.org/10.1103/PhysRevD.86.125032
http://dx.doi.org/10.1103/PhysRevD.88.025008
http://dx.doi.org/10.1103/PhysRevD.88.025008
http://dx.doi.org/10.1103/PhysRevD.88.056008
http://dx.doi.org/10.1103/PhysRevD.88.056008
http://dx.doi.org/10.1140/epja/i2012-12189-y
http://dx.doi.org/10.1140/epja/i2012-12189-y
http://dx.doi.org/10.1103/PhysRevD.90.063013
http://dx.doi.org/10.1103/PhysRevD.90.063013
http://dx.doi.org/10.1016/0375-9474(94)90743-9
http://dx.doi.org/10.1016/0375-9474(94)90743-9
http://dx.doi.org/10.1016/0550-3213(96)00170-8
http://dx.doi.org/10.1016/0550-3213(96)00170-8
http://dx.doi.org/10.1016/j.physletb.2004.04.027
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevC.81.045201
http://dx.doi.org/10.1103/PhysRevC.81.045201
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.051
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.051
http://dx.doi.org/10.1143/PTPS.186.81
http://dx.doi.org/10.1143/PTPS.186.81
http://dx.doi.org/10.1016/j.physletb.2011.09.030
http://dx.doi.org/10.1103/PhysRevD.85.097504
http://arXiv.org/abs/astro-ph/0002442
http://dx.doi.org/10.1103/PhysRevD.75.054026
http://dx.doi.org/10.1103/PhysRevD.75.054026
http://dx.doi.org/10.1103/PhysRevLett.112.012002
http://dx.doi.org/10.1103/PhysRevLett.112.012002
http://dx.doi.org/10.1103/PhysRevD.16.1169
http://dx.doi.org/10.1103/PhysRevD.16.1169
http://dx.doi.org/10.1103/PhysRevD.17.2092
http://dx.doi.org/10.1103/PhysRevD.63.065003
http://dx.doi.org/10.1103/PhysRevD.63.065003
http://dx.doi.org/10.1103/PhysRevD.63.121702
http://dx.doi.org/10.1103/PhysRevD.63.121702
http://dx.doi.org/10.1016/S0375-9474(02)00709-1
http://dx.doi.org/10.1016/S0375-9474(02)00709-1
http://dx.doi.org/10.1103/PhysRevD.66.105001
http://dx.doi.org/10.1103/PhysRevD.66.105001
http://dx.doi.org/10.1103/PhysRevD.68.054017


[108] E. S. Fraga and P. Romatschke, Phys. Rev. D 71, 105014
(2005).

[109] A. Ipp, K. Kajantie, A. Rebhan, and A. Vuorinen, Phys.
Rev. D 74, 045016 (2006).

[110] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D
81, 105021 (2010).

[111] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and
A. Vuorinen, Astrophys. J. 789, 127 (2014).

[112] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G.
Mustafa, M. Strickland, and N. Su, J. High Energy Phys.
05 (2014) 027.

[113] S. Mogliacci, arXiv:1407.2191.
[114] V. A. Miransky and I. A. Shovkovy, Phys. Rev. D 66,

045006 (2002).
[115] E. Megias, E. Ruiz Arriola, and L. L. Salcedo, J. High

Energy Phys. 01 (2006) 073.
[116] F. Xu and M. Huang, Chin. Phys. C 37, 014103 (2013).

[117] N. M. Hugenholtz and L. van Hove, Physica (Amsterdam)
24, 363 (1958).

[118] D. P. Menezes, M. Pinto, S. Benghi, S. Avancini, A.
Martinez, and C. Providência, Phys. Rev. C, 79, 035807
(2009).

[119] D. P. Menezes, M. Pinto, S. Benghi, S. Avancini, and
C. Providência, Phys. Rev. C 80, 065805 (2009).

[120] C. Y. Ryu, K. S. Kim, and Myung-Ki Cheoun, Phys. Rev.
C, 82, 025804 (2010).

[121] C. Y. Ryu, Myung-Ki Cheoun, T. Kajino, T. Maruyama,
and G. J. Mathews, Astropart. Phys. 38, 25 (2012).

[122] M. G. Alford, S. Han, and M. Prakash, Phys. Rev. D 88,
083013 (2013).

[123] H. Mao, J. Jin, and M. Huang, J. Phys. G 37, 035001
(2010).

[124] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55. 374
(1939).

PENG-CHENG CHU et al. PHYSICAL REVIEW D 91, 023003 (2015)

023003-14

http://dx.doi.org/10.1103/PhysRevD.71.105014
http://dx.doi.org/10.1103/PhysRevD.71.105014
http://dx.doi.org/10.1103/PhysRevD.74.045016
http://dx.doi.org/10.1103/PhysRevD.74.045016
http://dx.doi.org/10.1103/PhysRevD.81.105021
http://dx.doi.org/10.1103/PhysRevD.81.105021
http://dx.doi.org/10.1088/0004-637X/789/2/127
http://dx.doi.org/10.1007/JHEP05(2014)027
http://dx.doi.org/10.1007/JHEP05(2014)027
http://arXiv.org/abs/1407.2191
http://dx.doi.org/10.1103/PhysRevD.66.045006
http://dx.doi.org/10.1103/PhysRevD.66.045006
http://dx.doi.org/10.1088/1126-6708/2006/01/073
http://dx.doi.org/10.1088/1126-6708/2006/01/073
http://dx.doi.org/10.1088/1674-1137/37/1/014103
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1103/PhysRevC.82.025804
http://dx.doi.org/10.1103/PhysRevC.82.025804
http://dx.doi.org/10.1016/j.astropartphys.2012.09.005
http://dx.doi.org/10.1103/PhysRevD.88.083013
http://dx.doi.org/10.1103/PhysRevD.88.083013
http://dx.doi.org/10.1088/0954-3899/37/3/035001
http://dx.doi.org/10.1088/0954-3899/37/3/035001
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374

