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Static thermal equilibrium of a quantum self-gravitating ideal gas in general relativity is studied at any
temperature, taking into account the Tolman-Ehrenfest effect. Thermal contribution to the gravitational
stability of static neutron cores is quantified. The curve of maximum mass with respect to temperature is
reported. At low temperatures the Oppenheimer-Volkoff calculation is recovered, while at high temper-
atures the recently reported classical gas calculation is recovered. An ultimate upper mass limit M ¼
2.43M⊙ of all maximum values is found to occur at Tolman temperature T ¼ 1.27 mc2 with radius
R ¼ 15.2 km.
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I. INTRODUCTION

Oppenheimer and Volkoff [1] calculated the upper mass
limit of neutron cores, under self-gravity, assuming very
cold, completely degenerate ideal fermion gas. Their result
was MOV ¼ 0.7M⊙. In a more realistic setup that includes
also some protons, electrons, and muons in β equilibrium,
preventing neutron decay, it was found that this upper mass
limit [2] is not affected. This value turned out to be very low
compared to observations and was later, after the discovery
of the first neutron star [3], regarded as a proof of the fact
that nuclear forces have repulsive effects at supranuclear
densities [4,5]. When nuclear forces are taken into account
the limit increases and may reach 2.5 solar masses for cold
cores depending on the model (see for example [6,7] and
references therein).
In Ref. [8], I have calculated the maximum mass limit

of ideal neutron cores considering the opposite case of the
Oppenheimer and Volkoff (OV) calculation, namely, the
nondegenerate case. This accounts for the relativistic
classical ideal gas. Surprisingly, this classical limit Mcl ¼
2.4M⊙ at radius Rcl ¼ 15.2 km, agrees perfectly with
recent observations [9,10]. The corresponding temperature
is so high that it may only apply to hot protoneutron
stars [11,12].
Neutron stars are compact objects so dense that general

relativity becomes important. They are the remnants of
core-collapse supernovae [13–17]. They are composed [6]
of a dense, thick core, a thin crust, and an outer very thin
envelope and atmosphere. The core determines the upper
mass limit and the size of the star. It may be subdivided in
the inner and outer cores. The inner core is ultradense with
ρ ≥ 2ρN where ρN ¼ 2.8 × 1014 gr=cm3 is the normal
nuclear density. Since these densities are unreachable from
present laboratory experiments, its exact temperature, state
of matter and therefore equation of state remains at present
a mystery. Models vary [6,18] from (superfluid) npeμ gas,

hyperons, Bose-Einstein condensates, kaons, and pions
to strange matter, deconfined quarks, and quark-gluon
plasma. The outer core is consisted mainly of neutrons
although some protons, electrons, and muons are present
that prevent neutron decay. The crust consists of heavy
nuclei and near the matching region with the outer core,
free neutrons are also present. The matching region is
situated at density about [6]

ρR ≃ ρN
2

¼ 1.4 × 1014
gr
cm3

; ð1Þ

where heavy nuclei can no longer exist. At this density a
phase transition occurs towards the npeμ gas, through the
capture of electrons by protons.
As mentioned above, the core becomes unstable for

masses higher than some limiting value, which depends on
the equation of state. Most mass limits found in literature
(see [6] and references therein) are based on calculations
at zero temperature, corresponding to the ultradegenerate
limit. These suggest that the core is stabilized against
gravitational collapse mainly due to neutron-neutron
nuclear forces and degeneracy pressure. However, at the
birth stage of a neutron star, core collapse is believed to be
halted at extreme temperatures kT=mc2 ∼ 0.05 or more,
wherem is the neutron’s rest mass, leading to the formation
of the protoneutron star [11,12]. The protoneutron star
acquires a neutron rich core and reaches the maximum
temperature in seconds after the shock that follows the halt
of collapse. Then, after a rapid cooling to ten or more times
lower temperature within a minute, the neutron star’s core
continues to cool down for a long (depending on the model)
period [19–21], to very low temperatures kT=mc2 ∼ 10−7.
The maximum mass limit of the protoneutron star is

crucial, because it is the one that actually determines if the
star will enter the cooling phase or collapse into a black
hole. Actually, it must be about 0.2M⊙ bigger than the
observed cold neutron star’s masses [12]. Taking into
account very recent observations [9,10], that give an upperroupas@inp.demokritos.gr
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observed mass of Mobs ¼ 2M⊙ for neutron stars, it is
evident that almost all of the protoneutron star models in
Prakash et al. [12] are ruled out. However, more recently,
old models were refined and new models appeared [22–34]
in order to account for the recently observed heavy neutron
stars. Understanding the core structure of protoneutron
stars is of great importance for physics in general, because
it will reveal the behavior of matter at supranuclear
densities and high temperatures that are unreachable from
present laboratory experiments. Therefore, ruling out core
models should not be taken lightly and extensive inves-
tigation is required.
In this extensive work of Prakash et al. [12], maximum

masses are calculated for a large number of models of the
core’s equation of state and for two temperatures for each
model. It is evident in this work that temperature only very
slightly affects the maximum mass limit. However, the
Tolman-Ehrenfest effect [35,36] is not taken into account,
so that the efficiency of heat to support mass is under-
estimated. This effect accounts for the presence of a
temperature gradient, because of thermal mass. If the effect
is significant, which is reasonable at these high densities
and temperatures, then many models currently ruled out
could pass the observational test.
In the present work, the Tolman-Ehrenfest effect is

taken into account. In order to quantify the effect of heat,
I consider the ideal gas approximation, neglecting com-
pletely nuclear forces as well as leptons that play a major
role in protoneutron stars. This is an oversimplification,
which, however, may provide useful insight on the roles
of degenereracy and thermal pressure, as well as the
neglected nuclear forces. In addition, at very high
temperatures, the approximation of ideal gas seems
reasonable. Maximum masses are calculated for the
whole temperature regime from the OV to the classical
calculation for a quantum ideal gas. So that, what is
actually reported here, is the dependence on temperature
of the Oppenheimer and Volkoff original calculation, as
in Fig. 1.
Another motivation of this work is purely theoretical,

namely, to understand the behavior of Fermi-Dirac
distribution, a pure quantum phenomenon, in relation
to the Tolman-Ehrenfest effect, a pure relativistic phe-
nomenon. Simply stated, this effect accounts for the fact
that heat has mass and thus gravitates, leading to
inhomogeneous temperature at thermal equilibrium. Is
this in agreement with a quantum phenomenon such as
the Fermi-Dirac distribution? These issues are addressed
in Secs. II and III.
In Sec. IV the critical maximum mass of ideal neutron

cores is calculated with respect to temperature, including all
relativistic effects. An ultimate upper limit, similar to the
classical calculation

Mmax ¼ 2.43M⊙ ð2Þ

corresponding to a Tolman temperature k ~T ¼ 1.27 mc2 ¼
1192 MeV and radius

R ¼ 15.2 km ð3Þ
is reported for neutron cores matching with an outer crust.
The existence of a specific temperature value, at which an
upper mass limit occurs, seems significant and it was
unexpected. Thermal pressure, including the Tolman-
Ehrenfest effect, is dominant at high temperatures and
increases drastically the maximum mass limit. It is also
found, that masses of the order of the upper observational
limit Mobs ¼ 2M⊙ can be sustained, even when nuclear
forces are neglected, at temperature k ~T ¼ 0.19 mc2 ¼
178 MeV. Temperature values given here are expected
to be overestimated. The reason is that if nuclear forces and
leptons were taken into account, their stabilizing contribu-
tion would enable the core to sustain the same mass at
lower temperature.

II. THE EQUATION OF STATE

Let for the moment ignore general relativity and work in
the framework of special relativity. Recall the one particle
energy distribution for a quantum ideal gas:

gðϵÞ ¼ 1

eβðϵ−μÞ � 1
;

� ðþÞ for fermions

ð−Þ for bosons ð4Þ

where ϵ is the energy of one particle, including rest mass
in the relativistic case, and β, μ are the inverse temperature
and chemical potential, respectively. Using the Juettner
transforamtion
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FIG. 1 (color online). The critical maximum mass against
gravitational collapse of ideal neutron cores with respect to the
logarithm of the Tolman temperature, where m is the neutron
mass. At low temperatures the OV calculation [1] is recovered,
while at high temperatures the classical calculation [8] is
recovered. The mass limit increases rapidly in the temperature
interval k ~T=mc2 ∈ ð0.01; 1Þ, where thermal energy gradually
dominates over degeneracy pressure.
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p
mc

¼ sinh θ ð5Þ

and the relativistic definition of energy

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

q
; ð6Þ

the distribution (4) may be written in terms of θ:

gðθÞ ¼ 1

e−αþb cosh θ � 1
ð7Þ

where

b≡mc2

kT
; ð8Þ

α≡ μ

kT
: ð9Þ

In case of neutrons (and baryons or electrons), using the
distribution (7), the pressure P and mass density ρ may be
written as [37]

P ¼ 8πm4c5

3h3

Z
∞

0

sinh4θdθ
e−αþb cosh θ þ 1

; ð10Þ

ρ ¼ 8πm4c3

h3

Z
∞

0

sinh2θcosh2θdθ
e−αþb cosh θ þ 1

: ð11Þ

Thus, the equation of state is given in parametric form P ¼
Pðμ; TÞ and ρ ¼ ρðμ; TÞ by equations (10) and (11).
The chemical potential is the amount of free energy

F ¼ E − TS ð12Þ

needed to give (or take) to (from) a system in order to add
one particle under conditions of constant temperature. If the
system is receptive to adding particles (no external work
needed) the chemical potential is negative; otherwise it is
positive. In classical systems, adding one particle causes a
huge entropy increase, since the number of available
configurations increases greatly, contributing a big amount
to the minus sign of Eq. (12) and therefore the chemical
potential is negative. However, for quantum fermionic
systems at low temperatures that are degenerate, adding
one particle increases very slightly the entropy because the
energy of the particle is certain. Due to the Pauli principle,
it will occupy the highest available energy level, identified
with Fermi energy in the completely degenerate case. The
chemical potential is positive in this case. Thus, the
parameter α shows the degree of degeneracy of the system.
We have the following limits:

α → þ∞∶ ultradegenerate limit; ð13Þ

α → −∞∶ classical limit: ð14Þ

The maximum possible mass of neutron gas that can be
gravitationally bound without collapsing was calculated for
the ultradegenerate case (13) by Oppenheimer-Volkoff [1]
who foundMOV ¼ 0.71M⊙ at R ¼ 9.5 km. I calculated the
mass limit for neutron stars in the classical case (14) in
Ref. [8] and found Mcl ¼ 2.43M⊙ at R ¼ 15.2 km. In this
work the whole range between these extreme cases is
covered for every α and hence every value of T and μ, using
the equation of state in the parametric form (10) and (11).

III. THERMAL EQUILIBRIUM IN GENERAL
RELATIVITY

Let us restrict ourselves to the static spherically sym-
metric case in general relativity for which the metric may be
written in Schwartzschild coordinates as

ds2 ¼ gttdt2 − grrdr2 − r2dΩ: ð15Þ

Since we consider an ideal gas, the energy-momentum
tensor is the one of a perfect fluid:

Tμ
ν ¼ diagðρc2;−p;−p;−pÞ: ð16Þ

In the presence of gravity, the temperature and chemical
potential, even at thermal equilibrium, may depend on
position due to the Tolman-Ehrenfest effect [35,36]. Thus,
in Eqs. (10) and (11), T and μ are the proper temperature
and proper chemical potential T ¼ TðrÞ and μ ¼ μðrÞ,
respectively.
In Refs. [38,39], I have derived the conditions for

thermal equilibrium in general relativity for static spheri-
cally symmetric systems by extremizing the total entropy
for fixed total energy and number of particles

δS − ~βδMc2 þ αδN ¼ 0: ð17Þ

This condition leads to the Tolman-Oppenheimer-Volkoff
(TOV) equation [1,40]:

dP
dr

¼ −
�
P
c2

þ ρ

��
GM̂
r2

þ 4πG
P
c2

r

��
1 −

2GM̂
rc2

�−1

ð18Þ

assuming only the Hamiltonian constraint, which practi-
cally accounts for the mass equation

dM̂
dr

¼ 4πρr2; ð19Þ

where M̂ðrÞ is the total mass (rest massþ thermal energyþ
gravitational field’s energy) until point r of the sphere. We
denote R the edge of the gas sphere and M the total mass

M ¼ M̂ðRÞ: ð20Þ
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The Lagrange multiplier ~β was proven in Ref. [38] to be the
Tolman inverse temperature ~β ¼ 1=k ~T

TðrÞ ffiffiffiffiffi
gtt

p ≡ ~T ¼ const: ð21Þ

The Lagrange multiplier α was found to be exactly the
quantity of Eq. (9), namely,

α≡ μðrÞ
kTðrÞ ¼ const: ð22Þ

The differentiated form of Eq. (21) may easily be calculated
[38], using Einstein’s equations, to be

db
dr

¼ −
b

Pþ ρc2
dP
dr

; ð23Þ

where b is given by Eq. (8).
Thus, at thermal equilibrium three conditions should

hold: the TOV Eq. (18), the relation (22), and the Tolman
relation (23).
Let me also note that thermal equilibrium implies a

constant entropy per particle. The later determines the
particle density distribution n from the thermodynamic
Euler relation

Ts ¼ Pþ ρc2 − μn ð24Þ

and conditions (22) and (23). So that, equation d
dr ðs=nÞ ¼ 0

gives, using (24), (22) and (23),

dn
dr

¼ nc2

Pþ ρc2
dρ
dr

: ð25Þ

Tolman relation (23) expresses the fact that heat has mass
and therefore gravitates. At equilibrium, a temperature
gradient should form to balance the gravitational attraction
of heat. Note that the “mass of heat” is found to play an
analogous role also for cases out of equilibrium as pointed
out in Ref. [41].
One question raised is does the Fermi-Dirac distribution

(10), (11) satisfy the conditions of thermal equilibrium
(22), (23) and hence maximize the entropy. Let us prove
that the answer is affirmative.
We consider the definition (22) for α, namely, α ¼ βμ

and not α ¼ βðμ −mc2Þ, which would account for sub-
tracting the rest mass. Note, that it is common to redefine
the chemical potential for (special) relativistic systems by
subtracting the particle rest mass energy from both particle
energy (6) and the chemical potential, and thus leaving the
quantum distribution function (4) intact. However, in
general relativity this cannot be done, because the correct
chemical potential has to satisfy Eq. (22). Let

A ¼ 8πm4c5

h3
eα: ð26Þ

We assume

A ¼ const: ð27Þ

and hence that the relation (22) holds.
We have, using (10) and (11), that

Pþ ρc2 ¼ A
Z

∞

0

sinh2θðcosh2θ þ 1
3
sinh2θÞdθ

e−αþb cosh θ þ 1
: ð28Þ

Let us calculate dP=dr. We have

dP
dr

¼ −
1

3
A
db
dr

Z
∞

0

e−αþb cosh θsinh4θ cosh θdθ
ðe−αþb cosh θ þ 1Þ2 : ð29Þ

After one integration by parts, it becomes

dP
dr

¼ A
3

db
dr

Z
∞

0

d

�
1

e−αþb cosh θ þ 1

�
sinh3θ cosh θ

¼ −
1

b
A
db
dr

Z
∞

0

sinh2θðcosh2θ þ 1
3
sinh2θÞdθ

e−αþb cosh θ þ 1

which by use of Eq. (28) gives

dP
dr

¼ Pþ ρc2

b
db
dr

:

Hence, the Tolman relation (23) holds. The extension for
Bose-Einstein distribution is trivial.

IV. MASS LIMITS OF NEUTRON CORES

We normalize mass density and pressure to the values:

ρ� ¼
8πm4c3

h3
; P� ¼ ρ�c2; ð30Þ

which suggests for length and mass the normalization

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h3

32π2Gm4c

s
; M� ¼ r�

c2

G
: ð31Þ

Particle mass m determines only the scale and does not
affect qualitatively the results. For neutrons, it is

r� ¼ 2.42 km; M� ¼ 1.64M⊙;

ρ� ¼ 1.83 × 1016
gr
cm3

: ð32Þ

Then ρ, P, M, and r are measured in units of ρ�, P�, M�,
and r� so that, Eqs. (10), (11), (19), and (23), using (18), are
written as
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P ¼ 1

3

Z
∞

0

sinh4θdθ
e−αþb cosh θ þ 1

; ð33Þ

ρ ¼
Z

∞

0

sinh2θcosh2θdθ
e−αþb cosh θ þ 1

; ð34Þ

db
dr

¼ −b
�
M̂
r2

þ Pr

��
1 −

2M̂
r

�−1
; ð35Þ

dM̂
dr

¼ ρr2: ð36Þ

Equations (33)–(36) form the system of equations we have
to solve with initial conditions,

bð0Þ ¼ b0; M̂ð0Þ ¼ 0 ð37Þ
and the boundary condition (1). This is achieved numeri-
cally by developing an appropriate computer program.
The system is solved for some value of b0, by choosing

these various pairs ðR; αÞ that give the fixed edge density ρR
of Eq. (1). This way an M − R curve is drawn and the
critical maximum mass corresponding to this b0 is calcu-
lated. The process is repeated spanning the whole range of
b0 generating the valuesMcrðb0Þ. These correspond also to
Mcrð ~TÞ, since at each solution ðM; b0Þ corresponds a
Tolman temperature ~T.
The critical mass with respect to logðk ~T=mc2Þ is plotted

in Fig. 1 and with respect to ~T in Fig. 2. It demonstrates the
dependence of the OV limit on temperature. At low
temperatures the OV calculation [1] is recovered and at
high temperatures the classical calculation [8] is recovered.
It is evident that thermal energy enhances the ability of the
system to sustain matter under self-gravity. It starts to
dominate over degeneracy pressure at temperatures of the
order k ~T ∼ 0.01 mc2. The mass limit is very rapidly
increased from the OV limit to the classical limit in the
temperature range k ~T=mc2 ∈ ð0.01; 1Þ.

Let me remark that, in fact, the critical mass in the case
α → þ∞ corresponding to OV calculation is found here to
be 0.68M⊙, a little lower than the value 0.71M⊙ reported in
Ref. [1]. The reason is that, in the OV calculation the
boundary condition is different. Namely they consider the
vanishing of the pressure, while I consider the existence of
a crust and a matching at the phase transition region
between the core and the crust. So that, this 0.03M⊙
difference accounts approximately for the crust’s mass.
Assuming the vanishing pressure condition, the exact value
is indeed recovered here. However, the pressure cannot be
completely vanished at high temperatures. Most impor-
tantly, the matching with the crust is what actually happens.
A global maximum Mmax ¼ 2.43M⊙ of the critical

masses is found in agreement with Ref. [8]. It occurs at
k ~T ¼ 1.27 mc2 ¼ 1192 MeV and α ¼ −8.89, correspond-
ing to a radius R ¼ 15.2 km and a fractional redshift at the
edge z ¼ 0.38. This maximum is evident in Fig. 3. The α
value suggests that the configuration at these conditions is
highly nondegenerate. The temperature is too high for a
protoneutron star, according to standard theory. However, as
noted also in the Introduction, the inclusion of beta equi-
librium and nuclear forces would normally enable the core to
acquire the samemass limit at a much lower temperature. Let
me also note that the upper observed neutron stars mass
[9,10] Mobs ¼ 2M⊙ may be reached at temperature k ~T ¼
0.19 mc2 ¼ 178 MeV corresponding to the values R ¼
14.4 km and α ¼ 0.31. This value of α suggests that the
gas at these conditions is moderately degenerate, while the
temperature value is much more realistic.
In Fig. 4 the critical mass with respect to α ¼ ~μ=k ~T is

plotted, where it is evident that α → þ∞ recovers the OV
limit and α → −∞ the classical calculation.
In Fig. 5 the Tolman-Ehrenfest effect is demonstrated

for the marginal equilibrium with M ¼ Mmax ¼ 2.43M⊙.
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FIG. 2 (color online). The critical maximum mass with respect
to Tolman temperature.
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FIG. 3 (color online). The critical maximum masses of Fig. 1
present a global maximum Mmax ¼ 2.43M⊙ at k ~T ¼ 1.27 mc2.
At this maximum corresponds radius R ¼ 15.2 km. Also
α≡ μ=kT ¼ −8.89, suggesting that the gas at these conditions
is highly nondegenerate.
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The proper temperature TðrÞ is the temperature measured
by a local observer, i.e., it is the temperature realized
by particles at r. Physically, the Tolman temperature ~T,
which is a constant at thermal equilibrium, is the tem-
perature measured at any point by a distant observer.
Thermodynamically, it is the variable conjugate to total
mass energy and hence the temperature of the heat bath in
the canonical ensemble.
In Fig. 6 is demonstrated the Tolman-Ehrenfest effect for

the chemical potential, at the marginal equilibrium with
M ¼ Mmax ¼ 2.43M⊙. The proper chemical potential μðrÞ
is the chemical potential measured by a local observer,

while ~μ, which is constant at thermal equilibrium, is the
analog to the Tolman temperature.
In Fig. 7 the radius which corresponds to each Mcr is

plotted with respect to the Tolman temperature. Thermal
energy inflates the gas, as one might expect, enabling it to
acquire bigger radii. Also, mass is spread out tending to a
more homogeneous state as is evident from Fig. 8. In this,
the center to edge density ratio ρ0=ρR (density contrast) is
plotted versus the Tolman temperature. A global minimum
ρ0=ρR ¼ 7.7 at k ~T ¼ 0.19 mc2 appears, corresponding to
critical mass Mcr ¼ 2.02M⊙.
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FIG. 5 (color online). The Tolman-Ehrenfest effect. Proper
temperature with respect to radial coordinate for the marginal
equilibrium corresponding toM ¼ Mmax ¼ 2.43M⊙ and Tolman
temperature k ~T=mc2 ¼ 1.27. Physically, the Tolman temperature
is the temperature at any point as measured by a distant observer.
Thermodynamically, the Tolman temperature is the variable
conjugate to total mass energy and therefore the temperature
of the heat bath in the canonical ensemble.
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FIG. 6 (color online). The analog of Tolman-Ehrenfest effect
for the chemical potential. The proper chemical potential is
plotted with respect to radial coordinate for the marginal
equilibrium corresponding to M ¼ Mmax ¼ 2.43M⊙. It is
~μ=mc2 ¼ −11.3 for this equilibrium. The quantity ~μ is the analog
of the Tolman temperature and corresponds to the chemical
potential at any point as measured by a distant observer.
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FIG. 7 (color online). The radius of neutron cores correspond-
ing to each critical mass with respect to the logarithm of the
Tolman temperature. It is evident that thermal energy increases
the size of the core. Note that the ultradegenerate limit gives lower
result than the OV calculation ROV ¼ 9.5 km. The reason is that
in the OV calculation the core extends to the point of vanishing
pressure, while here it is considered to extend only until the crust.
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FIG. 4 (color online). The critical maximum mass of ideal
neutron cores with respect to the parameter α≡ μðrÞ=kTðrÞ
which is constant at thermal equilibrium. Parameter α determines
the degree of degeneracy with α → −∞ being the nondegenerate
limit (classical calculation [8]) and α → þ∞ the ultradegenerate
limit (OV calculation [1]).
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The edge density cutoff ρR does not affect drastically the
critical mass at low temperatures, in which case most mass
is concentrated in the center. But at high temperatures, the
critical mass becomes more sensitive to the edge density
cutoff, because matter is more homogeneously distributed.
The dependence of the global mass maximum Mmax
occurring at k ~T ¼ 1.27 mc2 (see Fig. 3) with respect to
the edge density cutoff ρR and the particle mass mi is given
by the following formula:

Mmax ¼ 2.88
m2

n

m2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1014 gr

cm3

ρR

s
M⊙ ð38Þ

while the corresponding radius is

RjMmax
¼ 17.99

m2
n

m2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1014 gr

cm3

ρR

s
km; ð39Þ

where mn is the neutron’s rest mass. I stress that the cutoff
ρR ¼ ρN=2, which I used here, is not accidentally chosen,
but it is the value at which a phase transition from the heavy
nuclei gas to free neutrons gas occurs [6]. I also stress that
the core’s mass limit of the present analysis does not
depend on the equation of state for the crust, but only on the
assumed minimum density for which a neutron gas can
exist without forming nuclei, i.e., the cutoff ρR.

V. CONCLUSIONS

It is shown that quantum ideal self-gravitating gas is
consistent with entropy extremization in general relativity
and in the static case. The quantum distributions are in
accordance with the Tolman-Ehrenfest effect and all
other conditions of thermal equilibrium, as is evident in

Secs. II and III. The corresponding formulation enabled us
to perform a complete relativistic analysis of neutron ideal
gas, taking into account all thermal effects.
The maximum mass limit, that an ideal neutron core can

sustain without collapsing under self-gravity, is calculated
with respect to temperature. In fact, it is reported here
the actual dependence on temperature of the seminal
Oppenheimer and Volkoff calculation [1]. At high temper-
atures the classical calculation of Ref. [8] is recovered.
It is evident that increasing thermal energy enables more

massive cores to exist, rendering them also bigger and more
homogeneous. These effects are quantified in Figs. 1, 7,
and 8. An ultimate upper mass limit of all, temperature
dependent, maximum masses appears at k ~T ¼ 1.27 mc2 ¼
1192 MeV with value Mmax ¼ 2.43M⊙, corresponding to
radius R ¼ 15.2 km and α ¼ −8.89. These mass and radius
values agree perfectly with observations. The mass limit
and corresponding radius depend on the edge density cutoff
according to Eqs. (38) and (39). The corresponding temper-
ature does not depend on edge density cutoff.
The critical masses given here are expected to be realistic

only at high temperatures and applying to hot protoneutron
stars. However, since the final cold neutron star has less
mass than the protoneutron star, due to cooling processes,
the limits at high temperatures apply to cold neutron stars,
as well. Therefore, the ultimate mass value reported here is
an estimation of the maximum neutron stars mass.
Comparing also the temperature and corresponding mass

values of Fig. 1 with the ones of Burrows and Lattimer [11]
and the ones of Prakash et al. [12]—for pure neutron cores
at high temperature (Table 3 in Ref. [12])—(see also
[42,43]), we see an approximate agreement, although in
our case nuclear forces are completely neglected.
Thus, thermal pressure, when the Tolman-Ehrenfest

effect is included, is equally or more efficient than nuclear
forces, in halting gravitational collapse of neutron cores at
high temperatures. Therefore, it is argued here, that it
should not be neglected in calculation of protoneutron star
maximum masses.
This conclusion is also strengthened, by the finding that

thermal, together with degeneracy pressure, even with
nuclear forces neglected, can sustain the core at the upper
mass Mobs ¼ 2M⊙, suggested from actual observations,
with radius R ¼ 14.4 km at temperature k ~T ¼ 0.19 mc2 ¼
178 MeV. I note, that temperature values reported here are
expected to be slightly overestimated, because nuclear
forces and leptons are neglected. If they were to be taken
into account, they would contribute to outward pointing
pressure, enabling the protoneutron star to stabilize at lower
temperatures.
Overall, this work suggests that neutron cores can be

sustained against gravitational collapse at ultrahigh temper-
atures, because of heat, with masses comparable to the
observable ones. The maximum neutron stars mass is
estimated to be 2.4M⊙ with radius 15.2 km.
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FIG. 8 (color online). The density contrast of neutron cores
corresponding to each critical mass with respect to the logarithm
of the Tolman temperature. It is evident that increasing the
thermal energy tends to render the configuration more homo-
geneous. A global minimum equal to ρ0=ρR ¼ 7.7 appears at
k ~T ¼ 0.19 mc2, corresponding to critical mass Mcr ¼ 2.02M⊙.
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