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Comparatively few searches have been performed for violations of local Lorentz invariance in the pure-
gravity sector. We show that tests of short-range gravity are sensitive to a broad class of unconstrained
and novel signals that depend on the experimental geometry and on sidereal time.

DOI: 10.1103/PhysRevD.91.022006 PACS numbers: 04.80.-y, 04.25.Nx, 04.80.Cc

Gravity is a universal but comparatively weak force. This
makes it challenging to study and today, some 350 years
after Newton’s Principia, our experimental understanding
of gravity remains in some respects remarkably limited.
On the scale of the solar system, we are confident that
Newton’s law describes the dominant physics and that
Einstein’s general relativity provides accurate relativistic
corrections. However, on larger scales we lack a complete
and compelling understanding, as evidenced by dark
energy. On smaller scales below about 10 microns, it is
presently unknown whether gravity obeys Newton’s law,
and forces vastly stronger than the usual inverse-square
behavior remain within the realm of possibility.
Perhaps the most crucial founding principle of general

relativity is the Einstein equivalence principle. Two of its
ingredients are the weak equivalence principle, which
essentially states that gravity is flavor independent, and
local Lorentz invariance, which states that rotations and
boosts are local symmetries of nature. Developing a deep
understanding of gravity at all scales therefore depends on
strong experimental support for these principles. The weak
equivalence principle has been widely tested, but tests of
local Lorentz invariance have been largely limited to the
pure-matter sector or to matter-gravity couplings [1,2]. Here,
we undertake to address this gap by focusing on violations of
local Lorentz symmetry in the pure-gravity sector.
Effective field theory is a powerful and unique tool for

investigating physics at attainable scales when definitive
knowledge of the underlying physics is lacking. It is
therefore well suited for exploration of local Lorentz
invariance in gravity. Indeed, the pure-gravity sector of
the effective field theory describing general local Lorentz
violations for spacetime-based gravitation can be formu-
lated as a Lagrange density containing the usual Einstein-
Hilbert term and cosmological constant, together with an
infinite series of operators of increasing mass dimension d
representing corrections to known physics at attainable
scales [3]. To date, however, experimental searches for
local Lorentz violation [4–10] and phenomenological
studies [11,12] within this framework have been restricted
to the so-called minimal sector, consisting of terms with
operators of the lowest mass dimension d ¼ 4.

In the present work, we initiate a systematic study of
local Lorentz violation with d > 4, introducing explicit
expressions for d ¼ 5 and 6 and investigating prospective
experimental constraints. Operators of higher mass
dimension d involve more derivatives, which translate to
corrections to the Newton force law varying as 1=rd−2.
Short-range tests of gravity therefore offer the sharpest
sensitivities to effects from operators with d > 4 and are
our focus in what follows. Moreover, as discussed below,
the predicted signals contain novel features that to date are
unexplored in experiments.
We focus here on spontaneous violation of Lorentz

symmetry [13] in spacetime theories of gravity, since the
alternative of explicit Lorentz violation is generically
incompatible with conventional Riemann geometry or is
technically unnatural in such theories [3]. Spontaneous
Lorentz violation occurs when an underlying action with
local Lorentz invariance involves gravitational couplings to
tensor fields kαβ… that acquire nonzero background values

k̄αβ… [14]. The field fluctuations ~kαβ… ≡ kαβ… − k̄αβ…
include massless Nambu-Goldstone and massive modes
that affect the physics. The presence of nonzero back-
grounds means the resulting gravitational phenomenology
violates local Lorentz invariance, and so the backgrounds
k̄αβ… are called coefficients for Lorentz violation [15].
In typical post-Newtonian applications, the coefficients

k̄αβ… are assumed small on the relevant physical scale and
constant in asymptotically flat coordinates, and the analysis
is performed at linear order in the metric fluctuation hαβ and

the coefficients k̄αβ…. Elimination of the fluctuations ~kαβ…
can be achieved by imposing the underlying diffeomor-
phism invariance on the dynamics, thereby yielding a
modified Einstein equation expressed in terms of k̄αβ…
and quantities such as the linearized curvature tensor [11].
The phenomenology of the modified equation can then be
explored and experimental studies performed to search for
local Lorentz violation.
More explicitly, we can write the Lagrange density of the

underlying action as the sum of four terms,

L ¼ LEH þ LLV þ Lk þ LM; ð1Þ
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where LEH ¼ ffiffiffiffiffiffi−gp ðR − 2ΛÞ=16πGN is the usual Einstein-
Hilbert term with cosmological constant Λ, LLV describes
the gravitational coupling to the coefficient fields and hence
is the source of phenomenological gravitational Lorentz
violation, Lk contains the dynamics of the coefficient
fields triggering the spontaneous Lorentz violation, and
LM describes the matter. The term LLV can be written as a
series involving covariant gravitational operators of
increasing mass dimension d,

LLV ¼
ffiffiffiffiffiffi−gp

16πGN
ðLð4Þ

LV þ Lð5Þ
LV þ Lð6Þ

LV þ � � �Þ: ð2Þ

Each term is formed by contracting the coefficient fields
kαβ… with gravitational quantities including covariant
derivatives Dα and curvature tensors Rαβγδ. Here, we
consider explicitly terms with 4 ≤ d ≤ 6, though much
of our discussion can be directly generalized to larger d.

The minimal term Lð4Þ
LV with d ¼ 4 is [3]

Lð4Þ
LV ¼ ðkð4ÞÞαβγδRαβγδ: ð3Þ

The dimensionless coefficient field ðkð4ÞÞαβγδ inherits the
symmetries of the Riemann tensor and can be decomposed
into its traceless part tαβγδ, its trace sαβ, and its double trace
u. Within the post-Newtonian treatment outlined above, the
coefficient ū acts as an unobservable rescaling of GN [16].
In pure gravity, the coefficient s̄αβ can be removed via
coordinate definitions [3], but more generally it generates
many phenomenological effects, and its 9 independent
components have been constrained to varying degrees
down to about 10−10 by numerous analyses using data
from lunar laser ranging [4], atom interferometry [5,6],
short-range tests [7], satellite ranging [8], precession of
orbiting gyroscopes [9], pulsar timing [10], and perihelion
and solar-spin precession [8,11]. The coefficient t̄αβγδ is
absent at leading orders in the post-Newtonian expansion,
and to date its 10 independent components have no known
physical implications for reasons that remain mysterious
(the “t puzzle”).
For d ¼ 5, the general expression using curvature and

covariant derivatives is

Lð5Þ
LV ¼ ðkð5ÞÞαβγδκDκRαβγδ: ð4Þ

In the linearized limit, or more generally under the opera-
tional definition of the CPT transformation [3], the

expression DκRαβγδ is CPT odd. Any effects from Lð5Þ
LV

in the nonrelativistic limit would therefore represent pseu-
dovector contributions to the associated Newton gravita-
tional force rather than conventional vector ones, and hence
they would lead to self-accelerations of localized bodies.
Analogous issues are known for some CPT-odd terms in
other sectors [17]. Any stable models with terms of the

form Lð5Þ
LV therefore cannot lead to effects on nonrelativistic

gravity, and so their phenomenology lies outside our
present scope.
Instead, we focus on Lorentz violation at d ¼ 6, for

which we write Lð6Þ
LV in the form

Lð6Þ
LV ¼ 1

2
ðkð6Þ1 ÞαβγδκλfDκ; DλgRαβγδ

þ ðkð6Þ2 ÞαβγδκλμνRκλμνRαβγδ: ð5Þ

The coefficient fields ðkð6Þ1 Þαβγδκλ and ðkð6Þ2 Þαβγδκλμν have
dimensions of squared length, or squared inverse mass in
natural units. In the first term, the anticommutator of
covariant derivatives suffices for generality because includ-
ing the commutator would merely duplicate part of the

second term. The first four indices on ðkð6Þ1 Þαβγδκλ inherit
the symmetries of the Riemann tensor, as do the first and

last four indices on ðkð6Þ2 Þαβγδκλμν, while the Bianchi
identity implies the additional cyclic-sum conditionP

ðγδκÞðkð6Þ1 Þαβγδκλ ¼ 0. The number of independent com-

ponents in ðkð6Þ1 Þαβγδκλ and ðkð6Þ2 Þαβγδκλμν is therefore 126 and
210, respectively. The coefficients ðkð6Þ1 Þαβγδκλ could arise
from Lorentz-violating derivative couplings of fields to
gravity in the underlying theory. Models of this type are
straightforward to construct, although we are unaware of

examples in the literature. The coefficients ðkð6Þ2 Þαβγδκλμν
represent general quadratic Lorentz-violating curvature
couplings, specific forms of which occur in many models
as a result of integrating over fields in the underlying action
that have Lorentz-violating couplings to gravity. Examples
include Chern-Simons gravity [18,19], the cardinal model
[20], and various types of bumblebee models [3,21,22].
To extract the linearized modified Einstein equation

resulting from the terms (5), we assume an asymptotically
flat background metric ηαβ as usual, and write the back-

ground coefficients as ðk̄ð6Þ1 Þαβγδκλ and ðk̄ð6Þ2 Þαβγδκλμν. We
remark that the procedure for linearization and elimination
of coefficient fluctuations outlined above [11] involves no

fluctuations for ðkð6Þ2 Þαβγδκλμν because these contribute only
at nonlinear order. After some calculation, we find the
linearized modified Einstein equation can be written in the
form

Gμν ¼ 8πGNðTMÞμν þ 2 ˆ̄sαβGαðμνÞβ −
1

2
ˆ̄uGμν

þ aðk̄ð6Þ1 ÞαðμνÞβγδ∂α∂βRγδ þ 4ðk̄ð6Þ2 Þαμνβγδϵζ∂α∂βRγδϵζ;

ð6Þ

where Gαβγδ ≡ ϵαβκλϵγδμνRκλμν=4 is the double dual of the
Riemann tensor and Gαβ ≡Gγ

αγβ is the Einstein tensor. In
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Eq. (6), all gravitational tensors are understood to be
linearized in hμν. Also, we have introduced the scalar

operator ˆ̄u ¼ ūþ ðūð6Þ1 Þαβ∂α∂β and the tensor operator

ˆ̄sαβ¼ s̄αβþðs̄ð6Þ1 Þαβγδ∂γ∂δ, where ðūð6Þ1 Þγδ ≡ ðk̄ð6Þ1 Þαβαβγδ is

a double trace and ðs̄ð6Þ1 Þαβγδ≡ðk̄ð6Þ1 Þαϵβϵγδ−δαβðūð6Þ1 Þγδ=4
involves a single trace. Note that the entire contribution
from the d ¼ 4 Lorentz-violating term (3) is contained in ˆ̄u
and ˆ̄sαβ, along with comparable pieces of the d ¼ 6

derivative term. This structure may offer some insight into
the t puzzle mentioned above. The parameter a in Eq. (6)
is a model-dependent real number that depends on the
dynamics specified by the Lagrange density Lk.
The modified Einstein equation (6) is likely to imply

numerous phenomenological consequences both for rela-
tivistic effects such as gravitational waves and for non-
relativistic effects in post-Newtonian gravity. Here, we
consider the nonrelativistic limit with zero cosmological
constant and for an extended source with mass density ρðrÞ.
The modified Einstein equation for the d ¼ 6 terms then
reduces to a modified Poisson equation of the form

− ~∇2
U ¼ 4πGNρþ ðk̄effÞjklm∂j∂k∂l∂mU; ð7Þ

where UðrÞ is the modified Newton gravitational potential.
In this equation, ðk̄effÞjklm are effective coefficients for
Lorentz violation with totally symmetric indices, revealing
that the number of independent observables for Lorentz
violation in the nonrelativistic limit is 15. These effective
coefficients are linear combinations of the d ¼ 6 coeffi-

cients ðkð6Þ1 Þαβγδκλ and ðkð6Þ2 Þαβγδκλμν, the explicit form of
which is somewhat lengthy and irrelevant for present
purposes and so is omitted here, but we remark in passing

that many of the independent components ðkð6Þ1 Þαβγδκλ and
ðkð6Þ2 Þαβγδκλμν appear.
To solve the modified Poisson equation (7) we can adopt

a perturbative approach, with the Lorentz-violating term
assumed to generate a small correction to the usual Newton
potential. This is consistent with the notion that the d ¼ 6
Lorentz-violating term (5) represents a perturbative cor-
rection to the Einstein-Hilbert action on the length scales of
experimental interest. The nonperturbative scenario with

Lð6Þ
LV dominating the physics could in principle also be of

interest but involves theoretical complexities that lie out-
side our present scope. Within the perturbative assumption,
the solution to the modified Poisson equation (7) can be
written as

UðrÞ ¼ GN

Z
d3r0

ρðr0Þ
jr − r0j

�
1þ k̄ðR̂Þ

jr − r0j2
�

þ 4

5
πGNρðrÞðk̄effÞjkjk; ð8Þ

where R̂ ¼ ðr − r0Þ=jr − r0j. The quantity k̄ ¼ k̄ðr̂Þ is an
anisotropic combination of coefficients and a function of r̂,
given by

k̄ðr̂Þ ¼ 3

2
ðk̄effÞjkjk − 9ðk̄effÞjkllr̂jr̂k

þ 15

2
ðk̄effÞjklmr̂jr̂kr̂lr̂m: ð9Þ

The potential (8) contains the conventional Newton
potential and a correction term that varies with the inverse
cube of the distance. The final piece is a contact term
that becomes a delta function in the point-particle limit,
in parallel with the usual dipole contact term in
electrodynamics.
The inverse-cube behavior of the potential leads to an

inverse-quartic gravitational field g ¼ ∇U. The rapid
growth of the force at small distances suggests that the
best sensitivities to Lorentz violation could be achieved
in experiments on short-range gravity [23], which measure
the deviation from the Newton gravitational force between
two masses. Next, we consider the signals in experiments
of this type.
In an Earth-based laboratory, measurements of the force

between two masses are instantaneously sensitive to the
coefficients ðk̄effÞjklm in the local frame. However, the
laboratory frame is noninertial, so the Earth’s rotation about
its axis and revolution about the Sun induce variations of
these coefficients with sidereal time T. The canonical frame
adopted for reporting results from experimental searches
for Lorentz violation is the Sun-centered frame [1,24], with
Z axis along the direction of the Earth’s rotation and X axis
pointing towards the vernal equinox 2000. Neglecting the
Earth’s boost, which is of order 10−4, the transformation
from the Sun-centered frame ðX; Y; ZÞ to the laboratory
frame ðx; y; zÞ can be accomplished using a time-dependent
rotation RjJ, where j ¼ x; y; z and J ¼ X; Y; Z. For exam-
ple, taking the laboratory z axis pointing to the local zenith
and the x axis pointing to local south, the rotation matrix is

RjJ ¼

0
B@

cos χ cosω⊕T cos χ sinω⊕T − sin χ

− sinω⊕T cosω⊕T 0

sin χ cosω⊕T sin χ sinω⊕T cos χ

1
CA; ð10Þ

where the angle χ is the colatitude of the laboratory and
ω⊕ ≃ 2π=ð23 h 56 minÞ is the Earth’s sidereal frequency.
The T-dependent coefficients ðk̄effÞjklm in the laboratory
frame are then given by

ðk̄effÞjklm ¼ RjJRkKRlLRmMðk̄effÞJKLM ð11Þ

in terms of constant coefficients ðk̄effÞJKLM in the Sun-
centered frame.
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The sidereal variation of the laboratory-frame coeffi-
cients implies that the modified potential U and force
between two masses measured in the laboratory frame vary
with time T. For example, the modified potential due to a
point mass M takes the form

Uðr; TÞ ¼ GNM
r

�
1þ k̄ðr̂; TÞ

r2

�
ð12Þ

away from the origin, where Eq. (11) is used to express the
combination k̄ðr̂; TÞ in Eq. (9) in terms of coefficients
ðk̄effÞJKLM in the Sun-centered frame. The modified force
therefore depends both on direction and on sidereal time,
which leads to striking signals in short-range experiments.
For example, the time dependence in Eq. (11) implies that
the effective gravitational force between two bodies can
be expected to vary with frequencies up to and including
the fourth harmonic of ω⊕. Also, the direction dependence
of the laboratory-frame coefficients ðk̄effÞjklm implies an
asymmetric dependence of the signal on the shape of the
bodies. A few simple results valid in conventional Newton
gravity, such as the constancy of the force at any point
above an infinite plane of uniform mass density, still hold
for the potential (12). However, for the finite bodies used
in experiments it is typically necessary to determine the
potential and force via numerical integration. Indeed,
simple simulations for experimental configurations such
as two finite planes [25] or a plane and a sphere [26] reveal
that shape and edge effects play an important role in
determining the sensitivity of the experiment to the
coefficients for Lorentz violation.
The modified potential (12) involves an inverse-cube

correction to the usual Newton result. Its dependence on
time and orientation means that existing experimental
limits on spherically symmetric inverse-cube potentials
cannot be immediately converted into constraints on the
coefficients ðk̄effÞJKLM, as typical experiments collect data
over an extended period and disregard the possibility of
orientation-dependent effects. Establishing definitive con-
straints on the coefficients ðk̄effÞJKLM for Lorentz violation
will therefore require new experimental analyses. Next, we
illustrate some of the issues involved by considering briefly
one particular example: the EötWash limit on inverse-cube
potentials obtained using a torsion pendulum [27,28].
The apparatus in this experiment consists of a test-mass

bob in the shape of a disk with 42 cylindrical holes arranged
in two concentric circles, suspended by a fiber through
its center and normal to its plane. A similar disk serving as
the source mass is placed below and rotated, thereby
producing a periodic torque on the upper disk of strength
and harmonic signature determined by deviations from
the inverse square law. The experiment yielded a limit [28]
on a spatially homogeneous and time-independent inverse-
cube potential that in the present context can be interpreted
as a constraint on an averaged coefficient given by

hk̄ðr̂; TÞi < 1.3 × 10−10 m2 at the 68% confidence level.
The averaging involves both spatial and time smearing,
which cannot be performed exactly without careful model-
ing of the apparatus and incorporating the time stamps
for the data. Nonetheless, a crude estimate for the type of
constraint that would emerge from a detailed reanalysis can
be obtained by modeling the apparatus using a numerical
simulation involving 21 point masses on a ring above
another 21 point masses on a second ring rotating at fixed
frequency. Using the transformation (10) for colatitude
χ ≃ 42° and averaging the results over a sidereal day
reveals that in this simple simulation only six independent
coefficients control the averaged Lorentz-violating torque,
and they appear in the combination

k̄simulation ≡ ðk̄effÞXXZZ þ ðk̄effÞYYZZ þ 0.4ðk̄effÞXXXX
þ 0.4ðk̄effÞYYYY þ 0.8ðk̄effÞXXYY þ 0.3ðk̄effÞZZZZ:

ð13Þ

As expected for an averaging analysis, the torque is found
to mimic closely that obtained using a spherically sym-
metric inverse-cube potential. Using Eqs. (9) and (11)
together with the above experimental constraint on
hk̄ðr̂; TÞi, we can deduce the crude constraint jk̄simulationj≲
10−11 m2. Although only an approximation to an exact
analysis, this procedure does give a feel for the sensitivity
to Lorentz violation currently attainable in tests of short-
range gravity.
Given the novel features of short-range tests of local

Lorentz violation in gravity and the wide variety of
experiments in the literature, it is useful to identify a
measure serving as a rapid gauge of the reach of a given
experiment. As seen above, a definitive answer to this
question requires careful simulation of the experiment, but
a rough estimate can be obtained by taking advantage of
the common practice for experiments testing short-range
gravity to report results in terms of two parameters α, λ
appearing in a potential modified by a Yukawa-like term,
UYukawa ¼ GNMð1þ αe−r=λÞ=r. Comparing this Yukawa
form with the potential (12) indicates that experiments
attaining sensitivities to α and λ at distances r ≈ λ can
be expected to have sensitivities to Lorentz violation of
order jk̄ðr̂; TÞj ≈ αλ2=e and hence using Eq. (9) a coef-
ficient reach of order

jðk̄effÞJKLMj ≈ αλ2=10: ð14Þ

Note, however, that sensitivity to the perturbative Lorentz
violation considered here implies that the experiment must
be able to detect usual Newton gravity, which is the case for
only a subset of experiments reported in the literature. Note
also that different experiments are typically sensitive to
distinct linear combinations of ðk̄effÞJKLM.
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Within this perspective, the most interesting short-range
experiments are those at small λ that are sensitive to the
usual Newton force. For example, the EötWash experiment
described above achieves sensitivity of order α≃ 10−2 at
λ≃ 10−4 m, which suggests a reach for Lorentz violation
of order jðk̄effÞJKLMj≃ 10−11 m2, in agreement with the
estimate from the simulation (13). As another example, the
Wuhan experiment [29] attains α≃ 10−3 at λ≃ 10−3 m, for
which Eq. (14) gives the estimate jðk̄effÞJKLMj≃ 10−10 m2.
Similarly, the early Irvine experiment [30] achieved α≃
3 × 10−3 at λ≃ 10−2 m, yielding an approximate reach of
order jðk̄effÞJKLMj≃ 3 × 10−8 m2. In contrast, the Indiana
experiment [25] sits on the cusp of the perturbative limit,
achieving α≃ 1 at λ≃ 10−4 m and hence having an
estimated sensitivity of order jðk̄effÞJKLMj≃ 10−9 m2.
In some gravity theories with violations of Lorentz

invariance, the predicted effects can be comparatively large

while escaping detection to date [31]. The above estimated
sensitivities suggest that terms in the pure-gravity
sector with d > 4 are interesting candidates for such
countershaded effects because the Planck length
≃10−35 m lies far below the range accessible to existing
laboratory experiments on gravity. In any case, short-range
tests of gravity offer an excellent opportunity to search for
local Lorentz violation involving operators with d > 4,
thereby establishing the Einstein equivalence principle for
the pure-gravity sector on a complete and firm experimental
footing.
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