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It is well known that effective potentials can be gauge dependent while their values at extrema should be
gauge invariant. Unfortunately, establishing this invariance in perturbation theory is not straightforward,
since contributions from arbitrarily high-order loops can be of the same size. We show in massless scalar
QED that an infinite class of loops can be summed (and must be summed) to give a gauge-invariant value
for the potential at its minimum. In addition, we show that the exact potential depends on both the scale at
which it is calculated and the normalization of the fields, but the vacuum energy does not. Using these
insights, we propose a method to extract some physical quantities from effective potentials which is self-
consistent order by order in perturbation theory, including improvement with the renormalization group.
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I. INTRODUCTION

Effective actions provide a powerful organizing frame-
work for quantum field theory. Often one computes an
effective action by integrating out a massive particle,
usually at fixed order in perturbation theory as in the
four-Fermi theory, but sometimes to all orders in couplings
but leading order in 1

m2, as in the Euler-Heisenberg
Lagrangian [1,2]. In these cases, the effective action is
an action just like the original one, but with a subset of its
fields. Thus it can be used for the same calculations, such as
S-matrix elements, in the same way. An advantage of the
effective action approach is that it is often easier to expand
in 1

m2 and then calculate the physical quantity than to
perform the calculation before the expansion.
A more subtle use of effective actions occurs when one

integrates out all the particles. Integrating out everything of
course just produces a number (usually ∞). To get func-
tional dependence one can instead integrate out all the
particles in the presence of classical sources J for each to
get a functional W½J� of those sources. The Legendre
transform of W½J� gives an effective action Γ½ϕ� ¼
W½J� − Jϕ, which we call the one-particle irreducible
(1PI) effective action. In the 1PI effective action, the fields
are classical background fields. One cannot perform loops
using Γ½ϕ� since all the loops have already been performed
in integrating out the particles. Γ½ϕ� nevertheless encodes
all the classical and quantum physics of the original theory.
This Γ½ϕ� is therefore an extremely powerful object. It is
also extremely difficult to compute.
These two types of effective action are of course

closely related; for example, the 1PI effective action for
QED reduces to the Euler-Heisenberg Lagrangian when
restricted to a single electron loop and constant

electromagnetic fields. It is nevertheless important to
understand that the 1PI effective action does not function
like the kind of integral over a local Lagrangian one usually
uses in quantum field theory. Γ½ϕ� describes fluctuations in
the presence of background sources, which are normally
absent. The fields ϕ on which Γ depends are classical
fields—functions of space-time, not quantum operators
acting on a Hilbert space. The value of the action at generic
classical field values ϕ has no clear physical meaning.
Indeed, its value depends on the way the calculation is
performed: what gauge is chosen, the normalization of the
fields, and even the scale at which the action is computed
(see Sec. II below). On-shell quantities, such as S-matrix
elements computed from the effective action do not depend
on these conventions. An important property of the
effective action, or the effective potential to which it
reduces for constant fields, is that its minimum gives the
energy of the true ground state of a theory. For this reason,
effective actions provide unrivaled insight into spontaneous
symmetry breaking [3,4].
Despite the unphysical nature of the effective action at

generic field values, its gauge dependence has elicited a
surprising amount of consternation. Since the gauge
dependence was first observed 40 years ago [5], papers
are regularly written claiming that the effective potential
should be defined in some other way, often through a field
redefinition, so that it is manifestly gauge invariant. The
easiest way to make the potential gauge invariant is simply
to pick a gauge: in the mid 1970s, Dolan and Jackiw argued
that only unitary gauge (ξ ¼ ∞) makes sense [6] while S.
Weinberg insisted upon Landau gauge [7] (ξ ¼ 0). Around
the same time, Frere and Nicoletopoulos (based on obser-
vations of Fischler and Brout [8]) argued that one should
use dressed fields which have no field-strength renormal-
ization [9], which is similar to Yennie gauge (ξ ¼ 3). In
1998, Tye and Vtorov-Karevsky argued that one should use
an exact nonlinear field redefinition, replacing a scalar
doublet ϕ1 þ iϕ2 by a linear sigma model σeiπ [10]. Others
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have tried using composite fields, such as ϕ�ϕ [11], using a
displacement operator formalism [12,13], working in a
Hamiltonian formulation [14] or the Vikovisky-DeWitt
[15] formalism, where the introduction of gauge invariance
(and therefore gauge noninvariance) is sidestepped com-
pletely. In 2014, Nielsen [16] proposed a nonlinear, but
perturbative, field redefinition determined by solving a
differential equation with a boundary condition at ξ ¼ ξ0 to
remove the dependence on ξ.
The periodic frustration with the gauge dependence of

the effective potential seems to us somewhat misguided.
Gauge invariance of unphysical quantities is commonplace.
One is not normally bothered by the ξ dependence of the
photon two-point function or the anomalous dimension of a
charged scalar field. Similarly, there is no reason to be
dismayed about the gauge dependence of the effective
action. While field redefinitions can treat a symptom of the
unphysical nature of the potential, they cannot make it any
more physical. In fact, none of the papers cited above seem
to address the incongruity of both using the freedom in
quantum field theory to perform field redefinitions and
claiming that a particular field redefinition is preferred.
Of course, physical quantities, such as on-shell S-matrix
elements must be gauge invariant. Furthermore, gauge
invariance provides a very useful theoretical consistency
check. Not only does it help verify that you did the relevant
loop calculations correctly, but it can also verify that the
quantity you are calculating could possibly be physical.
Thus, for an object as unintuitive as the effective potential,
gauge dependence is in many ways actually desirable.
With these observations in mind, let us consider how the

gauge invariance of some physical quantities calculated
from the effective potential have been established in
perturbation theory and beyond. Our focus in this paper
is on scalar QED at zero temperature. With a negative mass
squared for the scalar this model is called the Abelian Higgs
model. With zero mass we call it the Coleman-Weinberg
model [7]. General nonperturbative demonstrations that
certain quantities calculated from the effective potential in
these models should be gauge invariant were provided by
Nielsen [17] and independently by Fukuda and Kugo [18].
Quantities which are expected to be gauge invariant in these
models include the value of the potential at its extrema and
the pole masses of the scalar and vector bosons in the
spontaneously broken phase. We review some of the main
results from these papers in Secs. II and III.
Although all of our new results pertain to the Coleman-

Weinberg model, we devote Sec. III to the Abelian Higgs
model since it illustrates a number of aspects of gauge
invariance not present when m ¼ 0. We try to provide
a useful summary of this model since the literature is
scattered and somewhat inconsistent. Also, issues which
are not present in the Coleman-Weinberg model, such as an
unphysical gauge-dependent minimum of the effective
potential and the presence of an additional dimensionful

scale, provide a broader picture of some subtleties asso-
ciated with gauge invariance.
The main result of this paper concerns the extrema of the

Coleman-Weinberg effective potential. We demonstrate
that the minimum of the renormalization-group-improved
potential in this model is gauge invariant order by order in
perturbation theory. To show this requires first an under-
standing of the appropriate perturbation expansion.
Perturbation theory must respect the relation λ ∼ ℏe4 which
determines the minimum at one loop (see Sec. IV). We
calculate all the two-loop contributions in Rξ gauges
proportional to ℏ2e6 (Sec. V), as well as all the terms like
ℏnþ2e6 e4n

λn coming from three-loop and higher-order graphs
(Sec. VI) which also contribute at order ℏ2e6 when λ ∼ ℏe4.
Demonstrating gauge invariance in perturbation theory also
requires careful consideration of what dimensionful scale
the potential at the minimum should be expressed in terms
of. The most obvious dimensionful scale v ¼ hϕi is a
questionable candidate since it is gauge dependent itself.
These issues are discussed in Sec. VII, where we show
explicitly that the instability scale ΛI is defined so that
VðΛIÞ ¼ 0 depends on ξ.
Next we augment our perturbative calculation with a

proposal for how perturbation theory in which gauge
invariance holds order by order can be used in a resummed
effective potential. The challenge is that, first, resummation
breaks the strict λ ∼ ℏe4 power counting required for
gauge invariance and, second, that the renormalization-
group kernel for the field-strength renormalization, Γ ¼R
γd ln μ has gauge dependence to all orders in any

expansion. Our solution exploits the invariance of physical
quantities in the effective potential to the scale where the
potential is calculated: we simply run the couplings towards
the minimum before calculating the potential in perturba-
tion theory. Then the field-strength renormalization plays
no direct role.
Although the potential at the minimum is gauge invari-

ant, field values are gauge dependent. For example, the
expectation value of the field, v ¼ hϕi, depends on ξ [cf.
Eq. (3.18)] as does the instability scale ΛI, defined as the
field value where VðΛIÞ ¼ 0 [cf. Eq. (7.10)]. Although the
gauge dependence of field values is often emphasized
[17,19–21] there are still a surprising number of papers
which try to ascribe physical significance to values of ϕ.
Sometimes the physical question one wants to answer is
akin to when higher-dimension operators, for example from
Planck-scale physics, can significantly affect the potential.
We present one gauge-invariant way to deal with these
higher-dimension operators in Sec. IX. Our conclusions
and implications of our work are discussed in Sec. X.

II. EFFECTIVE ACTIONS

We begin with a rapid introduction to effective actions
and their gauge dependence. In this section, ϕ generically
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denotes all the fields in a given theory (in the rest of the
paper ϕ will denote a specific field in scalar QED).
A very useful object in quantum field theory is the 1PI

effective action Γ½ϕ�. When ϕ is independent of x, the
effective action reduces to the effective potential

Γ½ϕ� ¼ −
Z

d4xVðϕÞ þ derivative and nonlocal terms:

ð2:1Þ

The interactions in the effective action embody a sum over
all of the off-shell 1PI graphs in the quantum theory. Since
any graph can be produced by sewing together 1PI graphs,
the effective action when used at tree level can reproduce all
the loops in the original theory. Thus the (quantum)
effective action, when used classically, reproduces the full
quantum physics of a given classical theory. In compensa-
tion for this enormous power, one must sacrifice manifest
locality: in general, Γ½ϕ� ≠ R

d4xL½ϕðxÞ� for any L.
Knowing the effective action amounts to solving a theory.
As this is generally impossible, one must resort to an
approximation to the effective action and argue that this
approximation is valid for the computation of interest.
Although one could compute the 1PI effective action by

computing all 1PI graphs in a theory, this is generally
inefficient. Instead, one often computes the effective action
by relating it to the Legendre transform of the classical
action and doing a background field expansion [5]. We first
define the functional

W½J�≡ −i lnZ½J� ¼ −i ln
�Z

DϕeiS½ϕ�þi
R

d4xϕJ
�

ð2:2Þ

where JðxÞ is an external current. The effective action is the
Legendre transform of W½J�:

Γ½ϕ� ¼ W½Jϕ� −
Z

d4xJϕϕ: ð2:3Þ

Here Jϕ denotes the value of the external current which
would make a given ϕ solve the equations of motion.
Equivalently, in the presence of a current Jϕ, the expect-
ation value of the field is ϕJ:

ϕJ ¼ hJϕjϕðxÞjJϕi ¼ −i
1

Z
∂Z½J�
∂JðxÞ

����
J¼JϕJ

¼ ∂W½J�
∂JðxÞ

����
J¼JϕJ

:

ð2:4Þ

In this equation Jϕ is the independent variable which
determines ϕJ as the expectation value of the field in its
presence. For example, when J ¼ 0, so that no current is
turned on, then ϕ0 ¼ hϕi is the true vacuum in the theory.
The conjugate relation is

∂Γ½ϕ�
∂ϕ

����
ϕ¼ϕJ

¼ −Jϕ: ð2:5Þ

Here ϕJ is the independent variable to be chosen and used
to compute Jϕ. Importantly, this equation implies that the
true vacuum of the theory, ϕ0, is an extremum of the
effective action. There is an assumed one-to-one corre-
spondence between ϕJ and Jϕ, which is why the effective
potential should always be convex.1

The effective action is to be used classically, so that fields
are always on-shell, satisfying their equations of motion.
When ϕ is not an extremum of Γ, it represents the
expectation value of the field in the presence of a nonzero
background current; it is the classical solution to a different
system. In other words, Γ½ϕ� encodes how the system
responds to external currents for which Eq. (2.4) is
satisfied. That this Legendre transform produces the object
whose vertices are 1PI graphs in the original theory is not
obvious. It is also not obvious that Γ½ϕ� can be computed by
shifting the fields ϕ → ϕþ ϕq and computing 1PI graphs
involving ϕq with ϕ held fixed. These three representations
of Γ½ϕ� are explained in more detail in Refs. [4,24,25].

A. Gauge dependence

The main issue of concern in this paper is the gauge
dependence of the effective action. The gauge dependence
arises because when the source J is nonzero, the system has
a nondynamical background charge density. Since there is
no corresponding coupling of this charge density to the
photon, the Ward identity will consequently be violated [5].
In the special case when J ¼ 0, there is no charged
background. Then ϕ0 ¼ h0jϕðxÞj0i is extremal and we
have simply

Γ½ϕ0� ¼ W½0� ¼ −i lnZ½0� ¼ −i ln
Z

DϕeiS½ϕ�: ð2:6Þ

This expression is gauge invariant, since gauge-fixing
modifies Z½0� only by an infinite constant, which drops
out of lnZ½0� (see Ref. [18] for a longer discussion with a
careful treatment of the divergences in Z½0�). Thus when
∂Γ½ϕ�
∂ϕ ¼ 0, then the effective action is gauge invariant
by Eq. (2.5).
An alternative way to show gauge invariance at the

extremum is by exploring how and when Ward identities
are violated in the presence of a background current
[17,18]. In particular, Ref. [17] demonstrated that in
Fermi gauges, where the gauge-fixing term is
− 1

2ξ ð∂μAμÞ2, the effective potential satisfies

1The convexity issue is a thorny one [22,23], as the effective
potential in the Standard Model appears to be perturbatively
nonconvex. Conveniently, all the effective potentials we consider
in this paper are convex.
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�
ξ
∂
∂ξþ Cðϕ; ξÞ ∂

∂ϕ
�
Vðϕ; ξÞ ¼ 0 ð2:7Þ

where Cðϕ; ξÞ is some precisely well-defined object,
independently calculable order by order in perturbation
theory. What this equation implies is that the gauge
dependence of the effective potential can be compensated
for by a rescaling of ϕ. It also apparently implies that at an
extremum, where ∂

∂ϕVðϕ; ξÞ ¼ 0, the effective potential is

automatically gauge invariant, ∂
∂ξVðϕ; ξÞ ¼ 0, consistent

with the simple argument in the previous paragraph.
There are a number of unsettling features of the Nielsen

identity. First of all, it is somewhat trivial, in the sense that
one can always define a function Cðϕ; ξÞ so that Eq. (2.7)
holds; one simply defines Cðϕ; ξÞ by Eq. (2.7). Indeed, this
is a shortcut to calculating Cðϕ; ξÞ. This shortcut makes it
clear that the Nielsen identity only guarantees that
∂
∂ξVðϕ; ξÞ ¼ 0 at an extremum if Cðϕ; ξÞ is finite at the
extremum. A second unsettling feature of the Nielsen
identity is that Cðϕ; ξÞ is sometimes infinite [17]. When
this happens, one cannot conclude that the potential at the
extremum is gauge invariant, or that it is not. It is also
possible for Cðϕ; ξÞ to be infinite at the extremum to all
orders in perturbation theory but finite nonperturbatively.
For a concrete example, as we will see in Sec. VII, in the

Coleman-Weinberg model Cðϕ; ξÞ is logarithmically diver-
gent as ϕ approaches an extremum when the potential is
expressed in terms of the expectation value v ¼ hϕi. The
origin of this divergence is that v itself is gauge dependent.
If instead one expresses V in terms of the modified minimal
subtraction (MS) scale μ, then Cðϕ; ξÞ is finite at the
minimum. Thus, as we show in this paper, the value of the
potential at the minimum is gauge invariant order by order
only in a carefully considered perturbation expansion.

B. Rescaling and calculation scale invariance

Another feature of the potential at the minimum is that it
is independent of field rescaling: ϕ → κϕ for any κ. This is
not a deep observation, as the value of any function at a
minimum is invariant under a rescaling of the dependent
variable (see Fig. 1). More generally, the value of the
potential at an extremum is independent of any field
redefinition, ϕ → ϕ0ðϕÞ. These are intuitive features of
quantum field theories, since the path integral is also
invariant under field redefinitions, and the effective action
in the true vacuum is defined as a path integral in Eq. (2.6).
Indeed, the gauge invariance of the action at extrema is a
special case of general field-redefinition invariance, since
one can view gauge transformations as field redefinitions.
In doing so, however, one must allow for the possibility that
if with one definition an extremum is at Aμ ¼ 0, with
another definition it may be at a nonzero and x-dependent
expectation value for Aμ.

A corollary of the above argument is that the potential
away from its extrema does depend on how the field is
normalized and defined. This is also obvious from Fig. 1.
Away from an extremum, the action describes the system in
the presence of a current J. When one rescales the field ϕ,
the Jϕ term with J fixed breaks the invariance of the path
integral under rescaling. Equivalently, from Eq. (2.5), we
see that Jκϕ ¼ 1

κ Jϕ so that when a field is rescaled, Γ½κϕ�
gives the least action in the presence of a rescaled current.
A number of authors have proposed that the gauge

dependence of the effective potential can be removed
through a field redefinition [8–11,16]. For example, Tye
and Vtorov-Karevsky argue that one should replace ϕ1 þ
iϕ2 → σ expðiπÞ [10]. Then σ is a U(1) singlet and so its
source J is neutral and the interaction Jσ in the Lagrangian
does not cause the Ward identity to be violated. Although
there is nothing wrong with this argument, physical
quantities, such as the value of the potential at its minimum,
should be independent of field redefinitions. A field
redefinition is in a sense similar to a gauge choice. It does
not make the potential away from the minimum any more
physical. Moreover, with this nonlinear field redefinition, a
renormalizable theory becomes nonrenormalizable and
nominally straightforward calculations can become drasti-
cally more complicated (try computing βλ at one loop in
this theory). The point is that physics should be indepen-
dent of field redefinitions, so one should choose a basis
which simplifies the calculations, not one that makes
unphysical quantities more comforting.
An interesting and underappreciated fact about the

effective potential is that its form depends on the scale
where it is computed. The effective potential satisfies a
renormalization group equation (RGE):

�
μ
∂
∂μ − γiϕi

∂
∂ϕi

þ βi
∂
∂λi

�
V ¼ 0: ð2:8Þ

5 10 15

�10

�5

5

FIG. 1 (color online). Under the rescaling of the dependent
variable, a function changes but its values at extrema do not [21].
This elementary mathematical fact explains why the effective
potential can depend on the field normalization, but Vmin
does not.
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This equation says that the explicit dependence on the RG
scale μ in the effective potential can be compensated by
redefining the couplings λi, through their β functions, and
rescaling the fields ϕi based on their anomalous dimensions
γi. One can compute the potential to fixed order at a scale
μ0, in terms of λiðμ0Þ and μ0 and then evolve to some other
scale μ by solving this equation simultaneously with the
RGEs for the coupling constants; we call this method 1.
Alternatively, one could evolve the couplings to μ and then
compute the effective potential there; we call this method 2.
The potentials at μ computed in these two different ways
will not agree: they differ because in method 1, the
rescaling of ϕi from μ0 to μ is included, while in method
2, it is not. We show through an explicit example in
Sec. VIII A that in the Coleman-Weinberg model, the two
methods give potentials which indeed differ by ln μ

μ0
terms

at next-to-leading order.
One can easily write a differential equation similar to

Eq. (2.7) for the scale dependence:�
μ0

∂
∂μ0 − γiϕi

∂
∂ϕi

�
Vðϕ; μ0; μÞ ¼ 0 ð2:9Þ

whereμ0 is the scale atwhich thepotential is calculated before
it is run to the scale μ by solving Eq. (2.8). In a sense, this
equation although trivial to derive is more useful than the
Nielsen identity, since γi cannot be infinite [unlikeCðϕ; ξÞ in
Eq. (2.7)]. It immediately indicates that at an extremum, the
effective potential is μ0 independent. We use this calculation-
scale invariance in Sec. VIII C to show how a resummed
effective potential can be computed so that it is gauge
invariant order byorder in a particular perturbation expansion.
For another perspective, recall that the vertices of the

effective action encode (amputated) 1PI Green’s functions.
General amputated Green’s functions satisfy an RGE
identical to Eq. (2.8), including the γ term. Thus they also
depend on the scale where they are calculated. In con-
verting such Green’s functions to S-matrix elements,
the Lehmann-Symanzik-Zimmermann reduction theorem
instructs us to multiply by

Q
i

ffiffiffiffiffi
Zi

p
, where

ffiffiffiffiffi
Zi

p
is the on-

shell wave-function renormalization factor for the external
leg i. In MS, these Z factors are not 1 but are gauge and
scale dependent. Indeed, their μ dependence explicitly
cancels the γ term in Eq. (2.8) so that all scale dependence
is S-matrix elements is compensated for by rescaling the
couplings according to their β functions. As the β functions
are gauge invariant in MS, the S matrix can then be gauge
invariant at any scale.
In summary, the effective potential at general field values

depends on an arbitrary calculation scale μ0. This is
different from the usual dependence on the renormalization
scale μ arising from a truncation to fixed order in
perturbation theory. The effective potential has that depend-
ence as well, but it depends on μ0 even nonperturbatively.
The value of the potential at extrema is μ0 independent.

That the μ0 dependence drops out at extrema does not
require field redefinitions or multiplication by the wave-
function renormalization factors included in going from
Green’s functions to S-matrix elements.

III. ABELIAN HIGGS MODEL

This paper focuses on scalar QED, a renormalizable
theory with two scalar fields ϕ1 and ϕ2, a photon, Aμ and an
Oð2Þ symmetry. If the scalar doublet is given a negative
mass squared in the classical potential, the model is called
the Abelian Higgs model. This section is a review of results
in Refs. [6,19,26,27] with some details filled in and a few
added comments. Establishing gauge invariance in this
model is simpler than in the Coleman-Weinberg model for
the essential reason that there is spontaneous symmetry
breaking already in the classical potential. Consequently, a
traditional loop expansion is justified and the first nontrivial
check occurs at one loop. Nevertheless, the Abelian Higgs
model presents interesting features and subtleties that are
complementary to those in the Coleman-Weinberg model,
which is why we discuss it here.
We write the Lagrangian as

L ¼ −
1

4
F2
μν þ

1

2
ð∂μϕ1 − eAμϕ2Þ2 þ

1

2
ð∂μϕ2 þ eAμϕ1Þ2

− V0 þ LGF þ Lghost ð3:1Þ

with the classical potential

V0ðϕÞ ¼ −
1

2
m2ϕ2 þ λ

24
ϕ4 ð3:2Þ

where

ϕ2 ≡ ϕ2
1 þ ϕ2

2: ð3:3Þ

Since the theory has a global Oð2Þ symmetry rotating ϕ1

and ϕ2, the effective potential should only depend on ϕ.
When m2 > 0, the classical potential is minimized when

vcl ≡ hϕ1iclassical ¼
ffiffiffi
6

λ

r
m: ð3:4Þ

We have used the global Oð2Þ symmetry to put the vacuum
expectation value (VEV) in ϕ1 with hϕ2i ¼ 0. Since we
have normalized the vacuum energy so that V0ð0Þ ¼ 0,
the value of the classical potential at the minimum
is V0ðvclÞ ¼ − 3

2λm
4 ¼ − λ

24
v4cl.

To compute quantum corrections to the vacuum energy,
we need to fix a gauge. In gauge fixing, as always, one
looks for a deformation of the theory with the fewest nasty
features. To appreciate the relevant tradeoffs, it is helpful to
use a three-parameter family (ξ, ϒ1 and ϒ2) of gauges [6].
We write
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LGF ¼ −
1

2ξ
ð∂μAμ þ eξϒ1ϕ1 þ eξϒ2ϕ2Þ2: ð3:5Þ

The associated Fadeev-Popov ghost Lagrangian is

Lghost ¼ ð∂μc̄Þð∂μcÞ − e2ξϒ1ϕ2c̄cþ e2ξϒ2ϕ1c̄c ð3:6Þ

where the ghosts c and antighosts c̄ are Grassmann-valued
scalar fields.
For ϒi ¼ 0, these are the Fermi gauges. Fermi gauges

are appealing because they do not explicitly break the
global Oð2Þ symmetry rotating ϕ1 and ϕ2 and because the
ghosts decouple. A drawback of Fermi gauges is that there
is uncanceled kinetic mixing between the gauge field and
the scalars. A more serious problem with Fermi gauges is
that they can lead to singular intermediate results, as we
will see, which make some calculations difficult.
The Rξ gauges [28] are ϒ1 ¼ vcl and ϒ2 ¼ 0. Note that

even in Rξ gauges, there is still kinetic mixing when ϕ ≠ vcl
and, except for Landau gauge, ξ ¼ 0, the ghosts are not free.
In the Rξ gauges, the global Oð2Þ symmetry is explicitly
broken. This breaking is not dangerous, since gauge-
independent quantities must be independent of the gauge
fixing and should respect the Oð2Þ symmetry. A more
troubling fact about ϒ1 ¼ vcl is that the classical minimum
vcl is then hardcoded into the Lagrangian, when presumably
only the true quantum minimum has any physical signifi-
cance. It would be even more troubling to allow ϒi to be
dynamical, for example with ϒ1 ¼ ϕ; such gauges led
Weinberg to declare Rξ gauges problematic in all but
Landau gauge, ξ ¼ 0 [7] (seeRef. [18] for a careful refutation
of the argument in Ref. [7]). In the three-parameter family we
consider here, ϒi are arbitrary, so vcl does not appear.
Another feature of the Abelian Higgs model with this

gauge fixing is that it has a spurious unphysical minimum.
The gauge fixing induces a coupling between ϕ1 and ϕ2 in
the classical potential. Thus there is a solution for constant
fields with Aμ ¼ c ¼ c̄ ¼ 0 and

ϕi ¼ eϒi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6m2

λe2ðϒ2
1 þϒ2

2Þ
þ 6ξ

λ

s
: ð3:7Þ

The potential in this solution has the value

Vmin ¼ −
3

2λ
½m2 þ e2ξðϒ2

1 þϒ2
2Þ�2 ð3:8Þ

which is gauge dependent and unphysical. This solution,
found by Dolan and Jackiw [6], led them to argue for
unitary gauge, ξ ¼ ∞. As explained in Ref. [18] (see also
Ref. [27]), the trouble with this solution is not the gauge
dependence, but that, despite satisfying the Euler-Lagrange
equations, it does not extremize the action. An extremal
solution related to this one has a nonvanishing and position-
dependent expectation value for Aμ; the gauge-fixing term
contributes at spatial infinity so the boundary terms cannot
be dropped in deriving the Euler-Lagrange equations. In
this sense the three-parameter gauge fixing provides what
Ref. [18] called a bad gauge. Note that there is nothing
inconsistent about bad gauges; they are just rather incon-
venient for doing calculations because of the position-
dependent extrema. If we stick to solutions close to the
gauge-independent classical one, with ϕ1 ¼ vcl and
ϕ2 ¼ 0, the position-dependent solutions can be ignored.
Another criterion for choosing one gauge over another was
discussed in Ref. [13].
We can always use the Oð2Þ symmetry to keep hϕ2i ¼ 0

to all orders. If we do so, then we do not even need to turn
on a background field for ϕ2, since it will not contribute to
the extremal solutions for ϕ1. To avoid the bad gauges
discussed above, we should correspondingly take ϒ1 ¼ 0.
A more general Oð2Þ-invariant condition is to only turn
on the linear combination which has ϒi · hϕii ¼ 0. This
is essentially what was done in Ref. [26]. Then, the
renormalized one-loop effective potential in MS with
m ≠ 0 is

V1ðϕÞ ¼
ℏ

16π2

�
3

4
M4

A

�
ln
M2

A

μ2
−
5

6

�
þ 1

4
M4

B

�
ln
M2

B

μ2
−
3

2

�
−
1

2
M4

G

�
ln
M2

G

μ2
−
3

2

�
þ 1

4
M4þ

�
ln
M2þ
μ2

−
3

2

�
þ 1

4
M4

−

�
ln
M2

−

μ2
−
3

2

��
ð3:9Þ

where

M2
A ¼ e2ϕ2; ð3:10Þ

M2
B ¼ λ

2
ϕ2 −m2; ð3:11Þ

M2
G ¼ ξe2ðϒ1ϕ2 −ϒ2ϕ1Þ ð3:12Þ

are the contributions from Aμ, ϕ and ghosts, respectively and

ANDREASSEN, FROST, AND SCHWARTZ PHYSICAL REVIEW D 91, 016009 (2015)

016009-6



M2
� ¼ λ

12
ðϕ2 − v2clÞ þ ξe2ðϒ1ϕ2 −ϒ2ϕ1Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

6
½ϕ2 − v2cl�

�
λ

6
ðϕ2 − v2clÞ − 4ξe2ϕ2 þ 4ξe2ðϒ1ϕ2 −ϒ2ϕ1Þ

�s
ð3:13Þ

come from the kinetic mixing.
Then, assuming that the VEV of ϕ1 gets a pertur-

bative correction v ¼ hϕ1i ¼ vcl þ v1 þ � � � for some v1
of order ℏ, we can evaluate the potential at the minimum
perturbatively:

Vmin ¼ V0ðvÞ þ V1ðvÞ þ � � � ð3:14Þ

¼ V0ðvclÞ þ v1V 0
0ðvclÞ þ V1ðvclÞ þ � � � ð3:15Þ

¼ V0ðvclÞ þ V1ðvclÞ þ � � � þOðℏ2Þ ð3:16Þ

where the omitted terms areOðℏ2Þ andV 0
0ðvclÞ ¼ 0 has been

used. The importance of doing an analytic expansion in ℏ
with an appropriate truncation before evaluating Vmin or
other physical quantities was emphasized by Patel and
Ramsey-Musolf in Ref. [21] (see also Ref. [19]). Since
M2þ ¼ M2

− ¼ M2
G ¼ −ξe2ϒ2vcl whenϕ1 ¼ vcl andϕ2 ¼ 0,

we find that VðvÞ is gauge invariant to order ℏ. Explicitly,

Vmin ¼ v4cl

�
−

λ

24
þ ℏ
16π2

�
−
5

8
e4 −

1

24
λ2 þ 1

36
λ2 ln

λv2cl
3μ2

þ 3

4
e4 ln

e2v2cl
μ2

�
þOðℏ2Þ

�
: ð3:17Þ

Thus the vacuum energy is manifestly gauge independent.
To determine v1, we note that the minimum condition is

0 ¼ V 0
0ðvÞ þ V 0

1ðvÞ þ � � � ¼ V 0
0ðvclÞ þ v1V 00

0ðvclÞ þ V 0
1ðvclÞ þ � � � : ð3:18Þ

Using again that V 0
0ðvclÞ ¼ 0, we get v1 ¼ − V 0

1
ðvclÞ

V 00
0
ðvclÞ which gives

v1 ¼ vcl
ℏ

16π2

�
3e4

λ
þ λ

2
−
9e4

λ
ln
e2v2cl
μ2

−
λ

2
ln
v2clλ
3μ2

þ e2ξ
2

ln
−e2vclξϒ2

μ2

�
þϒ2e2ξ

ℏ
16π2

�
−
1

2
þ ln

−e2ξvclϒ2

μ2

�
: ð3:19Þ

This expression manifestly depends on both ξ and ϒ2. The
dangers of assigning physical significance to hϕi have been
emphasized in Refs. [19,21] and elsewhere.
Note that v1 is singular in Fermi gauges,ϒi → 0, but not

in Landau gauge ξ → 0. The singularity is an infrared
divergence associated with the ghosts becoming massless.
As pointed out in Refs. [17] and [26], the function Cðϕ; ξÞ
in the Nielsen identity also has an infrared divergence in
Fermi gauge. As discussed in Sec. II A, the fact that Cðϕ; ξÞ
can be infinite calls into question the usefulness of the
Nielsen identity; as we have seen, the potential at the
minimum is gauge invariant for any choice of ϒ2 and ξ.
At this point, we can conclude that everything works

swimmingly: the vacuum energy is gauge invariant but the
VEVis not, exactly as foretold by theNielsen identity. At the
risk of being too cautious, it is perhaps worth adding that in
the Abelian Higgs model, Vmin is not actually observable;
the true renormalized vacuum energy has an arbitrary
subtraction associated with the cosmological constant.
Even if the vacuum energy can be measured (for example,
by weakly coupling this model to gravity), one still needs a
scheme to measure the difference ΔV ¼ Vmin − Vð0Þ
between this energy and the energy at ϕ ¼ 0. This differ-
ence, as a function of vcl, e and λ is what we have calculated.

Even then, although ΔV is independent of gauge, it is

expressed in terms of vcl ¼
ffiffi
6
λ

q
m which is itself unphysical.

Indeed, evenm is not physical: it is not the mass of the scalar
in the vacuum. That mass, which we denote asmS, itself gets
corrections of order ℏ from self-energy graphs. The gauge-
dependent part of these corrections at order e2λ has been
calculated in Ref. [26], with the result that d

dξmS ¼ 0.

ThereforeΔV=m4
S is gauge independent and only a function

of the MS couplings e and λ. This ratio is in principle
observable, ifΔV is, and depends only on other observables,
e and λ. With this long-winded disclaimer, we can now
conclude that quantum corrections in the effective potential
can make (in principle) testable experimental predictions.
In summary, in the Abelian Higgs model both ΔV ¼

Vmin − Vð0Þ andmS are separately independent of the gauge
parameters ξ and ϒ2 at order ℏ when expressed in terms of
the classical expectation value of ϕ, vcl. ThatΔV andmS are
separately gauge invariant is not strictly necessary. All that is
required is that the gauge dependence cancels in the ratio
ΔV=m4

S which is a calculable function of the observables e
and λ. As we will see, in the Coleman-Weinberg model,
where the classical theory is scaleless, such considerations
are critical. We also found that the expectation value of the
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field v ¼ hϕi is not gauge invariant at order ℏ. In the Fermi
gauges, ϒi ¼ 0, v even has an infrared divergence.

IV. COLEMAN-WEINBERG MODEL

Now let us turn to the main subject of this paper, i.e.,
scalar QED with a massless scalar, also known as the
Coleman-Weinberg model. The Lagrangian is as in
Eq. (3.1), with

V0 ¼
λ

24
ϕ4 ð4:1Þ

and the gauge-fixing term is

LGF ¼ −
1

2ξ
ð∂μAμÞ2: ð4:2Þ

These can be thought of as Rξ gauges (since vcl ¼ 0 in
this theory) or Fermi gauges. They correspond to
ϒ1 ¼ ϒ2 ¼ 0 in the three-parameter gauge family dis-
cussed above, and so the ghosts decouple and can be
ignored. There is unavoidable kinetic mixing between ϕ
and ∂μAμ in this theory, but as in the Abelian Higgs model,
this is an inconvenient but not insurmountable
complication.
The renormalized one-loop effective potential in MS in

this theory is the m → 0 limit of Eq. (3.9):

V1ðϕÞ ¼ ϕ4
ℏ

16π2

�
3

4
e4
�
ln
e2ϕ2

μ2
−
5

6

�
þ λ2

16

�
ln
λϕ2

2μ2
−
3

2

�
þ
�

λ2

144
−

1

12
e2λξ

��
ln
ϕ2

μ2
−
3

2

�
þ 1

4
K4þ lnK2þ þ 1

4
K4

− lnK2
−

�
ð4:3Þ

with

K2
� ¼ 1

12
ðλ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 24λe2ξ

p
Þ: ð4:4Þ

The relation

K4þ þ K4
− ¼ λ2

36
−
1

3
e2λξ ð4:5Þ

has been used to simplify the one-loop potential.
The tree-level potential in this model has only a single

minimum, at ϕ ¼ 0, where the Oð2Þ symmetry is unbroken.
For there to be a minimum at one loop, the corrections must
be large enough to turn over the potential. For λ small, so
that the theory is perturbative, this is only possible if the
ℏ

16π2
e4 term is as large as the tree-level λ

24
piece. So let us

assume λ ∼ ℏ
16π2

e4 and that there is a minimum at some
scale v. Then the condition for the minimum, V 0ðvÞ ¼ 0
provides a precise relationship between λ and e:

λ ¼ ℏ
16π2

e4
�
6 − 36 ln

ev
μ

�
þOðe6Þ: ð4:6Þ

As discussed in Ref. [4], to understand this equation one
must appreciate dimensional transmutation. In scalar QED,
the only scale is the scale μ at which the couplings are
defined. μ is arbitrary, so we may as well take μ ¼ v. Then
Eq. (4.6) reduces to

λ ¼ ℏ
16π2

e4ð6 − 36 ln eÞ þOðe6Þ: ð4:7Þ

This equation should be thought of as a condition on λ ¼
λðμÞ and e ¼ eðμÞ: the minimum occurs at the scale v ¼ μ

where Eq. (4.7) holds. Of course, vwill get corrections and,
as we will see, is gauge dependent (unlike μ). But at least at
one loop, this is an acceptable way to think about the
minimum in the effective potential in scalar QED.
Since λ and e can be anything, it is natural to wonder

whether Eq. (4.7) requires some kind of finite tuning. As
explained in Ref. [4] it does not. The evolution of e and λ
are determined by the β functions:

μ
d
dμ

e ¼ βe; μ
d
dμ

λ ¼ βλ; ð4:8Þ

where, at one loop,

βe ¼
ℏ

16π2

�
e3

3

�
þ � � � ; ð4:9Þ

βλ ¼
ℏ

16π2

�
36e4 − 12e2λþ 10λ2

3

�
: ð4:10Þ

The key feature of these equations is that e is multiplica-
tively renormalized (e ¼ 0 is a fixed point of the RG flow)
while λ can get an additive correction even at λ ¼ 0. What
this means is that if λ and e start off small, e runs
logarithmically, but λ will grow at an ever increasing rate
until it hits a Landau pole. Indeed, the exact solutions to the
one-loop RGEs are [4]

e2ðμÞ ¼ e2ðμ0Þ
1 − e2ðμ0Þ

24π2
ln μ

μ0

ð4:11Þ

which expresses eðμÞ in terms of e at some reference scale
μ0 and
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λðμÞ ¼ e2ðμÞ
10

�
19þ

ffiffiffiffiffiffiffiffi
719

p
tan

� ffiffiffiffiffiffiffiffi
719

p

2
ln
eðμÞ2
C

��
ð4:12Þ

where C is an integration constant which can be traded for
λðμ0Þ. The tangent in λðμÞ implies that as e2 changes by a
factor of ≈1.2, λ will go from −∞ to ∞. In particular, if λ
and e are small, there will always be a point where Eq. (4.7)
is satisfied.
At the minimum, we find

Vmin ¼ v4
ℏ

16π2
e4
�
−
3

8

�
þOðe6Þ: ð4:13Þ

This is gauge invariant, simply because the e4 terms in
V1ðϕÞ are gauge invariant.
The first nontrivial check on the gauge invariance of

VðvÞ requires the terms in the effective potential of order
ℏ2e6, with λ counting as order ℏe4, and ln e and ln λ
counting as order e0. In scalar QED, each loop comes with
a factor of ℏe2 or ℏλ from the vertices, so ℏe2λ terms come
from one-loop graphs and ℏ2e6 terms from two-loop
graphs. Thus we need at least the two-loop Coleman-
Weinberg potential. In addition, effective-potential calcu-
lations involve an infinite number of background-field
insertions, which can be conveniently resummed into
dressed propagators with e- and λ-dependent masses.
These propagators allow for graphs to have extra factors
of e2=λ in them. For example, a three-loop graph gives a
term proportional to ℏ3e10=λ which also scales like ℏ2e6

when λ ∼ ℏe4. These higher-loop terms are discussed
in Sec. VI.

V. THE TWO-LOOP COLEMAN-WEINBERG
POTENTIAL

The complete two-loop potential in scalar QED with
gauge dependence does not appear in the literature, as far as
we are aware. The two-loop potential in Landau gauge is
known in the complete Standard Model [29] and for general
renormalizable theories [30]. Kang computed the terms in

the two-loop potential at order e6 that depend on ln ϕ2

μ2
, but

with a subtraction scheme slightly different from MS [31].
For our analysis, we also require the μ-independent part of
the effective potential at order e6. We will also need an
infinite series of other graphs, the daisy graphs, which are
discussed in Sec. VI, but let us start with the two-loop
computation. To compute the effective potential at this
order, there is a counterterm contribution and a contribution
from two-loop graphs. We work in d ¼ 4 − 2ε dimensions
throughout, and the scale μ is the MS renormalization scale
which implicitly contains the ln 4π and γE factors.

A. Counterterm contribution

The counterterm contribution can be extracted from the
OðεÞ part of the one-loop potential by multiplying the 1

ε
poles in the renormalization factors. In d ¼ 4 − 2ε dimen-
sions, the one-loop potential can be written as

V1 ¼ ϕ4½ð3 − 2εÞfðe2Þ þ f

�
λ

2

�
þ fðK2þÞ þ fðK2

−Þ� þOðε2Þ ð5:1Þ

where

fðxÞ ¼ −
x2

64π2

�
1

ε
þ 3

2
− ln

xϕ2

μ2
þ ε

2

�
ln
xϕ2

μ2
−
3

2

�
2

þ ε

�
5

8
þ π2

12

��
ð5:2Þ

with K� defined in Eq. (4.4). The one-loop renormalization factors are

Zϕ ¼ 1þ ℏ
16π2

1

ε
ð3 − ξÞe2 þ � � � ; Ze ¼ 1þ ℏ

16π2
1

ε

e2

6
þ � � � ; λZλ ¼ λþ ℏ

16π2
1

ε

�
18e4 − 6e2λþ 5

3
λ2
�
þ � � � :

ð5:3Þ

Replacing e → Zee, λ → Zλλ and ϕ →
ffiffiffiffiffiffi
Zϕ

p
ϕ and expanding to order ℏ2ε0 gives the counterterm contribution to the two-

loop potential:

Vct
2 ¼

�
ℏ

16π2

�
2

ϕ4e6
�
ð−10þ 6ξÞln2 eϕ

μ
þ
�
10

3
− 4ξþ 3

2
ξ ln

λξ

6e2

�
ln
eϕ
μ

−
5

3
−
5π2

12
þ 2ξþ π2

16
ξ −

3

4
ξ ln

λξ

6e2
þ 3

16
ξln2

λξ

6e2

�
þOðe4λ; e2λ2; λ3Þ: ð5:4Þ
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B. Two-loop contribution

The two-loop contribution to the next-to-next-to-lead-
ing-order (NNLO) effective potential can be computed
from Feynman diagrams with dressed propagators
(called prototype diagrams in Ref. [4]). The most
straightforward way to compute the effective potential
is to turn on a background field for ϕ1 by replacing
ϕ1 → ϕ1 þ ϕ in the classical Lagrangian. After

substituting this into the classical Lagrangian and
dropping the terms linear in the propagating fields
ϕ1, ϕ2 and Aμ, we compute the propagators by diagonal-
izing the kinetic terms, treating the background field ϕ
as constant. The resulting propagators are

(5.5)

(5.6)

(5.7)

,

with K� given in Eq. (4.4) and

(5.8).

This last propagator comes from the kinetic mixing
between ϕ2 and Aμ in the presence of a background field
for ϕ1. The asymmetry betweenD11 andD22 arises because
we are only turning on a background for ϕ1 for simplicity.
The full effective potential of course also depends on
background values for ϕ2. However, since the effective
potential has a global Oð2Þ symmetry, it is enough to turn

on a ϕ1 background for the questions we address in this
paper.
The propagators in Eqs. (5.5)–(5.8) are effective propa-

gators, where all of the flipping between scalars and
longitudinal vector bosons that can occur between inter-
actions has already been resummed. In this way, an infinite
set of diagrams is replaced by a single one:

(5.9).

Diagrams where there is one flip between vertices are still allowed (for example, see Fig. 2 below). The hair on the left-hand
diagrams indicates background field insertions which are implicit in prototype diagrams, even without kinetic mixing.
There are five types of interactions:

(5.10),,

(5.11),,
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where the solid lines can be either ϕ1 or ϕ2. These
Feynman rules can also be found in Ref. [31] after
rescaling λ → λ

3
to match our normalization, with an

extended discussion of their derivation in Appendix A
of that reference. Diagrams constructed with these
Feynman rules were dubbed prototype diagrams in
Ref. [4] to emphasize that they represent an infinite
number of diagrams with arbitrary numbers of back-
ground-field insertions.

The effective potential is computed with these Feynman
rules by evaluating vacuum energy contributions, i.e.,
diagrams with no external propagating fields. Each such
diagram corresponds to an infinite number of background-
field insertions. One can also compute terms in the effective
action which have derivatives, such as corrections to the
kinetic term ð∂μϕÞð∂μϕÞ. To do so, one inserts a finite
momentum pμ into a single background field line. The
procedure is described in Ref. [32]. The one-loop effective
potential is a special case: the vacuum diagrams are
quadratically divergent. A trick to computing it is to add
external legs with pμ ¼ 0. Inserting one such leg produces
the first derivative of the potential,V 0ðϕÞ. Two legs gives the
second derivative, V 00ðϕÞ and so in. Conversely, the second
derivative of the potential V 00ðϕÞ determines the scalar
propagator at zero momentum, which in turn can be used
to calculate the mass of the scalar at one loop. The path of
least resistance is often to compute the one-loop potential
using functional determinants [5] and the potential at two
loops and beyond with prototype Feynman diagrams.
At two loops, no additional tricks are needed and we can

compute the effective potential directly from the vacuum
diagrams with dressed propagators. All of the two-loop
diagrams can be computed using two master integrals. The
first is a standard one-loop integral

I1ðΔÞ ¼
Z

ddk
ð2πÞd

1

k2 − Δþ iε
¼ −i

ð4πÞd=2
1

Δ1−d
2

Γ
�
2 − d
2

�
:

ð5:12Þ
The second is the two-loop scalar vacuum sunset graph
with three masses [29,30,33]:

I2ðA; B;CÞ ¼
Z

ddk1
ð2πÞd

Z
ddk2
ð2πÞd

1

ðk21 − Aþ iεÞðk22 − Bþ iεÞððk1 þ k2Þ2 − Cþ iεÞ : ð5:13Þ

This integral is fully symmetric in A, B and C. The full result in d dimensions can be found in Ref. [33] along with its ε
expansion. Writing d ¼ 4 − 2ε, the expansion is

I2ðA;B;CÞ ¼
1

ð4πÞ4−2ε
Γð1þ εÞ2

ð1 − εÞð1 − 2εÞ
1

2C2ε

×

�
−

1

ε2
ðAþ Bþ CÞ þ 2

ε

�
A ln

A
C
þ B ln

B
C

�
− Aln2

A
C
− Bln2

B
C
þ ðC − A − Bþ CλÞ ln A

C
ln
B
C

−
1

3
Cλπ2 − 2Cλ ln

A − Bþ C − Cλ
2C

ln
B − Aþ C − Cλ

2C
þ 2CλLi2

�
B − Aþ C − Cλ

2C

�

þ 2CλLi2

�
A − Bþ C − Cλ

2C

�	
ð5:14Þ

with

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. There are 12 prototype diagrams which contribute to the
two-loop Coleman-Weinberg potential in Rξ gauges. Only the
four diagrams in the top row contribute at nect-to-leading order
(NLO) (order ℏ2) when λ ∼ ℏ.
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λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðB − CÞ2 − 2AðBþ CÞ

C2

s
: ð5:15Þ

This expansion holds if λ2 ≥ 0 and
ffiffiffiffi
A

p þ ffiffiffiffi
B

p
≤

ffiffiffiffi
C

p
. The expansion in other regions can be obtained by permuting A, B

and C.
There are four diagrams that contribute at order ℏ2e6:

(5.16)
,

(5.17)
,

(5.18)
,

(5.19)

with the � � � vanishing as λ → 0. Kang computed some of the logarithmic terms in these amplitudes in Ref. [31], and we
agree with his results. We also confirm the observation of Ref. [34] that the sum of graphs B, C andD are gauge invariant on
their own. We have supplemented the integrand-level observation of Ref. [34] with explicit calculations, which are required
for the full two-loop potential.
Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4) gives the ℏ2 contributions to the

effective potential:

V2 ¼
�

ℏ
16π2

�
2

e6ϕ4

�
ð10 − 6ξÞln2 eϕ

μ
þ
�
−
62

3
þ 4ξ −

3

2
ξ ln

λξ

6e2

�
ln
eϕ
μ
þξ

�
−
1

2
þ 1

4
ln

λξ

6e2

�
þ 71

6

�
þ � � � ð5:20Þ

where again the � � � vanish as λ → 0.
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C. RGE cross-check

As a cross-check, it is easy to verify that V ¼ V0 þ
V1 þ V2 satisfies the renormalization group equation

�
μ
∂
∂μ − γϕ

∂
∂ϕþ βe

∂
∂eþ βλ

∂
∂λ

�
V ¼ 0 ð5:21Þ

up to order ℏ2. The anomalous dimensions and β-function
coefficients in scalar QED up to two-loop order can be
extracted from Refs. [35,36]. We find

γ¼ ℏ
16π2

e2ðξ−3Þþ ℏ2

ð16π2Þ2
�
10

3
e4þ1

9
λ2
�
þ���;

βλ¼
ℏ

16π2

�
36e4−12e2λþ10λ2

3

�

þ ℏ2

ð16π2Þ2
�
−416e6þ316e4λ

3
þ56e2λ2

3
−
20λ3

3

�
þ���;

βe¼
ℏ

16π2
e3

3
þ��� : ð5:22Þ

Using these expansions, our two-loop effective potential
indeed satisfies the RGE. A similar cross-check was
done in Landau gauge for the two-loop Standard Model
potential in Ref. [29] and for general renormalizable
theories in Ref. [30].
In fact, the RGE could have been used to bootstrap all of

the ln ϕ
μ dependence in the two-loop effective potential.

Note however that the ln λ and ln e terms in the one-loop
effective potential are critical to determining the ln ϕ

μ

dependence at two loops, and these terms are not fixed
by RG invariance. In other words, we needed the exact one-
loop potential to determine the two-loop ln ϕ

μ dependence.
Coleman and Weinberg argue (in Appendix A2 of Ref. [4])
that one can ignore logarithms of couplings when working
in a subtraction scheme with λ≡ d4V

dϕ4 jμ for a fixed scale μ.

This may be true, but since the fourth derivative of the
potential is not gauge invariant (even at an extremum), this
renormalization condition induces unnecessary complica-
tions when studying gauge dependence. Moreover, in MS,
logarithms of couplings play an important role and must
be kept.
While we are on the subject of RG invariance, note that

the MS β-function coefficients for e and λ are gauge
invariant. This is true to all orders, since the β functions
describe the evolution of couplings which can in principle
be measured from scattering experiments. The anomalous
dimension for ϕ is gauge dependent; it describes the
evolution of the field strength Zϕ for ϕ, which is not itself
observable. We will return to the RG when considering the
resummed potential in Sec. VIII.

VI. DAISY RESUMMATION

As pointed out by Nielsen [17,37], there can be con-
tributions to the effective potential proportional to λ−1e10

coming from daisy diagrams, like those in Fig. 3. When
λ ∼ e4, these terms are of the same order as the e2λ terms in
the one-loop potential and the e6 terms in the two-loop
potential. Thus they should be relevant to showing the
gauge invariance of physical quantities at order e6 in this
power counting. Nielsen argued that the reason the scalar
mass Kang calculated does not satisfy his identity was due
to the absence of these terms [17]. Some time later,
Johnston [38] showed how these terms can be summed
into a dressed propagator for the scalar fields, suggesting
that these terms could be computed and the Nielsen identity
restored. Shortly afterwards Bazeia [39] showed that even
at one loop, where daisies are irrelevant, the vacuum energy
in the Coleman-Weinberg model has gauge dependence.
Part of the contribution of daisy resummation to the vector
and scalar masses in Landau and unitary gauges was
evaluated in Ref. [40]. In this section, we compute all of
the daisy graphs relevant at e6 in a general Rξ gauge. In the
next section we demonstrate that, after carefully keeping
track of the independent variables, the effective potential at
its minimum is indeed gauge invariant.
Before beginning, it is worth remarking that the daisy

resummation we perform here is related to, but not identical
to, daisy resummation in finite-temperature field theory
[41–43]. At finite temperature, the resummation of daisy
diagrams is necessary to calculate a critical temperature
because, in the limit m ≪ T, new infrared divergences
arise. Daisy resummation as a solution to infrared problems
associated with massless Goldstone bosons has recently
been proposed in Refs. [44,45]. The relevance of daisy
resummation to solving gauge-dependence problems at
finite temperature has also been discussed [21,46,47]. It is
therefore not surprising that daisy resummation is relevant
to the gauge-dependence problem in the Coleman-
Weinberg model. Nevertheless, the relevant calculations
have never been done, to our knowledge, which is why we
resum the relevant daisy graphs here.
Normally, one does not get inverse powers of coupling

constants from Feynman diagrams. Indeed, at any fixed
order in perturbation theory, there are always positive
powers of couplings, even in effective-potential calcula-
tions. However, the effective potential always involves

FIG. 3. Example daisy graphs which contribute inverse powers
of λ.
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summing an infinite number of graphs, namely those with
an arbitrary number of background-field insertions. It is this
infinite sum which gives the lnϕ dependence in the
effective potential and which can generate inverse powers
of couplings. As discussed in Sec. V, we simplify the
infinite sums by using dressed propagators. For example,
we see from Eq. (5.5) that the ϕ1 propagator isD11 ¼ i

k2−λ
2
ϕ2

which has an effective massm2 ¼ λ
2
ϕ2. In the daisy graphs,

each photon loop (the petals) gives a factor proportional to
e2ϕ2, each vertex gives a factor of e2, and the loop integral
over the scalar propagators can give inverse powers of the
effective mass. For example, a four-loop three-petal daisy
will give

(6.1).

Here, we have simply done the integral by dimensional
analysis, since it is UV and IR finite. This graph therefore
contributes at order e8 in the λ ∼ e4 power counting. It is
therefore beyond the order we need for the first nontrivial
gauge-invariance check of Vmin (not to mention that this
particular loop is itself ξ independent).
It is not hard to see, using dimensional analysis, that the

only graphs which could contribute at order e6 (with the
λ ∼ e4 power counting) must involve ϕ2 propagators and
have petal-type photon loops. The petals factorize off from

the central disk, and from each other. Thus a daisy graph
with n petals has the form

In ¼ inþ1
e2n

2n
Anϕ2

ðAγÞn ð6:2Þ

where Aγ includes the photon loop and its counterterm,
Anϕ2

is the scalar integral with n ϕ2 propagators, and the
factor 1

2n e
2n comes from the vertex Feynman rule and the

symmetry factor for the circle.

Each photon loop gives

(6.3).

The UV pole in this loop is removed by the one-loop counterterm:

Ac:t:
γ ¼ ℏ

16π2
e2ϕ2

�
−
3

ε

�
: ð6:4Þ

TheOðεÞ in Aloop
γ can be important if the scalar loop it multiplies is UV divergent. This only happens for two petals (n ¼ 2).

For n ¼ 2, the scalar loop gives

(6.5).

Since the 1
ε term in A2ϕ2

has no 1
λ piece, the cross term between it and the OðεÞ part of Aloop

γ will not contribute at order e6

(with λ ∼ e4). Thus, for all the daisies, we can drop the OðεÞ terms in Aloop
γ and take
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Aγ ¼ Aloop
γ þ Ac:t:

γ ¼ ℏ
16π2

e2ϕ2

�
1 − 6 ln

eϕ
μ

�
: ð6:6Þ

For n > 3, the scalar loop is UV and IR finite. We find

(6.7)

so that

In ¼
ℏ

16π2

�
−

1

24
e2λξϕ4

�
1

nðn − 1Þ
�

ℏe4

ð16π2Þλ
�
6 − 36 ln

eϕ
μ

��
n

: ð6:8Þ

Each term in this series contributes at order e6 when λ ∼ e4.
Thus they are all equally important for checking gauge
invariance and we must sum the series. Summing the series
is easy enough to do using

X∞
n¼2

1

nðn − 1Þ x
n ¼ xþ ð1 − xÞ lnð1 − xÞ ð6:9Þ

which gives

Ve6daisies ¼ ϕ4
ℏ

16π2

�
−
e2λξ
24

�

×

�
λ̂ðϕÞ
λ

þ
�
1 −

λ̂ðϕÞ
λ

�
ln

�
1 −

λ̂ðϕÞ
λ

��
ð6:10Þ

where

λ̂ðϕÞ≡ ℏe4

16π2

�
6 − 36 ln

eϕ
μ

�
: ð6:11Þ

We have defined λ̂ðϕÞ so that according to Eq. (4.6) λ̂ðvÞ ¼
λ at the scale v where the one-loop potential has its
minimum. Remarkably, while each daisy graph with
n > 1 is individually power divergent as λ → 0 with e
fixed, the sum of all daisies scales only like ln λ. An
alternative approach to calculating Eq. (6.10) is outlined at
the end of Ref. [37].
One might also be concerned about graphs where petals

attach to the ϕ2 legs in the two-loop diagrams MB, MC
and MD in Eqs. (5.17)–(5.19) (petals attached to diagram
MA are the same daisy chain we have already summed).
Since petals are not suppressed, it seems like these should
be of the same order. However, these two-loop daisies are in
fact subleading. A quick way to see that they are subleading
is to note that to order e6, MB, MC and MD are all
independent of λ. Thus they are independent of the scalar

masses. Since the daisy resummation can be thought of as
correcting the propagators and shifting the masses (see next
paragraph), they have no effect on expressions that are
independent of the masses, such as MB, MC and MD.
Similarly, it is not hard to show that all self-energy
corrections other than the one we included contribute first
at order e8. Thus we have included all the graphs relevant at
order e6.
Before moving on, it is worth pointing out that daisy

resummation is important even in Landau gauge, ξ ¼ 0. In
Landau gauge, there is no kinetic mixing and the scalar
propagators are

D11 ¼
i

k2 − λ
2
ϕ2

; D22 ¼
i

k2 − λ
6
ϕ2

: ð6:12Þ

These propagators still have λ-dependent masses and can
produce 1

λ dependence from daisy graphs. Since there is no
kinetic mixing, and since the scalar propagators are of the
conventional form with single poles, the daisy resummation
can be done by summing the geometric series of self-
energy graphs. That is, the daisy summation along a ϕ1 line
amounts to replacing

D11 → D̂11 ¼ D11

X∞
n¼0

�
ie2

2
D11Aγ

�
n
¼ i

k2 − λ
2
ϕ2 þ λ̂

6
ϕ2

:

ð6:13Þ

Thus the new effective mass squared for ϕ1 ism2
1 ¼ 3λ−λ̂

6
ϕ2.

Similarly, the new effective mass squared for ϕ2 is

m2
2 ¼ λ−λ̂

6
ϕ2. Note that at the scale where the one-loop

potential has its minimum, λ ¼ λ̂, and the Goldstone mode
ϕ2 becomes massless, as observed in Ref. [40]. The net
result is that the sum of all ϕ1 or ϕ2 daisy graphs (including
the one-loop zero-daisy graph) is simply of the general one-
loop form, Eq. (3.9), with shifted masses:
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Vdaisies
ξ¼0 ¼ ϕ4

64π2

��
3λ − λ̂

6

�2�
ln
ð3λ − λ̂Þϕ2

6μ2
−
3

2

�
þ
�
λ − λ̂

6

�2�
ln
ðλ − λ̂Þϕ2

6μ2
−
3

2

�	
: ð6:14Þ

Since λ ∼ e4, these terms have effects comparable to terms
in the three-loop Coleman-Weinberg potential. Thus, while
the infinite sum of daisy graphs is always important, an
advantage of Landau gauge is that it postpones the
relevance of daisy resummation by one loop. Landau gauge
does not however let us ignore the daisy graphs completely.
Two recent papers also observed that the resummation of

certain graphs to all orders is necessary starting at three
loops in Landau gauge [44,45]. These two papers were
concerned with resolving an infrared-divergence problem
associated with massless Goldstone bosons starting at three
loops. While these two papers discussed diagrams similar
to the ones here, the problem they solved was different
(infrared divergences, not gauge dependence) and their
results are not directly transferable. However, these two
papers, along with the earlier work in Refs. [38,40,48], do
explain in a more systematic way how daisy and other

relevant diagrams can be resummed through a modification
of the effective propagators.
In summary, the full Coleman-Weinberg potential up to

order e6 with λ ∼ e4 is the sum of Eqs. (4.1), (4.3), (5.20)
and (6.10). It is helpful to write the result as

V ¼ VLO þ VNLO þ � � � ð6:15Þ

where the leading-order (LO) potential

VLO ¼ λ

24
ϕ4 þ ℏe4

16π2
ϕ4

�
−
5

8
þ 3

2
ln
eϕ
μ

�
ð6:16Þ

scales as OðℏÞ when λ ∼ ℏe4 and the NLO potential,
scaling like Oðℏ2Þ, is

VNLO ¼ ℏe2λ
16π2

ϕ4

�
ξ

8
−

ξ

24
ln
e2λξϕ4

6μ4

�

þ ℏ2e6

ð16π2Þ2 ϕ
4

�
ð10 − 6ξÞln2 eϕ

μ
þ
�
−
62

3
þ 4ξ −

3

2
ξ ln

λξ

6e2

�
ln
eϕ
μ

þ ξ

�
−
1

2
þ 1

4
ln

λξ

6e2

�
þ 71

6

�

þ ϕ4
ℏe2λ
16π2

�
−

ξ

24

��
λ̂ðϕÞ
λ

þ
�
1 −

λ̂ðϕÞ
λ

�
ln

�
1 −

λ̂ðϕÞ
λ

��
ð6:17Þ

where λ̂ðϕÞ is defined in Eq. (6.11). Note that there are tree
and one-loop contributions to the LO potential and that the
NLO potential get contributions from one, two and all
higher-order loops.

VII. GAUGE INVARIANCE OF Vmin

With the two-loop Coleman-Weinberg potential in hand
and the contribution of daisy graphs understood, we can
now demonstrate the gauge invariance of the potential at its
minimum.
Recall from Eq. (4.13) that at LO, VLO

min ¼ −v4e4 3
128π2

.
One might naturally expect that the NLO contribution
could be written as VNLO

min ¼ v4e6C for some ξ-independent
constant C. Unfortunately, we cannot expect Vmin to be
explicitly ξ independent when written in terms of v. The
problem is that v ¼ hϕi is a field value and therefore
gauge dependent, so that it infects all dimensionful
quantities expressed in terms of it. One alternative is to
calculate not Vmin but rather the ratio of Vmin to some
other dimension-four quantity, such as m4

S, where mS is
the scalar mass. Indeed, Coleman and Weinberg [4] and

later Kang [31] discussed the gauge invariance of the
dimensionless ratio of the scalar-to-vector masses.
However, we would really like to see whether Vmin is
physical on its own. But then, if not v, what are we to
express Vmin in terms of?
An alternative to expressing Vmin in terms of v is to

express it in terms of the renormalization group scale μ.
This scale is as physical as the MS couplings; the two are
intrinsically connected. To be concrete, let us define the
scale μX as the scale where Eq. (4.7) is satisfied exactly.
That is, μX is defined by the exact relation

λðμXÞ≡ ℏ
16π2

e4ðμXÞf6 − 36 ln½eðμXÞ�g: ð7:1Þ

Since this relation is exact, we no longer can or need
to solve for e6 terms in the relation between λ and e, as
was done in Ref. [31]. One can instead now solve for
corrections to v

v ¼ hϕi ¼ μX þ v1 þ v2 þ � � � ð7:2Þ
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with v1 ∼ eðμXÞ2, v2 ∼ eðμXÞ4, etc., and μX is defined by
Eq. (7.1). Then one can consistently expand Vmin at
μ ¼ μX:

Vmin ¼ VLOðμXÞ þ VNLOðμXÞ þ v1
d
dϕ

VLOjϕ¼μX

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{¼0

þ VNNLOðμXÞ þ v1
d
dϕ

VNLOjϕ¼μX

þ v2
d
dϕ

VLOjϕ¼μX|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ 1

2
v21

d2

dϕ2
VLOjϕ¼μX

þ � � �

ð7:3Þ

where VLO is the effective potential truncated to order ℏ
with λ ∼ ℏ, VNLO is truncated to ℏ2 and so on, as in
Eqs. (6.16) and (6.17).
A convenient feature of setting ϕ ¼ μX is that the daisy

contribution simplifies. Indeed, from Eq. (6.11) we see that
when ϕ ¼ μ ¼ μX then λ̂ðμXÞ ¼ λðμXÞ. Then the entire
daisy contribution in the last line of Eq. (6.17) reduces to
simply

VNLO;daisies ¼ −
ξ

24
ϕ4

ℏe2λ
16π2

¼ −
ξ

24

ℏ2e6

ð16π2Þ2 ð6 − 36 ln eÞ:

ð7:4Þ

Also, as indicated in Eq. (7.3), we can use the fact that
VLO0ðμXÞ ¼ 0, which was the defining equation for μX.
This simplifies Vmin to

Vmin ¼ VLOðμXÞ þ VNLOðμXÞ þ � � � : ð7:5Þ

Plugging this into Eqs. (6.16) and (6.17) and using Eq. (7.1)
we then find

Vmin ¼ −
3ℏe4

128π2
μ4X þ e6ℏ2

ð16π2Þ2 μ
4
X

�
71

6
−
62

3
ln eþ 10ln2e

�
ð7:6Þ

which is manifestly gauge invariant! The daisies have
exactly canceled the ξ dependence of the NLO one-loop
and two-loop contributions.
Next, let us look at a field value expressed in terms of the

MS scale μ, to double-check that somehow all of its gauge
dependence is not miraculously absent. Consider the value
of the field where the potential is zero, ΛI , which in the
Standard Model is sometimes given an interpretation as an
instability scale [49]. Setting VðΛIÞ ¼ 0 gives a different
relation between λ and e than V 0ðvÞ ¼ 0 did. The condition
on the running couplings so that VLO ¼ 0 at ϕ ¼ μ ¼ μI is

λðμIÞ ¼
ℏ

16π2
eðμIÞ4f15 − 36 ln½eðμIÞ�g: ð7:7Þ

At NLO, we then find

ΛI ¼ μI −
VNLOðμIÞ
VLO0ðμIÞ

þ � � � ¼ μI −
32π2

3e4ℏμ3I
VNLOðμIÞ:

ð7:8Þ
To evaluate the daisy contribution, we can no longer use
λ̂ ¼ λ. Instead we now find

λ̂

λ
¼ λ̂ðϕ ¼ μ ¼ μIÞ

λðμ ¼ μIÞ
¼ 1 −

3

5 − 12 ln e
: ð7:9Þ

Up to NLO, we then find

ΛI ¼ μI −
VNLOðμIÞ
VLO0ðμIÞ

þ � � � ¼ μI þ μI
ℏe2

16π2

�
−
71

9
−
11ξ

12
þ
�
5ξ

2
þ 124

9

�
ln e −

20

3
ln2eþ 1

4
ξ ln

�
hξ
32π2

ð5 − 12 ln eÞ
�

−
ξ

12

�
−2þ 12 ln e − 3 ln

3

5 − 12 ln e

�	
þ � � � : ð7:10Þ

This instability scale is linearly dependent on the gauge
parameter ξ, and therefore should not be used to draw
physical conclusions. The ξ dependence of other field
values can be computed in a similar way, confirming that
they are indeed unphysical.

VIII. RENORMALIZATION GROUP
IMPROVEMENT

At this point we have shown that if the effective potential
in scalar QED is expressed in terms of the MS couplings e

and λ and the scale μX where they satisfy Eq. (7.1), then the
value of the potential at the quantum minimum Vmin is
gauge invariant. We checked this to the first nonleading
order, which required the two-loop potential and the
summation of the leading daisy diagrams. A natural
question is whether we must express Vmin in terms of
μX. Clearly, we should be able to write any physical
quantity in terms of any other scale. More importantly,
the check required the truncation of the effective potential
to order e6 with λðμXÞ ∼ eðμXÞ4. We would like to be able
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to use effective potentials in other contexts, where the
couplings are defined at some other arbitrary scale μY and
the renormalization group is used to evolve the potential to
a scale near its minimum. So how are we to use this unusual
truncation in an RG-improved effective potential, where
some λ and e dependence is necessarily included to all
orders in ℏ? In this section, we show how to answer both of
these questions, and that the answers are related.

A. Calculation-scale invariance

First, let us consider how the calculation of Vmin would
change if we had calculated the effective potential with the
couplings defined at a scale μY instead of μX. At μY , the
potential obviously has the same form, Eq. (6.17), but with
e and λ interpreted as eY ≡ eðμYÞ and λY ≡ λðμYÞ rather
than eX ≡ eðμXÞ and λX ≡ λðμXÞ. That is,

V ¼ λY
24

ϕ4

þ ℏ
16π2

ϕ4

�
e4Y

�
−
5

8
þ 3

2
ln
eYϕ
μY

�

þ e2YλYξ

�
1

8
−

1

24
ln
e2YλYξϕ

4

6μ4Y

��
þ � � � : ð8:1Þ

For simplicity, let us assume for now that μY is close
enough to μX so that λY is still much smaller than e2Y . For
the daisy contribution evaluated at μY , we can then still use
λ̂ ∼ λ, since the difference is of higher order. This lets us
continue to drop most of Eq. (6.10).
The easiest way to study V with couplings at μY is simply

to use the renormalization group to move the couplings
back to μX. Then we can recycle the previous analysis.
Expanding Eq. (4.11) gives

eY ¼ eX þ ℏ
48π2

e3X ln
μY
μX

þ � � � : ð8:2Þ

Expanding Eq. (4.12) gives

λY ¼ λX þ ℏ
16π2

½36e4X − 12e2XλX� ln
μY
μX

þ ℏ2

ð16π2Þ2 e
6
X

�
−416 ln

μY
μX

− 192ln2
μY
μX

�
þ � � � :

ð8:3Þ

By plugging these into Eq. (8.1) we find

V ¼ λX
24

ϕ4

þ ℏ
16π2

ϕ4

�
e4X

�
−
5

8
þ 3

2
ln
eXϕ
μX

�

þ e2XλX

�
ξ

8
−

ξ

24
ln
e2XλXξϕ

4

6μ4X
þ ξ − 3

6
ln
μY
μX

��
þ � � � :

ð8:4Þ

We have not even shown the two-loop terms, but already
one can see that this potential is not identical to what we got
from computing V starting at μ ¼ μX: there is an uncan-
celed ln μY

μX
term. Despite this modification of the potential,

we still find that

Vmin ¼
e4ℏ
16π2

μ4X

�
−
3

8

�

þ e6ℏ2

ð16π2Þ2 μ
4
X

�
71

6
−
62

3
ln eþ 10ln2e

�
þ � � �

ð8:5Þ

exactly as in Eq. (7.6). That is, the new ln μY
μX

term has no
effect on the value of the potential at the minimum.
That the μY dependence would drop out of Vmin was

anticipated in Sec. II B, with μ0 replaced by μY and μ
replaced by μX. We next review and extend that discussion
in the context of this concrete example.

B. Discussion

There is a quick way to see why computing the potential
at a different scale affected VðϕÞ but not Vmin. The effective
potential satisfies the RGE in Eq. (5.21):�

μ
∂
∂μ − γϕ

∂
∂ϕþ βe

∂
∂eþ βλ

∂
∂λ

�
V ¼ 0: ð8:6Þ

This equation says that the explicit μ dependence in the
effective potential is exactly compensated for by a rescaling
of the coupling constants, according to their β functions,
and a rescaling of the field ϕ, according to its anomalous
dimension. In writing the potential computed at μY in terms
of couplings at μX we only rescaled the couplings, not the
field. Indeed, the extra ξ−3

6
ln μY

μX
term in Eq. (8.4) would be

exactly removed if we rescaled the field as ϕ → κϕ with

κ ¼ 1þ e2

16π2
ð3 − ξÞ ln μY

μX
þ � � � : ð8:7Þ

Because the two potentials (calculated at μX or μY) differ by
terms which can be compensated by a field rescaling, the
value of Vmin will be unchanged. To see this, simply note
that the extrema of any function fðxÞ are invariant under a
rescaling of the dependent variable: this rescaling just
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scales the x axis (see Fig. 1). Thus the invariance of Vmin
follows as a special case.
This property of the effective potential, that it depends on

the scale where it is calculated, may seem unsettling. One
might imagine that the ln μY

μX
terms can be removed by

invoking canonical normalization, perhaps by demanding
that the kinetic term in the effective action be reset to
1
2
ð∂μϕÞ2 after including all the quantum corrections. One

cannot just demand this, however. First of all, in the
effective action even the two-derivative kinetic terms have
a complicated field dependence

Γ½ϕ� ¼ � � � þ 1

2
Z1½ϕ�ð∂μϕiÞð∂μϕiÞ

þ 1

2
Z2½ϕ�

ϕiϕj

ϕ2
ð∂μϕiÞð∂μϕjÞ

þ Y1½ϕ�
1

ϕ4
ðð∂μϕiÞð∂μϕiÞÞ2 þ � � � : ð8:8Þ

The functionals Z1, Z2, Y1 etc. can be calculated from
prototype diagrams as a power expansion in the external
momentum pμ [32]. Explicit results at one loop for Z1 and
Z2 can be found in Ref. [10] and for Y1 in ϕ4 theory in
Ref. [32]. So it is not clear how one would go about
canonically normalizing ϕ apart from some byzantine
implicit nonlinear field redefinition.
A more elementary objection to renormalizing the fields

is that we have already renormalized them. In MS the field-
strength renormalization Z1 is unambiguously fixed, so
there is no remaining freedom. One could have chosen a
different normalization convention, for example, an on-
shell renormalization for which the residue of the propa-
gator at the physical pole is set to 1 exactly. However, since
these are conventions, physical quantities must be inde-
pendent of them. Thus we can work in MS. Indeed, as
we have seen Vmin is independent of the normalization
condition.

C. RG-improved effective potential

We have shown that the effective potential depends on
the scale μY where it is calculated. We have also shown that
when μY is close to the scale μX where the couplings satisfy
Eq. (7.1), then the value of Vmin is independent of μY . Now
suppose μY is not close to μX, so that ln

μY
μX
is not small. Then

we cannot work in fixed-order perturbation theory. For
example, in the Standard Model, one normally extracts the
MS couplings through perturbative threshold calculations
at a scale μY ∼ 100 GeV near the weak scale. The equiv-
alent of μX is a scale near where λ ∼ 0which is many orders
of magnitude higher in energy; so, μX ≫ μY . The minimum
of the effective potential is found by solving the RGE for
the effective potential to evolve it from μY to μX. Thus the
potential at μ ¼ μX includes terms to all orders in pertur-
bation theory whether it is written in terms of gðμYÞ or

gðμXÞ. This seems to limit the use of fixed-order relations
like Eq. (7.1).
In order to combine the λ ∼ e4 scaling, which is required

for gauge invariance, with resummation, we can exploit the
observation from Sec. VIII B that Vmin is independent of the
rescalingϕ. In particular,we see thatwedonot have to evolve
the entire effective potential from μY to μX. Instead, we can
just evolve the couplings, and then compute the fixed-order
potential directly at μX. The scale μY only enters for
determining the boundary conditions of the renormalization
equations. Since the β functions are all gauge invariant, the
gauge invariance of the potential at the minimum then
automatically follows from the arguments in Sec. VII.
To be concrete, the resummed effective potential is often

written as

V½ϕ�¼ 1

4!
e4Γðμ¼ϕÞ

× ½λð0Þeff ðμ¼ϕÞþλð1Þeff ðμ¼ϕÞþλð2Þeff ðμ¼ϕÞþ����ϕ4

ð8:9Þ

with ΓðμÞ ¼ R
μ
μY
γðμ0Þ dμ0μ0 and 1

4!
λðjÞeff ðμÞϕ4 is the order-ℏj

term in the fixed-order calculation of the effective potential.
We are proposing instead that one should use Eq. (7.3):

Vmin ¼ VLOðμXÞ þ VNLOðμXÞ þ VNNLOðμXÞ

þ v1
d
dϕ

VNLOjϕ¼μX
þ 1

2
v21

d2

dϕ2
VLOjϕ¼μX

þ � � �
ð8:10Þ

where VLO ∼ ℏ, VNLO ∼ ℏ2, v1 ∼ ℏ and so on, using λ ∼ ℏ.
Using Eq. (8.10), the value of Vmin will be gauge invariant
order by order using this expansion, while Vmin computed
using Eq. (8.9) will not be.
Note that this consistent prescription is not equivalent to

using dressed fields where the field-strength renormaliza-
tion is absorbed into the field. Such a redefinition was
advocated in Ref. [9] (based on Ref. [8]) as removing all of
the gauge dependence in the effective potential. First of all,
that redefinition does not work as advertised: even after
absorbing the field-strength renormalization, the effective
potential is still gauge dependent [17,18]. Secondly, we are
still using the same fields and MS normalizations relevant
for S-matrix calculations, which greatly facilitates appli-
cations to the Standard Model. Furthermore, since
VNLOðμXÞ is known in the Standard Model [29] (and in
general renormalizable theories [30]) and since the daisy
graphs begin at NNLO in Landau gauge, Eq. (7.3) can
immediately be implemented for many theories of direct
phenomenological interest. The effect of using Eq. (8.10)
instead of Eq. (8.9) for the Standard Model effective
potential is discussed in Ref. [50].
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IX. HIGHER-DIMENSION OPERATORS

As we have seen, Vmin is gauge invariant but the VEVat
the minimum, v ¼ hϕi is not. One reason one would like v
to be physical is that it gives a criteria for when higher-
dimension operators can have a significant effect. For
example, one might expect an operator ΔL ¼ − 1

Λ2 ϕ6 to
be relevant at field values where this term contributes at the
same order as the leading one: Λ ∼ 1ffiffiffiffiffiffi

λðvÞ
p v. Since v is ξ

dependent, this criterion is not meaningful.
The correct way to evaluate the influence of a gauge-

invariant higher-dimension operator is to add it to the
classical potential and see how Vmin is affected. So let us
add − 1

Λ2 ϕ6 to the Lagrangian (that is, we addþ 1
Λ2 ϕ6 to the

classical potential). First, consider the case when Λ is very
small (so this new term is large). Then the sensitive
cancellation between λ and e4 will be severely disrupted
and the newquantumminimumwill disappear.With the sign
given, the only minimumwould be at ϕ ¼ 0with Vmin ¼ 0.
If we flip the sign, then the potential will be unbounded from
below and again there will be no quantum minimum, with
V ¼ 0 still the only extremum and clearly gauge invariant.
Now suppose this new term has a very small effect. To be

precise, recall that the quantum minimum in the absence of
this term occurs at leading order at the scale ϕ ¼ μX where
Eq. (7.1) is satisfied. Thus if this term is very small, at LO,
it shifts the minimum to

Vmin ¼ μ4X

�
−
3

8

e4ℏ
16π2

þ μ2X
Λ2

þO
�
μ4X
Λ4

��
: ð9:1Þ

This is gauge invariant, but trivially so.
The key observation is that to compute subleading

corrections when the effect is small, we cannot simply
plug the next-to-leading-order VEV into 1

Λ2 ϕ6. Doing so
would give a gauge-dependent correction. Instead, we must
carefully reevaluate our perturbation expansion in the
presence of this new term.
If we are careful we must commit to whether this new

term is important or not. If we say it is important, then
minimally, the new term in Eq. (9.1) must be comparable to
the original one. That means that Λ2 ∼ μ2X

16π2

e4ℏ . This power
counting means that the one-loop minimum is not at the
scale μX but rather at a new scale μZ where

λðμZÞ≡ ℏ
16π2

e4ðμZÞ½6 − 36 ln½eðμZÞ�� − 36
μ2Z
Λ2

ð9:2Þ

which gives

Vmin ¼ μ4Z

�
−
3

8

e4ℏ
16π2

−
1

2

μ2Z
Λ2

þOðe6Þ
�
: ð9:3Þ

As before, the first nontrivial check will be at order e6.
To perform this check, one would need to compute the

two-loop graphs with this modification as well as the daisy
resummation in the Rξ gauges.
The main implication of the discussion in this section is

that arguments about the relevance of higher-dimension
operators must be refined to have a consistent perturbative
expansion. For example, one might traditionally calculate
ϕmin defined as the field value at the minimum in Landau
gauge, and compare it to MPl to see gravitational effects on
the effective potential. This comparison is not gauge
invariant. Instead, one must actually insert the new oper-
ators and see how physical quantities determined by the
effective potential change. An example implementation of
this procedure for the Standard Model was discussed
in Ref. [50].

X. CONCLUSIONS

In this paper we have resolved a long-standing puzzle
about gauge dependence in the Coleman-Weinberg model.
We have shown that the potential at the minimum is gauge
invariant at the first nontrivial order in perturbation theory.
The invariance is only manifest if an appropriate power
counting is used and if Vmin is expressed in terms of another
gauge-invariant scale, such as a value of the MS parameter
μ where the couplings satisfy some relation. To establish
gauge invariance required a calculation of the full two-loop
Coleman-Weinberg potential in a general gauge to order e6

as well as an infinite number of daisy diagrams which are
also relevant at next-to-leading order.
Besides providing the first explicit check that a potential

is gauge invariant at a loop-generated minimum, our work
has implications for how effective potentials should be used
consistently. First of all, we showed that one cannot simply
truncate to fixed order in the usual loop expansion. Some
terms at a given order must be dropped, and other terms
from diagrams of arbitrarily high-loop order must be
included. Only then will the potential have the desired
gauge-invariance properties. At leading order in the appro-
priate power counting, only a finite number of diagrams
contribute. At next-to-leading order, the first infinite class
of diagrams becomes relevant in a general gauge and must
be resummed. A propitious feature of Landau gauge, ξ ¼ 0,
is that this resummation is postponed to next-to-next-to-
leading order, competitive with three-loop graphs in the
normal loop expansion. Nevertheless, even in Landau
gauge at NLO, one must truncate the effective potential
appropriately to have self-consistent results. This result is
consistent with recent observations in Refs. [44,45].
We also discussed how the consistent use we advocate is

compatible with an RG-improved effective potential. The
key is to run the couplings first to a scale where the one-
loop potential, appropriately truncated, has its minimum.
This scale is gauge invariant. Then one can add corrections
to the effective potential around that scale order by order
in perturbation theory using couplings at that scale. This
essentially amounts to dropping the field-strength
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renormalization contribution to the resummed effective
potential. However, we are not performing any field
redefinitions. Thus the same threshold corrections can be
used to convert observables to MS parameters at the low
scale, and then run to the scale near the quantum minimum.
The effective potential computed this way is still gauge
dependent. Moreover, even in Landau gauge (or any other
gauge), the potential is different if we first run the couplings
and then calculate the potential or if we calculate the
potential and then run it by solving its RGE. The difference
is not an artifact of the truncation in perturbation theory: the
exact potentials computed in these two ways would differ.
However, this difference, like the difference between
potentials computed in different gauges, should not affect
physical observables. We have shown that indeed it does
not affect the value of the potential at the minimum.
Our work definitively resolves the question of how one

physical quantity, the true vacuum energy in a theory, can
be computed consistently in perturbation theory. We also
know that S-matrix elements are gauge invariant. There are
of course many other quantities that effective actions are
used to calculate, and it would be very interesting to
understand definitively how they can be computed con-
sistently as well. To compute the scalar and vector masses,
one would need to resum the daisy contributions to the
scalar and vector self-energy graphs at small momentum,
supplementing the results of Ref. [31]. Part of this
resummation was performed in Ref. [40] in Landau and
unitarity gauges. It would be interesting to complete the
calculation, and also to understand why Kang’s contribu-
tions were gauge invariant on their own. Another interest-
ing quantity is the tunneling rate between two extrema. A
traditional tunneling-rate calculation depends on unphys-
ical regions of the potential [51,52], away from the minima.
However, any rate calculation should also depend on the
kinetic terms in the effective action, so there are new
opportunities for cancellation. Although there has been
some progress in understanding how tunneling rates may
be consistent [23,34], there are, to our knowledge, no
explicit demonstrations.
At finite temperature, the critical temperature for a phase

transition should be physical. The spectrum of gravity
waves as the Universe cools through this transition should

also be physical. While some progress has been made in
showing that these quantities can be computed in a gauge-
invariant way in perturbation theory [14,21,46,53]
the question does not seem to be completely resolved.
Other apparently gauge-dependent quantities include the
compactification radius in certain extra-dimensional
models [37,54] and the inflation scale in Higgs inflation
models [55].
Often the gauge dependence in a quantity extracted from

the effective potential originates in a dependence on field
values. For example, the instability scale in the Standard
Model ΛI , defined as the value of ϕ where the potential
goes negative [49], is gauge dependent [56]. The scale
where the Standard Model effective potential is maximal,
Λmax, is also sometimes used to make physical arguments
[57], despite its gauge dependence. A common criterion for
stability in the Standard Model is that the value v of the
field at the minimum is less than MPl. Since v is gauge
dependent, so is this criterion [58]. Even if one asks only
that the potential at the minimum, Vmin be less than 0,
which is a gauge-invariant criterion, one would presumably
still want to know when this bound is affected by Planck-
suppressed or other higher-dimension operators. To this
end, we have sketched one possible solution in Sec. IX: one
should add these new operators to the theory and see how
Vmin changes. Since the new operators affect the perturba-
tion expansion, this procedure is not equivalent to replacing
ϕ → v in these operators and seeing how the vacuum
energy changes. With these examples, we are optimistic
that the apparent gauge invariance of many physical
quantities can be eliminated by the self-consistent use of
an appropriate perturbation expansion.
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