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Study of two body hadronic decays A, — A(p)P(V) in the instantaneous
approximation of the Bethe-Salpeter equation approach
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In this work, we study weak transitions of A, to light baryons A and p in the Bethe-Salpeter equation
approach. In the heavy quark limit, based on the picture that A, is composed of a heavy b-quark and a light
diquark, the Bethe-Salpeter equation for A, was established in previous works. Although the light baryon
A(p) is composed of various quark-diquark configurations based on the SU(6) spin-flavor wave functions,
only the configuration s(ud),, [u(ud),,] [(ud),, is a scalar diquark composed of u and d quarks]
contributes to A, - A (A, — p) transition. We establish the Bethe-Salpeter equations for the systems
s(ud)y, and u(ud),, and calculate their Bethe-Salpeter wave functions in the covariant instantaneous
approximation with the kernel containing both scalar confinement and one-gluon-exchange terms. Then,
the form factors for A, — A and A, — p weak transitions are obtained with Bethe-Salpeter wave functions
for A,, A, and p. Consequently, we calculate the branching ratios of A, - AP, A, - AV, A - pP, and
A, — pV (P and V denote pseudoscalar and vector mesons, respectively) in the factorization approach.

DOI: 10.1103/PhysRevD.91.016006

I. INTRODUCTION

In recent years, much more new data about weak decays
of A, have appeared. For instance, the branching ratios of
the semileptonic decay A, — A lv [1] and the two body
decay A, - Afz~ [2] were measured. CDF and DO
measured the lifetime of A,. Furthermore, the decay
A, > AJ/w was observed by CDF, and the ratio of
the cross section times the branching fraction,
o5, B(Ay = AJ/y)/opB(B° — J/wK,), was measured.
The branching ratio of A, - AJ/y turns out to be
(3.74+1.7+0.4)x10™* [3], assuming o,,/05=0.1/0.375
and B(B—J /wK,)=3.7x107* [3,4]. F(A,) B(A,— AJ /y)
measured by DO s (6.01 4 0.60 + 0.58 4 0.28) x 107> [5],
where F(A,) is the fraction of the b-quark transition into
A,. In the past theoretical studies, people gave predictions
for A, decays by calculating transition form factors for A,
decays, assuming pole dominance for the form factors [6,7]
or adopting models for describing baryon wave functions
[8,9]. It is the aim of the present paper to study nonleptonic
decays of A, to light baryons A and p theoretically in the
Bethe-Salpteter (BS) equation approach. These decays
include A, — A(p)P, where the pseudoscalar meson P
isz~, K=, orz°, and A, — A(p)V, where the vector meson
Vs J/y, p°, p~, or K*. Experimentally, A, — pz~ and
A, - pK~ have been measured [4].

In the limit m; — oo, with the application of heavy quark
effective theory, A, — A (p) transition can be described by
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two independent form factors [10]. The decrease in the
number of form factors simplifies calculations. However,
these two form factors contain all soft QCD effects that are
difficult to calculate from first principles. Therefore, one
must resort to some phenomenological models [6-8,11] to
calculate them. In previous works, the form factors for
A, - A, were calculated in the BS equation approach
[12,13] within the “quark-diquark” model. Theoretical
results for A, — A, semileptonic and nonleptonic decay
widths were found to be consistent with experimental data.
Furthermore, baryons containing a light quark and a heavy
diquark (Qgp¢, Egg) (Q. Q" = b, c) were also studied in
the BS equation formalism [14]. Since there have been
experimental data for A, to light baryon decays, we will
extend the BS equation model to light baryons in the
present work.

In the quark-diquark model, a baryon is regarded as a
bound state of two particles: one is a quark, and the other is
a quasiparticle made of two quarks, or diquark. For a heavy
baryon containing a heavy quark or two heavy quarks, due
to the flavor and spin symmetries SU(2), x SU(2); in the
heavy quark limit, such a baryon can be regarded as
composed of a heavy quark and a light diquark or a heavy
diquark and a light quark. On the other hand, a light baryon
composed of u, d, and s quarks is a much more complex
system in which all the three light quarks play important
roles in the dynamics of the baryon. Based on the SU(6)
spin-flavor wave functions, the light baryons A and p
contain several quark-diquark configurations. However,
only the configuration s(ud),, [u(ud),] [the first and
second subscripts correspond to the total spin and the third
component of the spin of the (ud) diquark, respectively]
contributes to A, - A (A, — p) transition. We will
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establish the Bethe-Salpeter equations for the systems
s(ud)yo and u(ud),, and solve them in the covariant
instantaneous approximation with the kernel containing
both scalar confinement and one-gluon-exchange terms.
The form factors for the heavy-light transitions will be
expressed in terms of the BS wave functions obtained for
the initial and final baryons. Finally, we will calculate the
decay branching ratios for A, > A and A, — p plus a
pseudosclar meson or a vector meson.

The remainder of this paper is organized as follows. In
Sec. II, we will establish the BS equations for the systems
containing a light quark and a light scalar diquark. The
normalization conditions for the BS wave functions will
also be given in this section. Then, the BS wave functions
will be calculated numerically. In Sec. III, the form factors
for A, > A and A, — p will be derived from the BS wave
functions obtained in Sec. II. In Sec. IV, the branching
ratios for A, —» A and A, — p plus a pseudoscalar meson
or a vector meson will be obtained. Section V will be
reserved for a summary and some discussions.

I1. BS EQUATION FOR A SYSTEM
CONTAINING A LIGHT QUARK
AND A LIGHT SCALAR DIQUARK

In general, the parity of a baryon at the ground state is
positive. Since the parity of the quark in the baryon is
supposed to be positive, the parity of the diquark involved
in the ground state baryon should also be positive. Because
of the Pauli principle, two quarks with same flavor
constitute an axial-vector diquark. On the other hand,
two quarks with different flavors can constitute a scalar
diquark or an axial-vector diquark. Regarding A, as a
bound state of a light scalar diquark and a heavy b-quark,
the BS equation for A, has been studied extensively
[15,16]. As discussed in Introduction, to study the weak
transitions A, — A and A, — p, we need to establish the
BS equations of g(ud),, (¢ = s or u). We define the BS
wave function of the ¢(ud), system as

x(x1,%, P) = (O[T (x1)p(x2) | P), (1)

where y(x;) and ¢(x,) are the field operators of the light
quark at position x; and the light scalar diquark at position
X,, respectively; P = Mwv is the momentum of A or p; and
M (v) is its mass (velocity). Let m, and m,, represent the
masses of the light quark and the light diquark in the baryon

. .y ___mp
A or p; A = iy 2 = and p represent the

relative momentum of the two constituents. X = A,x; +
Ayx, is the coordinate of the center of mass, and
X = x; —X,. Then, we define the BS wave function in
momentum space:

4
(.30, P) = oiPX / (‘2’7’;4e%<p>. 2)
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It is straightforward to prove that the BS equation for the
q(ud), system has the form in momentum space of

4
20(p) = Se(p1) / (‘2’7‘)’4K<P,p,q>xp<q>s0<pz>, 3)

where p; = ;P + p and p, = AL P — p are the momenta
of the light quark ¢ and the light scalar diquark, respec-
tively; K(P, p, q) is the kernel that is defined as the sum of
two-particle-irreducible diagrams; and Si(p;) and Sp(p,)
are propagators of the light quark with momentum p; and
the light diquark with momentum p,. Motivated by the
potential model, the kernel is given by [15,17]

—iK(P.p.q) =1®1V\(p.q) +7,@T"Vs(p.q). (4)

where T* = (p, + ¢,)*F(Q?) is the effective vertex of a
gluon with two scalar diquarks and F(Q?) is used to
describe the structure of the diquark [15,18]

2
Foh) = g, 5

where Q3 is a parameter that freezes F(Q?) when Q? is
very small. In the high-energy region, the form factor is
1

proportional to o which is consistent with perturbative

QCD calculations. By analyzing the electromagnetic form
factor for the proton, it was found that Qf = 3.2 GeV?
[15,18] can lead to consistent results with the experimental
data. V; and V, are the scalar confinement and one-gluon-
exchange terms that have the forms in the covariant
instantaneous approximation [14—-16,19-21]

~ 8k
Vi (pt - qt) N [(pz - ‘11)2 +ﬂ2]2
Ak 8k
- (2”)353 (Pi—a) /Wm (6)
‘72(1% - (’It) = _16—ﬂ et (7)

3 (pi—aq)+u*’

respectively, where p, and g, are the transverse projection
of the relative momentum along the momentum P and are
defined as p} = p* —v- pov* and ¢/ = g* — v - qv*. The
second term of \71 is introduced to remove the infrared
singularity at the point p, = ¢,, and the small parameter y is
introduced to avoid the divergence in numerical calcula-
tions. The dimension of « is 3, and that of ¥’ in the meson
case is 2. The extra dimension in x should be caused by
nonperturbative QCD effects, and hence x ~ AQCDK’ [17].
' is the confinement parameter in the heavy meson case
and is about 0.2 GeV? [15], and Aqcp is the only parameter
that is related to confinement. So the parameter k may range
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from 0.02 to 0.1 GeV?. Furthermore, by studying the
average momentum of the b quark in A, and comparing
it with this quantity derived from the experimental value of
the average momentum of the b quark in the B meson with
the aid of heavy quark effective theory, k can be constrained
to a narrower range: roughly from 0.02 to 0.08 GeV? [19].
Therefore, in our numerical calculations, the parameter « is
chosen to vary in the region between 0.02 and 0.08 GeV?
[9,20]. The light quark propagator can be written in the
form [14,21]

SF(pl) A+ A_ :|

ﬂM—l—pl /1M+p1—|—w —ie
(8)

where p;(= p-v) and p} are the longitudinal and trans-
verse projections of the relative momentum along the light

baryon momentum, respectively; w, = y/mj — p7; and A7

are the projection operators given by

wq—l-le

o, + »(p, + mq)

A =
a 2w

©)

q

}I(Pr) = _/ é”’;g 4a)qa)D(M1—a) “wp) [(mq + a)q)(f/l + 2(1)0‘72F(

q
&p, 1
(27)* 4w,0p(M — 0, — wp)

Fapo=- [ &2 L [(Vl+zvazF<Q2>>}1<q,>—<m

(27)3 4w gwp(M —

/ &p, 1
(27)* 4w, 0p(M — 0, — wp)

The normalization condition for the BS wave function is
given after imposing the covariant instantaneous approxi-
mation on the kernel as [14,21,22]

iy [diqd'p 9 i
05 | “oay #e (P )[813 P(p. @) ™ yp(q.5")

= 63‘.\"7 (15)

where i;(5) and j;() represent the color indices of the light
diquark and the light quark, respectively; s() is the spin
index for the light baryon; §!2 = §"82 — §157; and

Ji:j2 J17J2 J270
142727 (p g) is the inverse of the four-point propagator
defined as follows:

[(‘71 - 2(1)D‘72F(Q2))P1 : %?2(‘11)

[<mq—wq><vl—zmz (o)L 4
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The propagator of the scalar light diquark can be
written as
i
—wp +ie) (LM = p; + op — ie)’
(10)

SD(pZ) = (/’{«ZM_PZ

where @, = \/m?3 — p?. In general, considering ru(v, s) =
u(v, s), where u(v, s) is the spinor of A or p with helicity s,
xp(p) can be expanded as

xp(p) = (f1+ fars + f3rst + fati
+ [50,, 8P prvg)u(v, s), (11)
where f; (i =1, ...,5) are the Lorentz-scalar functions of

p? and p,. After considering the constraints on 2p(P)
imposed by parity and Lorentz transformations, we sim-
plify Eq. (11) to the following form:

xp(p) = (fi + puf2)u(v,s).

Defining f 12 f 5+ f1(2), we find that the BS scalar wave
functions satlsfy the coupled integral equations as follows:

(12)

N fi(a) = (pi-q,+ p?)VaF () f1(q,)]

- (mq + wq)(pt g+ QIZ)V2F(Q2)]~C2(%)]’
(13)

wﬁW%F(Qz)}l(q»]

t

P9 T (0 = (b, g0+ q%WzF(Q%(q,)] .

(14)

!

[
Izltzjzjl(p q> _ 51111512]2<2ﬂ.)454(p q)S( )(pl)SD (p2>
(16)

With this condition, we can get the normalization condition
in the form

1

6 / :2[471; {Trlap(pi)Pp(p1)Sq(P1)(21)Sq(P1)Sp(P2)]

+ Trlap(p)Br(p:) (22ap2 - €)S,(p1)SH(pa)]} = 1
(17)
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where ¢ = (1,6) and we define ap(p;) and fp(p,) as
ap(p;) = _iSF(pl)_l)(p(p)SD(PZ)_l’ (18)

Be(p:) = =iSp(p2) i, (p)Sk(Py) ™" (19)

From Egs. (18) and (19), we can derive the parametric
forms of ap(p,) and fp(p,) as

ap(p,) = [ (p,) + pia(p)lu(v), (20)
Br(pi) = u(v) [ () + #iha(p1)], (21)
respectively, where &, (p,) and h, (p,) satisfy the following

equations:
|

E &p,
24M w0} (M —w,—wp)* (M +w, +WD)2/ (2r)3
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ip) = [ G250+ 2007:F (@) (4)

—(pi- a4, + @) VaF(0) fa(q,)]. (22)

a(p) = [ Gy (71 =200 7:F (@)l

. 2 - ~
—(”‘j;%”f)vzngwm . (23)

We substitute Egs. (22) and (23) into Eq. (17) and integrate
out the longitudinal momentum p;; then, the normalization
condition can be written in the form

A (mz +a)é +2myw,— P (M+wp +a)q)2a)qa)D

+ 4 (mi+ ) —2m,w,— p?) (M —wp—w,)*0,0p+24 (0, +0p) (@ —mi+ pf) (M +w,+op)(M-o,—op)o},
20 (M -w,)0i(M+o,+o0p)*(m,+a,)+2(M+ao,)0r(M-o,—op)*(—m, —I—wq)]iz%(pt)
+ 4 whop (M +wg+wp)* pi+42,05 (M =0o) (M +0g +0p ) pi —4hoy (M +wo) (M —wg—op)’ p?

-4 (M -, _wD)zwéprtz]ill (Pz)ilz(l?r) + [ o,0p(M+o, +0)D)2(2mqwq —0’3 +p?)p}

+hwowp(M—wg—wp)*(—2mowe—wy+ pt) pi+ 20y (M—wg)(mg—wg)(M+wg+wp)*p

2
t

— 2wy (M —w,—wp) (M+w,)(m,+o,)p;+24 0} (0p +o,) (M -0, —0p)(M+o,+op)(m; — o} —P%)Pzz]ilg(Pz)}

:1’

where E is the binding energy that is defined as
M = m, + mp + E. We divide the domains of integrations
in Egs. (13) and (14) into n regions (n is sufficiently large),
and then the integral equations turn out to be matrix
equations. The BS scalar wave functions become n-
dimensional vectors, and we just need to solve the
eigenvalue equation A}l(z) =1 (A is an n X n matrix).
In our calculations, we take the constituent masses of the
light quarks as m, = 0.33 GeV, m,; = 0.45 GeV. The
parameters mp and E are constrained by the relation
mp + E =M — myg,. Taking m, = 0.938 GeV and m, =
1.116 GeV, we have mp + E = 0.67 GeV for A and
0.61 GeV for p. The parameter m cannot be determined,
and hence we let it vary within some reasonable range. For
A and p, we choose the diquark mass m, to range from 700

(24)

I

to 800 MeV. With this choice for mp, the binding energy £
is negative and varies from —90 to —190 MeV. As we
discussed before, x ranges from 0.02 to 0.08 GeV?>. Then,
for each mp, we get a value of a,. corresponding to a value
of k. In Tables I and II, we show the results for mp = 700,
750, and 800 MeV for A and p.

Solving the eigenvalue equation, we obtain the numeri-
cal results for f(p,) and f,(p,). The numerical results for
the BS wave function depend on two parameters, m and k.
The results are shown in Figs. 1-4 for s(ud), o and u(ud), o
with different values of mp and «. Figures 1 and 3 show the
k dependence of the BS wave functions for the system
s(ud), and the system u(ud), for typical m, respec-
tively. Figures 2 and 4 show their dependence on mp for a
typical value of «. It can be seen from these figures that for

TABLE 1. Values of ay g for A with different « and mp.
it (k = 0.02 GeV?) it (k = 0.04 GeV?) it (k = 0.06 GeV?) Agepr (kK = 0.08 GeV?)
mp = 700 MeV 0.72 0.76 0.78 0.80
mp = 750 MeV 0.77 0.80 0.82 0.83
mp = 800 MeV 0.82 0.83 0.85 0.86
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TABLE II. Values of a. for p with different x and my,.
g (K = 0.02 GeV?) Ao (K = 0.04 GeV?) i (k = 0.06 GeV?) i (k = 0.08 GeV?)
mp = 700 MeV 0.81 0.83 0.84 0.85
mp =750 MeV 0.85 0.86 0.87 0.88
mp = 800 MeV 0.88 0.89 0.90 0.91

different baryons the shapes of the BS wave functions are
rather similar. This arises from the approximate SU(3)
flavor symmetry and is to be excepted. All the wave
functions decrease to zero when |p,| is larger than about
1.5 GeV because of the confinement interaction.

40

0 0.5 1 1.5
[pe|(GeV)

FIG. 1 (color online). The normalized BS wave functions for
the system s(ud),, of A. When mp =0.75 GeV and

k= 0.02 GeV3, the dotted and solid lines correspond to
fi1(p,) and f,(p,), respectively. The dashed-dotted and dashed

lines correspond to f; (p;) and ]‘2( p,), respectively, when mj, =
0.75 GeV and x = 0.08 GeV?.

1 15
pe| (GeV)

FIG. 2 (color online). The normalized BS wave functions for
the system s(ud)y, of A. When & =0.05GeV? and
mp = 0.7 GeV, the dotted and solid lines correspond to
fi(p,) and f,(p,), respectively. The dashed-dotted and dashed
lines correspond to fl (p,) and fz( p;), respectively, when k =
0.05 GeV? and mj, = 0.8 GeV.

I A, —» A AND A, —» p FORM FACTORS

Based on SU(6) wave functions of the proton, the proton
state can be expanded in the terms of quark-diquark
configurations [23]:

T

0 0.5 1 1.5
[p] (GeV)

FIG. 3 (color online). The normalized BS wave functions for
the system u(ud),, of p. When mp=0.75GeV and

k= 0.02 GeV3, the dotted and solid lines correspond to
fi(p,) and f,(p,), respectively. The dashed-dotted and dashed
lines correspond to f; (p;) and fz( p;), respectively, when mp =
0.75 GeV and x = 0.08 GeV?.

25

0 0.5 1 1.5

FIG. 4 (color online). The normalized BS wave functions for
the system u(ud),, of p. When & =0.05GeV® and
mp = 0.7 GeV, the dotted and solid lines correspond to
fi(p,) and f,(p,), respectively. The dashed-dotted and dashed
lines correspond to f; (p,) and fz( p:), respectively, when x =
0.05 GeV? and mj, = 0.8 GeV.
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L PV)

Ay A(p)

(’U.d)o,o

FIG. 5. A, —» A(p)P(V), where P and V are a pseudoscalar
meson and a vector meson, respectively. In these transitions,
(ud), behaves as a spectator.

=3 f[3w<ud>oo+u¢<ud> —V2ut (ud), ,
- \/_dT(””)l.o + Zdl(””)l,l]’ (25)
pt = 3\/-[3”%”‘1) _“T(”d)Lq +\/§uT(”d)l,—]
+V2d4 (uu), o — 2d" (un), ). (26)

In the same way, we can obtain the forms of A [23],

AT = 2\/§[2s (ud)oo + V2d* (us),

+d' (us)g

—d"(us),

—V2ul (ds),  + u' (ds); o — ul (ds)g),

(27)

1
A/\‘l = m [2s¢(ud)0’0 -

+ di(us)oyo + \/EuT(ds)l,_l - ui(ds)l.o

\/EdT(us)l._l + di(us)l’o

- Ml(ds)o,o]-
(28)

In Egs. (25)-(28), the arrow 1 (] ) indicates that the spin
direction of the corresponding baryon is up (down).

A, is regarded as a bound state of a b quark and a scalar
diquark (ud),,. In the transition A, — A (p) shown in
Fig. 5, the b quark decays into the s (u) quark, and the
scalar diquark behaves as a spectator.

We first study A, — A transition, the matrix of which
has the general form [10]

(A(P',s")|Sy"Db|Ay (P, s))
= up(P'. 8" )[gir" + igao'q, + g3q*]uy, (P, s),
(A(P', s")[57"ysb|Ay(P, 5))
(

up(P',s")[tiy" + ity q, + t3q"ysup, (P, s),  (29)

where ¢ =P - P and the form factors ¢, and ¢,
(i =1,2,3) are functions of qz. The most general form

PHYSICAL REVIEW D 91, 016006 (2015)

for the matrix element in Eq. (29) consistent with the spin
symmetry on the b quark in the limit m; — oo is

(AP, s")57"(1 —75)bAy (v, 5))

=iy (P, s")(F1 + Fo2)7*(1 = ys)uy, (v,5),  (30)

where F; (i = 1,2) are functions of v - P’, and we have
used the constraints

= Muy(p'.s').
(31)

wuy, (v, 5) = uy, (v,5), Pluy(p',s)

Comparing Eq. (30) with Eq. (29), we obtain the following
relations:

t <F+MAF>
g =nh= 1 T, 12
M,,

1

h=@G=h=13=—-F, (32)
MA;;

In the second section, we have obtained the BS wave
functions of the s(ud),, [u(ud), ] configuration of A(p).
The BS wave function of A, was given in previous works
and has the form yh'(p)= ¢ (p)uy, (v.s), where
¢™(p) is the scalar BS wave function [17,19]. The
transition matrix for A, — A can be expressed in terms
of the BS wave function of A, and the s(ud),, component
of A,

(AP, s")sy, (1 = 75)bA,(P. 5))

4
_/ (621 )4)(”’(”/)7»!(1—Vs%b(p)SB‘(pz), (33)

where x4 (p’) represents the BS wave function of the
s(ud), o component. On the grounds of Lorentz invariance,
we define the following equation:

4
/ (d L2 (PPt ()53 (p2) = Do+ ot (39

ConSidering ptl/ : Uy - Oa P;D ° U/y - 0 and U2 = U/Z = 1,
we can get

1 d4 / A 2 2
h=1=0 | a0 (D)0 =), (39)
lz = —a)ll. (36)

From Egs. (27) and (28), we can see that the Clebsch—
Gordan coefficient of the s(ud), configuration is 1/+/3.
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Comparing Egs. (30) and (33) and making use of Egs. (34),
(35), and (36), we can obtain the form factors for A, —» A
as the following:

d4
"=7]

- P )07 - )

{fA( N (p)S5 (p2)

(37)

)=

PHYSICAL REVIEW D 91, 016006 (2015)
—i d*p

F2 = —/—4
V3J (2n)

Substituting Eqgs. (4), (8), (10), and (12) into Eq. (3) and
integrating ¢, we get the relations between f1(p'), fa(p’)

and f1(p}), £2(P)),

{2 0pt a0 )07 -0 |
(38)

d3‘1t

(’11M+ Pl
X {[(Vl (pt -
+[(Vi(p, = q,) = 2(p]

q:) +2(p) — wp)V,(p!
- wD)Vz(P;

ws + i€) (LM — p))? — 03, — ie) /
- q,)F(0?))(m, + o)) —
- q,)F(Q%) -

(27)?
(i q: + P2)Va(p) — a,)F(OIf1 (q1)

(my + ) (P} - 40+ PR)V2F(0?)]f2 (40)}, (39)

d3%

Ayl — !
£2(p") = —a)s—i—ie)((ﬂzM—Pﬁ)z—a’%)_ie)/

<[ io1-a) 420000 Va0

(MM +p;

+[<ms—w;><v,<p;—q,>—2<pl wp) V(!

where @ \/m —p,, m —Pt, Pz(

a)F <Q2>>”’ 9

p'—p)-v) and pj(=

(27)*

—q,>F<Q2>>—<ms—w;><%<p;—qt>+”; 97, () q,)F (Qz)ﬂf?(q,)

t

—(Pi-q,+pP)Va(pi - qt)F(QZ)]fQ(qt)},
(40)

p'-v) are the transverse and longitudinal

relative momenta along the momentum of A, respectively. Substituting Eqs. (39) and (40) and the relation between
™ (p) and ¢™ (p,) [15] into Egs. (37) and (38) and integrating out the longitudinal momentum p;, we obtain the forms for

F and F,,

/ a4 p, Ah )/ d’k, { 1
= V3 b 20(My — wwp — @, — Vo — 1cosOp,)
X {[(V1(Pz — k) + 20p V() = k) F(Q))(ms + @) = (P} - ki + pP)Va(ph — k) F(QD)] 1 (k)
+[(Vi(pl = ki) = 20pVa(pl = k)F(Q)) = (my + @) (ph - k + pP)VLF(Q?)]F5 (k)}
0] 1 ,
1 =020 (My — wwp — @, — Var — 1 cosOp,) nh

x { {(Vl(p; — k) + 20p Vs (p) -

k)F(Q?)) = (m, — o) (w; —k)+ I

pi-k V. (pl - kt)F(QZ)ﬂ]?/lx(kz)

t

= P10 = k) = 20072l = PO P = (01 PRIV~ k) F(Q)| 00 )
pt
[ &p oy, $r 1 I o
Fz_\@ (27)° (pt>/(2”)3 1 — 020 (M) — wwp — @, — Var* — 1 cosOp,) P

x { {(v, (Pl = k) + 20V (p) — k)F(Q2)  (m

T [(nz )V (Pl = ki) = 20 () — k) F(02) PRt

—of) (wp; k)

V4

LR )|

)F(Qﬂ}é‘(k,)},

—(pt- k4 PHVa(pi (42)

t
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FIG. 6 (color online). A, — A form factors F; (in the upper
plane) and F, (in the lower plane) as functions of w. The solid and
dotted lines correspond to k = 0.02 GeV? and 0.08 GeV?,
respectively, when mp = 0.75 GeV. The dashed and dashed-
dotted lines correspond to mp = 0.7 GeV and mp = 0.8 GeV,
respectively, when x = 0.05 GeV?.

where @ = v - v’ (v and ¢ are the velocities of the A;, and
A, respectively) is the invariant velocity transfer and 6 is the
angle between p, and v}. All the form factors are functions
o : m} +mi~q

of the invariant velocity transfer. ® = ‘\; = therefore,

my, my
- . my+my
the minimum and maximum values of @ are 1 and ~——

2mAb my°
respectively. In our calculation, we take m; = 0.45 GeV,
M, = 1.116 GeV, and M,, = 5.62 GeV. Then, one can
find @ ranges from 1 to 2.62. The numerical results for form
factors F'; and F, are plotted in Fig. 6 as functions of w. Ina
similar way, we obtain the form factors for A, — p,
replacing m, by m, and M by M,. w for A;, — p ranges
from 1 to 3.08, and the Clebsch—Gordan coefficient of the
u(ud),, configuration is 1//2. The numerical results for
F and F, are plotted in Fig. 7.
From Figs. 6 and 7, we can see that the magnitudes of
form factors decrease as w increases. This is because the

FIG. 7 (color online). A, — p form factors F (in the upper
plane) and F, (in the lower plane) as functions of . The solid and
dotted lines correspond to x = 0.02 GeV? and 0.08 GeV?,
respectively, when mp = 0.75 GeV. The dashed and dashed-
dotted lines correspond to mp = 0.7 GeV and m;, = 0.8 GeV,
respectively, when x = 0.05 GeV?.
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overlap integrals of BS wave functions decrease with the
increase of w. We can also see that F'; and F', have opposite
signs and F; changes more rapidly than F', as  increases.
The numerical results of | and F, will be used to calculate
the matrix elements of A, — A and A, — p and the decay
widths of A, — A(p)P(V) in the next section.

IV. DECAY AMPLITUDES OF A, AND
BRANCHING RATIOS

Based on the operator product expansion, the effective
Hamiltonian Hg for the hadronic decays of A, (AB = 1)
reads [24]

Har = % {vubvzq 1 (1) O%(u) + ¢ (1) 04 ()]

10
— v,bvrqzc,»wo,«m} | He., (43)
i—3

where g =d,s, Gp is the Fermi constant and c;(u)
(i=1,2,...,10) are Wilson coefficients at the renormal-
ization scale y,

Of = (ab)y_,(qu)y_a,
05 = (lgbp)y_a(Gptia)y-a-

O3(5) = (Elb)V—AZ(q,q,)V—A(VJrA)’
q,

O46) = (%bﬁ)v-AZ(E/ﬁ%)v-A(VM),
ql

O7(9) = (Z]b>V—AZeq’(q/q/)VJrA(V—A)’

q

Og(10) =

\SRRON] [\S AN

(z]abﬁ)V—AZeq’(‘_I;}q;)V+A(V—A)’ (44)
ql

where O , are the tree-level current-current operators, O3_g
are the QCD penguin operators, O;_; are the electroweak
penguin operators, (§,g,)ys4 denote the usual V +A
currents, and the sum over ¢’ runs over the quark fields
that are active at the scale y = O(my,), i.e., ¢ € u,d, s, c, b.
The Wilson coefficients, c;, are known to the next-to-
leading logarithmic order. To be consistent, the matrix
elements of the operators O; should also be renormalized to
one-loop order. The values of the effective Wilson coef-
ficients that are renormalization scheme independent are
listed in Table III [25], where k is the momentum of the
gluon or photon in the penguin diagrams. First, we consider
the decays of A, — B¢P (B could be p or A, and P is a
pseudoscalar meson). We note that tree operators,
QCD, and the electroweak penguin operator contribute
to A, — pr~ and A, - pK~, while for A, — Az, only
tree and electroweak penguin operators contribute. The
amplitudes for these processes can be given as [7]
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TABLE III. Effective Wilson coefficients for the tree, electroweak, and QCD penguin operators.

c’ K?/m? =03 K*/m3 = 0.5

c) 1.1502 1.502

ch -0.3125 —-0.3125

ch 2433 x 1072 + 1.543 x 1073 2.120 x 1072 +5.174 x 1073i
c, —5.808 x 1072 — 4.628 x 1073 —4.869 x 1072 — 1.552 x 1072
ck 1.733 x 1072 + 1.543 x 1073} 1.420 x 1072 +5.174 x 1073
ch —6.668 x 1072 — 4.628 x 1073 —5.729 x 1072 — 1.552 x 1073
ch —1.435 x 107* = 2.963 x 107%i —8.340 x 107 = 9.938 x 107%;
ci 3.389 x 107* 3.839 x 1074

ch —1.023 x 1072 = 2.963 x 107%i —1.017 x 1072 —=9.938 x 107}
o 1.959 x 1073 1.959 x 1073

.G - * *
M(A, - pr™) = l%fﬂ”p(P/’ YV Vigar — Vi Viglas + ayo + (as + ag)Ry ] g1 (M, — M) + gym2]

7

+{VwVigar = Vi Viglas + ayg + (ag + ag) Ry}t (My, + M) — t3m;21]75)”Ab(P’ 5), (45)

.G - * *
M(A, » pK™) = l*;fKup(P/v SV {VupVisar = Vi Vislas + aro + (a + ag) Ry} g1 (Ma, — M) + gsmi-]

N

+{VupVisar = Vi Vislas + aig + (ag + ag)Ro)}t1 (My, + M) — tsmg-]ys)uy, (P, s), (46)

G 3
M(Ab - A”O) = iTFfﬂﬁA(Plv Sl) VubVZSGZ - thV;(S (E ((19 - a7)>i|

X {[g1(My, = M) + gsmz] + [t,(My, + My) — t3mz]ys}uy, (P.s), (47)

amplitudes, respectively. The corresponding decay rate is
given as [26]

where the coefficients a;, a,, ..., a;o are combinations of
the effective Wilson coefficients after Fierz transformation,
which are defined as

A (m; +mp)? —m? m; —mg)* —m>
| e {0 o (220 g,
aji_q C2i—1 +N—C/21, 87 m; m;
o (50)
ay; = Ch; +—ch 4. (i=1,2,...5), (48)
N, where m;, m;, and mp are the masses of the initial baryon,
2 o the final baryon, and the pseudoscalar meson, respectively;
and Ry = iy Ra = sy Where the  p s the c.m. momentum; and k = E,-ijmf with E; being the

quark masses are current quark masses. The most general
Lorentz-invariant amplitude for the decay A, — B/P can
be written as

M(Ay = BpP) = iiig (P',s')(A + Bys)uy,(P,s),  (49)
where ug (P, s') is the Dirac spinors for B; and A and B

are parity-violating S-wave and parity-conserving P-wave
|

Gr

energy of By.

Next, we consider the transition amplitudes for
A, - BfV decay channels, where V could be p, K*,
and J/yw. A, - pp and pK* receive contributions from
the tree as well as QCD and electroweak penguins
operators, whereas A, — Ap and AJ/y receive only tree
and electroweak penguin operator contributions. Thus, we
obtain the corresponding transition amplitudes as [7]

M(Ah - pp—) = \/if/)mpe*ﬂap(Pl’ S/)[VubVZdal - Vthvfd(a4 + al())]([gl - gZ(MAb + Mp)]]/” + 292(pf);4

=ty + (My, = M)y, + 2t2(py), brs)ug, (P, s),

(51)
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G _ N .
M(Ay, = pK*=) ==L fmge i, (P, s") [V, Visar = Vi Vis(ag + a10)]([01 = g2(Ma, + M)y, + 20:(py),

V2

[t +(My, = M)y, + 2t2(py),, brs)ug, (P, s), (52)

G 3
M(Ab - Ap()) = TFf/)mpe*ﬂaA(Pl’ S/) VubVZsaZ - VthV;k.\'

(a9 +a7) | ([g1 = (M n, + My)ly, +2t2(py),

—{lty + My, = M)y, +2t6(py), }rs)us, (P, s), (53)

G
M(A, = N Jy) = 7%fjwmjw€*”ﬁA(P/’ SV VerVisar = Vi Vig(as + as + az + ao)|([91 — g2(Mn, + M)y, +292(py),,
—{[ty + (M n, = M)y, +2t2(py) 15 )ua, (P, s), (54)

where €* is the polarization vector of the emitted vector meson. For the A, — BV decay mode, the general form for the

amplitude is

M(Ay = B;V) =g (P',s")e*[Ary,rs + As(ps)urs + Bivy + Ba(ps)Jua, (P, s). (55)

The corresponding decay rate is given as [7]

r
8 m;

EZ

{20P +1P.P)+ E2 15+ 0P 11 .
\4

(56

where my (Ey ) is the mass (energy) of the vector meson V,
and

§=-A,
2
D= —m(m —m;A,),
Py :Ep_; (%31 +miB2>7
P, :ﬁ&. (57)

N, includes the nonfactorizable effects that are model and
process dependent and cannot be theoretically evaluated
accurately. Therefore, we choose to determine the values of
N, by experiment. Since the nonfactorization information
included in N, may be decay-channel dependent, the value
of N. may be different for different decay channels. This
difference will be ignored due to our lack of knowledge
about different decay-channel dependence. Furthermore,
the nonfactorizable contribution can be absorbed into the
effective parameters a; after the Fierz transformation with
{; describing the nonfactorizable effects, which is defined
as 1/(N.); =1/3+¢;, and may be different for each
operator. However, since we do not have enough informa-
tion about the operator dependence of {;, we assume ; is
universal for each operator, and hence we use that
(N.); =N.. N, as the effective number of colors, is
treated as a free parameter modeling the nonfactorizable

I

contribution to the matrix elements, and its value can be
extracted from the experimental data for the two body
nonleptonic B decays. The analysis of B — Dz data leads
to N, ~2 [27]. On the other hand, Mannel and Roberts
used N. = oo to study nonleptonic decays of A,. The
dominant contributions come from the coefficients a; and
a, for current-current amplitudes, a, and ag for QCD
penguin induced amplitudes, and a9 for electroweak
penguin induced amplitudes. It can be seen that the
coefficients a;, a4, ag, and ag are not sensitive to N,
whereas other coefficients depend on N, strongly.
For the decays of which amplitudes depend mainly on

: :
k2/m? =05

Branching Ratio

FIG. 8 (color online). Branching ratios as a function of N,
when k*/m37 = 0.5. In our calculation, the upper (lower) curved
solid line corresponds to the upper (lower) boundary of the
branching ratio of A, — AJ/y, the upper (lower) curved dashed
line corresponds to the upper (lower) boundary of the branching
ratio of A, — pK~, and the upper (lower) curved dotted line
corresponds to the upper (lower) boundary of the branching ratio
of A, — pz~. The upper and lower horizontal solid, dashed, and
dotted lines correspond to the ranges of the experimental results
for Ay, - AJ/y, Ay > pK—, and A, - pr~.
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o

Branching Ratio

FIG. 9 (color online). Branching ratios as a function of N,
when k?/m? = 0.3. In our calculation, the upper (lower) curved
solid line corresponds to the upper (lower) boundary of the
branching ratio of A, — AJ/y, the upper (lower) curved dashed
line corresponds to the upper (lower) boundary of the branching
ratio of A, — pK~, and the upper (lower) curved dotted line
corresponds to the upper (lower) boundary of the branching ratio
of A, —» pz. The upper and lower horizontal solid, dashed, and
dotted lines correspond to the ranges of the experimental results
for A, > AJ/y, Ay - pK~, and A, — pr~.

N .-insensitive coefficients, their decay rates can be reliably
predicted within the factorization approach even in the
absence of the information on nonfactorizable effects.

Numerically, the parameters appearing in the decay
widths and the masses and decay constants of mesons
are taken to have the following values [4,7]:
Gr = 1.16637 x 107> GeV~=2, m,- = 0.1396 GeV, m, =
0.135 GeV, mg- =0.4936 GeV, mg = 0.892 GeV,
m,-=0.775GeV, m;,, = 3.096 GeV, [, =130.7 MeV,
fx =159.8 MeV,  fg- =221 MeV, f, =221 MeV,
f17,=0395GeV, and 7(A,) = (1.425+0.032) x 10~ s.
The CKM matrix, which should be determined from
experimental data, has the following form in terms of
the Wolfenstein parameters, A, 4, p, and 7 [4]:

1-42 yl AV (p —in)
-2 1-12 AX? . (58)
AP (1 =p—in) —AX 1

PHYSICAL REVIEW D 91, 016006 (2015)

We use 1=0.2235, A = 0.811, ppin = 0.09, ppa = 0.254,
Nmin = 0.323, and 7, = 0.442. The results are shown in
Figs. 8 and 9. In our calculation, we have several param-
eters: k%, N, k, mp, and the CKM matrix elements. When
k*/m2 = 0.5(0.3), we let k range from 0.02 to 0.08 GeV?
and mp range from 0.7 to 0.8 MeV. In the allowed ranges of
mp, k, and the CKM matrix elements, we can get the upper
and lower boundaries of branching ratios as a function of
N.. Then, with the experimental data for the branching
ratios of the decays A, — AJ/w, A, — pz~, and
A, - pK~, we extract the allowed range for N, from
the comparison of the theoretical results and the exper-
imental data. We exclude the ranges of N, in which the
entire calculated band lies outside the experimental band
for every decay channel. As we can see from Fig. 8
(k*/m2 = 0.5), for A, — pz~, the intersection of the upper
boundary of calculation results and the smallest experi-
mental value corresponds to N. = 0.62, and the lower
boundary of calculation results cannot reach the biggest
value of experiment when N, ~ co. Therefore, we should
exclude N. < 0.62 and obtain the range of N, as [0.62, o).
In a similar way, we get the range of N.. as [0.70, c0) from
A, - pK~. As for the decay A, — AJy, the lower
calculation boundary intersects with the biggest experi-
mental result at the point N, = 0.98, and the upper
calculation boundary intersects with the smallest exper-
imental result when N, = 2.65, 6.08. Therefore, we should
exclude N, <098 and 2.65 < N. < 6.08 and get the
range of N, as [0.98,2.65] U [6.08, ). Then, we obtain
the overlap of the ranges of N. from the three decay
channels as [0.98,2.65] U [6.08,00) (k*/m? = 0.5).
Similarly, from Fig. 9 (k?/m? = 0.3), we obtain the range
of N, as [0.95,2.63] U [5.98, o). We can see that the decay
A, = AJ/y plays the main role in limiting the range of N,..
This is because the decay amplitude of A, — AJ/y
includes coefficients a,, a3, as, and ay, which are sensitive
to N, while for A, - pz~ and A, - pK~, their ampli-
tudes depend mainly on other coefficients (a;, a4, and ag)
that are insensitive to N .. Then, we can give the predictions
for the branching ratios of the decays A, — Az°(p°) and
Ay = pp~(K*). The numerical results are shown in
Tables IV and V. These predictions will be tested in future
experiments.

TABLE IV. The smallest/biggest predicted values of branching ratios for A, — Az, Ap, pp~, and pK* in the
obtained ranges of N, when ¢*>/m3 = 0.3. The uncertainties when N, takes the limiting values are caused by the

uncertainties of mp and k.

Decay processes

N, €[0.95,2.62]

N, € [5.98, c0)

Ay — Ap°(107%)
A, — Az°(107)
A, = pK*(107%)
Ay = pp=(107°)

1.13 ~1.72/7.76 ~ 11.49
0.81 ~1.31/7.97 ~ 10.67
1.75 ~2.76/4.05 ~ 6.37
1.61 ~2.40/3.68 ~ 5.50

1.56 ~2.11/10.68 ~ 13.86
1.07 ~1.43/7.97 ~ 10.67
3.31~3.43/7.22~7.93
2.87 ~3.15/6.23 ~7.20
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TABLE V. The smallest/biggest predicted values of branching ratios for A, — Az°, Ap, pp~, and pK* in the
obtained ranges of N, when ¢*/ m% = 0.5. The uncertainties when N, takes the limiting values are caused by the
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uncertainties of mp and k.

Decay processes

N, €[0.98,2.65]

N, € [6.08. )

Ay = Ap°(107%)
A, — AZ0(10°8)
A, = pK*(107%)
Ay = pp=(107)

1.45~2.27/7.62 ~11.20
1.04 ~ 1.61/5.97 ~9.23
2.11 ~3.29/4.87 ~7.60
1.58~2.41/3.59 ~5.52

1.99 ~2.68/10.45 ~ 13.65
1.39 ~ 1.85/8.02 ~ 10.66
374 ~4.11/8.63 ~9.47
2.73 ~2.98/6.24 ~ 6.83

V. SUMMARY AND DISCUSSION

In the quark-diquark model, a light baryon that is
composed of u, d, and s quarks can be regarded as a
bound state of various quark and light diquark configura-
tions. The Clebsch—Gordan coefficients of this configura-
tions are given based on the SU(6) wave functions. With
this picture, we have established the BS equation for the
configuration including a scalar diquark in the light baryon.
The kernel for the BS equation contains the scalar confine-
ment and one-gluon-exchange terms, which are motivated
by the potential model and successfully used in the case
mesons and heavy baryons containing a single heavy quark
and two heavy quarks. The BS equations for A and p have
been solved numerically under the covariant instantaneous
approximation. Then, we have calculated the form factors
for A, - A(p) transitions using the obtained BS wave
functions. Working in the factorization approach, we have
obtained the transition amplitudes for various decay proc-
esses and consequently calculated the decay branching
ratios. In the calculation of A, decays, the Wilson coef-
ficients for the tree and penguin operators at the scale m,,
are involved. We have used the renormalization-scheme-
independent Wilson coefficients. One of the major uncer-
tainties in our calculations is the effective parameter N ..

We have compared theoretical results for the branching
ratios of A, - AJ/y, Ay, = pa~, and A, - pK~ with
experimental results and extracted allowed ranges for N,
within which we have obtained the predictions for the
branching ratios of A, —Ap°(z°) and A, — pK*(p~). It
should be noted that the decay modes A, — Az’ and A, —
Ap® have the smallest branching ratios in comparison to
others. This is because these decay modes are suppressed
by the CKM matrix elements and receive contributions
from a,, which are smaller. Furthermore, in these two
decay modes, besides tree operator contributions, there are
only electroweak penguin operator contributions that are
believed to be smaller compared to those of QCD penguin
operators because of the smallness of electroweak Wilson
coefficients. Thus, the branching ratios of A, — Az° and
A, = Ap® in our model are expected to be two orders
smaller than those of A, —» pz~, pp~, pK~, and pK*
decays.
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