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We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions.
Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of CP
violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in
Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These
minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment
extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime.
Our proposed setups can probe scalars lighter than 10−15 eV with a discovery potential of dilatonic
couplings as weak as 10−11 times the strength of gravity, improving current equivalence principle bounds
by up to 8 orders of magnitude. We point out potential 104 sensitivity enhancements with future optical and
nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss
cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary
to and compatible with the parameter range accessible to our proposed laboratory experiments.
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I. INTRODUCTION

With the Higgs discovery at the Large Hadron Collider
(LHC), the Standard Model (SM) is now complete.
However successful it may be, the particle content of the
SM only accounts for about 5% of the energy content of our
Universe. Motivated by the hierarchy problem and the
weakly interacting massive particle (WIMP) miracle, we
had associated the scale of another 27% of our world with
the TeV scale, and expected the LHC and direct-detection
experiments to shed light on the nature of dark matter
(DM). Their null results to date diminish the connection of
new physics with the electroweak scale and deepen the
mystery of the scale and properties of DM.
The largest component of the cosmos offers the biggest

mystery of all. The cosmological constant (CC) challenges
our notion of naturalness by more than 60 orders of
magnitude. There is no experimental evidence for physics
beyond the SM at the relevant energy scale; theories that try
to predict the CC value stumble on this fact, even if we
ignore the theoretical inconsistencies that usually plague
those models. This leaves us with one known framework
where a complete picture of the cosmos can be embedded:
the string landscape. The many vacua of string theory could
accommodate the smallness of the CC due to environmen-
tal selection.

Even though such a framework cannot be tested directly
at low energies, it gives rise to a variety of indirect
signatures. The topologically complex manifolds that are
required to produce the large number of vacua also imply
the existence of many particles: axions, moduli, photons,
dilatons, or even entire hidden sectors. These particles have
widely varying properties and viable mass ranges, and it is
possible that several may significantly contribute to the DM
of our Universe. From the above multitude of candidates,
we would like to entertain the possibility that the DM is
composed of an ultralight boson with dilatonic couplings.
Contrary to fermionic DM candidates, the misalignment
mechanism for light bosons produces a nonthermal, cold
component of DM and opens the parameter space to the
sub-keV mass range. The couplings of these bosons to SM
particles could be greatly suppressed, circumventing the
usual collider and direct-detection constraints. The scalar
mass can be protected by shift symmetry or the smallness of
the couplings, or perhaps it could be tuned to be small, just
like the Higgs mass and the CC.
For masses well below 1 eV, bosonic DM in our Galaxy

has densities that exceed λ−3dB, where λdB is the de Broglie
wavelength of the particle. In this case, the scalar DM
exhibits coherence and behaves like a wave with amplitude
∼ ffiffiffiffiffiffiffiffiffi

ρDM
p

=mDM and coherence time 2πðmDMv2virÞ−1, where
vvir is the virial velocity of DM in our Galaxy [1]. This
coherence offers a new avenue for detecting DM and can be
used to enhance the reach of laboratory experiments.
In this paper, we focus on the nonderivative coupling of

such DM candidates to the SM:
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where OSM denotes terms in the SM Lagrangian. The scale
M� can be many orders of magnitude above the Planck
scale. Such couplings exist for the dilaton and moduli, as
well as for axions in the presence of CP violation. When
such a particle is the DM, its scalar coupling to the SM will
cause coherent oscillations of fundamental constants, such
as the fine-structure constant or the proton-electron mass
ratio, at a frequency set by the DM mass. These will in turn
cause oscillations in the energy levels of atoms and can thus
have a clear signature in devices that set our current
standard for time: atomic clocks.
Rapid advances in frequency metrology—in particular

the technology of mode-locked lasers and the self-
referencing frequency comb [2–6]—have exhibited high
precision that can be sensitive to these minute oscillations.
The long-term stability of the best 133Cs atomic clocks at
the 10−16 level has recently been eclipsed by that of optical
clocks, which are approaching stabilities of 10−18. Since
the energies of atomic transitions in clocks based on
different elements have varying dependencies on the
proton-electron mass ratio and the fine-structure constant,
their comparison can reveal the effects of a scalar dark
matter field with couplings as in Eq. (1). Changes in the
frequency of a microwave or optical transition can now be
measured to incredible precision with a femtosecond
frequency comb produced by mode-locked lasers. The
technology and methods involved in our experimental
proposal have already been demonstrated in labs around
the world; we propose a new way of using these tools to
search for new fundamental physics improving current
searches by many orders of magnitude.
We start by defining the framework for couplings of the

schematic form presented in Eq. (1) in Sec. II. In Sec. III,
we outline a simplified version of our experimental
proposal. We quantify the sensitivity of our setup to the
scalar coupling of DM in Sec. IV, and compare the reach to
existing limits from fifth-force searches and equivalence-
principle (EP) tests in Sec. V. Potential signatures in
gravitational-wave observatories are presented in Sec. VI.
We discuss the cosmology and the astrophysical constraints
on ultralight scalars in Sec. VII. Finally, we conclude in
Sec. VIII. A discussion on possible ultraviolet completions
of dilaton DM is presented in the Appendix.

II. DILATON COUPLINGS OF DARK MATTER

We consider an ultralight singlet scalar field that makes
up all—or an Oð1Þ fraction—of the local dark matter
density, and focus on its possible scalar couplings with the
Standard Model through higher-dimensional operators.
Adopting the conventions of Ref. [7], the relevant low-
energy couplings can be written as

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
∂μϕ∂μϕ − VðϕÞ þ LSM þ Lϕ

�

Lϕ ¼ κϕ

�
þ de
4e2

FμνFμν −
dgβ3
2g3

GA
μνGAμν

− dme
meēe −

X
i¼u;d

ðdmi
þ γmi

dgÞmiψ̄ iψ i

�
; ð2Þ

where κ ≡ ffiffiffiffi
4π

p
MPl

, β3 is the QCD beta function, and γmi
are the

anomalous dimensions of the u and d quarks. We para-
metrize the scalar potential as

VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ 1

3
aϕϕ3 þ 1

4
λϕϕ

4: ð3Þ

The effective couplings in Eq. (2) are ubiquitous in models
involving very light scalars in semi-hidden sectors. Most
notably, the QCD axion and other axion-like particles also
have scalar couplings in the presence of CP violation, in
addition to their usual pseudoscalar couplings. For the
QCD axion there is a nonzero scalar coupling to the quarks
[8–10]:

�
10−16

fa

�
≲ κdm̂ ≲

�
3 × 10−11

fa

�
; ð4Þ

where fa is the axion decay constant, and dm̂ is the
coupling to the symmetric combination of the quark masses

dm̂ ≡ dmd
md þ dmu

mu

md þmu
: ð5Þ

The upper bound on the scalar coupling is set by neutron
electric dipole moment searches, while the lower bound is
set by the amount of CP violation in the Standard Model.
Note that there is a large theoretical uncertainty in the exact
value of this coupling. We also expect dg, dme

and de
couplings to be radiatively generated for the QCD axion.
Another way in which nonderivative couplings of a light

scalar can appear is through a Higgs portal. In the model of
Ref. [11], a super-renormalizable coupling to the Higgs
L ⊃ AϕH†H induces couplings of an ultralight scalar to the
SM, suppressed by a factor Avew=m2

h relative to the scalar
couplings of the Higgs. However, the simplest model
requires A <

ffiffiffiffiffiffiffi
2λh

p
mϕ to avoid an unstable direction in

the scalar potential. Hence the expected couplings to e.g.
the fermion masses are dmi

≲ 10−13ð mϕ

10−18 eVÞ, probably too
small to detect with current technology, as we will show in
Sec. IV. For the remainder of the paper, we shall focus on
the phenomenology of Eqs. (2) and (3), and postpone a
discussion of ultraviolet embeddings of this dilaton-like
theory until the Appendix.
With the action in Eq. (2), a tiny mass mϕ, and

sufficiently weak couplings—negligible self-interactions
and di ≪ 1—the history of the scalar field on scales larger
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than m−1
ϕ is well approximated by a background field that

starts oscillating when H ∼mϕ and whose energy density
redshifts as that of ordinary cold, pressureless DM. Its
present-day behavior can then be described as the solution
to its equation of motion:

ϕðt; ~xÞ ¼ ϕ0 cosðmϕt − ~kϕ × ~xþ � � �Þ: ð6Þ

We take its current energy density ρϕ ¼ 1
2
m2

ϕϕ
2
0 to equal the

local DM density ρDM ≈ 0.3 GeV=cm3, and assume a wave

vector given by the virial velocity: j~kϕj≃mϕvvir with
vvir ≈ 10−3. With these assumptions, we obtain the frac-
tional amplitude of ϕ relative to the reduced Planck scale:

κϕ0 ¼
ffiffiffiffiffiffiffiffiffiffi
8πρϕ

p
mϕMPl

¼ 6.4 × 10−13
�
10−18 eV

mϕ

�
F1=2; ð7Þ

where F≡ ρϕ=ρDM is the fractional contribution of ϕ to the
local DM density.
The classic probes of the scalar couplings in Eq. (2) are

fifth-force experiments, and searches for deviations from
the weak EP. Current technology can set limits on the di
down to the 10−5 level, as we will discuss in Sec. V. With
one extra assumption—that the energy density in the ϕ field
makes up the DM—other phenomenological signatures
come into play, such as temporal and spatial variation of
mass ratios and gauge couplings. Writing κϕ as the field
normalized to the reduced Planck mass MPl=

ffiffiffiffiffiffi
4π

p
, the

above definitions are such that

∂ lnΛ3

∂ðκϕÞ ¼ dg;
∂ lnmiðΛ3Þ

∂ðκϕÞ ¼ dmi
;

∂ ln α
∂ðκϕÞ ¼ de;

ð8Þ

where Λ3 is the QCD confinement scale and α is the fine-
structure constant. Hence if the local value of the ϕ field
changes, the effective masses and gauge couplings of
fundamental particles change as well. The mass of the
protonmp changes primarily due to the change of the QCD
confinement scale Λ3 via the dg coupling, and subdomi-
nantly due to the change of the quark masses mu;d via the
symmetric dm̂ coupling defined in Eq. (5). Comparing this
with Eq. (8), we quickly see that experiments with extreme
sensitivity to changes in mp=me or α can conceivably
constrain the parameters di to subunity levels.

III. CONCEPT AND EXPERIMENTAL SETUP

The goal of our proposal is to search for dark-matter-
induced oscillations in the frequency ratios of certain
atomic transitions, which can be electronic, hyperfine, or
nuclear in nature. Since the effects will be small, we
need stable sources of light with a narrow linewidth, as
well as a way to measure the frequency of pairs of such

lines precisely. Cavity-stabilized lasers locked to atomic
transitions—atomic clocks—provide such monochromatic
light with fractional stabilities down to 10−18 [12,13];
mode-locked lasers generating femtosecond pulses can
be used as measurement “tools” to compare their frequen-
cies [4,5].
The basic observation is that the energies fA of different

atomic transitions (labeled by A) can have varying scalings
with certain mass ratios and the fine-structure constant:

fA ∝
�
μA
μb

�
ζAðαÞξAþ2 ð9Þ

where μA is the nuclear magnetic moment of nucleus A,
and μb is the Bohr magneton. The ratio μA=μb is linearly
proportional to me=mp and the orbital and spin g-factors of
the nucleus. The exponent ζA is 1 for hyperfine transitions,
and 0 for optical transitions. We have factored out a
conventional exponent of 2 in the α dependence due to
the scaling of the Rydberg constant R∞ ∝ α2.
Via Eqs. (6) and (8), the dark matter causes minute,

coherent oscillations in μA=μb and α:

�
μA
μb

�
≃

�
μA
μb

�
0

½1þ ðdme
− dg þMAdm̂ÞκϕðtÞ�;

α ¼ α0½1þ deκϕðtÞ�: ð10Þ

The scaling of μA=μb with the light-quark masses, as
parametrized by the MAdm̂ term, has been estimated for
several relevant nuclei in Ref. [14]; for e.g. A ¼ 133Cs, we
have MA ≈þ0.07. From Eqs. (9) and (10), we thus obtain
fractional variations in the frequency ratio of atomic
transitions A and B:

δðfA=fBÞ
fA=fB

≃ ½ζAðdme
− dg þMAdm̂Þ þ ΔξABde�κϕðtÞ;

ð11Þ

with ΔξAB ≡ ξA − ξB. For example, if A is a hyperfine
microwave transition and B is an electronic optical tran-
sition, ζA ¼ 1, yielding sensitivity to dg, dme

, and dm̂.
1 If A

and B are two different optical transitions, ζA ¼ 0, but
ΔξAB will be an Oð1Þ number (see Table I), yielding
sensitivity to de. We shall take B to be an optical transition
throughout the paper.
Before we describe the setup of our experiment, we first

review the generation of an optical frequency comb as well
as the workings of an optical clock laser in Sec. III A. A
description of how the ratio fA=fB is measured follows in
Sec. III B, in the case where A and B are both electronic

1Actually, such a comparison only constrains a (noncompact)
region in the two-dimensional parameter space fðdme

− dgþ
MAdm̂Þ; deg. With clock comparisons of different pairs of atomic
transitions, one can disentangle this degeneracy.
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transitions in the optical frequency range of 1014–1015 Hz
(the modification to a microwave-optical comparison is
straightforward). We postpone a discussion of nuclear
transitions to Sec. IV C. We will omit many technical
details; the reader is referred to Refs. [5,16,22] for more
complete descriptions of these techniques.

A. Frequency comb and atomic clock laser

It was first realized in Refs. [23,24] that a regularly
spaced train of short pulses (in the time domain)
corresponds to a “comb” in the frequency domain—a
superposition of regularly spaced narrow lines.2 The
development of mode-locked Ti:sapphire lasers has
made the production of few-femtosecond-wide pulse
trains possible. To understand how a frequency comb
is formed, first consider a single pulse. Its frequency
spectrum will be the Fourier transform of its envelope
function, centered at the optical frequency of its carrier.
The width of the spectrum is inversely proportional to
the temporal width of the pulse envelope. For a train of
pulses at fixed repetition rate frep, the Fourier expansion
will be dominated by modes of discrete frequencies
separated by frep (only for these can there be con-
structive interference), with largest amplitudes still near
fc (see Fig. 1). A complication arises from the fact that
the phase velocity of the optical carrier differs from the
group velocity of the pulses in the gain medium of the
femtosecond laser, causing a change Δϕce of the carrier-
envelope phase between two pulses of magnitude
Δϕce¼2πðv−1group−v−1phaseÞLcavityfcmod2π, where Lcavity ¼
c=frep is the length of the cavity used for the femto-
second laser (see Fig. 1). In the frequency domain, this
carrier-envelope phase shift manifests itself as a rigid

frequency shift f0 ¼ frepΔϕce=2π of the spectrum [5].
The frequency comb lines are thus located at

fn ¼ f0 þ nfrep: ð12Þ

The pulse repetition rate frep (and thus also f0) of a
femtosecond laser is typically in the microwave fre-
quency band (∼108 Hz), meaning that the lines of an
optical comb with significant power occur at very large
n. Measurement of frep can be done with a fast photo-
diode [25], while measuring and stabilizing f0 has also
become a standard technique, in particular when the

TABLE I. Transition type and wavelength, and short- and long-term stabilities of current state-of-the-art microwave and optical atom
clocks and the planned thorium nuclear clock. Variation of the line frequency with changes in the ratio μA=μb and fine-structure constant
α are parametrized with ζA and ξA as in Eq. (9).

Species Transition λðnmÞ Short ð10−15ffiffiffiffi
Hz

p Þ Long (10−18) ζA ξA

133Cs [15] hyperfine 3.3 × 107 2 × 102 360 1 2.83
199Hgþ [16] 5d106s2S1

2
↔5d96s2 2D5

2
282 2.8 19 0 −3.19

171Ybþ [17] 4f146s 2S1
2
↔4f136s2 2F7

2
467 2.0 71 0 −5.30

27Alþ [18] 3s2 1S0↔3s3p 3P0 267 2.8 8.6 0 0.008
88Srþ [19] 5s 2S1

2
↔4d 2D5

2
674 16 25 0 0.43

171Yb [12] 6s2 1S0↔6s6p 3P0 578 0.32 1.6 0 0.31
87Sr [13] 5s2 1S0↔5s5p 3P0 698 0.34 6.4 0 0.06
162Dy [20] 4f105d6s↔4f95d26s 4.0 × 108 4.0 × 106 � � � 0 8.5 × 106

164Dy [20] 4f95d26s↔4f105d6s 1.3 × 109 1.3 × 107 � � � 0 −2.6 × 106

229mTh3þ [21] nuclear ∼1.6 × 102 ∼1 ∼1 � � � ∼104

t

E�t�

1� frep

1� fc �Φ�2Π fc �Φ�Π fc

(a)

0 fc
f

E� f �

f0� frep�Φ�2Π

frep

(b)

FIG. 1. Diagrams of the (a) time and (b) frequency domains of a
femtosecond laser with a time-evolving carrier-envelope phase
ϕce, repetition rate frep, and carrier frequency fc. The comb in
(b) is a Fourier transform of the pulse train in (a). In practice,
fc=frep ∼ 106 but here we have taken it to be Oð10Þ for
illustrative purposes.

2See Refs. [4–6] for a more rigorous treatment and elaborate
review including references; here we give a heuristic derivation.
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pulses are short enough so the comb spans at least an
octave in frequency so “self-referencing” becomes
feasible [5]. The stability of combs based on Ti:sapphire
lasers has been demonstrated to be better than 8 × 10−20

[26], so Eq. (12) constitutes a near-perfect “ruler” in
frequency space.
An optical clock laser is a cavity-stabilized laser whose

frequency is locked to the energy of an electronic transition
inside an atom. In practice, the continuous-wave laser source
is incident on a trapped, laser-cooled ion or on a sample of
free-falling cold atoms, while a photomultiplier tube (PMT)
measures resonance absorption of the laser light at the
desired electronic transition energy (see Fig. 2). The laser
source has frequency-determining components that keep it
stabilized to the cavity and locked on resonance with the
transition in the ion/atoms through a feedback mechanism.
Care is taken to eliminate fluctuations in the length of the
stabilizing cavity, as well as noise sources in the transition
energy of the single ion or the sample of cold atoms. In
Table I, we list demonstrated short- and long-term stabilities
of clock lasers based on a wide range of elements, alongside
corresponding references to the state-of-the-art setups which
contain ample discussion on sources of noise and instability
in atomic clock lasers. In summary, a setup such as the one
depicted in Fig. 2 can output ultranarrow laser light with
frequencies fA;B of stability ∼10−15 Hz−1=2, where we can
take fA;B to precisely match energy level differences in ion/
atom samples A and B.

B. Measurement of clock frequency ratios

With two optical clock lasers and a frequency comb, the
corresponding two atomic transition energies can be
compared [16,22]. Light from both clock lasers can be
transported through fibers and superposed on that of a
frequency comb, incident on a fast photodiode. If fA and
fB are included in the range of the comb, they will both be
“close” to lines nA and nB in the comb (see Fig. 2), giving

rise to beating patterns at microwave beat frequencies fb;A
and fb;B, respectively. The measured frequency ratio is

fA
fB

				
expt

¼ f0 þ nAfrep þ fb;A
f0 þ nBfrep þ fb;B

: ð13Þ

Note that the measured frequencies on the right-hand side
ðf0; frep; fb;A; fb;BÞ of Eq. (13) are all microwave frequen-
cies (by construction). They can all be referenced to the
same microwave frequency standard (hydrogen maser or
Cs-fountain clock). It follows that the stability of the optical
clocks is the only limiting factor on the precision of the left-
hand side of Eq. (13), because the stability of the micro-
wave frequency reference standard cancels out in the
frequency ratio. Other noise sources such as general-
relativistic time delay fluctuations coming from e.g.
changes in the gravitational potential due to Earth’s motion
in the gravitational field of the Sun [with peak changes of
Oð10−10Þ and inverse year frequency] are common for both
clocks, and thus also cancel out in the ratio.
This setup can be modified to perform a comparison of a

hyperfine line fA in the microwave regime to a line fB in
the optical regime [27]. A hydrogen maser can directly
measure the frequency fA of the clock based on the
hyperfine transition, and still simultaneously determine
fB with the help of a frequency comb as above:

fA
fB

				
expt

¼ fA
f0 þ nBfrep þ fb;B

ð14Þ

where again all quantities on the right-hand side are
microwave frequencies referenced to the same hydrogen
maser. Typically, the precision of the left-hand side of
Eq. (14) is limited by the short-term stability of the
hyperfine atomic clock.
In Table I, we provide a summary of commonly used

atomic clocks based on the hyperfine cesium transition and
various electronic transitions, as well as a proposed nuclear
clock based on thorium (see Sec. IV D). The frequencies of
various “clock transitions” scale differently with changes in
the magnetic moments and fine-structure constant, as
shown by the ζA and ξA coefficients of Eq. (9) in the last
two columns of Table I. This variation in ξA mainly comes
from a complex overall effect of spin-orbit couplings and
many-body effects in the electron cloud, which have been
calculated and listed in Refs. [22,28]. In two isotopes of
dysprosium, these effects conspire to yield near-degenerate
electronic levels separated by an energy splitting in the
microwave regime, offering competitive sensitivity to
changes in α despite a worse fractional frequency stability
[20]. We also list the demonstrated short- and long-term
stability of clocks based on these transitions.

FIG. 2 (color online). Experimental setup of a frequency
comparison of two optical lines. One clock laser is based on a
“red” transition fA and another is based on a “blue” transition fB.
Light from both clock lasers is superposed with that from a
frequency comb. Measurement of the beat frequencies fb;A and
fb;B, and comb frequencies f0 and frep, provides the necessary
information for a frequency ratio measurement.
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IV. SENSITIVITY

In this section, we quantify the reach of our proposed
clock comparison experiments. The basic modus operandi
is to interrogate two atomic clocks A and B and measure
their frequency ratio fA=fB after averaging for a time τ1,
and repeat this measurement at regular time intervalsΔτ for
a total integration time τint. (We will assume minimal
downtime, such that τ1 ≃ Δτ.) The output of this procedure
is a discrete time series of fA=fB with a total τint=Δτ
number of points. Dark-matter-induced oscillations in the
frequency ratio would show up as an isolated peak in the
discrete Fourier transform (DFT) of this time series, at a
(monochromatic) frequency fϕ ¼ mϕ=2π. If there is such a
monochromatic peak in the DFT, one could determine the
magnitude of some linear combination of the fdig times the
square root of the fractional abundance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ=ρDM

p
via

Eqs. (6), (7) and (10) and the strength of the signal; a
nonobservation of a peak in the DFT would set constraints
(depending on the noise). In what follows, we estimate the
detection reach for the couplings fdg; dm̂; dme

; deg at unity
signal-to-noise ratio (SNR ¼ 1), assuming only one cou-
pling dominates.

A. Microwave-optical clock comparison

The type of setup described in Sec. III for a microwave-
optical transition frequency comparison has been per-
formed before, most recently in Ref. [29] by comparing
a 133Cs-fountain atomic clock with a 199Hgþ optical clock,
and also in Ref. [30] with 171Yb instead of 199Hgþ. These
experiments were primarily sensitive to linear drifts in
fundamental constants; they placed limits on e.g. _α

α. Unless
the scalar field responsible for these variations is much
lighter than the run time of the experiments (a few years,
corresponding to a DM mass of ∼10−22 eV), this is not an
optimized analysis for looking for scalar field dark matter:
the expected phenomenology is coherent oscillations in
mass ratios and the fine-structure constant.
We suggest monitoring the frequency ratio fCs=fSrþ at a

1 Hz sampling rate and 1 s averaging time per measurement
(Δτ≃ τ1 ≈ 1 s). It does not matter which optical clock is
used for the comparison, as long as it has a better short-term
stability than a Cs clock. We picked 88Srþ because it has a
relatively long wavelength for an optical clock (so the
optical synthesis is easier), and because ξCs − ξSrþ ≈ 2.4 is
relatively small (see Table I), minimizing the obfuscating
effect of the de coupling in Eq. (11). At such short
interrogation times, the uncertainty σ1 of the frequency
ratio measurement is dominated by the (in)stability of the
Cs fountain [29], at 2 × 10−13 Hz−1=2 [27].3 Expected
coherence times of the dark matter oscillations are of order

τcoh ≃ 2πðmϕv2Þ−1 with v ≈ 10−3 [1], so we expect to
boost the sensitivity σ1 of a single measurement by a factor
of β ¼ ðminfτint; τcohg=ΔτÞ1=2—the square root of the
number of coherent measurements.
For simplicity, we assume in the rest of this subsection

that dg, dm̂ or dme
are the only nonzero couplings, so a

sensitivity of σn ≡ σ1=β on the amplitude of the oscillation
in the frequency translates directly into a bound on dgF1=2,
dm̂F1=2 and dme

F1=2 via Eqs. (7) and (11). We plot the
expected SNR ¼ 1 sensitivity for the three couplings in
Figs. 3, 4 and 5 for integration times τint of 106 s (thin blue)
and 108 s (thick blue), respectively, assuming ϕ is all of the
dark matter (F ¼ 1). The sensitivity is better for lower
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FIG. 3 (color online). Sensitivity to dg as a function of the scalar
dark matter mass mϕ ¼ 2πfϕ with the microwave-optical clock
comparison experiment described in the text, for τint ¼ 106; 108 s
(thin blue, thick blue), assuming ϕ makes up all of the local dark
matter. Regions excluded by composition-dependent (CD EP)
and -independent (CI EP) equivalence principle tests are colored
in red and orange, respectively, assuming dg ≫ dmi
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FIG. 4 (color online). Sensitivity to dm̂ as a function of the
scalar dark matter mass mϕ ¼ 2πfϕ with the microwave-optical
clock comparison experiment, assuming dm̂ ≫ dg; de; dme

. The
green region depicts allowed scalar couplings of the QCD axion
as in Eq. (4). Plot labels are similar to Fig. 3.

3In other words, the fractional stability of a Cs-fountain atomic
clock is 2 × 10−13=

ffiffiffiffiffiffiffiffiffi
τ1=s

p
where τ1 is the interrogation/averaging

time for a single measurement.
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masses because the amplitude κϕ0 is bigger in Eq. (7); at
high masses, there is an additional suppression due to short
coherence times (leading to the “kink” at fϕ ≈ 10−2 Hz in
all three figures). We require Δτ < 2π

mϕ
< τint, so the signal

shows up as an isolated peak within the range of the DFTof
the measurement time series. Of course, this experiment
can still be sensitive to masses for which 2π

mϕ
> τint—via a

drift in the frequency ratio or a peak in the first mode of the
DFT—but any positive signal could not be ascribed
unambiguously to the effects of oscillating dark matter.
We denote this by the dotted, flat extension of our
sensitivity curves in Figs. 3, 4 and 5, as the expectation
value of the drift over the run time of the experiment is
independent of mϕ in this regime. We note that cosmo-
logical constraints (see Sec. VII) imply that ϕ cannot be all
of the DM in the Universe for masses mϕ ≲ 10−21 eV, and
that the sensitivity of our proposal scales as F−1=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDM=ρϕ

p
with the fraction F of the local dark matter

density in ϕ.

B. Optical-optical clock comparison

As explained in Sec. III, a comparison of two
electronic optical transition lines is very sensitive to
changes in α alone, and thus the de coefficient, without
confounding effects due to dg, dm̂, or dme

. We propose
measuring variations of the frequency ratio of two optical
clocks, one based on a single 171Ybþ ion, and the other
on a single 27Alþ ion. Optical clocks based on these ions
have demonstrated excellent short-term stability, and
behave differently under variations of α because of their
dissimilar electron structures and transition dynamics
(see Table I). Specifically, the short-term stability of
these clocks can be as good as 2.0 × 10−15 Hz−1=2 and
2.8 × 10−15 Hz−1=2 for Ybþ and Alþ, respectively, and

ξYbþ − ξAlþ ≈ −5.3. With the same 1 Hz sampling rate of
fYbþ=fAlþ , we plot in Fig. 6 the SNR ¼ 1 sensitivity to
the de coefficient for integration times of τint ¼ 106 s
(thin blue) and τint ¼ 108 s (thick blue), using the same
assumptions as in Sec. IVA. Because of the superior
short-term stability of optical clocks, the sensitivity to the
de coupling is strong. This is particularly exciting given
the weaker bounds on de from equivalence principle tests,
to which we turn in Sec. V.

C. Improvements in optical clocks

Optical clocks based on single ions are nearing their
ultimate fractional stability limit due to quantum projection
noise (QPN). The path towards further stability improve-
ments thus naturally veers towards using optical clocks
based on a large number of neutral atoms trapped in optical
lattices, whose QPN scales like N−1=2 where N is the
number of interrogated atoms [31]. The most notable
examples in this category are optical clocks based on
171Yb0 [12] and 87Sr0 [13,32], which have demonstrated
short-term stabilities of 3 × 10−16 Hz−1=2 and are
approaching long-term stabilities at the 10−18 level (see
Table I). Further progress in this area will require pushing
the envelope in optical cavity technology for the clock
laser, as thermal-noise-induced fluctuations of the cavity
length start becoming a limiting factor [33,34]. Next-
generation optical coatings (the dominant thermal noise
source) such as microstructured gratings [35] or mirrors
based on gallium arsenide [36] may push short-term
instabilities below 10−17 Hz−1=2 [37].
Optical clock lasers based on a large sample of atoms

that do not wholly rely on optical cavities for their
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FIG. 5 (color online). Sensitivity to dme
as a function of the

scalar dark matter mass mϕ ¼ 2πfϕ with the microwave-optical
clock comparison experiment, assuming dme

≫ dmi
; de; dg. Plot
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FIG. 6 (color online). Sensitivity to de as a function of the scalar
dark matter mass mϕ ¼ 2πfϕ with the optical-optical clock
comparison experiment described in the text, for τint ¼
106; 108 s (thin blue, thick blue), assuming ϕ makes up all of
the local dark matter. Regions excluded by CD EP and CI EP tests
are colored in red and orange, respectively, assuming
de ≫ dmi

; dg. The green region depicts allowed scalar couplings
of the QCD axion.
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short-term stability are also under consideration [38,39].
These systems may reach the QPN-limited instability
Δν
ν0

1ffiffiffiffiffiffi
Nτ1

p where Δν is the spectroscopic linewidth of the

clock system, ν0 is the frequency of the clock transition, N
is the number of atoms measured, and τ1 is the averaging
time in seconds (we have assumed a 1 s measurement time).
With a line quality of Δν=ν0 ∼ 10−15 and N ∼ 1010, short-
term instabilities of ∼10−20 Hz−1=2 may be within reach.4

Furthermore, advanced systems using arrays of coherent
atomic samples may exhibit Heisenberg-limited perfor-
mance, for which the instability Δν

ν0
1

N
ffiffiffi
τ1

p could be as low as

10−21 Hz−1=2 with only N ∼ 106 atoms [38].
The difference ξA − ξB in the coefficients of Eq. (9) is

typically small if A and B are both transitions in neutral
atoms, as seen in Table I, leading to a reduced sensitivity to
de relative to comparisons between two ion clocks (or an
ion-atom clock system) for the same instability. However,
at their current rate of stability improvements, optical
clocks based on neutral atoms will likely lead to better
potential sensitivity to de in the future.

D. Nuclear clocks

It has been suggested in Refs. [21,40] that a nuclear
clock based on a narrow isomer transition in 229mTh may be
used to set a better bound on drifts of fundamental
constants. The thorium nucleus has the remarkable property
of having an excited isomer state of only 7.6� 0.5 eV
and a linewidth of ∼104 Hz, accessible to current lasers.5

The small gap of 7.6 eV between the isomer and ground

state—typically Oð100 keVÞ for most nuclei—arises due
to an accidental cancellation between contributions from
electromagnetic and strong interactions [42–46]. This leads
to an enhancement in sensitivity to changes in α, Λ3, and
quark masses [47]:

δfTh
fTh

≈ 104ðde þ 10ðdg − dm̂Þ þ � � �Þ; ð15Þ

where dm̂ is the dilaton coupling to the symmetric combi-
nation of the quark masses as in Eq. (5).
Proposals have been put forward to build a solid-state

thorium nuclear clock, using either 229Th2þ ions doped
inside a CaF2 lattice [48], or a single-ion clock based
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FIG. 7 (color online). Same as in Fig. 4, but now including the
reach on dm̂ with a future nuclear-optical clock comparison after
τint ¼ 108 s. The future dm̂ sensitivity of the composition-
dependent EP test in Ref. [51] is shown as a dashed red line.
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FIG. 8 (color online). Same as in Fig. 6, but now including
the reach on de with a future nuclear-optical clock comparison
after τint ¼ 108 s. The future de sensitivity of the composition-
dependent EP test in Ref. [51] is shown as a dashed red line.
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FIG. 9 (color online). Same as in Fig. 3, but now including the
reach on dg with a future nuclear-optical clock comparison after
τint ¼ 108 s. The estimated sensitivity to dg with current and
proposed gravitational-wave detectors is also depicted: LIGO
(brown), Advanced LIGO (dashed brown), AGIS-Future (dashed
purple), and eLISA (dashed gray).

4Private communication with Leo Hollberg.
5It must be noted that the 7.6 eV thorium line has not yet been

directly observed; the size of the gap has been determined via
indirect measurements of nuclear decays of uranium [41].
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on 229Th3þ [21]. The latter proposal could reach its
quantum-limited stability of 10−15 Hz−1=2 for interrog-
ation times of a second or longer, if thermal noise can
be controlled. Comparison with a line from an optical
clock is feasible given the recent development of “vacuum
ultraviolet” frequency combs [49,50]. Anticipating these
technologies to mature in the next decade, we project a
combined uncertainty of ∼10−15 Hz−1=2 for the optical
synthesis process and stability of both the nuclear and
optical clocks. Translating this to sensitivity to the
couplings in Eq. (2), we project minimal reach with a
nuclear-optical clock comparison (in dotted blue) for dm̂,
de and dg and in Figs. 7, 8 and 9, respectively.

V. EQUIVALENCE PRINCIPLE TESTS

Ultralight scalars can mediate long-range Yukawa
forces between uncharged objects, and will thus result
in deviations from the EP. In the parametrization of
Ref. [7], a scalar (in addition to gravity) will create the
potential

V ¼ −G
mAmB

rAB
ð1þ αAαBe−mϕrABÞ;

αA ¼ ∂ ln ½κmAðκϕÞ�
∂κϕ ≡ dg þ ᾱA: ð16Þ

For macroscopic objects, most of the rest mass comes
from the nucleus mass, so unless dg is suppressed relative
to the dmi

or de, we expect αA ≃ dg ≫ ᾱA. In this case,
αA is not strongly dependent on the chemical composition
of object A, but one can still detect a scalar force by
looking for a departure from V ∝ r−1 in Eq. (16) in
experiments with linear size of order mϕ. For a review,
we refer the reader to Ref. [52], from which we displayed
a compendium of composition-independent bounds on dg
as the orange region in Fig. 3. Composition-independent
tests of the EP can also directly constrain dm̂, dme

and de.
Without any extra assumptions, these constraints are
weaker because of the relatively small quark-mass,
electron-mass, and electromagnetic contributions to the
rest mass of atoms. We can quantify this by writing

ᾱA ≡ ½þðdm̂ − dgÞQm̂ þ ðdδm − dgÞQδm

þ ðdme
− dgÞQme

þ deQe�A; ð17Þ

where dm̂ ¼ dmd
mdþdmumu

mdþmu
and dδm ¼ dmd

md−dmumu

md−mu
are the

dilaton couplings to the symmetric and antisymmetric
combination of the quark masses respectively. The
“charge vector” Qm̂ ≡ ∂ lnmA∂ ln m̂ is ∼0.1 and decreases by
∼10−2 for elements with high atomic number A, while
Qδm is small and nearly constant across the periodic
table. The charge vector Qme

≡ ∂ lnmA∂ lnme
is also nearly

constant at the rough value of 2.5 × 10−4, while

Qe ≡ ∂ lnmA∂ ln α ranges from 3 × 10−4 for the lightest ele-
ments to 4 × 10−3 for heavy elements (Z ≳ 50) (see
Ref. [7] for formulas of the Qi). We therefore estimate
that the minimal composition-independent EP bounds on
dm̂, dme

and de are weaker than those on dg by factors of
10, 4 × 103 and 103, respectively. We indicated them as
orange regions in Figs. 4, 5 and 6.
At distances larger than the Earth’s radius, composition-

dependent EP tests are more constraining than the
composition-independent ones. Most notably, lunar laser
ranging (LLR) [53,54], which measures the differential
acceleration of the Earth and Moon in the Sun’s gravita-
tional field, and the Eöt-Wash experiment [55,56], which
measures the differential acceleration for Be and Ti on
Earth, are both sensitive to fractional differential acceler-
ations of order 10−13. Because LLR is done at a larger
length scale and the Earth and Moon have similar chemical
composition, the Eöt-Wash experiment is typically more
constraining, setting a limit jαEarthðαBe − αTiÞj≲ 3.6 ×
10−13 at 95% C.L. For dg ≳ dmi

; de, this constrains jdgj ≲
7.2 × 10−6 formϕ ≲ 1=REarth [7]. Similarly, with dm̂, dme

or
de as the only nonzero couplings in Eq. (17), minimal
bounds of jdm̂j ≲ 2.5 × 10−5, jdme

j≲ 7.1 × 10−3 and jdej ≲
3.6 × 10−4 are obtained. The atom-interferometric experi-
ment proposed in Ref. [51] (currently under construction)
will improve the minimal coupling bounds to
jdm̂j ≲ 2.0 × 10−5, jdme

j≲ 8.5 × 10−4 and jdej≲ 7.8 ×
10−5 once it reaches an initial design precision of
jαEarthðα85Rb − α87RbÞj≲ 10−15. The minimal composition-
dependent EP constraints are depicted as red regions in
Figs. 3, 5 and 6. The future reach on dm̂ and de with the
proposal of Ref. [51] is shown as a thin dashed red line in
Figs. 7 and 8.

VI. GRAVITATIONAL ANTENNAS

There are two ways in which the scalar ϕ of Eq. (2)
can influence the macroscopic motions of matter.6 We
discussed the first in Sec. V: apparent violations of the
equivalence principle through new scalar forces, which
do not hinge on the assumption that ϕ makes up the dark
matter density. With this assumption, however, spatial
gradients in the nonrelativistic ϕ waves can cause tidal
forces not unlike those produced by gravitational waves
(GW). In what follows, we will quantify the sensitivity of
GW detectors such as LIGO [58,59], Advanced LIGO
[60,61], AGIS [62,63], and eLISA [64] to ultralight scalar
dark matter waves.

6In Ref. [57], it was suggested that future millisecond pulsar
timing measurements may become sensitive to the oscillating
pressure created by a scalar dark matter field (cf. the γp term in
Sec. VII A) in a narrow mass range around ∼10−23 eV, purely
from the gravitational coupling of ϕ.
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To leading order, the potential for an otherwise free-
falling test mass M (e.g. a LIGO mirror) in a scalar wave

ϕðt; ~xÞ ¼ ϕ0 cosðmϕt − ~kϕ · ~xþ αÞ is

V ¼ M½1þ αMκϕðt; ~xÞ�≃M½1þ dgκϕðt; ~xÞ�; ð18Þ

with κ ≡ ffiffiffiffi
4π

p
MPl

, and where we have approximated αM ≃ dg
[cf. Eq. (16)] since we care about test masses composed of
neutral atoms, whose rest mass is primarily determined by
the QCD scale Λ3. For simplicity, let us assume the scalar

wave travels in the x direction, ~kϕ ¼ kϕx̂. Then the
potential in Eq. (18) will cause test masses to deviate from
their geodesics ~xM by a displacement:

δxM ∼
dgkϕκϕ0

m2
ϕ

sinðmϕt − kϕxM þ αÞ: ð19Þ

Between two mirrors positioned at xM ≃ 0 and xM ≃ L,
the return trip time for light between the two mirrors is
approximately treturn ≃ 2Lþ δt with

δt≃ 4dgkϕκϕ0

m2
ϕ

sin2
�
mϕL

2

�
sinðmϕLþ αÞ; ð20Þ

where we have taken v ≪ minf1; mϕLg.
A gravitational wave with ⊕ polarization moving in the

z direction with phase α, strain amplitude h0, and angular
frequency ω, causes an analogous time delay of δt ¼
h0
ω sinðωLÞ sinðωLþ αÞ. Hence, we find that (up to angular
factors), a scalar wave has an effective GW strain amplitude

h0;SW ∼
2dgkϕκϕ0

mϕ
tan

�
mϕL

2

�
; ð21Þ

and angular frequency ω ¼ mϕ. Of course, the angular
response function of a GW detector is different for a scalar
wave. After averaging over the appropriate antenna patterns
and taking into account that the scalar wave is expected to

have a wave vector ~kϕ ≃mϕ~v and coherence time τcoh ≃
2πðmϕv2Þ−1 with v ≈ 10−3, we estimated the sensitivity of
various interferometers to scalar dark matter waves with dg
couplings using Eq. (21). (The sensitivity to dme

and de is
muchweaker because the charge vectorsQme

andQe defined
in Sec.Vare small.) The resulting estimated reach is plotted in
Fig. 9. In general, we find that larger interferometers such as
the large version of AGIS [62] and eLISA [64] have better
sensitivity, because the effective strain amplitude in Eq. (21)
increases linearly with interferometer size L (assuming
L ≪ m−1

ϕ ). For this reason, smaller detectors such as
(Advanced) LIGO and AGIS-LEO [63] cannot surpass
current EP experiments in terms of sensitivity to our model
(unless there is a local overdensity of ϕ dark matter).

VII. COSMOLOGY AND ASTROPHYSICS

A. Cosmic production and evolution

The energy associated with coherent oscillations of light
scalars can play the role of the dark matter energy density.
Light scalar dark matter can be nonthermally produced
through vacuum misalignment in the early Universe (“mis-
alignment mechanism”) [65]. The evolution of a light scalar
field with initial amplitude ϕ0;i can be described classically
(because of high occupation numbers) by its equation of
motion:

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0; ð22Þ
where the Hubble scale is defined as H ¼ _a

a, and VðϕÞ ¼
1
2
m2

ϕϕ
2 þ aϕ

3
ϕ3 þ λϕ

4
ϕ4 as before. When the Hubble scale

is very large, specifically when H2 ≫ V 0ðϕ0;iÞ=ϕ0;i, the
scalar field and its energy density will be “frozen” at ϕ0;i

and Vðϕ0;iÞ, respectively. In this regime, Vðϕ0;iÞ acts as a
contribution to the vacuum energy. As the Universe
expands and the Hubble scale drops well below the
critical value (H2 ≃ V 0ðϕ0;iÞ=ϕ0;i), the field will start
oscillating with negligible friction. If the oscillations are
harmonic—when the m2

ϕϕ
2=2 term dominates—the energy

density of oscillations ρϕ ≃m2
ϕϕ

2
0=2 with amplitude ϕ0

acts as cold, pressureless dark matter on length scales
larger than the field’s Compton wavelength ∼2π=mϕ.
The one-loop effective potential VðϕÞ has to satisfy

several constraints if ϕ is to be a viable dark matter
candidate. Most obviously, we want to avoid runaway
behavior of ϕ or convergence to minima other than ϕ ¼ 0
in our parametrization of VðϕÞ. It is likely sufficient to
require anharmonicities to be small when the scalar starts
oscillating at H ∼mϕ, i.e. jaϕϕ0;ij, jλϕϕ2

0;ij < m2
ϕ, although

this is not a strict condition, as unknown Planckian
dynamics and higher-dimensional operators may be impor-
tant at those high field values.
The couplings to the SM in Eq. (2) radiatively generate

self-interaction parameters of order

δaϕ;SM ∼ −
ðdmi

κmiÞ3mi

16π2
∼ −10−58 eV

�
dmt

10−6

�
3

; ð23Þ

δλϕ;SM ∼þðdmi
κmiÞ4

16π2
∼þ10−92

�
dmt

10−6

�
4

ð24Þ

where, to get numerical estimates, we have plugged in the
top-quark mass mt and corresponding coupling dmt

—
probably the biggest SM correction (the Higgs boson
contributes with opposite sign). In addition, gravitational
effects will introduce an effective quartic of δλϕ;grav∼
−m2

ϕ=M
2
Pl ≈ −10−92ð mϕ

10−18 eVÞ2.
For the remainder of the discussion, we will combine the

couplings aϕ and λϕ into an effective quartic coupling
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λeffϕ ≡ δλϕ;SM −
10δa2ϕ;SM
9m2

ϕ

þ δλϕ;grav

∼þ10−92
�
dmt

10−6

�
4

− 10−80
�
dmt

10−6

�
6
�
10−18 eV

mϕ

�
2

− 10−92
�

mϕ

10−18 eV

�
2

; ð25Þ

serving as an effective measure of attractive (λeffϕ < 0) or
repulsive (λeffϕ > 0) self-interactions of ϕ in the non-
relativistic limit. The cubic contribution (which is always
negative) in Eq. (25) tends to dominate for the parameter
range of interest in this paper, implying that ϕ typically
has attractive self-interactions. Imposing that the potential
be harmonic when the field ϕ enters its oscillating phase
at H ∼mϕ (anharmonicities today will be much smaller
because the density redshifts as ρϕ ∝ a−3) to avoid
runaway behavior yields the condition

jλeffϕ j ≲ m2
ϕ

ϕ2
0;i

≲ 10−86
�
ρDM;U

ρϕ

��
mϕ

10−18 eV

�
5=2

: ð26Þ

We note that this is a weak condition, as higher-
dimensional operators may stabilize the full one-loop
effective potential at high field values. However, it is
striking that couplings di ≲ 10−6 in Eq. (26), within reach
of our proposed clock comparison experiment, are
roughly in the right ballpark to satisfy the inequality
(26) if ϕ comprises all of the DM in the Universe
ρϕ ¼ ρDM;U.

B. Structure formation

The field ϕ should act as dark matter today, so it must
presently be in its oscillating phase, implying that
mϕ ≳H ≈ 10−33 eV. If the transition to the oscillating
regime happens close to the surface of last scattering,
the integrated Sachs-Wolfe effect will cause distortions in
the anisotropy spectrum of the cosmic microwave back-
ground [66]. This phenomenon provides a handle to
exclude light scalars as a significant component of dark
matter for masses below 10−26 eV [67].
The most stringent cosmology limits on such ultralight

scalars are due to the fact that they are not entirely
pressureless dark matter [68], because of the tiny mass
and self-interactions of ϕ. In the oscillating phase, the
pressure pϕ ≡ _ϕ2=2 − VðϕÞ will vary much on time scales
shorter than H−1 and can have a nonzero average over one
oscillation cycle of the field ϕ when the potential is
anharmonic aϕ; λϕ ≠ 0. Following Ref. [68], we quantify
this as pϕ ¼ ðγ þ γp − 1Þρϕ, where γ is the average of

ðpϕ þ ρϕÞ=ρϕ ¼ _ϕ2=Vðϕ0Þ over one oscillation cycle, and
γp indicates the oscillatory piece, which is irrelevant on
large enough time and length scales. Treating the anhar-
monic terms as small corrections, one finds

γ ¼ 1

T

Z
T

0

_ϕ2

VðϕÞ dt≃ 2

Rþϕ0

−ϕ0

h
1 − VðϕÞ

Vðϕ0Þ
iþ1=2

dϕ
Rþϕ0

−ϕ0

h
1 − VðϕÞ

Vðϕ0Þ
i
−1=2

dϕ
≈ 1þ 3λeffϕ ϕ2

0

16m2
ϕ

þO
�
λeffϕ

2ϕ4
0

m4
ϕ

�
: ð27Þ

In the next subsection, we shall discuss the consequences of
the resulting average pressure on large-scale structure
formation.
Density perturbations of ultralight scalar fields have

nonzero sound speeds at short length scales. There is a
well-known scale-dependent sound speed c2s;ðmÞ ¼
maxf1; jkj2=ð4m2

ϕa
2Þg [69], as well as a scale-independent

sound speed contribution c2s;ðλÞ ¼ γ − 1 when the average

pressure is nonzero [68]. Density perturbations δk ≡ δρk=ρ
at scales jkj obey the approximate classical evolution
equation:

δ̈k þ 2H _δk ≃
�
4πρtot
M2

Pl

−
�

k2

4m2
ϕa

2
þ 3λeffϕ ϕ2

0

16m2
ϕ

�
k2

a2

�
δk: ð28Þ

At large length scales (small jkj), this evolution equation
describes the growth of structure δk ∝ a in the presence of

cold dark matter after matter-radiation equality. At short
length scales, however, Eq. (28) no longer admits linear
growth δk solutions. The c2s;ðmÞ term will inhibit growth at

length scales below a Jeans length LJ;ðmÞ, while the c2s;ðλÞ
term can also inhibit (λeffϕ > 0) or exponentiate (λeffϕ < 0)
growth at scales shorter than LJ;ðλÞ, where

LJ;ðmÞ ≃
�
π3M2

Pl

ρϕm2
ϕ

�
1=4

; LJ;ðλÞ ≃
�
3πjλeffϕ jM2

Pl

8m4
ϕ

�1=2

;

ð29Þ

and we have assumed the scalar ϕ makes up all of the dark
matter density (ρϕ ≃ ρtot). As a conservative estimate, we
posit that growth on length scales larger than current
galactic sizes could not have been disturbed by the above
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growth inhibition (or acceleration). Specifically, we require
LðaÞ > maxfLJ;ðmÞðaÞ; LJ;ðλÞðaÞg for any length scale
Lða0Þ≳ 100 kpc at any time between matter-radiation
equality and the present (aeq < a < a0). Note that in the
matter-dominated era, we have the scalings LJ;ðmÞðaÞ ∝
a3=4, LJ;ðλÞðaÞ ∝ a0, so the above condition is strongest at
a ¼ aeq. We thus obtain estimated bounds on the potential
parameters:

mϕ ≳ 6 × 10−21 eV; jλeffϕ j≲ 3 × 10−79
�

mϕ

10−18 eV

�
4

:

ð30Þ
We note that these constraints disappear completely when ϕ
is only a subdominant component of dark matter, and that
these estimates are more conservative than other recent
studies.
Observations of the Lyman-α flux power spectrum with

the Keck HIRES and the MIKE imply the existence of
hydrogen clouds with a comoving size down to around
100 kpc at high redshift [70], and were used in Ref. [71] to
exclude scalar fields lighter than ∼10−21 eV as the dom-
inant component of dark matter,7 consistent with our
estimate in Eq. (30). Current and future experiments on
weak lensing and 21-cm experiments [73,74] and cosmic
microwave background (CMB) polarization measurements
[75] will likely shed more light on the possible mass range
of light scalar DM. Regarding the quartic, Ref. [76]
previously set an upper bound of jλeffϕ j≲ 10−74ð mϕ

10−18 eVÞ4
by requiring that the scalar DM be nonrelativistic at matter-
radiation equality, to an arbitrary degree of γ − 1 ∼ 10−3.
Scalar dark matter with mass ∼10−21–10−22 eV as aOð0.1Þ
fraction of the total DM density has previously been
proclaimed to resolve some tension between structure-
formation simulations based on the ΛCDM model and
observations [69,71].8 We note that this mass range is
straddling the first bound of Eq. (30), and thus provides
extra motivation to look for scalar oscillations in the mass
range for which the clock comparison tests of Sec. IV are
most sensitive.
In Fig. 10, we show the constraints in Eq. (30) on the

mϕ–jλeffϕ j parameter space in dark and light gray. We also
plot the (negative) quartic contribution of Eq. (24) from a
dmt

∼ 10−6 coupling to the top-quark mass term in blue, as
well as the effective (negative) quartic generated from
gravitational effects in black. For reference, we include the
QCD axion mass-quartic relation λa ∼ −ðma=Λ3Þ4 in

green. From Fig. 10, we conclude that couplings di that
can be probed by the experiment we proposed in Secs. III
and IV can easily be consistent with cosmological and
astrophysical constraints.
In fact, they are complimentary: the structure-formation

constraint on the mass motivates searches for DM oscil-
lations with sub-year periods, while the constraint on the
quartic coupling motivates searches for di couplings much
smaller than those accessible with current EP experiments.

C. Isocurvature perturbations

The nonobservation of isocurvature fluctuations in the
CMB could also constrain very light dilatons, especially in
light of recent evidence for B modes from the BICEP2
Collaboration [77]. If these Bmodes are dominantly sourced
by primordial gravitational waves, they would suggest a
tensor-scalar ratio of r ≈ 0.2, favoring a high scale of
inflation: Hinfl ≈ 1 × 1014 GeV. Their primordial origin is
currently under debate due to potential dust contributions
suggested in Ref. [78] and recently measured by the Planck
Collaboration [79]. In the following, we will discuss the
potential implications of a high inflationary scale.
Scalar fields which are effectively massless during infla-

tion experience random fluctuations in the field value Aiso
that is isocurvature in nature. The isocurvature fluctuations
are uncorrelated with the adiabatic density perturbations
As, while CMB observations require Aiso=As ≲ 0.04 [80].
The random isocurvature perturbations are sufficiently
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FIG. 10 (color online). Cosmological and astrophysical con-
straints in the mϕ − jλeffϕ j plane. Structure formation constraints
are indicated in dark and light gray. Superradiance (SR) bounds
from observations of supermassive black holes are depicted as the
two leftmost yellow regions, while the bounds from observations
of stellar-mass black holes are depicted as the rightmost yellow
region. For reference, we include the effective quartic contribu-
tion generated for ϕ when dmt

∼ 10−6 from SM corrections
(blue), the gravitational contribution to the effective quartic for a
massive scalar field (black), as well as the mass-quartic relation
for the QCD axion (green). The structure formation bounds
assume ρϕ ∼ ρDM, and disappear when ρϕ ≲ 10−1ρDM.

7The limit in Ref. [71] relied on an analogy between scalar and
warm dark matter, and only gave an order-of-magnitude correct
exclusion limit; detailed hydrodynamical simulations of structure
formation with light scalar DM are needed to make this limit
more precise [72].

8For a short review on the small-scale astrophysical contro-
versies, namely the cusp-core problem, the missing-satellite
problem, and the too-big-to-fail problem, see Ref. [75].
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suppressed if the field value ϕ0;i during inflation is near the
Planck scale [81]:

κϕ0;i ≳ 1

�
ρϕ

ρDM;U

��
r

0.16

�
1=2

�
0.04

Aiso=As

�
1=2

: ð31Þ

If we neglect anharmonic terms in the potential, the initial
amplitude of the field is typically a few orders of magnitude
below the Planck scale:

κϕ0;i ≈ 3 × 10−3
�
10−18 eV

mϕ

�
1=4

�
ρϕ

ρDM;U

�
1=2

: ð32Þ

Naively, Eqs. (31) and (32) together imply that ϕ cannot be
all of the DM in the Universe:

ρϕ
ρDM;U

≲ 10−5
�
10−18 eV

mϕ

�
1=2

: ð33Þ

However, this constraint is easily evaded by having a large
initial field amplitude satisfying Eq. (31), and a mechanism
which dilutes the energy density in ϕ after inflation so
as to not overclose the Universe. One way to transition
from a near-Planckian initial amplitude to one consistent
with the current DM energy density is through the cosmo-
logical attractor mechanism of Ref. [82] discussed in the
Appendix. Isocurvature fluctuations could also be small if ϕ
has a high mass during inflation. For example, the renorma-
lizable coupling to curvature ξϕ2R for ξ ∼Oð1Þ gives a
classical contribution of hRi≃ 12H2

infl ∼ ð1014.5 GeVÞ2 to
the mass squared of ϕ during inflation, and has only a tiny
effect today [83]. Similar in spirit, one could make the mass
dependent on the inflaton field value. We thus conclude that
there exist natural solutions to the isocurvature constraint of
Eq. (33) in our dilaton model. Even if ρϕ=ρDM;U ∼ 1 were
untenable, the sensitivity of our experiment only scales at the
square root of the ϕ abundance, with large discovery
potential even for subdominant components of the DM
energy density.

D. Superradiance

Precision observations of rotating black holes can con-
strain ultralight and weakly interacting scalar fields. In
Ref. [84], it was argued that light scalars can form
gravitational bound states with a black hole if the
Compton wavelength of the scalar is comparable to the
Schwarzschild radius of the black hole. A rapidly spinning
black hole can then lose energy and angular momentum
through a variant of the Penrose process—superradiance—
causing the occupation numbers of the scalar field in certain
bound energy levels to grow exponentially. When the
resulting “scalar cloud” collapses after it reaches an
instability due to gravitational or self-interactions, a large
fraction of the angular momentum of the bound black hole
system will be lost. Observations of old, near-extremal

black holes can thus exclude the existence of weakly
interacting scalars for a range of Compton wave-
lengths [84].
The spin and mass of near-extremal black holes can

be measured to high precision with x-ray spectroscopy
[85–87]. In particular, observations of rapidly rotating
black holes in the range 106M⊙ ≲MBH ≲ 108M⊙ excludes
noninteracting scalars for the mass range 10−18.2 eV≲
mϕ ≲ 10−17.6 eV and 10−16.7 eV≲mϕ ≲ 10−16.1 eV, while
rapidly spinning stellar-mass black hole observations
exclude QCD axions in the range 10−12.3 eV≲mϕ ≲
10−10.8 eV [88]. However, in the model we are considering,
the mass m2

ϕ and quartic λeffϕ are two independent param-
eters, unlike for an axion where the two are related via the
cosða=faÞ potential. If the effective quartic is sufficiently
large, instabilities in the scalar cloud form early enough to
render superradiance ineffective and evade the aforemen-
tioned bound. In Fig. 10, we plot the superradiance
exclusion ranges in the mϕ − jλeffϕ j plane in yellow.

VIII. DISCUSSION

The unprecedented precision of atomic clocks allows
us to probe a new parameter space of dark matter with
higher-dimensional scalar couplings way beyond the
grasp of fifth-force and EP-violation searches. The
sensitivity varies depending on whether the DM can
couple with dimension-five operators to the gluonic field
strength through the coupling dg. In particular, if the DM
only has couplings to the electromagnetic field strength
or behaves like a Yukawa modulus, fifth-force or EP-
violation tests which are dominated by the gluonic
coupling lose their sensitivity and the improvement in
the reach of the couplings de and dmi

can be in excess of
8 orders of magnitude.
The detection reach of our proposed experiments

depends on the abundance of ϕ, while fifth-force searches
and EP tests are independent of any cosmic abundance
constraints. Nevertheless, the misalignment mechanism of
DM production suggests that such an assumption is
generic. In fact, for most of the parameter space, the initial
displacement of the field has to be tuned to some degree in
order to avoid overclosure of our Universe with DM. Such a
tuning is well justified when anthropic considerations are
taken into account. Scanning of the initial displacement of
the bosonic field can be easily achieved in a long era of
inflation, as during every Hubble timeH−1, any scalar field
will fluctuate by an amount of order H. Due to this random
walk, the bosonic field will scan the entirety of its natural
range after N ≲M2

Pl=H
2 e-foldings.

A major concern in our model of an ultralight scalar field
coupling to the SM is the issue of naturalness. Naively
putting a hard cutoff Λ ∼ 10 TeV, we find a mass correc-
tion to the ϕ mass of order

SEARCHING FOR DILATON DARK MATTER WITH ATOMIC … PHYSICAL REVIEW D 91, 015015 (2015)

015015-13



δm2
ϕ ∼

ðκdmi
miΛÞ2

16π2
∼ ð10−11 eVÞ2

�
dmt

10−6

�
2

; ð34Þ

where we have plugged in the top mass mt to get a
numerical estimate. This suggested mass range is several
orders of magnitude away from the parameter space
probed by our proposed setups. However, this estimate
may be too naive. The cutoff could be much lower than
10 TeV; for the axion, the cutoff is the QCD scale
Λ ∼ Λ3, and for a Higgs portal it is the Higgs mass
Λ ∼mh. Furthermore, in the framework of the string
theory landscape, the idea of naturalness is challenged. In
this case, the scalar field could be tuned to be light via
environmental selection because otherwise it would over-
close the Universe, or perhaps the smallness of the
dilaton mass is correlated with the smallness of the
cosmological constant in our vacuum.
The continued absence of new physics at the TeV scale

weakens the motivation for naturalness of the weak scale
and the WIMP miracle. In combination with the omni-
present cosmological constant problem, this expands the
possibilities for dark matter. At the same time, the rapid
progress in fields like clock technology gives rise to new
experimental probes of physics beyond the Standard
Model, and may suggest a new direction of smaller-scale
experimental searches away from the high-energy frontier
probed by colliders.
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APPENDIX: ULTRAVIOLET EMBEDDING

Perturbative formulations of string theory predict the
existence of a scalar partner to the graviton—the dilaton—
which typically has gravitational-strength couplings to
ordinary matter. As we have explained in Sec. V, such
couplings are excluded quite robustly by nonobservations
of equivalence-principle violations. Two classes of solu-
tions to this apparent problem exist in the literature: either
the dilaton gets a sufficiently high mass (so the dilatonic
force is short range and thus less constrained), or there is
some mechanism at work to suppress low-energy couplings
to the Standard Model. A construction of the latter scenario
was first attempted in Refs. [82,89] for a massless dilaton,

where a cosmological attractor mechanism (dubbed the
“least coupling principle” and first noticed in Refs. [90,91]
in the context of scalar-tensor theories of gravity) was
responsible for diluting the couplings.
We summarize the final conclusions of Ref. [82], and

discuss the obstacles of generalizations to our model where
the dilaton ϕ is to be the DM and thus necessarily has a
mass (albeit a very small one). The dynamics of the dilaton
interactions are encoded in the Lagrangian

L ⊃ VðϕÞ þ BiðκϕÞOSM
i ; ðA1Þ

where κϕ≡ κϕ≡ ffiffiffiffi
4π

p
MPl

ϕ is the field in (modified) Planck

units as before and OSM
i is a schematic for SM operators

such as miψ̄ iψ i. We redefine ϕ such that ϕ ¼ 0 is the
minimum of VðϕÞ. For simplicity, let us first take the
assumption of universal BiðκϕÞ ¼ BðκϕÞ with a local
minimum (another possibility is a runaway direction
[92,93]). The attractor mechanism is operative in the early
stages of the radiation-dominated era, when H2 ≫ V 00ðϕÞ
and we can effectively treat the dilaton as massless even in
the presence of a nontrivial potential VðϕÞ. As the Universe
cools down and passes through several mass thresholds of
SM particles, ϕ is gradually attracted to the minimum ϕB

0 of
BðκϕÞ, to settle at a value ϕ�

0 ¼ ϕB
0 þ Δϕ�

0. If the curvature
Ci ≡ Bi

00ðκϕÞ is sufficiently large, the attraction is efficient
and jΔϕ�

0j ≪ ϕB
0 . If the dilaton is exactly massless and has

no self-interactions [VðϕÞ identically zero] as assumed in
Ref. [82], the EP-violating forces are explained to be small

because ϕ�
0 is so close to ϕB

0 at the present day, with jdij ∼
Ci

Δϕ�
0

ϕ�
0

≪ 1 in Eq. (2).

While the above mechanism is an elegant way to dilute
the dilaton couplings, there are several problems with this
construction. The effective potential VðϕÞ and dilaton
coupling functions BiðκϕÞ are renormalized through loops
of dilaton, graviton and matter fields, and perhaps also
nonperturbative string dynamics. These (incalculable)
effects will in general break the assumed universality of
the BiðκϕÞ functions; in particular, the minima of the
BiðκϕÞ will not coincide, precluding an explanation of the
smallness of most di couplings. An additional complication
arises when the low-energy effective potential VðϕÞ is
taken into account, even in the case of universal Bi ¼ B
with minimum ϕB

0 . Internal dilaton loops generally split the
degeneracy of the minima of VðϕÞ and BðκϕÞ, or ϕB

0 ≠ 0.
When the universe cools down toH2 ∼ V 00ðϕÞ, the potential
will kick in and displace ϕ0 away from ϕB

0 , undoing the
attraction to the BðκϕÞ minimum.
We consider the more generic possibility of nonoverlap-

ping coupling functions BiðκϕÞ and a nontrivial scalar
potential VðϕÞ. In our model, where we assume the dilaton
to be a significant fraction of the dark matter produced
through vacuum misalignment, we actually require the
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field value to be nonzero at the start of the oscillating phase
(ϕ�

0 ≠ 0), because otherwise ρϕ would be negligible today.
Assuming the mass term dominates the potential at all
times, we can calculate ϕ�

0 to be the amplitude of the field
when it starts oscillating at H ∼mϕ:

κϕ�
0 ≡ κϕ�

0 ≈ 3 × 10−3
�
10−18 eV

mϕ

�
1=4

�
ρϕ
ρDM

�
1=2

: ðA2Þ

After ρϕ redshifts to its present-day value, we would expect
jdij ∼ Ciκϕ

�
0 at present, which is typically ruled out for

Ci ∼Oð1Þ and the masses considered in this paper
(mϕ < 10−15 eV), as we showed in Sec. V.
In summary, the mechanism of Ref. [82] is efficient

when the curvature of the BiðκϕÞ functions is large, and can
suppress the di couplings when the minima of the BiðκϕÞ
and VðϕÞ are approximately degenerate, which requires

functional tuning in Eq. (A1) unless some symmetry
principle is at work. It has been suggested that S-duality,
with transformations gs → 1=gs for the string coupling and
ϕ → −ϕ as symmetries of the UV theory, could possibly
help yield a minimum for all BiðκϕÞ and VðϕÞ at ϕ≃ 0
without tuning. For large-curvature BiðκϕÞ functions, the
dilaton cannot both be a significant component of DM and
have small di couplings, as Eq. (A2) implies a non-
degeneracy of the VðϕÞ and BiðκϕÞ minima in this case.
We thus conclude that dilatonic dark matter models should
have a priori low-curvature BiðκϕÞ coupling functions in
the field-space region close to the minimum of the effective
potential VðϕÞ in order to have small EP-violating effects.
We hope that our above discussion and the potential
discovery reach of our proposed experiment in Secs. III
and IV spurs future UV-model-building efforts in this
direction.
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