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We update the indirect constraints on the Georgi-Machacek model from B-physics and electroweak
precision observables, including new constraints from b → sγ and B0

s → μþμ−. We illustrate the effect of
these constraints on the couplings of the Standard-Model-like Higgs boson by performing scans using the
most general scalar potential, subject to vacuum stability and perturbativity constraints. We find that
simultaneous enhancements of all the Higgs production cross sections by up to 39% are still allowed after
imposing these constraints. LHC rate measurements on the Higgs pole could be blind to these
enhancements if unobserved nonstandard Higgs decays are present.
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I. INTRODUCTION

Since the 2012 discovery of a Standard Model (SM)-like
Higgs boson at the CERN Large Hadron Collider (LHC)
[1], there has been considerable interest in models with
extended Higgs sectors to be used as benchmarks for LHC
searches for physics beyond the SM. One such model is the
Georgi-Machacek (GM) model [2,3], which adds isospin-
triplet scalar fields to the SM in a way that preserves
custodial SU(2) symmetry. Its phenomenology has been
extensively studied [4–26]. The GM model has also been
incorporated into the scalar sectors of little Higgs [27,28]
and supersymmetric [29,30] models, and an extension with
an additional isospin doublet [31] has also been considered.
The GM model has the interesting feature that the

coupling strengths of the SM-like Higgs boson h to W or
Z boson pairs can be larger than in the SM.1 Such an
enhancement is not possible in Higgs-sector extensions that
contain only isospin doublets or singlets. In light of the
upcoming LHC data-taking period during which higher-
precision measurements of the SM-like Higgs boson cou-
plings and searches for additional Higgs states will be
pursued, it is timely to revisit the indirect constraints on
the GM model from B-physics and electroweak precision
data. Constraints from the oblique parameter S have been
studied in Refs. [16–18] and constraints from the nonoblique
Z-pole observable Rb have been studied in Refs. [7,15,16].
In this paper we point out that the dominant one-

loop contributions of the additional GM Higgs bosons to

nonoblique Z-pole observables and to B-physics observ-
ables can be taken over directly from calculations in the
Type-I two-Higgs-doublet model (2HDM) [37]. We use
this fact to determine for the first time the constraints
on the GM model from b → sγ, B0

s–B̄0
s mixing, and

B0
s → μþμ−. For b → sγ, we adapt the numerical imple-

mentation for the 2HDM in the public code SuperIso v3.3
[38]. For B0

s → μþμ−, we make use of a new calculation
of B0

s → lþl− [39] in the Aligned 2HDM [40]. Of these
observables, we find that b → sγ provides the strongest
constraint, though it may be surpassed in the near future as
the precision on the LHC measurement of the B0

s → μþμ−
branching fraction improves. We also provide an analytic
formula for the S parameter in the GM model in the
approximation that the new scalars are heavy compared to
the Z mass.
We then examine the effect of these indirect constraints

on the accessible ranges of the SM-like Higgs boson
couplings. We find that simultaneous enhancements of
the hWW, hZZ, and hf̄f couplings above their SM value
are still allowed, and could simultaneously enhance the
SM-like Higgs boson production cross sections in all
production modes by up to 39%. Because the LHC
measures Higgs production rates only in particular
Higgs-decay final states, it could be blinded to such an
enhancement by the presence of new unobserved Higgs
decay modes that would suppress the Higgs branching ratios
into detectable final states. Disentangling these effects will
be a major phenomenological and experimental challenge at
the LHC.2
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1An enhancement of the hWW and hZZ couplings above their

SM strength while preserving custodial SU(2) symmetry can also
be obtained in higher-isospin generalizations of the GM model
[13,32–34] or in an extension of the Higgs sector by an isospin
septet with appropriately chosen hypercharge [17,35,36].

2Of course, detecting such an enhancement in the Higgs
couplings will be straightforward at a lepton-collider Higgs
factory, where a direct measurement of the total Higgs production
cross section in eþe− → Zh can be made with no reference to the
Higgs decay branching ratios by using the recoil mass method;
see, e.g., Ref. [41].

PHYSICAL REVIEW D 91, 015013 (2015)

1550-7998=2015=91(1)=015013(14) 015013-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.015013
http://dx.doi.org/10.1103/PhysRevD.91.015013
http://dx.doi.org/10.1103/PhysRevD.91.015013
http://dx.doi.org/10.1103/PhysRevD.91.015013


This paper is organized as follows. In Sec. II we briefly
review the GM model and set our notation. In Sec. III we
discuss the constraints from the oblique parameters and
give our analytic formula for S. In Sec. IV we discuss Rb
and the B-physics observables, and compare their con-
straints on the GM model parameter space. In Sec. V we
illustrate the effects of these indirect constraints through
numerical scans over the GM model parameter space,
imposing all relevant theoretical constraints. We conclude
in Sec. VI.

II. THE MODEL

The scalar sector of the GM model [2,3] consists of the
usual complex doublet ðϕþ;ϕ0ÞT with hypercharge3 Y ¼ 1,
a real triplet ðξþ; ξ0;−ξþ�ÞT with Y ¼ 0, and a complex
triplet ðχþþ; χþ; χ0ÞT with Y ¼ 2. The doublet is respon-
sible for the fermion masses as in the SM. Custodial
symmetry is preserved at tree level by imposing a global
SUð2ÞL × SUð2ÞR symmetry on the scalar potential. In
order to make this symmetry explicit, we write the doublet

in the form of a bidoublet Φ and combine the triplets to
form a bitriplet X:

Φ ¼
 

ϕ0� ϕþ

−ϕþ� ϕ0

!
; X ¼

0
BB@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CCA:

ð1Þ

The vacuum expectation values (vevs) are defined by
hΦi ¼ vϕffiffi

2
p 12×2 and hXi ¼ vχ13×3, where the W and Z

boson masses constrain

v2ϕ þ 8v2χ ≡ v2 ¼ 1ffiffiffi
2

p
GF

≈ ð246 GeVÞ2: ð2Þ

The most general gauge-invariant scalar potential involv-
ing these fields that conserves custodial SU(2) is given, in
the conventions of Ref. [23], by4

VðΦ; XÞ ¼ μ22
2
TrðΦ†ΦÞ þ μ23

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2 þ λ2TrðΦ†ΦÞTrðX†XÞ

þ λ3TrðX†XX†XÞ þ λ4½TrðX†XÞ�2 − λ5TrðΦ†τaΦτbÞTrðX†taXtbÞ
−M1TrðΦ†τaΦτbÞðUXU†Þab −M2TrðX†taXtbÞðUXU†Þab: ð3Þ

Here the SU(2) generators for the doublet representation
are τa ¼ σa=2 with σa being the Pauli matrices, the
generators for the triplet representation are

t1 ¼ 1ffiffiffi
2

p

0
BB@

0 1 0

1 0 1

0 1 0

1
CCA; t2 ¼ 1ffiffiffi

2
p

0
BB@

0 −i 0

i 0 −i
0 i 0

1
CCA;

t3 ¼

0
BB@

1 0 0

0 0 0

0 0 −1

1
CCA; ð4Þ

and the matrix U, which rotates X into the Cartesian basis,
is given by [8]

U ¼

0
BB@

− 1ffiffi
2

p 0 1ffiffi
2

p

− iffiffi
2

p 0 − iffiffi
2

p

0 1 0

1
CCA: ð5Þ

The physical fields can be organized by their trans-
formation properties under the custodial SU(2) symmetry

into a fiveplet, a triplet, and two singlets. The fiveplet and
triplet states are given by

Hþþ
5 ¼ χþþ; Hþ

5 ¼ ðχþ− ξþÞffiffiffi
2

p ; H0
5 ¼

ffiffiffi
2

3

r
ξ0−

ffiffiffi
1

3

r
χ0;r;

Hþ
3 ¼−sHϕþþcH

ðχþþ ξþÞffiffiffi
2

p ; H0
3 ¼−sHϕ0;iþcHχ0;i;

ð6Þ

where the vevs are parametrized by

cH ≡ cos θH ¼ vϕ
v
; sH ≡ sin θH ¼ 2

ffiffiffi
2

p
vχ

v
;

ð7Þ
and we have decomposed the neutral fields into real and
imaginary parts according to

ϕ0 →
vϕffiffiffi
2

p þ ϕ0;r þ iϕ0;iffiffiffi
2

p ; χ0 → vχ þ
χ0;r þ iχ0;iffiffiffi

2
p ;

ξ0 → vχ þ ξ0: ð8Þ

3We use Q ¼ T3 þ Y=2.

4A translation table to other parametrizations in the literature
has been given in the Appendix of Ref. [23].
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The masses within each custodial multiplet are degenerate
at tree level and can be written (after eliminating μ22 and μ23
in favor of the vevs) as5

m2
5 ¼

M1

4vχ
v2ϕ þ 12M2vχ þ

3

2
λ5v2ϕ þ 8λ3v2χ ;

m2
3 ¼

M1

4vχ
ðv2ϕ þ 8v2χÞ þ

λ5
2
ðv2ϕ þ 8v2χÞ ¼

�
M1

4vχ
þ λ5

2

�
v2:

ð10Þ

The two custodial-singlet mass eigenstates are given by

h ¼ cos αϕ0;r − sin αH00
1 ; H ¼ sin αϕ0;r þ cos αH00

1 ;

ð11Þ

where

H00
1 ¼

ffiffiffi
1

3

r
ξ0 þ

ffiffiffi
2

3

r
χ0;r: ð12Þ

The mixing angle and masses are given by

sin 2α ¼ 2M2
12

m2
H −m2

h

;

cos 2α ¼ M2
22 −M2

11

m2
H −m2

h

;

m2
h;H ¼ 1

2

h
M2

11 þM2
22∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
q i

;

ð13Þ
where we choose mh < mH, and

M2
11 ¼ 8λ1v2ϕ;

M2
12 ¼

ffiffiffi
3

p

2
vϕ½−M1 þ 4ð2λ2 − λ5Þvχ �;

M2
22 ¼

M1v2ϕ
4vχ

− 6M2vχ þ 8ðλ3 þ 3λ4Þv2χ : ð14Þ

III. OBLIQUE PARAMETERS

The S parameter [42] is given in terms of the Z boson and
photon self-energies as

S ¼ 4s2Wc
2
W

αemM2
Z

�
ΠZZðM2

ZÞ − ΠZZð0Þ −
c2W − s2W
sWcW

ΠZγðM2
ZÞ − ΠγγðM2

ZÞ
�

≃ 4s2Wc
2
W

αem

�
Π0

ZZð0Þ −
c2W − s2W
sWcW

Π0
Zγð0Þ − Π0

γγð0Þ
�
; ð15Þ

where sW and cW stand for the sine and cosine of the weak mixing angle, αem is the electromagnetic fine structure constant,
MZ is the Z boson mass, and Π0 denotes the derivative of the self-energy with respect to its argument p2. Here the second
expression holds when the new-physics scale is large compared to MZ. This second expression can be written in an
analytical form, and we use it in what follows.
The new contributions to the S parameter in the GM model are given by

ΔS≡ SGM − SSM ≃ s2Wc
2
W

πe2

�
−

e2

12s2Wc
2
W
ðlogm2

3 þ 5 logm2
5Þ þ 2jgZhH0

3
j2f1ðmh;m3Þ

þ 2jgZHH0
3
j2f1ðmH;m3Þ þ 2ðjgZH0

5
H0

3
j2 þ 2jgZHþ

5
Hþ�

3
j2Þf1ðm5; m3Þ

þ jgZZhj2
�
f1ðMZ;mhÞ

2M2
Z

− f3ðMZ;mhÞ
�
− jgSMZZhj2

�
f1ðMZ;mSM

h Þ
2M2

Z
− f3ðMZ;mSM

h Þ
�

þ jgZZHj2
�
f1ðMZ;mHÞ

2M2
Z

− f3ðMZ;mHÞ
�
þ jgZZH0

5
j2
�
f1ðMZ;m5Þ

2M2
Z

− f3ðMZ;m5Þ
�

þ 2jgZWþHþ�
5
j2
�
f1ðMW;m5Þ

2M2
W

− f3ðMW;m5Þ
��

; ð16Þ

where e is the unit of electric charge, mSM
h is the reference SM Higgs mass for which the oblique parameters are extracted,

and the loop functions are given when the new-physics scale is large compared to MZ by

5Note that the ratio M1=vχ can be written using the minimization condition ∂V=∂vχ ¼ 0 as

M1

vχ
¼ 4

v2ϕ
½μ23 þ ð2λ2 − λ5Þv2ϕ þ 4ðλ3 þ 3λ4Þv2χ − 6M2vχ �; ð9Þ

which is finite in the limit vχ → 0.
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f1ðm1; m2Þ ¼
1

36ðm2
1 −m2

2Þ3
½5ðm6

2 −m6
1Þ þ 27ðm4

1m
2
2 −m2

1m
4
2Þ þ 12ðm6

1 − 3m4
1m

2
2Þ logm1þ12ð3m2

1m
4
2 −m6

2Þ logm2�

ð17Þ

and

f3ðm1; m2Þ ¼
m4

1 −m4
2 þ 2m2

1m
2
2ðlogm2

2 − logm2
1Þ

2ðm2
1 −m2

2Þ3
: ð18Þ

When their arguments are equal, f1 and f3 are still finite; taking m2
2 ¼ m2

1ð1þ δÞ, where δ ≪ 1, f1 can be expanded as

f1ðm1; m2Þ ¼
1

6
logm2

1 þ
δ

12
þOðδ2Þ; ð19Þ

and f3 can be expanded as

f3ðm1; m2Þ ¼
1

6m2
1

−
δ

12m2
1

þOðδ2=m2
1Þ: ð20Þ

The couplings that appear in Eq. (16) are given by [23]

gZhH0
3
¼ −i

ffiffiffi
2

3

r
e

sWcW

�
sαvϕ
v

þ
ffiffiffi
3

p cαvχ
v

�
; gZHH0

3
¼ i

ffiffiffi
2

3

r
e

sWcW

�
cαvϕ
v

−
ffiffiffi
3

p sαvχ
v

�
;

gZH0
5
H0

3
¼ −i

ffiffiffi
1

3

r
e

sWcW

vϕ
v
; gZHþ

5
Hþ�

3
¼ e

2sWcW

vϕ
v
;

gZZh ¼
e2v

2s2Wc
2
W

�
cαvϕ
v

−
8sαvχffiffiffi

3
p

v

�
; gZZH ¼ e2v

2s2Wc
2
W

�
sαvϕ
v

þ 8cαvχffiffiffi
3

p
v

�
;

gZZH0
5
¼ −

ffiffiffi
8

3

r
e2

s2Wc
2
W
vχ ; gZWþHþ�

5
¼ −

ffiffiffi
2

p
e2vχ

cWs2W
; ð21Þ

where we abbreviate sα ≡ sin α, cα ≡ cos α. The SM coupling gSMZZh is given by

gSMZZh ¼
e2v

2s2Wc
2
W
: ð22Þ

Setting U ¼ 0, the experimental values for the oblique parameters S and T are extracted for a reference SM Higgs mass
mSM

h ¼ 125 GeV as Sexp ¼ 0.06� 0.09 and Texp ¼ 0.10� 0.07 with a correlation coefficient of ρST ¼ þ0.91 [43].
We implement the constraint using a χ2 variable involving S and T,

χ2 ¼
X
i;j

ðOi −Oexp
i ÞðOj −Oexp

j Þ½σ2�−1ij ; ð23Þ

where Oi is the ith observable and ½σ2�−1ij is the inverse of the matrix of uncertainties,

½σ2�ij ¼ ΔOiΔOjρij; ð24Þ

where ρij are the relative correlations (note ρii ¼ 1). For the two-observable case of interest, we can invert the matrix σ2

explicitly and write

χ2 ¼ 1

ð1 − ρ2STÞ
�ðS − SexpÞ2
ðΔSexpÞ2

þ ðT − TexpÞ2
ðΔTexpÞ2

−
2ρSTðS − SexpÞðT − TexpÞ

ΔSexpΔTexp

�
: ð25Þ
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Here Sexp and Texp are the experimental central values,
ΔSexp and ΔTexp are their 1σ experimental uncertainties,
ρST is the relative correlation between the two oblique
parameters, and S and T are the new-physics contributions
from the GM model.
It is well known that, in the GM model, hypercharge

interactions break the SUð2ÞR global symmetry at one-
loop level, yielding a divergent value for the T parameter
[5,18]. This would be corrected in a more complete theory
by the counterterm of an SUð2ÞR-breaking quartic cou-
pling in the scalar potential [5,30], the finite part of which
could in turn be adjusted to compensate the one-loop
contributions to the T parameter. In our analysis we thus
take a conservative approach and marginalize over the
value of T in the χ2,6 resulting in a constraint on S alone.
Our constraint on S agrees numerically with that shown in
Fig. 1 of Ref. [16].

IV. NONOBLIQUE AND B-PHYSICS
OBSERVABLES

Extended Higgs sectors are typically also constrained by
nonoblique corrections to Z-pole observables, as well as
B-physics observables. These constraints come from one-
loop diagrams involving Higgs boson couplings to fer-
mions and to SM gauge bosons. The analysis of these
constraints in the GM model is greatly simplified by the
observation that the relevant diagrams are completely
analogous to those of the Type-I two-Higgs-doublet model.
In the GM model, fermion masses are generated in the

same way as in the SM through Yukawa couplings
involving the single SUð2ÞL doublet. The resulting
Feynman rules for vertices involving a scalar and two
fermions, with all particles incoming, are given by [4,6,23]

hf̄f∶ − i
mf

v
cos α
cos θH

; Hf̄f∶ − i
mf

v
sin α
cos θH

;

H0
3ūu∶

mu

v
tan θHγ5; H0

3d̄d∶ −
md

v
tan θHγ5;

Hþ
3 ūd∶ − i

ffiffiffi
2

p

v
Vud tan θHðmuPL −mdPRÞ;

Hþ
3 ν̄l∶ i

ffiffiffi
2

p

v
tan θHmlPR: ð28Þ

Here f is any charged fermion, Vud is the appropriate
element of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and the projection operators are defined as
PR;L ¼ ð1� γ5Þ=2. The H0

3l̄l couplings are the same as
the H0

3d̄d couplings with md → ml. The custodial fiveplet
states do not couple to fermions as they have no
SUð2ÞL-doublet component.
In particular, the scalar couplings to fermions in the GM

model have exactly the same structure as those in the
Type-I two-Higgs-doublet model [37] with the replace-
ment cot β → tan θH. In this situation, large enhancements
of scalar couplings to light fermions (in particular to the
bottom quark or to charged leptons) are not possible due
to perturbativity constraints on the top quark Yukawa
coupling. The dominant new-physics contributions to
nonoblique Z-pole and B-physics observables are then
due solely to diagrams involving scalar couplings to the
top quark, in particular, diagrams involving the Hþ

3 t̄b
coupling.
In other words, Hþ

3 is the only new scalar in the
GM model that contributes significantly to Z-pole and
B-physics observables. Since custodial symmetry requires
that the Hþ

3 H
−
3Z coupling be identical to the HþH−Z

coupling in the 2HDM, all of the relevant Hþ
3 couplings

have the same form as those of Hþ in the 2HDM.
This implies that all of the nonoblique Z-pole and
B-physics constraints on the GM model can be obtained
by making the replacements cot β → tan θH and mHþ →
m3 in the corresponding calculations for the Type-I
2HDM.
In what follows we use this correspondence to consider

the constraints on the GM model from Rb, B0
s–B̄0

s mixing,
BRðB0

s → μþμ−Þ, and BRðb → sγÞ. These observables
each put an upper bound on vχ (equivalently tan θH) as
a function ofm3. In each case we combine the experimental
and GM theoretical uncertainties in quadrature and con-
strain the GM model prediction for the observable in
question to lie within 2σ of the experimental central value.
We will refer to these as “tight” constraints.
However, in the GM model the Hþ

3 contributions to Rb,
BRðB0

s → μþμ−Þ, and BRðb → sγÞ worsen the agreement
with experiment compared to the SM limit (i.e., compared
to taking vχ → 0 orm3 → ∞). As we will see, the SM limit
is already 0.8σ, 1.0σ, and 1.3σ away from the experimental
central values of these three observables, respectively. For
this reason, we also consider a second, more conservative
approach to constraining the parameter space for these
three observables: we require that the GMmodel prediction
lie within 2σ of the best-fit value obtainable in the GM
model (i.e., the SM limit), again combining the experi-
mental and GM theoretical uncertainties in quadrature. We
will refer to these more conservative constraints as “loose”
constraints.

6In practice, we solve the constraint equation

∂χ2
∂T
				
Tmin

¼ 0; ð26Þ

which yields

T ≡ Tmin ¼ Texp þ ρSTðS − SexpÞ
ΔTexp

ΔSexp
: ð27Þ
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These loose and tight constraints are respectively
shown in the right- and left-hand panels of Fig. 1.7 Details
on each process follow.

A. Rb

The Z-pole observable Rb, defined as

Rb ¼
ΓðZ → bb̄Þ

ΓðZ → hadronsÞ ; ð29Þ

has been calculated in the SM including two-loop electro-
weak [47] and three-loop QCD corrections. The correction
to Rb due to one-loop diagrams involving additional Higgs
bosons has been calculated in the 2HDM [48,49]. In the
Type-I 2HDM, the contribution of the neutral scalars can be
neglected [49] as it is suppressed by a relative factor of
m2

b=m
2
t compared to the charged Higgs contribution. The

results for the Type-I 2HDM can easily be adapted to the
GM model [7,15].
Following Ref. [7], the one-loop charged Higgs correc-

tion to RSM
b can be written as8

δRGM
b ¼ −0.7785δgLGM þ 0.1409δgRGM

≈ −0.7785δgLGM

≃ 0.7785
64π2

�
e3

s3WcW

�
tan2θHxtW

�
xt3

1− xt3
þ xt3 logxt3
ð1− xt3Þ2

�
;

ð30Þ

where xtW ¼ m̄2
t ðμtÞ=M2

W , xt3 ¼ m̄2
t ðμtÞ=m2

3, and we
neglect MZ in the loop calculation.9 Here m̄t is the MS
running mass and is evaluated at μt ¼ MZ. The approxi-
mation in Eq. (30) can be made because δgRGM is suppressed
by a factor of m2

b=m
2
t compared to δgLGM [7,15]. The

correction is always negative and interferes destructively
with the SM contribution.
The measured value of Rb is [43]

Rexp
b ¼ 0.21629� 0.00066; ð31Þ

while the SM prediction is RSM
b ¼ 0.21577� 0.00011

[43]. Therefore the 2σ upper bound relative to the
experimental central value yields the tight constraint
RGM
b ¼ RSM

b þ δRGM
b > 0.21495, where we have com-

bined the experimental and SM theoretical uncertainties
in quadrature.10

The SM prediction is 0.8σ below the measured value; as
the GM correction interferes destructively with the SM
contribution, it increases the discrepancy between theory
and experiment. As a result, the best agreement with the

FIG. 1 (color online). Constraints on m3 and vχ in the GM model from Rb, B0
s–B̄0

s mixing, BRðB0
s → μþμ−Þ, and BRðb → sγÞ. The

region above each curve is excluded. Left: Tight constraints requiring that each observable lies within 2σ of the experimental central
value. Right: Loose constraints requiring that Rb, BRðB0

s → μþμ−Þ, and BRðb → sγÞ lie within 2σ of the value at the best-fit point
within the GM model.

7With the exception ofMt, we choose the input parameters for
all our numerical results from the 2014 Review of Particle
Physics [44]. For Mt, we use the first combination of Tevatron
and LHC measurements of the top quark mass [45]. In particular,
we set GF ¼ 1.1663787 × 10−5 GeV−2, αem ¼ 1=127.94, αs ¼
0.1184, m̄cðmcÞ ¼ 1.275 GeV, m̄bðmbÞ ¼ 4.18 GeV, MZ ¼
91.1876 GeV and Mt ¼ 172.9 GeV. In addition, we obtain the
dependent parameters MW ¼ 79.83 GeV and s2W ¼ 0.2336 at
tree level. We thus edit the input files of SuperIso v3.3
which by default uses inputs from the 2011 Review of
Particle Physics [46].

8The coefficient −0.7785 depends on the Zbb̄ couplings and
the bottom quark mass. Updated values of these quantities
have a very small effect on the coefficient. For example, using
more recent values from Ref. [50] the change in the coefficient
is 0.1%.

9Full expressions including the MZ dependence have been
given in Refs. [7,15]. Because the constraint from Rb is weaker
than the other constraints, we use here only the approximation
given in Eq. (30).

10Because the coefficients in Eq. (30) depend on the SM Rb
prediction in a complex way, the Rb observable cannot straight-
forwardly be calculated using a ratio of the SM and GM
contributions (as we will do with the other observables). For
this reason, in the Rb case only we take the theory uncertainty on
the GM prediction to be the same as that of the SM prediction.
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experimental measurement of Rb in the GM model occurs
in the SM limit (vχ → 0, m3 → ∞). Requiring that the GM
prediction for Rb lie within 2σ of the SM value yields a
loose constraint of RGM

b > 0.21443.
As we see in Fig. 1, Rb provides the weakest nonoblique

tight and loose constraints. Furthermore, substantial
improvement in the Rb experimental measurement is
unlikely in the near future, as this would require better
Z-pole measurements using a next-generation eþe− col-
lider like the International Linear Collider with the GigaZ
option [41].

B. B0
s−B̄0

s mixing

The effect of charged scalars on B0
d–B̄

0
d mixing in a Type-

I 2HDM has been studied [51] by adapting results of
similar processes on K0–K̄0 mixing [52]. These can be
extended to the B0

s–B̄0
s system, which is more constraining

than the B0
d–B̄

0
d system due to lower errors in both the

experimental measurement and the SM prediction [53]. To
leading order, the oscillation frequency of a B0

s meson in the
GM model is determined by the mass splitting [54]

ΔmGM
Bs

¼ G2
Fm

2
t

24π2
jV�

tsVtbj2f2Bs
BBs

mBs
ηbIGM: ð32Þ

Here ηb is a scaling factor, fBq
is the weak decay constant,

BBq
is the bag parameter, mBs

is the meson mass, and11

IGM ¼ IWWðxtWÞ þ tan2θHIWHðxtW; xt3; x3WÞ
þ tan4θHIHHðxt3Þ: ð33Þ

Here x3W ¼ m2
3=M

2
W , xtW ¼ m̄2

t ðμtÞ=M2
W , and xt3 ¼

m̄2
t ðμtÞ=m2

3. We set the top mass renormalization scale
μt ¼ Mt, where Mt is the top quark pole mass. The Inami-
Lim functions [56] IWW , IHH, and IWH are given by [57]

IWWðxÞ ¼ 1þ 9

1 − x
−

6

ð1 − xÞ2 −
6x2 log x
ð1 − xÞ3 ;

IHHðxÞ ¼ x

�
1þ x

ð1 − xÞ2 þ
2x log x
ð1 − xÞ3

�
;

IWHðx; y; zÞ ¼ y

� ð2z − 8Þ log y
ð1 − yÞ2ð1 − zÞ þ

6z log x
ð1 − xÞ2ð1 − zÞ −

8 − 2x
ð1 − yÞð1 − xÞ

�
: ð34Þ

Under the assumption that the overall coefficients do not vary substantially due to new scalar contributions, a prediction
for ΔmGM

Bs
in the GM model may be obtained using the ratio

RGM
Δm ≡ ΔmGM

Bs

ΔmSM
Bs

¼ 1þ tan2θHIWHðxtW; xt3; x3WÞ þ tan4θHIHHðxt3Þ
IWWðxtWÞ

: ð35Þ

Since IWW , IWH and IHH are all positive, the GM model
contribution interferes constructively with the SM con-
tribution. Because the theoretical uncertainty on the mass
splitting is due almost entirely to uncertainties in the
coefficients of IGM in Eq. (32), we scale the SM theoretical
uncertainty δΔmSM

Bs
by RGM

Δm to obtain the theoretical
uncertainty in the GMmodel, i.e., δΔmGM ¼ RGM

Δm · δΔmSM.
The measured value for the B0

s–B̄0
s mass difference is

given by [58]

Δmexp
Bs

¼ 17.719� 0.036ðstatÞ � 0.023ðsystÞ ps−1: ð36Þ

The largest uncertainty in the SM prediction comes
from the lattice QCD calculation of fBs

B1=2
Bs

. Using a
CKMfitter [59,60] average of several lattice results based

on separate extractions of fBs
and BBs

, Ref. [61] obtains
the SM prediction ΔmSM

Bs
¼ 17.3� 1.5 ps−1. However, a

preliminary lattice calculation of the product fBs
B1=2
Bs

from the Fermilab/MILC Collaboration [62] yields a
larger uncertainty and considerably different central
value, leading to ΔmSM

Bs
¼ 21.7� 2.6 ps−1 [61]. For

our numerical results we use the CKMfitter central value
but take the more conservative uncertainty as advocated
in Ref. [63],

ΔmSM
Bs

¼ 17.3� 2.6 ps−1: ð37Þ

The above results can be translated into an experimental
measurement of Rexp

Δm ≡ Δmexp
Bs

=ΔmSM
Bs

and combined
experimental and SM theoretical uncertainty of

Rexp
Δm ¼ 1.02� 0.15: ð38Þ

11The NLO QCD corrections to the charged Higgs contribu-
tions are known [55], but we do not include them here.
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The SM prediction RSM
Δm ¼ 1 is thus only 0.13σ below the

measured value.
In the case of B0

s–B̄0
s mixing, the charged Higgs con-

tributions in the GM model increase the predicted value of
RΔm, so that the best-fit value and the experimental central
value are the same. Thus our tight and loose constraints
from this observable are the same. The 2σ constraint is
RGM
Δm ≤ 1.46, where we have combined the experimental

and GM theoretical uncertainties in quadrature. The result-
ing constraint on the m3–vχ plane is shown in the left and
right panels of Fig. 1. It is slightly more constraining than
the bounds from Rb, and is about the same as the loose
bound from B0

s → μþμ−.12 In both cases the bound is
weaker than that from b → sγ. An improvement in the
constraint from B0

s–B̄0
s mixing relies on an improved lattice

determination of fBs
B1=2
Bs

.

C. B0
s → μþμ−

A full leading-order computation of the average time-
integrated branching ratio BRðB0

s → μþμ−Þ in the Aligned
2HDM [40] was recently performed in Ref. [39]. The
calculation can be easily specialized to the Type-I 2HDM
and hence to the GM model; the result is conveniently
expressed in terms of a ratio to the SM prediction,

R̄GM
sμ ¼ BRðB0

s → μþμ−ÞGM
BRðB0

s → μþμ−ÞSM
≃
				CGM

10

CSM
10

				2; ð39Þ

where the Wilson coefficients CSM
10 and CGM

10 are given
by [39]

CSM
10 ¼ −0.9380

�
Mt

173.1GeV

�
1.53
�
αsðMZÞ
0.1184

�
−0.09

;

CGM
10 ¼ CSM

10 þ tan2θH
xtW
8

�
xt3

1 − xt3
þ xt3 log xt3
ð1 − xt3Þ2

�
; ð40Þ

with xtW ¼ m̄2
t ðμtÞ=M2

W and xt3 ≡m2
t ðμtÞ=m2

3 as before.13

Here μt ¼ Mt is the top quark pole mass and m̄t is the MS

running mass. The theoretical uncertainty on the resulting
GM branching ratio is taken to be δBRðB0

s → μþμ−ÞGM ¼
R̄GM
sμ · δBRðB0

s → μþμ−ÞSM.
The approximation made in Eq. (39) is to neglect

contributions from the Wilson coefficients CS and CP,
which arise from scalar and pseudoscalar penguins and box
diagrams and are suppressed by an extra factor of m2

b=m
2
t

compared to C10. The expression for CSM
10 includes next-to-

leading-order (NLO) electroweak and QED corrections, as
well as NLO and next-to-next-to-leading-order (NNLO)
QCD corrections. We note that the expression for the Hþ

3

contribution to CGM
10 has the same dependence on m3 and

tan θH as the expression for the correction to Rb in the
MZ → 0 limit given in Eq. (30). This is because the charged
Higgs contribution to CGM

10 comes from the same Z penguin
diagrams as in Rb, but with a generation-changing Hþ t̄RsL
vertex in place of the generation-conservingHþt̄RbL vertex
and p2

Z ¼ M2
Bs
≃ 0.

The current experimental measurement of BRðB0
s →

μþμ−Þ from a combination of CMS and LHCb results
is [64]

BRðB0
s → μþμ−Þexp ¼ ð2.9� 0.7Þ × 10−9: ð42Þ

The SM prediction is given in Ref. [39] as

BRðB0
s → μþμ−ÞSM ¼ ð3.67� 0.25Þ × 10−9: ð43Þ

This number differs slightly from the result in Ref. [65],
upon which it is based, due to the use of a slightly
different central value and more conservative uncertainty
on the top quark mass. These yield an experimental
measurement of R̄sμ and combined experimental and SM
theoretical uncertainty of

R̄exp
sμ ¼ 0.79� 0.20: ð44Þ

In particular, the SM prediction, R̄SM
sμ ¼ 1, is 1.0σ above

the current experimental value.
The 2σ constraint on the GM model relative to the

experimental central value yields a bound of R̄sμ ≤ 1.21,
where we have combined the experimental and GM model
theoretical uncertainties in quadrature. This tight constraint
is shown in the left-hand panel of Fig. 1; it is stronger than
the corresponding constraints from Rb and B0

s–B̄0
s mixing,

as previously discussed, but remains weaker than the tight
b → sγ constraint.
However, the GM model contribution to C10 in Eq. (40)

is always negative, leading to constructive interference
with the SM contribution and increasing the prediction for
R̄sμ compared to its value in the SM. As the SM value is
already larger than the experimental value (R̄exp

sμ < 1), the
best agreement with the experimental measurement of
BRðB0

s → μþμ−Þ in the GM model occurs in the limit

12If we were to use the less-conservative prediction of
ΔmSM

Bs
¼ 17.3� 1.5 ps−1, the uncertainty on Rexp

Δm becomes
0.089 and the bound would tighten to match the tight bound
from B0

s → μþμ− in the left-hand panel. If we were instead to use
the central value ΔmSM

Bs
¼ 21.7� 2.6 ps−1, the best-fit reference

point would become the SM prediction, Rexp
Δm ¼ 0.817� 0.098,

and the loose and tight bounds would each be slightly stronger
than the corresponding bounds from b → sγ. This variability
illustrates the very large remaining theoretical uncertainty in this
observable.

13Note that for xt3 → 1, the expression in square brackets can
be expanded in powers of δ≡ xt3 − 1 and reads

�
xt3

1 − xt3
þ xt3 log xt3
ð1 − xt3Þ2

�
≃ −

1

2
−
δ

6
þOðδ2Þ: ð41Þ
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vχ → 0 or m3 → ∞ (i.e., the SM limit). The best-fit 2σ
bound taken relative to the SM prediction yields a loose
constraint of R̄sμ ≤ 1.43, which is shown in the right-hand
panel of Fig. 1. The loose constraint from BRðB0

s → μþμ−Þ
is also weaker than that from BRðb → sγÞ.
The current uncertainty on R̄sμ is dominated by the

experimental statistical uncertainty. This has the poten-
tial to be significantly reduced in the near future as
more data is collected at the LHC. In particular, the
upgraded LHCb experiment is expected to measure
BRðB0

s → μþμ−Þ with an ultimate experimental uncer-
tainty of better than 10% with 50 fb−1 of data [66],
which corresponds to about ten years of LHC running.
Assuming an experimental rate consistent with the SM
prediction and no change in the theoretical uncertainty,
this would correspond to a combined uncertainty on
R̄exp
sμ of 0.12. This measurement thus has the potential to

become the most stringent constraint on the GM model
parameter space in the near future.

D. b → sγ

The b → sγ branching ratio has been measured at
several different experiments, including CLEO, BABAR,
Belle, and ALEPH. The current experimental average
from the Heavy Flavor Averaging Group is [58,67]14

BRðB̄ → XsγÞexp ¼ ð3.55� 0.24� 0.09Þ × 10−4; ð45Þ

for a photon energy Eγ > 1.6 GeV.
BRðb → sγÞ is known up to NNLO in QCD in

the SM [69,70].15 The two current SM predictions
are BRðB̄ → XsγÞSM ¼ ð3.15� 0.23Þ × 10−4 [69] and
BRðB̄ → XsγÞSM ¼ ð2.98� 0.26Þ × 10−4 [70]. These pre-
dictions differ due to different approaches to handling
higher-order contributions to the photon energy cutoff
corrections; however, their difference is within the
�3% theoretical uncertainty due to uncalculated higher
orders [69].
The charged Higgs contributions in the Type-I 2HDM,

first calculated in Ref. [71], are themselves now known up
to NLO in QCD [72]. Because BRðb → sγÞ will provide
the most stringent constraint on the GM model parameter
space, we will use the full implementation of the SM and
2HDM contributions in the public code SuperIso v3.3 [38],
which is based on the calculations in Refs. [69,73].
SuperIso calls the code 2HDMC v1.6.4 [74] for spectrum
calculations within the Type-I 2HDM.

In the limit vχ → 0 or m3 → ∞, the calculation of
BRðB̄ → XsγÞ by SuperIso v3.3, using the input parameters
given in footnote 7, yields a prediction

BRðB̄ → XsγÞSM limit ¼ 3.11 × 10−4: ð46Þ

The difference compared to the SM predictions quoted
above is primarily due to differences in the input param-
eters, particularly mb and mc [75]. However, the difference
is still within the theoretical uncertainty due to parametric
uncertainties of �3% [69]. We take the total theoretical
uncertainty on this SM prediction to be �0.23 × 10−4

from Ref. [69]. Combining this in quadrature with the
experimental uncertainty yields a total uncertainty of
�0.34 × 10−4. In particular, the value of BRðB̄ → XsγÞ
in the SM limit is 1.3σ below the experimental value.
The charged Higgs contribution to BRðB̄ → XsγÞ in the

GM model interferes destructively with the SM contribu-
tion, leading to a smaller predicted value for BRðB̄ → XsγÞ
than in the SM. Because the SM prediction is already below
the experimental central value, the best agreement with the
experimental measurement in the GM model occurs in the
limit vχ → 0 or m3 → ∞ (i.e., the SM limit). Since even
the SM limit yields a prediction that is only 0.7σ from the
experimental bound, the 2σ experimental constraint on the
GM m3–vχ plane is quite strong, as can be seen in the left
panel of Fig. 1. This bound corresponds to BRðB̄ →
XsγÞ > 2.88 × 10−4 (tight constraint), where we have
combined the experimental and GM theoretical uncertain-
ties in quadrature; again, here we estimate the GM theory
uncertainty to be that of the SM prediction scaled by a ratio
of the GM and SM predictions. In comparison, the 2σ
constraint with respect to the best-fit point, the SM limit,
yields BRðB̄ → XsγÞ > 2.48 × 10−4 (loose constraint).
This is shown in the right panel of Fig. 1 together with
the loose constraints from the other observables. In either
case, BRðB̄ → XsγÞ is the strongest constraint on these
parameters.
Because of the large theoretical uncertainty on BRðB̄ →

XsγÞ and the sensitivity of the resulting constraint to the
particular choice of input parameters and the handling of
partial higher-order corrections, we consider it safer to take
the more conservative approach and apply the loose
constraint from BRðB̄ → XsγÞ as our primary constraint
on the m3–vχ plane. We will nevertheless also show the
effect of applying the tight b → sγ constraint in our
numerical scans.
The current theoretical and experimental uncertainties on

BRðB̄ → XsγÞ are comparable in size. The experimental
uncertainty is expected to be reduced with measurements at
the super B factory experiment Belle II currently under
construction at KEK. A conservative treatment of system-
atics yields an estimated future experimental precision
on BRðB̄ → XsγÞ of 7% (i.e., about �0.21 × 10−4) with
5 ab−1 of data, or 6% (i.e., about �0.18 × 10−4) with

14The most recent measurement from BABAR, which has not
yet been incorporated into this average, reads BRðB̄ → XsγÞ ¼ð3.29� 0.19� 0.48Þ × 10−4 [68].

15This calculation is an estimate insofar as charm-
mass-dependent contributions have been incorporated using an
interpolation in mc, resulting in a contribution to the theory
uncertainty from the interpolation ambiguity.
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50 ab−1 of data [76]. With the current theoretical uncer-
tainties, these would reduce the combined uncertainty only
to about �0.31 × 10−4 or �0.29 × 10−4, respectively. A
more significant improvement in the constraining power of
BRðB̄ → XsγÞ would require a simultaneous reduction in
the theoretical uncertainty.

V. NUMERICAL RESULTS

We now illustrate the effects of the indirect experimental
constraints from BRðb → sγÞ (computed using SuperIso
v3.3 [38], which calls 2HDMC v1.6.4 [74]) and the S
parameter on the parameter space of the GM model. We
scan over the full range of GM model parameters allowed
after imposing the theoretical requirements of perturbative

unitarity, bounded-from-belowness of the potential, and the
absence of alternative custodial-symmetry-breaking min-
ima [23]. We require that either h or H has mass 125 GeV
and set the SM Higgs vev v using GF. We take
μ23 ≤ ð1200 GeVÞ2, which fully populates the mass ranges
shown in Figs. 2–6 below. In Fig. 6 we will include
additional points generated by a dedicated scan with μ23 ≤
ð200 GeVÞ2 in order to better populate the low-mass
region. In all cases, we show the effects of the following
constraints:

(i) The prediction for S yields χ2 ≤ 4 after marginalizing
over the T parameter. Points eliminated by this
constraint are shown by red (medium gray)þ shapes.

(ii) The prediction for BRðb → sγÞ lies within 2σ of the
model point that gives the best agreement with the

FIG. 2 (color online). Effect of the experimental constraints on BRðb → sγÞ and the S parameter on vχ , as a function of m3 (left) and
m5 (right). The black points are allowed. The red (medium gray)þ-shaped points are eliminated by the S parameter constraint. The light
green (light gray) ×-shaped points are eliminated by the loose b → sγ constraint, in which we require that BRðb → sγÞ is within 2σ of
the best-fit point in the GM model. The dark green (dark gray) ×-shaped points would be eliminated by the tight b → sγ constraint, in
which we require that BRðb → sγÞ lies within 2σ of the experimental central value.

FIG. 3 (color online). Effect of the experimental constraints on BRðb → sγÞ and the S parameter as a function of m5. The color codes
are the same as in Fig. 2.
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experimental measurement (loose constraint). We
combine theoretical and experimental uncertainties
in quadrature. Points eliminated by this constraint
are shown by light green (light gray) × shapes.

(iii) The prediction for BRðb → sγÞ lies within 2σ of the
experimental measurement (tight constraint). We
combine theoretical and experimental uncertainties
in quadrature. Points eliminated by this constraint
are shown by dark green (dark gray) × shapes.

Points depicted in black are allowed by all constraints.
We start by showing the effect of the b → sγ measure-

ment on the m3–vχ plane in the left panel of Fig. 2. The
prediction for BRðb → sγÞ in the GM model depends only
on these two parameters. We see that, due to its interplay
with the decoupling effect of falling vχ with increasing
triplet masses [23], the loose b → sγ constraint eliminates

all model points with vχ ≳ 65 GeV and the tight b → sγ
constraint eliminates all model points with vχ ≳ 54 GeV.16

This is reflected in the right panel of Fig. 2, where we
plot vχ as a function of m5. Because m5 ≠ m3 in general,
values of vχ up to the limit of ∼ 65 GeV are allowed even
for m5 masses as low as 100 GeV under the loose b → sγ
constraint.
This indirect constraint on vχ as a function of m5 is

especially interesting in light of the recent recasting [25] of
an ATLAS measurement [77] of the like-sign WWjj cross
section in 8 TeV data in the context of the GM model. The
like-sign WWjj cross section receives contributions espe-
cially from the s-channel production of Hþþ

5 in WþWþ
fusion, followed by decays back toWþWþ. The analysis of
Ref. [25] excludes a triangular region of parameter space in
the m5–vχ plane extending from m5 ≃ 120 to 610 GeV at
vχ ¼ 65 GeV, down to vχ ≃ 33 GeV at m5 ≃ 200 GeV.
In the right panel of Fig. 2 we also see the effect of the S

parameter constraint, which eliminates a few model points
at very lowm5, as well as moderate to highm5 and high vχ .
This is illustrated in more detail in Fig. 3. In particular,
points with very low values of m5 tend to have a large
m5–m3 splitting, which leads to large positive values of the
S parameter.
Finally we show the effect of the constraints from

BRðb → sγÞ and the S parameter on the allowed ranges
of the couplings of the 125 GeV Higgs boson h toW and Z
boson pairs and to fermion pairs. We parametrize these
couplings in terms of scaling factors κV and κf [78], which

FIG. 5 (color online). The allowed correlations between κV and
κf after applying the constraints from BRðb → sγÞ and the S
parameter. The color codes are the same as in Fig. 2.

FIG. 4 (color online). Effect of the experimental constraints on BRðb → sγÞ and the S parameter on the couplings of the 125 GeV
Higgs boson h toW and Z boson pairs (left) and fermion pairs (right), shown as a function of vχ . κV (κf) is defined as the coupling of h to
VV (ff̄) normalized to the corresponding SM Higgs boson coupling. The color codes are the same as in Fig. 2.

16This constraint is considerably more stringent than the upper
bound on vχ obtained in the spirit of Ref. [71] by requiring
cot θH > 0.3 to avoid parameter regions in which the top quark
Yukawa coupling becomes too large (cot θH plays the same role
as is played by tan β in the Type-I 2HDM); this requirement
yields vχ < 83 GeV.
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represent the hVV (V ¼ W;Z) and hff̄ couplings, respec-
tively, normalized to their SM values. In the GM model,
these couplings are given in terms of the triplet vev vχ and
the custodial-singlet mixing angle α by

κV ¼ cos α
vϕ
v
−

8ffiffiffi
3

p sin α
vχ
v
; κf ¼ cos α

v
vϕ

; ð47Þ

where v2 ¼ v2ϕ þ 8v2χ ≃ ð246 GeVÞ2 corresponds to the
SM Higgs vev.17

One of the most interesting features of the GM model is
the possibility that κV > 1, which is not possible at tree
level in extended Higgs sectors that contain only SUð2ÞL
doublets and/or singlets. In particular, for maximal vχ and
j sin αj ∼ 1 (corresponding to h being entirely composed of
triplet), κV can be as large as 1.6. This maximal value is
reduced to κV ≲ 1.36 by the upper bound on vχ imposed by
the loose b → sγ constraint, as shown in the left panel of
Fig. 4. It would be reduced even further to κV ≲ 1.28 by the
tight b → sγ constraint.
Similarly, κf can be significantly enhanced in the GM

model if vϕ is small. By limiting the maximum size of vχ ,
the loose b → sγ constraint puts a lower bound on vϕ, and
thereby imposes an upper bound on κf of κf ≲ 1.49, as
shown in the right panel of Fig. 4. The tight constraint on
b → sγ would reduce this further to κf ≲ 1.20.

The S parameter measurement does not further constrain
the allowed ranges of either κV or κf in a significant way
once either of the b → sγ constraints has been applied.
Finally we show the allowed range of correlations

between κV and κf in Fig. 5. We note in particular that
the GM model can accommodate simultaneous enhance-
ments of both κV and κf. Such enhancements are con-
strained by the b → sγ measurement to lie below
κV ≃ κf ≃ 1.18 (loose constraint). The tight b → sγ con-
straint would reduce this to about 1.09. This is interesting
primarily because Higgs coupling fits from LHC data suffer
from a flat direction [79] if unobserved decay modes are
allowed, corresponding to a simultaneous increase in the
unobserved decay branching ratio and in all the Higgs
couplings to SM particles. This flat direction can be cut off
by imposing additional theory assumptions, such as the
absence of new, unobserved Higgs decay modes [79] or the
imposition of κV ≤ 1 valid when the Higgs sector contains
only isospin doublets and/or singlets [80]. The GM model
provides a concrete example of a model that violates the
second assumption while being consistent with other
experimental constraints. The flat direction could also be
tamed by constraining the total Higgs width through
measurements of off-shell gg → h� → ZZ [81,82]; the
interpretation of this measurement in terms of a Higgs
width constraint, however, is itself model dependent [83]
and it is not yet clear what effect the presence of additional
Higgs states will have.
Crucially, however, the simultaneous enhancement of κV

and κf occurs only when the new scalars are relatively light.
This is illustrated in Fig. 6, where we plot κV as a function
of the mass of the lightest new scalar, for κf within 5% (red)
or 10% (blue) of κV . The remaining points are shown in
green. Under the loose b → sγ constraint, for κf within 5%
of κV , an 18% enhancement of these couplings is possible
only when at least one of the new scalars has mass below

FIG. 6 (color online). κV as a function of the mass of the lightest new scalar, after imposing the constraint from the S parameter and the
loose (left) and tight (right) constraint from b → sγ. Points for which jκf=κV − 1j < 5% are shown in red (medium gray), points for
which jκf=κV − 1j < 10% are shown in blue (dark gray), and the remaining points are shown in green (light gray).

17For a small number of points in our scan, the 125 GeV Higgs
boson is H, and the lighter custodial singlet h has a mass below
125 GeV. In these cases, we plot the coupling scaling factors κV
and κf that represent the HVV (V ¼ W;Z) and Hff̄ couplings,
respectively, normalized to their SM values. These couplings are
given in this case by

κV ¼ sin α
vϕ
v
þ 8ffiffiffi

3
p cos α

vχ
v
; κf ¼ sin α

v
vϕ

: ð48Þ
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about 375 GeV. This provides a complementary (albeit
model dependent) way to constrain the flat direction by
directly searching for the new scalars. We leave a full
consideration of the direct-search constraints on these
additional scalars to future work.

VI. CONCLUSIONS

In this paper we updated the indirect experimental
constraints on the GM model coming from electroweak
and B-physics observables, in particular the S parameter,
Rb, b → sγ, B0

s–B̄0
s mixing, and B0

s → μþμ−. Except for the
S parameter, all of these constrain only two of the GM
model parameters: the isospin-triplet vev vχ and the
custodial-triplet massm3. We gave the analytic expressions
for the one-loop contributions from the additional Higgs
bosons for the S parameter, Rb, B0

s–B̄0
s mixing, and

B0
s → μþμ−; in the case of the S parameter and Rb these

are in the approximation that the new scalars are heavy
compared to MZ. For b → sγ we adapted the 2HDM
calculation implemented in the code SuperIso. The con-
straints from b → sγ, B0

s–B̄0
s mixing, and B0

s → μþμ− have
not been studied in the GM model before.
We found that b → sγ is currently the strongest of the

B-physics constraints on the GMmodel. However, this may
be surpassed in the next few years by the constraint from

B0
s → μþμ−, which will become more important as its

statistical uncertainty is reduced with further LHC data-
taking. Combined with the theoretical requirements of
vacuum stability and perturbativity, the b → sγ constraint
puts a conservative upper bound of about 65 GeV on the
isospin-triplet vev vχ, which leads to upper bounds on the
hWW, hZZ, and hff̄ couplings. In particular, a simulta-
neous enhancement of the hWW, hZZ, and hff̄ couplings
of up to 18% compared to their SM values is still allowed
by the indirect constraints, leading to a simultaneous
enhancement of all the Higgs production cross sections
by up to 39%. Such an enhancement could mask (and be
masked by) the presence of undetected new decay modes of
the SM-like Higgs boson at the LHC.
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