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We calculate the electric dipole moment for the electron and neutron in the framework of the 3-3-1 model
with heavy charged leptons. We assume that the only source of CP violation arises from a complex trilinear
coupling constant and the three complex vacuum expectation values. However, two of the vacua phases are
absorbed and the other two are equal up to a minus sign. Hence only one physical phase survives. In order
to be compatible with the experimental data this phase has to be smaller than 10−6.

DOI: 10.1103/PhysRevD.91.015006 PACS numbers: 12.60.Fr, 11.30.Er, 13.40.Em

I. INTRODUCTION

The measurement of the electric dipole moment (EDM)
of elementary particles is a crucial issue to particle physics.
This is because for a nondegenerate system, as nucleus or
an elementary particle, an EDM is possible only if the
symmetries under T and CP are violated. On one hand, in
the Standard Model (SM) framework the only source of T
and CP violation is the phase δ in the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix. On the other hand, the
SM prediction for the neutron electric dipole moment is
jdnjSM ≈ 10−32 e · cm [1–5], 6 orders of magnitude below
the actual experimental limit of jdnjexp < 2.9 × 10−26 e ·
cm [6]. Moreover, for the electron EDM the SM prediction
of jdejSM < 10−38 e · cm [7] and the experimental upper
limit of jdejexp < 8.7 × 10−29 e · cm [8]. Hence, we see that
in the context of the Standard Model the Kobayashi-
Maskawa phase is not enough for explaining an EDM
with a value near the experimental limit for both electron
and neutron. If the latter case is confirmed in future
experiments, it certainly means the discovery of new
physics with new CP violation sources.
We can rewrite the experimental upper bound of the

electron EDM in units of Borh magneton as follows:

de < 5 × 10−17μB ∼
2me

M
μB; ð1Þ

where M is the particle responsible for the nonvanishing
EDM of a given particle. From Eq. (1) we obtain that
M > 5 × 1014 GeV. This naive calculation assumes that the
electron EDM arises only by the effect of a massive particle.
Notwithstanding, in a specific model the masses of the
particles responsible for the EDMmay bemuch smaller than
this value since it does not take into account the couplings of
the responsible particle and negative interference if there are

several of such particles. This is the case in electroweak
models and, in particular, in the 3-3-1 ones. In the latter
models there are many CP violating phases like the
Kobayashi-Maskawa δ, but these are hard phases in the
unitary matrices that relate the symmetry eigenstates and
the mass eigenstates that, unlike in the SM, survive in
some interactions among quarks, vector bosons and scalars.
Moreover, cosmology also hints that the SM may not be

a complete description and that new CP violating phases
must exist in models beyond the SM in order to explain
the observed matter-antimatter asymmetry of the Universe
[9–11]. Therefore, we are led to explore alternatives to the
SM; in our case we consider the 3-3-1 model with heavy
leptons (331HL for short) [12]. However, in this work we
will only be concerned with the EDM issue.
The outline of this paper is as follows. In Sec. II we

introduce the representation content of the model: in Sec. II
Awe write the scalar content, in Sec. II B the lepton sector,
and quarks in Sec. II C. In Sec. III we calculate the EDMs,
for the electron in Sec. III A and for the neutron in Sec. III
B. The last section, Sec. IV, is devoted to our conclusions.
In the Appendixes A–Dwewrite all the interactions used in
our calculation.

II. THE 3-3-1 MODEL

Here we will work in the framework of the 3-3-1 model
with heavy leptons proposed in Ref. [12]. In this, as in other
3-3-1 models, there are many phases in the mixing
matrices. Even if the phases in the CKM mixing matrix
are absorbed in the quark fields, they appear in the
interactions of the fermions with heavy vector and scalar
bosons [13]. Here we considered the case when the onlyCP
violating phase is that of the soft trilinear interaction in the
scalar potential and the three VEV are also considered
complex. However, the phases in the VEVs vη and vρ, can
be rotated away with a SUð3Þ transformation and the
stationary condition imposes a relation between the other
two, thus only one physical phase survives. It was shown in
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Refs. [14,15] that their model has a mechanism for CP
violation, but their detailed calculations of the EDMs were
not done. This was mainly because at the time we did not
know realistic values for the matrices VU;D

L;R and Vl
L;R; their

numerical values are given in Sec. II B. Expressions for the
matrices in the quark sector were found in Ref. [16] in the
context of the nontrivial SM limit of the model found in
Ref. [17]. See Sec. II C.
In this model, as in the minimal 3-3-1, the electric charge

operator is given by

Q
jej ¼ T3 −

ffiffiffi
3

p
T8 þ X; ð2Þ

where e is the electron charge, T3;8 ¼ λ3;8=2 (being λ3;8 the
Gell-Mann matrices) and X is the hypercharge operator
associated with the Uð1ÞX group. In the following sub-
sections we present the field content of the model, with its
charges associated with each group in the parentheses, in
the form (SUð3ÞC, SUð3ÞL, Uð1ÞX).

A. The scalar sector

The minimal scalar sector for the model is composed by
three triplets:

χ ¼

0
B@

χ−

χ−−

χ0

1
CA ∼ ð1; 3;þ1Þ; ρ ¼

0
B@

ρþ

ρ0

ρþþ

1
CA ∼ ð1; 3;−1Þ;

η ¼

0
B@

η0

η−1
ηþ2

1
CA ∼ ð1; 3; 0Þ; ð3Þ

where χ0 ¼ jvχ jeiθχffiffi
2

p ð1þ X0
χþiI0χ
jvχ j Þ and ψ0 ¼ jvψ jffiffi

2
p ð1þ X0

ψþiI0ψ
jvχ j Þ,

for ψ ¼ η; ρ. We have already rotated away the phases in vη
and vρ and considered them real.

B. Leptons

The leptonic sector has three left-handed triplets and six
right-handed singlets:

ΨaL ¼

0
B@

ν0a
l0−a
E0þ
a

1
CA ∼ ð1; 3; 0Þ;

l0−aR ∼ ð1; 1;−1Þ E0þ
aR ∼ ð1; 1; 1Þ; ð4Þ

where the indexes L and R indicate left-handed and right-
handed spinors, respectively, E0

a ¼ E0
e; E0

μ; E0
τ are new

exotic heavy leptons with positive electric charge, and
l0a ¼ e0; μ0; τ0. Right-handed neutrinos, νaR ∼ ð1; 1; 0Þ, can
be added but, in the present context, they are not important.

The Yukawa Lagrangian in the lepton sector is given by

−Llep
Y ¼ Ge

abΨ̄aLl0bRρþ GE
abΨ̄aLE0

bRχ þ H:c:; ð5Þ

Ge and GE are arbitrary 3 × 3 matrices in the flavor space,
and the mass matrices are given by Ml ¼ ðvρ=

ffiffiffi
2

p ÞGe and
ME ¼ ðjvχ j=

ffiffiffi
2

p ÞeiθχGE for the charged and heavy leptons,
respectively. We assume for the sake of simplicity that
the matrix GE is diagonal and define GE ¼ jGEje−iθχ for
the masses of the heavy leptons be real. Hence,
mEl

¼ jvχ jjGE
llj=

ffiffiffi
2

p
. We have not written the neutrino

Dirac and Majorana masses because they are not relevant
in the present context.
The mass eigenstates (unprimed fields) for the

charged leptons are related to the symmetry eigenstates
(primed fields) through unitary transformations as
l0L;R ¼ ðVl

L;RÞ†lL;R, where la ¼ ðe; μ; τÞ. These Vl
L;R matri-

ces diagonalize the mass matrix in the following manner:
Vl
LM

lVl†
R ¼ M̂l ¼ diagðme;mμ; mτÞ. From this diagonal-

ization we can write Vl
LM

lMl†Vl†
L ¼ ðM̂lÞ2 and

Vl
RM

l†MlVl†
R ¼ ðM̂lÞ2. Solving numerically these equa-

tions we obtain one of the possible solutions as

Vl
L ¼

0
B@

0.009854 0.318482 −0.947878
0.014571 −0.947869 −0.318328
−0.999845 −0.010674 −0.013981

1
CA ð6Þ

Vl
R ¼

0
B@

0.005014 0.002615 0.999984

0.007158 0.999971 −0.002650
0.999962 −0.007171 −0.004995

1
CA; ð7Þ

if we use the input for the Yuakawa coupling constants:

Ge ¼

0
B@

−0.046499 0.000374 0.000232

−0.000515 −0.002616 0.000014

−0.000657 −0.000875 −7.1 × 10−6

1
CA ð8Þ

and the observed charged leptons masses. To find this
solution we have also considered jvρj ¼ 54 GeV. For the
justification of this value see Ref. [16].
From Eq. (5) we can write the interactions with the

charged scalars:

−Llep
Y ¼

ffiffiffi
2

p

vρ
ν̄0LV

†l
L M̂

llRρþ þ
ffiffiffi
2

p

vρ
ĒLV

l†
L M̂

llRρþþ

þ
ffiffiffi
2

p

jvχ j
e−iθχ ν̄LM̂

EERχ
− þ

ffiffiffi
2

p

jvχ j
e−iθχ l̄LVl

LM̂
EERχ

−−

þ H:c: ð9Þ

where ν0L ¼ ðν0eν0μν0τÞT . Moreover, the charged scalars have
still to be projected over the mass eigenstates denoted by
Yþ
1;2 and Yþþ (see Appendix A). Here and below, the
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vertexes are obtained as usual: −iLlep
Y , and in the lepton

case they include the matrices Vl
L;R in Eq. (7).

The masses of the heavy leptons are free parameters. In
order to have massive neutrinos, right-handed neutrinos can
be added. A Dirac mass for neutrinos is obtained which is
proportional to vρ or we can add a scalar sextet ∼ð1; 6�; 0Þ
coupled to ðΨLÞcΨL to obtain a Majorana mass term for the
active neutrinos. Moreover, if right-handed neutrinos have
a Majorana mass term, the model implements a symmetric
6 × 6 neutrino mass matrix. We will address the neutrino
masses elsewhere, showing that it is possible to obtain a
realistic Pontecorvo-Maki-Nakawaga-Sakata (PMNS)
matrix, but at present we ignore the neutrino masses.

C. Quarks

In the quark sector there are two antitriplets and one
triplet, all left handed, besides the corresponding right-
handed singlets:

QmL ¼

0
B@

dm
−um
jm

1
CA

L

∼ ð3; 3�;−1=3Þ;

Q3L ¼

0
B@

u3
d3
J

1
CA

L

∼ ð3; 3; 2=3Þ; ð10Þ

uαR ∼ ð3; 1; 2=3Þ;
dαR ∼ ð3; 1;−1=3Þ;
jmR ∼ ð3; 1;−4=3Þ;
JR ∼ ð3; 1; 5=3Þ ð11Þ

where m ¼ 1; 2 and α ¼ 1; 2; 3. The jm exotic quarks have
electric charge −4=3 and the J exotic quark has electric
charge 5=3 in units of jej.
The Yukawa interactions between quarks and scalars are

given by

−Lq
Y ¼ Q̄mL½GmαU0

αRρ
� þ ~GmαD0

αRη
��

þ Q̄3L½F3αU0
αRηþ ~F3αD0

αRρ�
þ Q̄mLG0

mijiRχ
� þ Q̄3LgJJRχ þ H:c:; ð12Þ

where we omitted the sum in m, i and α, U0
αR ¼ ðu0c0t0ÞR

and D0
αR ¼ ðd0s0b0ÞR. Gmα, ~Gmα, F3α, ~F3α, G0

mi and gJ are
the coupling constants.
From Eq. (12), we obtain that the exotic quarks have the

following interactions with the charged scalars:

−Lj ¼ ~̄jL½OuVU
RUR þOdVD

RDR� þ
ffiffiffi
2

p

jvχ j
D̄LVD

L

0
B@

mj1χ
þ 0 0

0 mj2χ
þ 0

0 0 mJχ
−−

1
CA~jR

þ
ffiffiffi
2

p

jvχ j
ŪLVU

L

0
B@

mj1χ
þþ 0 0

0 mj2χ
þþ 0

0 0 mJχ
−

1
CA~jR þ H:c: ð13Þ

where ~j ¼ ðj1j2JÞT , UL;R ¼ ðuctÞTL;R andDL;R ¼ ðdsbÞTL;R
denote the mass eigenstates. We have defined the matrices

Ou ¼

0
B@

G11ρ
−− G12ρ

−− G13ρ
−−

G21ρ
−− G22ρ

−− G23ρ
−−

F31η
þ
2 F32η

þ
2 F33η

þ
2

1
CA;

Od ¼

0
B@

~G11η
−
2

~G12η
−
2

~G13η
−
2

~G21η
−
2

~G22η
−
2

~G23η
−
2

~F31ρ
þþ ~F32ρ

þþ ~F33ρ
þþ

1
CA: ð14Þ

In Eq. (13) we have assumed that the mass matrix in the
j1; j2 sector is diagonal, i.e., G0

12 ¼ G0
21 ¼ 0. In this case

Gii ¼ jGiijeiθχ and gJ ¼ jgJjeiθχ . After absorbing the θχ
phase in the masses we have jgJj ¼ mJ

ffiffiffi
2

p
=jvχ j and

jGiij¼mji

ffiffiffi
2

p
=jvχ j. We have also used the fact that if

U0
L;R and D0

L;R denote the symmetry eigenstates and UL;R

and DL;R the mass eigenstates, they are related by unitary
matrices as follows: U0

L;R¼ðVU
L;RÞ†UL;R and D0

L;R ¼
ðVD

L;RÞ†DL;R in such a way that VU
LM

uVU†
R ¼M̂u¼

diagðmu;mc;mtÞ and VD
LM

dVD†
R ¼M̂d¼diagðmd;ms;mbÞ.

In terms of the mass eigenstates we can write the Yukawa
interactions in Eqs. (13) and (14) as in Appendix C, where
the charged scalar has already been projected on the
physical Y−

2 ; Y
−−. In this appendix we wrote only the

interactions which appear in the EDM diagrams.
Using as input the observed quark masses and the

mixing matrix in the quark sector, VCKM ¼ VU
LV

D†
L [18],

the numerical values of the matrices VU;D
L;R were found

to be [16]
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VU
L ¼

0
B@

−0.00032 0.00433 0.99999

0.07163 −0.99742 0.00434

−0.99743 −0.07163 −0.00001

1
CA;

VD
L ¼

0
B@

0.004175 −0.209965 0.97761

0.03341 −0.977145 −0.209995
−0.999525 −0.03052 −0.004165

1
CA: ð15Þ

In the same way we obtain the VU;D
R matrices:

VU
R ¼

0
B@

−0.4544 0.13857 0.87996

0.82278 −0.31329 0.47421

−0.34139 −0.93949 −0.02834

1
CA;

VD
R ¼

0
B@

−0.0001815 −0.325355 0.94559

0.005976 −0.945575 −0.325345
−0.999982 −0.00559 −0.002115

1
CA: ð16Þ

It should be noted that the product VU
LV

D†
L of the

matrices above correspond to the CKM matrix when the
modulus is considered. The known quark masses depend
on both vη and vρ. The values of the matrices VU;D

L;R were
obtained by using vρ ¼ 54 GeV and vη ¼ 240 GeV. The
matrices given in Eqs. (15) and (16) give the correct quark
masses (at the Z pole given in Ref. [16]) and the CKM
matrix if the Yukawa couplings are G11 ¼ 1.08,
G12 ¼ 2.97, G13 ¼ 0.09, G21 ¼ 0.0681, G22 ¼ 0.2169,
G23 ¼ 0.1 × 10−2, F31 ¼ 9 × 10−6, F32 ¼ 6 × 10−6,
F33 ¼ 1.2 × 10−5, ~G11 ¼ 0.0119, ~G12 ¼ 6 × 10−5,
~G13 ¼ 2.3 × 10−5, ~G21 ¼ ð3.2 − 6.62Þ × 10−4, ~G22 ¼
2.13 × 10−4, ~G23 ¼ 7 × 10−5, ~F31 ¼ 2.2 × 10−4, ~F32 ¼
1.95 × 10−4, ~F33 ¼ 1.312 × 10−4. All these couplings
should be multiplied by

ffiffiffi
2

p
; it is a conversion factor from

the notation used in [16] to our notation. We also took the

central values of the matrices VD
L;R presented in this

reference for our calculations.

III. THE EDM IN THIS MODEL

In the framework of quantum field theory (QFT) the
EDM of a fermion is described by an effective Lagrangian

LEDM ¼ −i
X
f

d
2
f̄σμνγ5fFμν ð17Þ

where d is the magnitude of the EDM, f is the fermion
wave function and Fμν is the electromagnetic tensor. This
Lagrangian gives rise to the vertex

Γμ ¼ idσμνqνγ5 ð18Þ

where qν is the photon’s momentum.
Since the EDM is an electromagnetic property of a

particle, its Lagrangian depends on the interaction between
the particle and the electromagnetic field. To find the EDM,
one must consider all the diagrams for a vertex between the
particle and a photon. The sum of the amplitudes will be
proportional to

ΓμðqÞ ¼ F1ðq2Þγμ þ � � � þ F3ðq2Þσμνγ5qν: ð19Þ

Comparing with Eq. (18), we can see that d ¼ Im½F3ð0Þ�.

A. The electron EDM

Considering the diagrams like that given in Fig. 1 we
find the following expression for the electron EDM con-
tributions at the one-loop level. Assuming that the only
source of CP violation are the e-El-Y vertexes in Eq. (9)
with ρ−− and χ−− projected on Y−− as is shown in Eq. (A2),
the electron EDM is given by

de
e · cm

����
Y
¼ fIm½ðVELlRÞ11ðVlLER

Þ11� − Im½ðV†
lLER

Þ11ðV†
ELlR

Þ11�g½IeEeY
1 þ 2IeEeY

2 �

þ fIm½ðVELlRÞ21ðVlLER
Þ12� − Im½ðV†

lLER
Þ21ðV†

ELlR
Þ12�g

h
I
eEμY
1 þ 2I

eEμY
2

i
þ fIm½ðVELlRÞ31ðVlLER

Þ13� − Im½ðV†
lLER

Þ31ðV†
ELlR

Þ13�g
h
IeEτY
1 þ 2IeEτY

2

i
¼ −ð197 × 10−16 GeVÞ 2 sinð2θχÞ

jvρjð1þ jvχ j2
jvρj2Þ

:

�
mEe

�
ðVl

LÞ11
X
i

Ge
1iðVl

RÞi1
�
½IeEeY
1 þ 2IeEeY

2 � þmEμ

�
ðVl

LÞ21
X
i

Ge
2iðVl

RÞi1
�

: ½IeEμY þ 2IeEμY � þmEτ

�
ðVl

LÞ31
X
i

Ge
3iðVl

RÞi1
�
½IeEτY
1 þ 2IeEτY

2 �
�
; ð20Þ

where Y denotes Yþþ. The elements of the matrices VELlR and VlLER
of the above equation can be found in Appendix B. The

factors IeElY
1 and IeElY

2 are given by
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Iel1 ≡ I1ðmEl
; me;mYÞ

¼ −
mEl

4ð4πÞ2
Z

1

0

dz
1þ z

ðm2
El
− zm2

eÞð1 − zÞ þm2
Yz

; ð21Þ

and

Iel2 ≡ I2ðmEl
; me;mYÞ

¼ −
mEl

4ð4πÞ2
Z

1

0

dz
z

½m2
El
− ð1 − zÞm2

e�zþm2
Yð1 − zÞ ;

ð22Þ

where mEl
ðl ¼ e; μ; τÞ and me denote the mass of the

heavy lepton and the electron mass respectively. Also, mY
is the mass of the scalar in the diagram, which in this case is
Yþþ.
Using Eq. (20) and considering that it respects the actual

experimental limit [8] (jdejY < jdejexp¼8.7×10−29 e · cm)
we obtain the graph in Fig. 3. The regions below each line
indicate the values for θχ and mI (mI being the mass of the
heavy particle in the internal line) where our theoretical
prediction is in agreement with the experimental results.
Each line corresponds to the mass of a different particle (as
shown in the legend). For a given line, the electron EDM is
evaluated considering the value presented in the lower axis
for the corresponding mass; for the other masses the values
are taken to be (in GeV):mYþþ ¼ 500,mEe

¼ 1000,mEμ
¼

1000 and mEτ
¼ 1000. We also considered jvχ j ¼

2000 GeV and jvρj ¼ 54 GeV. The values of the matrix
entries Vl

L;R and of the Ge Yukawa couplings are those
given in Eqs. (6), (7) and (8), respectively. Notice that

the projection over the mass eigenstate Y−− implies the
factor

1

jvρj
1

1þ jvχ j2
jvρj2

≈
jvρj
jvχ j2

∼ 1.34 × 10−5 GeV−1: ð23Þ

It should be noted that our theoretical prediction only
allows small values for θχ, being of order 10−6 to 10−7,
except in the case where the Eτ mass is small or the Y−−

mass is large.

B. The neutron EDM

As in the case of charged leptons we will assume here
that the only source of CP violation is the phase θχ .
Considering the diagrams given in Fig. 2 we find an
expression for the neutron EDM in the 3-3-1 model with
heavy leptons. For each diagram we calculate the contri-
bution to the EDM given by each quark, with the total EDM
of the neutron given by

dnjY ¼
�
4

3
dd −

1

3
du

	
Y

ð24Þ

where

dd
e · cm

����
Y
¼ fIm½ðKJLDR

Þ31ðKDLJRÞ13� − Im½ðK†
DLJR

Þ31ðK†
JLDR

Þ13�g½IdJY1 þ 2IdJY2 Þ�

¼ −ð197 × 10−16 GeVÞ
�
sinð2θχÞmJ

2
ffiffiffi
2

p jvρj
jvρj2 þ jvχ j2

ðVD
L Þ13

X
k

ðVD
R Þ1k ~F3k

�
½IdJY1 þ 2IdJY2 � ð25Þ

where Y denotes Yþþ. We have used the definition of the matrices in Eqs. (C2) and (C6).
Similarly, considering the figures involving the u quark in Fig. 2

FIG. 1. Diagrams contributing to the electron EDM. It should
be considered the case where the photon line is connected to the
scalar line and the case where it is connected to the fermion line.
Also, all the left-right combinations and all the exotic lepton
possibilities (α ¼ e; μ; τ) should be considered.

FIG. 2. Diagrams contributing to the neutron EDM. For each
diagram the case should be considered where the photon line is
connected to the scalar line and where it is connected to the
fermion line. Also, all the left-right combinations and all the
exotic quark possibilities for the u-quark diagram (m ¼ 1; 2)
should be considered.
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du
e · cm

����
Y
¼ fIm½ðKjLUR

Þ11ðKULjRÞ11� − Im½ðK†
ULjR

Þ11ðK†
jLUR

Þ11�g½Iuj1Y1 þ 2Iuj1Y2 �

þ fIm½ðKjLUR
Þ21ðKULjRÞ12� − Im½ðK†

ULjR
Þ21ðK†

jLUR
Þ12�g½Iuj2Y1 þ 2Iuj2Y2 �

¼ ð197 × 10−16 GeVÞ
�
sinð2θχÞmj1

2
ffiffiffi
2

p jvρj
jvρj2 þ jvχ j2

ðVU
L Þ11

X
k

ðVU
R Þ1kG1k

�
½Iuj1Y1 þ 2Iuj1Y2 �

þ ð197 × 10−16 GeVÞ
�
sinð2θχÞmj2

2
ffiffiffi
2

p jvρj
jvρj2 þ jvχ j2

ðVU
L Þ12

X
k

ðVU
R Þ1kG2k

�
½Iuj2Y1 þ 2Iuj2Y2 �; ð26Þ

and the integrals Idj1Y1;2 are given in Eqs. (21) and (22),
respectively, making me → md;mEl

→ mj1 and mY → mYþ
2

and for IdJY1;2 making me → mu;mEl
→ mJ while mY is the

same. We used the matrices defined in Eqs. (C4) and (C8).
Notice that only the exotic quarks with charge 5=3
contribute to the d-quark EDM and only those with electric
charge −4=3 do for the u-quark EDM.
On the equations above we have considered the VU

L;R and
VD
L;R matrices to be real; that is because we considered the

numerical results presented in [16] for such matrices and
for the Yukawa couplings [see Eqs. (15) and (16)].
Using Eq. (24) and considering that it respects the actual

experimental limit [6] (jdY j< jdnjexp ¼ 2.9× 10−26 e · cm)
we obtain the graph in Fig. 4. Similar to the electron case,
the regions below each line indicate the values for θχ and
mI (mI being the mass of the exotic particle in the internal
line) where our theoretical prediction is in agreement with
the experimental results. Each line corresponds to the mass
of a different particle (as shown in the legend). For a given
line, the neutron EDM is evaluated considering the value
presented in the lower axis for the corresponding mass;
for the other masses the values are taken to be (in GeV):
mYþ

2
¼ 200, mYþþ ¼ 500, mJ ¼ 1000, mj1 ¼ 1000 and

mj2 ¼ 1000. We also considered vη ¼ 240 GeV,
vρ ¼ 54 GeV, and jvχ j ¼ 2000 GeV. The values for the
Yukawa couplings used in Eq. (14) are those
below Eq. (16).
The graphs indicates that smaller masses for the exotic

quark J and large masses for the exotic scalar Yþþ are
favored, while the EDM seems unaffected by changes in
the masses of the other exotic quarks or Yþ

2 . For the neutron
we also find that θχ should have a small value, of order
10−1. However, the results for the electron yields even
smaller limits for θχ, leaving room for a greater range of
possible values for mJ and mYþ

2
.

IV. CONCLUSIONS

The electron EDM imposes a strong constraint in the
new mechanism of CP violation. Both the experimental
upper limit and the SM prediction are lower than the
neutron EDM. Moreover it is not sensitive to QCD

FIG. 3 (color online). Allowed values for the exotic particles
masses shown in the figure and θχ from the electron EDM. The
regions below each line show the allowed values for θχ and the
heavy lepton masses mEl

that satisfy jdejY < 8.7 × 10−29 e · cm;
see Eq. (20). Each line corresponds to the mass of a different
particle (as shown in the legend). For a given line, the electron
EDM is evaluated considering the value presented in the lower
axis for the corresponding mass, while the other masses have their
values fixed (for more information see the text).

FIG. 4 (color online). Allowed values for the exotic particles
masses shown in the figure and θχ from the neutron EDM. The
regions below each line show the allowed values for θχ and exotic
particle masses that satisfy jdnjY < 2.9 × 10−26 e · cm; see
Eqs. (24)–(26). Each line corresponds to the mass of a different
particle (as shown in the legend). For a given line, the neutron
EDM is evaluated considering the value presented in the lower
axis for the corresponding mass, while the other masses have their
values fixed (for more information see the text).
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corrections, at least at the 1-loop level. In the framework of
the 3-3-1 models, the electron EDM was calculated in
Refs. [14,19]. However, at that time we knew nothing about
either the unitary matrices in the lepton sector, Vl

L;R, or
VU;D
L;R in the quark sector. Notwithstanding, after the results

reported from Ref. [16], it is possible to make more realistic
calculations of the EDM since now the number of free
parameters is lower than before. In fact, once the values of
jvρj and jvηj are obtained, the quark masses and the CKM
matrix determine, not necessarily univocally, the unitary
matrices in the quark sector. The same happens in the
lepton sector as is shown in Sec. II B. At this level,
the unknown parameters are the phase θχ , the masses of
the scalars (although one of the neutral ones has to have a
mass of the order of 125 GeV), the orthogonal matrix which
diagonalize the mass matrix of the CP even neutral scalars,
and the masses of the exotic quarks.
From the calculation of the EDM of the neutron and the

electron at 1-loop order, we were able to set lower limits on
the masses of the Yþ

2 and Yþþ scalars, which are compat-
ible with the search of these sorts of fields at the LHC and
Tevatron [20], and on the masses of the exotic fermions,
depending on the value of θχ , and we have also a good
indication that this phase should be below 10−6. From the
graph in Fig. 3 we see that as the mass of Yþþ goes up
the electron EDM decreases, while the inverse happens for
the mass of Eτ. In the case of the neutron EDM, from Fig. 4,
we see also that the increase of the mass of the scalar Yþþ

decreases the EDM, and the decrease ofmJ (the mass of the
exotic quark J) also decreases the EDM. Analyzing
Eqs. (21) and (22) it is clear that the increase of the masses
of the exotic scalars will decrease the EDM, since these
masses appear in the denominator. As for the decrease of
the EDM from the decrease of the masses of the exotic
fermions, it can be explained from the fact that Eqs. (21)
and (22) are proportional to those masses. However, this is
not the only thing to be taken into account, because from
Fig. 4 we see that the decrease of mEμ

and mJ increases the
EDM. This effect can be explained from the signs of the
coupling constants and elements of the fermion diagonal-
ization matrices, which can lead to cancellations among the
many diagrams involved in the final result.
It seems that in thismodel we have a situation similar with

that in supersymmetric theories in which the EDM’s are
larger than the SM prediction and are appropriately sup-
pressed only by the phases. This is the so-called SUSY CP
problem. See Refs. [21,22] and references therein.We stress
again that we have considered only the soft CP violation
present in the model. In fact, it has other CP hard violating
sources. Beside the phase δ in the CKMmatrix, the matrices
VU;D;l
L;R are also complex with, in principle, six arbitrary

phases. In the SM, the contribution of the CKM matrix δ to
de;n is negligible at the 1-loop level in pureweak amplitudes,
but this is not necessarily the case for the phases in the
matricesVU;D;l

L;R;l . For instance, if thematrixVl
L is complex the

electron EDM in Eq. (20) will be proportional to
2 sinð2θχ � θVl

L
∓θVl

R
Þ, where θVl

L
; θVl

R
denote the extra

phases from the respective matrices. In this case, all phases
may be naturally of Oð1Þ while the sum is small ∼10−6.
The contributions of these phases in the framework of

the minimal 3-3-1 model were done in Ref. [19]. It is, of
course, important to take into account these extra phases,
but it is beyond the scope of the present work. We recall
that even the right-handed matrices VU;D

R survive in the
neutral scalar sector which has flavor changing neutral
currents as it was shown in Ref. [16]. It is possible that three
of the phases in VD

L can be absorbed in the exotic quarks
J; j1 and j2, but there is no more freedom to absorb the
phases in VU

L . Notwithstanding, these phases will appear in
the vertexes shown in Appendix C.
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APPENDIX A: THE SCALAR SECTOR

The most general potential, invariant under CP trans-
formations, for the scalars is

Vðχ; η; ρÞ ¼
X
i

μ2iϕ
†
iϕi þ

X
i¼1;2;3

aiðϕ†
iϕiÞ2

þ
X

m¼4;5;6;i>j

amðϕ†
iϕiÞðϕ†

jϕjÞ

þ
X

n¼7;8;9;i>j

anðϕ†
iϕjÞðϕ†

jϕiÞ

þ ðαϵijkχiρjηk þ H:c:Þ; ðA1Þ

where we have used ϕ1 ¼ χ;ϕ2 ¼ η and ϕ3 ¼ ρ, except in
the trilinear term.
Taking the derivatives of Eq. (A1) with respect to the

vacua and setting these to zero, we are able to find
expressions for μ2χ, μ2η and μ2ρ. Also, from these derivatives,
we can find that α ¼ jαje−iθχ . Using this we can find the
mass matrices and, therefore, the following mass
eigenstates:
Double charge scalars:

�
ρþþ

χþþ

	
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvχ j2
jvρj2

r
 

1
jvχ j
jvρj e

−iθχ

− jvχ j
jvρj e

iθχ 1

!�
Gþþ

Yþþ

	

m2
Gþþ ¼ 0;

m2
Yþþ ¼ A

 
1

jvρj2
þ 1

jvχ j2
!

þ a8
2
ðjvχ j2 þ jvρj2Þ; ðA2Þ

where A ¼ jvχ jjvηjjvρjjαj=
ffiffiffi
2

p
.
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First pair of single charge scalars:

�
ηþ1
ρþ

	
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvρj2
jvηj2

r
0
@ 1

jvρj
jvηj

− jvρj
jvηj 1

1
A�Gþ

1

Yþ
1

	
;

m2
Gþ

1

¼ 0;

m2
Yþ
1

¼ A

 
1

jvρj2
þ 1

jvηj2
!

þ a9
2
ðjvηj2 þ jvρj2Þ: ðA3Þ

Second pair of single charge scalars:

�
ηþ2
χþ

	
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvχ j2
jvηj2

r
0
@ 1

jvχ j
jvηj e

iθχ

− jvχ j
jvηj e

−iθχ 1

1
A�Gþ

2

Yþ
2

	

m2
Gþ

2

¼ 0;

m2
Yþ
2

¼ A

�
1

jvχ j2
þ 1

jvηj2
	
þ a7

2
ðjvηj2 þ jvχ j2Þ: ðA4Þ

Neutral CP-odd scalars:

0
BB@

I0η

I0ρ

I0χ

1
CCA ¼

0
BBBB@

Na
jvχ j − Nbjvηjjvχ j

jvρjðjvηj2þjvχ j2Þ
Nc
jvηj

0 Nb
jvχ j

Nc
jvρj

− Na
jvηj − Nbjvηj2

jvρjðjvηj2þjvχ j2Þ
Nc
jvχ j

1
CCCCA
0
B@

G0
1

G0
2

h0

1
CA

m2
G0

1

¼ m2
G0

2

¼ 0; m2
h0 ¼ A

�
1

jvχ j2
þ 1

jvρj2
þ 1

jvηj2
	
;

ðA5Þ

where

Na ¼
�

1

jvχ j2
þ 1

jvηj2
	

−1=2
;

Nb ¼
�

1

jvχ j2
þ jvηj2
jvρj2ðjvηj2 þ jvχ j2Þ

	−1=2
;

Nc ¼
�

1

jvχ j2
þ 1

jvρj2
þ 1

jvηj2
	

−1=2
: ðA6Þ

For the CP-even scalars we are unable to find an analytic
solution. But, since the mass matrix is real and symmetric,
we know that it can be diagonalized by an orthogonal
matrix. Therefore, X0

ψ ¼PiO
H
ψaH0

i , where ψ ¼ χ; η; ρ,
i ¼ 1; 2; 3, H0

i are the mass eigenstates and OH is an
orthogonal matrix.
Notice that since vη and vρ are already known in the

context of Ref. [17] and a lower limit on jvχ j was obtained
in Ref. [16], the projection of the scalar symmetry
eigenstates over the mass eigenstates is now completely

determined. We have used vη ¼ 240 GeV, vρ ¼ 54 GeV,
and jvχ j ¼ 2000 GeV.

APPENDIX B: LEPTON-SCALAR CHARGED
INTERACTIONS

From the Eq. (9), we obtain the interaction terms of the
Lagrangian for the charged leptons and charged scalars:

−LELlRY ¼ ĒLVELlRlRY
þþ; −Ll̄LERY ¼ l̄LVlLER

ERY−−;

ðB1Þ

where

VELlR ¼
ffiffiffi
2

p jvχ j
jvρj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvρj2 þ jvχ j2

q Vl†
L M̂

le−iθχ ;

VlLER
¼

ffiffiffi
2

p jvρj
jvχ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvρj2 þ jvχ j2

q Vl
LM̂

Eeiθχ ; ðB2Þ

where M̂l and M̂E are, respectively, the diagonal mass
matrices of the known leptons l ¼ e; μ; τ and the heavy
ones Ee; Eμ; Eτ. The numerical values of the matrices Vl

L
and Vl

R are given in Eqs. (6) and (7), respectively. We recall
that we have considered a basis in which the heavy leptons
mass matrix is diagonal, i.e., that their masses are
mEl

¼ jGE
lljjvχ j=

ffiffiffi
2

p
. Otherwise the matrices VE

L;R which
diagonalize the general matrix ME will appear in the
vertexes above. We think that this refinement is not
necessary at this time.

APPENDIX C: QUARK-SCALAR INTERACTIONS

From Eqs. (13) and (14) we obtain the Yukawa inter-
actions with the charged scalars that contribute to the EDM.
Interactions among DL-type and JR quarks:

−LYDLJR ¼ D̄LKDLJRJRY
−−; ðC1Þ

where JR ¼ ð00JÞR and with

KDLJR ¼
ffiffiffi
2

p
e−iθχ

jvχ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvχ j2

jvρj2

r VD
L

0
B@

0 0 0

0 0 0

0 0 mJ

1
CA: ðC2Þ

Interactions among UL-type and jR-type quarks:

−LYULjR ¼ ŪLKULjRjRY
þþ; ðC3Þ

with
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KULjR ¼
ffiffiffi
2

p
eiθχ

jvχ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvχ j2

jvρj2

r VU
L

0
B@

mj1 0 0

0 mj2 0

0 0 0

1
CA: ðC4Þ

Interactions among JL and DR-type quarks:

−LYJLDR
¼ J̄LKJLDR

DRYþþ; ðC5Þ

with

KJLDR
¼ jvχ je−iθχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jvρj2 þ jvχ j2
q

0
B@

0 0 0

0 0 0

~F31
~F32

~F33

1
CAVD†

R : ðC6Þ

Interactions among jL-type and UR-type quarks:

−LYjLUR
¼ j̄LKjLUR

URY−−; ðC7Þ

with

KjLUR
¼ jvχ jeiθχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jvρj2 þ jvχ j2
q

0
B@

G11 G12 G13

G21 G22 G23

0 0 0

1
CAVU†

R : ðC8Þ

For the numerical values for the matrices VU;D
L;R see

Eqs. (15) and (16) and for those of the parameters in

Eqs. (C1)–(C8) see below Eq. (16). Notice that both
matrices left- and right-handed survive in different inter-
actions in the scalar sector.

APPENDIX D: SCALAR-PHOTON
INTERACTIONS

Now, from the covariant derivatives of the scalar’s
Lagrangian

LS ¼
X

i¼η;ρ;χ

ðDiϕiÞ†ðDiϕiÞ ðD1Þ

where Di are the covariant derivatives, we can find the
vertexes for the interactions between scalars and photons.
The AμY

þ
1;2Y

−
1;2 vertexes are both equal to ieðk− − kþÞμ, and

the vertex AμYþþY−− is 2ieðk− − kþÞμ. The terms kþ and
k− indicate, respectively, the momenta of the positive
and negative charge scalars. The momenta are all going
into the vertex and the modulus of the electric charge of the
electron is given by

e ¼ g
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t2
p ¼ g sin θW ðD2Þ

with t ¼ sW=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4s2W

p
.
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