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We calculate the electric dipole moment for the electron and neutron in the framework of the 3-3-1 model

with heavy charged leptons. We assume that the only source of CP violation arises from a complex trilinear

coupling constant and the three complex vacuum expectation values. However, two of the vacua phases are

absorbed and the other two are equal up to a minus sign. Hence only one physical phase survives. In order

to be compatible with the experimental data this phase has to be smaller than 107°,
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I. INTRODUCTION

The measurement of the electric dipole moment (EDM)
of elementary particles is a crucial issue to particle physics.
This is because for a nondegenerate system, as nucleus or
an elementary particle, an EDM is possible only if the
symmetries under 7 and CP are violated. On one hand, in
the Standard Model (SM) framework the only source of T
and CP violation is the phase ¢ in the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix. On the other hand, the
SM prediction for the neutron electric dipole moment is
|d,|sm ~ 1073 ¢ - cm [1-5], 6 orders of magnitude below
the actual experimental limit of |d,|e, < 2.9 x 107 ¢
cm [6]. Moreover, for the electron EDM the SM prediction
of |d,|gu < 10738 e -cm [7] and the experimental upper
limit of |d, |, < 8.7 x 107 ¢ - cm [8]. Hence, we see that
in the context of the Standard Model the Kobayashi-
Maskawa phase is not enough for explaining an EDM
with a value near the experimental limit for both electron
and neutron. If the latter case is confirmed in future
experiments, it certainly means the discovery of new
physics with new CP violation sources.

We can rewrite the experimental upper bound of the
electron EDM in units of Borh magneton as follows:

2m
e ) 1
MﬂB ()

d, <5x 10"y ~

where M is the particle responsible for the nonvanishing
EDM of a given particle. From Eq. (1) we obtain that
M > 5 x 10" GeV. This naive calculation assumes that the
electron EDM arises only by the effect of a massive particle.
Notwithstanding, in a specific model the masses of the
particles responsible for the EDM may be much smaller than
this value since it does not take into account the couplings of
the responsible particle and negative interference if there are
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several of such particles. This is the case in electroweak
models and, in particular, in the 3-3-1 ones. In the latter
models there are many CP violating phases like the
Kobayashi-Maskawa &, but these are hard phases in the
unitary matrices that relate the symmetry eigenstates and
the mass eigenstates that, unlike in the SM, survive in
some interactions among quarks, vector bosons and scalars.

Moreover, cosmology also hints that the SM may not be
a complete description and that new CP violating phases
must exist in models beyond the SM in order to explain
the observed matter-antimatter asymmetry of the Universe
[9-11]. Therefore, we are led to explore alternatives to the
SM; in our case we consider the 3-3-1 model with heavy
leptons (331HL for short) [12]. However, in this work we
will only be concerned with the EDM issue.

The outline of this paper is as follows. In Sec. I we
introduce the representation content of the model: in Sec. II
A we write the scalar content, in Sec. II B the lepton sector,
and quarks in Sec. II C. In Sec. III we calculate the EDMs,
for the electron in Sec. III A and for the neutron in Sec. III
B. The last section, Sec. IV, is devoted to our conclusions.
In the Appendixes A—D we write all the interactions used in
our calculation.

II. THE 3-3-1 MODEL

Here we will work in the framework of the 3-3-1 model
with heavy leptons proposed in Ref. [12]. In this, as in other
3-3-1 models, there are many phases in the mixing
matrices. Even if the phases in the CKM mixing matrix
are absorbed in the quark fields, they appear in the
interactions of the fermions with heavy vector and scalar
bosons [13]. Here we considered the case when the only CP
violating phase is that of the soft trilinear interaction in the
scalar potential and the three VEV are also considered
complex. However, the phases in the VEVs vy and v,, can
be rotated away with a SU(3) transformation and the
stationary condition imposes a relation between the other
two, thus only one physical phase survives. It was shown in
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Refs. [14,15] that their model has a mechanism for CP
violation, but their detailed calculations of the EDMs were
not done. This was mainly because at the time we did not
know realistic values for the matrices VZ’? and V| p; their
numerical values are given in Sec. II B. Expressions for the
matrices in the quark sector were found in Ref. [16] in the
context of the nontrivial SM limit of the model found in
Ref. [17]. See Sec. IIC.

In this model, as in the minimal 3-3-1, the electric charge
operator is given by

%:T3—\/§T8+X, (2)
where e is the electron charge, T3 3 = 43 3/2 (being 45 g the
Gell-Mann matrices) and X is the hypercharge operator
associated with the U(1)y group. In the following sub-
sections we present the field content of the model, with its
charges associated with each group in the parentheses, in
the form (SU(3)q, SU(3),, U(1)y).

A. The scalar sector

The minimal scalar sector for the model is composed by
three triplets:

x ot
x=xr | ~3+1),  p=] p° | ~(1.3-1),
X Pans
7
n=1n | ~(1,3,0), (3)
n
where »° 7\'1\“(1 X?“’?) and 0 = %/ 1+ X+11f;,)

V2
fory = #, p. We have already rotated away the phases in v,

and v, and considered them real.

‘L')(|

B. Leptons
The leptonic sector has three left-handed triplets and six
right-handed singlets:

Va

\IjaL = l;,l_
ELF
Lr~ (L 1L—1) Ejp~

~(1,3,0),

(1,1,1), (4)

where the indexes L and R indicate left-handed and right-
handed spinors, respectively, E, = E,,E,, E; are new
exotic heavy leptons with positive electric charge, and
I, = ¢, 7. Right-handed neutrinos, v,z ~ (1,1,0), can

be added but, in the present context, they are not important.
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The Yukawa Lagrangian in the lepton sector is given by

—L3" = G W lygp + G5 W Eppy + He.,  (5)
G¢ and GF are arbitrary 3 x 3 matrices in the flavor space,
and the mass matrices are given by M' = (v,/ v2)G¢ and
ME = (|v,|/v/2)e GE for the charged and heavy leptons,
respectively. We assume for the sake of simplicity that
the matrix G% is diagonal and define G¥ = |GF|e~ for
the masses of the heavy Ieptons be real. Hence,
mg, = |v,||GE|/V2. We have not written the neutrino
Dirac and Majorana masses because they are not relevant
in the present context.

The mass eigenstates (unprimed fields) for the
charged leptons are related to the symmetry eigenstates
(primed fields) through unitary transformations as
Iy r = (Vi g)'l &, where [, = (e, p, 7). These V| . matri-
ces diagonalize the mass matrix in the following manner:

ViM'Vy = M' = diag(m,.m,.m.). From this dlagonal—

ization we can write Vl MIM”VIT (M")?  and

VEMEMIVE = (M")2, Solvmg numerlcally these equa-

tions we obtain one of the possible solutions as

0.009854  0.318482 —0.947878

Vi =1 0014571 -0.947869 —0.318328 (6)
—0.999845 —0.010674 —0.013981
0.005014  0.002615  0.999984

vk =1 0007158 0.999971 —0.002650 |, (7)
0.999962 —0.007171 —0.004995

if we use the input for the Yuakawa coupling constants:

—0.046499  0.000374 0.000232
G° = | —-0.000515 -0.002616  0.000014 (8)
-0.000657 —0.000875 —7.1 x 1076

and the observed charged leptons masses. To find this
solution we have also considered |v,| = 54 GeV. For the
justification of this value see Ref. [16].

From Eq. (5) we can write the interactions with the
charged scalars:

2 - .\ 2 aa
¥ = \;_U/LVEIMZZRP+ + \l{—_ELVlL'MIIR,OJr+
p »

-Ly

2 -

+ % e MPERy™ + |—‘/—| e 0L, VI MEE Ry~
)(

+Hec. 9)

where v; = (V,1},/;)". Moreover, the charged scalars have
still to be projected over the mass eigenstates denoted by
Y, and Y™ (see Appendix A). Here and below, the
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vertexes are obtained as usual: —iﬁl;p, and in the lepton
case they include the matrices V) . in Eq. (7).

The masses of the heavy leptons are free parameters. In
order to have massive neutrinos, right-handed neutrinos can
be added. A Dirac mass for neutrinos is obtained which is
proportional to v, or we can add a scalar sextet ~(1,6%,0)

coupled to (¥, )W, to obtain a Majorana mass term for the
active neutrinos. Moreover, if right-handed neutrinos have
a Majorana mass term, the model implements a symmetric
6 % 6 neutrino mass matrix. We will address the neutrino
masses elsewhere, showing that it is possible to obtain a
realistic  Pontecorvo-Maki-Nakawaga-Sakata (PMNS)
matrix, but at present we ignore the neutrino masses.

C. Quarks

In the quark sector there are two antitriplets and one
triplet, all left handed, besides the corresponding right-
handed singlets:

dy,
Qe = | —tm | ~(3.3".-1/3),
Jn )1
us3
Qs = | ds | ~(3.3.2/3), (10)
J/L
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Uar ~ (3.1,2/3),

dag ~ (3,1,-1/3),

ij ~ (37 17_4/3),

Jr~(3,1,5/3) (11)

where m = 1,2 and a = 1,2, 3. The j,, exotic quarks have
electric charge —4/3 and the J exotic quark has electric
charge 5/3 in units of |e|.

The Yukawa interactions between quarks and scalars are
given by

_['?/ = QmL [Gma U/aRp* + Gm(zD/aRﬂ*]
+ Q31 [F3aUlpght + F3uDp]

+ Qi Ghidirt™ + Q3.9 rx +Hee., (12)

where we omitted the sum in m, i and a, U, = (u'c't')g
and D, = (d's'V')g. Goa> Gnas Faas F3a, G,; and g are
the coupling constants.

From Eq. (12), we obtain that the exotic quarks have the

following interactions with the charged scalars:

/3 mjl)(+ 0 0
—L; = j [0"VEUR + OIVRDg] + mDLV’g 0  myt 0 |jg
o 0 0  my "
/3 ij)(++ 0 0
+ ] o, vy 0 miytt 0 |jr+Hec. (13)
o 0 0 myy~

where j = (j1joJ)", Up g = (uct)] g and Dy g = (dsb)]
denote the mass eigenstates. We have defined the matrices

Gup™™ Gnp~ Gupp™—
O"= | Gup™ Gup™ Gup™™ |,
Fany  Fany  Fany
Gun; Gy Guang
Ol=| Gun;  Gumy, Gy (14)

1~731.l’+Jr 1~732,17+Jr I~733,f’+Jr

In Eq. (13) we have assumed that the mass matrix in the
J1. J2 sector is diagonal, i.e., G|, = G5, = 0. In this case
G;; = |Gle" and g; = |g;|e”. After absorbing the 0,
phase in the masses we have |g,| = m,;\/2/ |v,| and

|Gii|:mji\/§/|v)(|. We have also used the fact that if
U} g and D} p denote the symmetry eigenstates and U, g
and Dy p the mass eigenstates, they are related by unitary
matrices as follows: U} p=(V{;)'Uyz and D} ;=
(VPR)Dog in such a way that VYM"VY =M"=
diag(m,,m.,m,) and VP MIVE" = ¥4 =diag(my,ms,m,).

In terms of the mass eigenstates we can write the Yukawa
interactions in Egs. (13) and (14) as in Appendix C, where
the charged scalar has already been projected on the
physical Y5,Y™". In this appendix we wrote only the
interactions which appear in the EDM diagrams.

Using as input the observed quark masses and the
mixing matrix in the quark sector, Vegy = VlL]VlL)T [18],
the numerical values of the matrices VZ’,? were found
to be [16]
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—0.00032  0.00433  0.99999

vy =1 007163 —0.99742 0.00434 |,
-0.99743  —0.07163 —0.00001
0.004175  —0.209965  0.97761

VP =1 0.03341 —-0.977145 —0.209995 (15)
—0.999525 -0.03052 —0.004165

In the same way we obtain the V" matrices:

—0.4544  0.13857  0.87996

vi=1 082278 —-0.31329 047421 |,
—0.34139 —0.93949 -0.02834
—0.0001815 —0.325355  0.94559

VR =1 0.005976 —0.945575 —0.325345 (16)
—-0.999982  —0.00559 —0.002115

It should be noted that the product VYVPT of the
matrices above correspond to the CKM matrix when the
modulus is considered. The known quark masses depend
on both v, and v,. The values of the matrices VL r were
obtained by using v, = 54 GeV and Uy = 240 GeV. The
matrices given in Egs. (15) and (16) give the correct quark
masses (at the Z pole given in Ref. [16]) and the CKM
matrix if the Yukawa couplings are G = 1.08,

G12 - 297, G13 - 009, G21 - 00681, G22 - 02169,
G23 =0.1x 10_2, F';l =90x 10_6 F32 =6x 10_6
F33:1.2X10_5, Gll —00119 Glz—6X10 5

Gi3=23%x107, Gy =(32-662)x10" Gy =
213 %1074, Gpy =7 x 1075, Fy =22x 1074, Fy, =
1.95%x 107, F33=1.312x 107*. All these couplings
should be multiplied by v/2; it is a conversion factor from
the notation used in [16] to our notation. We also took the
|

de
e-cm|y

= {Im[<VELlR)11(V1LER)11]
+A{Im[(Vig, 1, )21 (Vi £ )12] =
+A{Im[(Vig, 1, )31 (Vi £ )13] =

—(197 x 10716 GeV)
lv,|(1+

e (D308 V| 55 215 [ ()Y G5

B £ 20EY ) oy {(VZL)MZG;(V@“] (15 2185 }

(V] ot (Ve )} [ 15 + 2057

PHYSICAL REVIEW D 91, 015006 (2015)

central values of the matrices VP, presented in this
reference for our calculations.

III. THE EDM IN THIS MODEL

In the framework of quantum field theory (QFT) the
EDM of a fermion is described by an effective Lagrangian

~d-
Lepm = _IZEfG”DVSfFM (17)

f

where d is the magnitude of the EDM, f is the fermion
wave function and F,, is the electromagnetic tensor. This
Lagrangian gives rise to the vertex

¥ = ido" q,rs (18)
where ¢, is the photon’s momentum.

Since the EDM is an electromagnetic property of a
particle, its Lagrangian depends on the interaction between
the particle and the electromagnetic field. To find the EDM,
one must consider all the diagrams for a vertex between the
particle and a photon. The sum of the amplitudes will be
proportional to

I*(q) =

Comparing with Eq. (18), we can see that d = Im[F5(0)].

Fi(g)r* + -+ F3(¢*)o*rsq,.  (19)

A. The electron EDM

Considering the diagrams like that given in Fig. 1 we
find the following expression for the electron EDM con-
tributions at the one-loop level. Assuming that the only
source of CP violation are the e-E;-Y vertexes in Eq. (9)
with p~~ and y =~ projected on Y™~ as is shown in Eq. (A2),
the electron EDM is given by

[(V;r e )11 ( ELlR)ll]}[ITEEY + 2155

eE,Y

Im{(V] g ) (Vi sl [ 17 + 2057

25sin(26,)

|v, >
|/I;ﬂ ‘2

)

o)

(20)

where Y denotes Y+t The elements of the matrices Vg, ; and V; g of the above equation can be found in Appendix B. The

factors I ¥ and I; Y are given by
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v

>

LR

FIG. 1. Diagrams contributing to the electron EDM. It should
be considered the case where the photon line is connected to the
scalar line and the case where it is connected to the fermion line.
Also, all the left-right combinations and all the exotic lepton
possibilities (@ = e, i, 7) should be considered.

I?l Ell(mElvme’mY>

mg,

_4(47r) / d (mf, —zm

1+z
(1 —2) +myz’

(21)

and

Isl = IZ(mEp me, mY)
mEl
4(4rx)?

1 Z
A&%(FGkM%ﬂY
(22)

where mpg, (I =e,pu,7) and m, denote the mass of the
heavy lepton and the electron mass respectively. Also, my
is the mass of the scalar in the diagram, which in this case is
Y.

Using Eq. (20) and considering that it respects the actual
experimental limit [8] (|d,|y <|d,|ex,=8.7x 107> ¢-cm)
we obtain the graph in Fig. 3. The regions below each line
indicate the values for 6, and m; (m; being the mass of the
heavy particle in the internal line) where our theoretical
prediction is in agreement with the experimental results.
Each line corresponds to the mass of a different particle (as
shown in the legend). For a given line, the electron EDM is
evaluated considering the value presented in the lower axis
for the corresponding mass; for the other masses the values
are taken to be (in GeV): my++ = 500, mg, = 1000, mg,
1000 and mg = 1000. We also considered |v | =
2000 GeV and |v | =54 GeV. The values of the matrix
entries V) . and of the G¢ Yukawa couplings are those
given in Egs. (6), (7) and (8), respectively. Notice that
|

dg

e-cm|y

= —(197 x 107'® GeV) |sin(260,)m

= {Im[(KJLDR)31(KDLJR)13] - Im[(KI)L

J
v, +
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FIG. 2. Diagrams contributing to the neutron EDM. For each
diagram the case should be considered where the photon line is
connected to the scalar line and where it is connected to the
fermion line. Also, all the left-right combinations and all the
exotic quark possibilities for the u-quark diagram (m = 1,2)
should be considered.

the projection over the mass eigenstate Y™~ implies the
factor

A

Ny 134X 107 Gev
v

(23)

It should be noted that our theoretical prediction only
allows small values for ¢, being of order 1076 to 1077,
except in the case where the E, mass is small or the Y=~
mass is large.

B. The neutron EDM

As in the case of charged leptons we will assume here
that the only source of CP violation is the phase 6,.
Considering the diagrams given in Fig. 2 we find an
expression for the neutron EDM in the 3-3-1 model with
heavy leptons. For each diagram we calculate the contri-
bution to the EDM given by each quark, with the total EDM
of the neutron given by

4 1
dly = (2d,—~d 24
n|Y (3 d 3 u>Y ( )
where
72031 (K}LDR)B]}[IEHY +2147)]
2V/2|v,| -
I AT DN LY D
¥ k

where Y denotes Y. We have used the definition of the matrices in Egs. (C2) and (C6).
Similarly, considering the figures involving the u quark in Fig. 2

015006-5
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d T u u
o cm ={Im[(K, v, )11 (Ky,j,)11] — Im [(K;/L,R)ll(K}LUR)u]}[ n + 21, ]
Y
+{Im[(K}, v, )21 (K, j )12) — Im [(KULJR)ZI(K/LUR)U]}[ )
_16 . 2\/_|Up| U U uj Y uji¥Y
= (197 x 107!® GeV) |sin(20,)m; ——5—— (VE) ) > (V) uGu | 17 + 2157
21" + | P
Zf v
+ (197 x 10716 GeV) [sin(29 Ymjy ———Ls P 2[v, 0P (v¥) 122 1% lkGZk] (12 20577, (26)
vy
[
2.x107¢ - and the integrals I‘f’gy are given in Egs. (21) and (22),
E respectively, making m, — mg, mg, — m; and my — my+
1.5%1076 My-++ and for I} making m, — m,,mg, — m; while my is the
_mg same. We used the matrices defined in Egs. (C4) and (CS8).
6, 1.x107¢ _ mET Notice that only the exotic quarks with charge 5/3
m . contribute to the d-quark EDM and only those with electric
E“ mE - mEe
5.x1077 = My charge —4/3 do for the u-quark EDM.
/ On the equations above we have considered the VY ; and
0 VP . matrices to be real; that is because we considered the
0 500 1000 1500 2000 i

my (GeV)

FIG. 3 (color online). Allowed values for the exotic particles
masses shown in the figure and 6, from the electron EDM. The
regions below each line show the allowed values for 6, and the
heavy lepton masses mp, that satisfy |d,|y < 8.7 x 107 ¢ - cm;
see Eq. (20). Each line corresponds to the mass of a different
particle (as shown in the legend). For a given line, the electron
EDM is evaluated considering the value presented in the lower
axis for the corresponding mass, while the other masses have their
values fixed (for more information see the text).

0.030
my
0.025
0.020 My++
—my
6, 0.015 -mj,
0.010 F Mj, mj, | - m;,
mY++
0.005
0.000

0 500 1000 1500 2000

m;.(GeV)

FIG. 4 (color online). Allowed values for the exotic particles
masses shown in the figure and ¢, from the neutron EDM. The
regions below each line show the allowed values for 6, and exotic
particle masses that satisfy |d,|y <2.9x 10726 e-cm; see
Egs. (24)—(26). Each line corresponds to the mass of a different
particle (as shown in the legend). For a given line, the neutron
EDM is evaluated considering the value presented in the lower
axis for the corresponding mass, while the other masses have their
values fixed (for more information see the text).

numerical results presented in [16] for such matrices and
for the Yukawa couplings [see Egs. (15) and (16)].

Using Eq. (24) and considering that it respects the actual
experimental limit [6] (|dy| < |d,|ex, =2.9 % 1072 ¢ - cm)
we obtain the graph in Fig. 4. Similar to the electron case,
the regions below each line indicate the values for 6, and
my (m; being the mass of the exotic particle in the internal
line) where our theoretical prediction is in agreement with
the experimental results. Each line corresponds to the mass
of a different particle (as shown in the legend). For a given
line, the neutron EDM is evaluated considering the value
presented in the lower axis for the corresponding mass;
for the other masses the values are taken to be (in GeV):
my: =200, my++ =500, m; = 1000, m; = 1000 and
m;, =1000. We also considered v, =240 GeV,
v, = 54 GeV, and |v,| = 2000 GeV. The values for the
Yukawa couplings used in Eq. (14) are those
below Eq. (16).

The graphs indicates that smaller masses for the exotic
quark J and large masses for the exotic scalar Y+ are
favored, while the EDM seems unaffected by changes in
the masses of the other exotic quarks or Y5 . For the neutron
we also find that 6, should have a small value, of order
10!, However, the results for the electron yields even
smaller limits for ¢,, leaving room for a greater range of
possible values for m; and My:.

IV. CONCLUSIONS

The electron EDM imposes a strong constraint in the
new mechanism of CP violation. Both the experimental
upper limit and the SM prediction are lower than the
neutron EDM. Moreover it is not sensitive to QCD
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corrections, at least at the 1-loop level. In the framework of
the 3-3-1 models, the electron EDM was calculated in
Refs. [14,19]. However, at that time we knew nothing about
e1ther the unitary matrices in the lepton sector, V| p, or
vy L 2 in the quark sector. Notwithstanding, after the results
reported from Ref. [16], it is possible to make more realistic
calculations of the EDM since now the number of free
parameters is lower than before. In fact, once the values of
|v,| and |v,| are obtained, the quark masses and the CKM
matrix determine, not necessarily univocally, the unitary
matrices in the quark sector. The same happens in the
lepton sector as is shown in Sec. IIB. At this level,
the unknown parameters are the phase 6,, the masses of
the scalars (although one of the neutral ones has to have a
mass of the order of 125 GeV), the orthogonal matrix which
diagonalize the mass matrix of the CP even neutral scalars,
and the masses of the exotic quarks.

From the calculation of the EDM of the neutron and the
electron at 1-loop order, we were able to set lower limits on
the masses of the Y5 and Y scalars, which are compat-
ible with the search of these sorts of fields at the LHC and
Tevatron [20], and on the masses of the exotic fermions,
depending on the value of 6,, and we have also a good
indication that this phase should be below 1075, From the
graph in Fig. 3 we see that as the mass of Yt goes up
the electron EDM decreases, while the inverse happens for
the mass of E,. In the case of the neutron EDM, from Fig. 4,
we see also that the increase of the mass of the scalar Y
decreases the EDM, and the decrease of m; (the mass of the
exotic quark J) also decreases the EDM. Analyzing
Egs. (21) and (22) it is clear that the increase of the masses
of the exotic scalars will decrease the EDM, since these
masses appear in the denominator. As for the decrease of
the EDM from the decrease of the masses of the exotic
fermions, it can be explained from the fact that Eqs. (21)
and (22) are proportional to those masses. However, this is
not the only thing to be taken into account, because from
Fig. 4 we see that the decrease of my and m; increases the
EDM. This effect can be explained from the signs of the
coupling constants and elements of the fermion diagonal-
ization matrices, which can lead to cancellations among the
many diagrams involved in the final result.

It seems that in this model we have a situation similar with
that in supersymmetric theories in which the EDM’s are
larger than the SM prediction and are appropriately sup-
pressed only by the phases. This is the so-called SUSY CP
problem. See Refs. [21,22] and references therein. We stress
again that we have considered only the soft CP violation
present in the model. In fact, it has other CP hard violating
sources. Beside the phase 6 in the CKM matrix, the matrices
VZ’,? ! are also complex with, in principle, six arbitrary
phases. In the SM, the contribution of the CKM matrix 6 to
d, , isnegligible at the 1-loop level in pure weak amplitudes,
but this is not necessarily the case for the phases in the

matrices Vg ,? / For instance, if the matrix V| is complex the

PHYSICAL REVIEW D 91, 015006 (2015)

electron EDM in Eq. (20) will be proportional to
2sin(20, + 0y1 F0y: ), where 0y:,0y; denote the extra
phases from the respective matrices. In this case, all phases
may be naturally of O(1) while the sum is small ~107°.

The contributions of these phases in the framework of
the minimal 3-3-1 model were done in Ref. [19]. It is, of
course, important to take into account these extra phases,
but it is beyond the scope of the present work. We recall
that even the right-handed matrices V5" survive in the
neutral scalar sector which has flavor changing neutral
currents as it was shown in Ref. [16]. It is possible that three
of the phases in V2 can be absorbed in the exotic quarks
J,j; and j,, but there is no more freedom to absorb the
phases in VY. Notwithstanding, these phases will appear in
the vertexes shown in Appendix C.
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APPENDIX A: THE SCALAR SECTOR

The most general potential, invariant under CP trans-
formations, for the scalars is

=D Hididi+
Ly

m=4.56,i>]

+ Y @l

78.9:i>j

n=
+(a l]l()(lp]nk+HC)

V(x.n.p)

Z ai(¢j¢i)2

i=1.23

a,(p¢:) (9l ;)

(A1)
where we have used ¢, = p, except in
the trilinear term.

Taking the derivatives of Eq. (A1) with respect to the
vacua and setting these to zero, we are able to find
expressions for u){, ,u,7 and //tz, Also, from these derivatives,
we can find that @ = |ale ~1o, . Using this we can find the
mass matrices and, therefore, the following mass
eigenstates:

Double charge scalars:

=Y. ¢, = nand ¢

1 1 ag
e :A<_|2+W> F B P+ o) (A2)
X

|0, 10, ]l /v/2.

where A =

015006-7



G. DE CONTO AND V. PLEITEZ

First pair of single charge scalars:

<m*)_ 1 LT (GT)
P wk \ =l A\

1 1 a
m2, = Al ——+—— | +=(v, )2+ |v,2).  (A3)
Y <|1JP|2 ‘UVIP 2 n 14

Second pair of single charge scalars:

v ‘ 19
(n;) o L e <Gz+>
+ ) 2\ ol e Y+
X 1+% ‘v);le 10y 1 2
méA =0,

1 1 ay
iy = A( ) F (P ) (A
- ’7

Neutral CP-odd scalars:

N, Ny vy

I ol T Tl e B Tl | /GO
0| _ Ny N, 0
=0 o] w || G
1 _Ne NP N, n°
ol " To o, P+, P) Tl
1 1 1
m2, = m2, =0, m2, = < + ),
G G NT |2 [v,1* vy|?
(AS)
where
N ( 1 1 )—1/2
= —+— ’
‘ v, 1> v, [?
1 |Un’2 -1/2
Ny, = < + ) ,
o, P o, [P (Jvy > + v, ?)
1 1 1 \-1/2
N :< + + ) . (A6)
‘ X N A R M

For the CP-even scalars we are unable to find an analytic
solution. But, since the mass matrix is real and symmetric,
we know that it can be diagonalized by an orthogonal
matrix. Therefore, X, = > ,0,H?, where y = y.n.p,
i=1,2,3, HY are the mass eigenstates and O is an
orthogonal matrix.

Notice that since v, and v, are already known in the
context of Ref. [17] and a lower limit on |, | was obtained
in Ref. [16], the projection of the scalar symmetry
eigenstates over the mass eigenstates is now completely
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determined. We have used v, = 240 GeV, v, = 54 GeV,
and [v,| = 2000 GeV.

APPENDIX B: LEPTON-SCALAR CHARGED
INTERACTIONS

From the Eq. (9), we obtain the interaction terms of the
Lagrangian for the charged leptons and charged scalars:

—Lp, 1,y = E; Ve lRYT, =L, gy = I Vi, e ErRY ™,

(B1)
where
2lv N )
VELZR — \/7|2)(| 2 Vnge_lgl,
[v,[1/19, + |v, ]
\/_| P| Vl ME 19 (Bz)

I%I\/|11p| + o,/

where M' and MF are, respectively, the diagonal mass
matrices of the known leptons [ = e, u, 7 and the heavy
ones E,, E,, E,. The numerical values of the matrices V|
and V' are given in Eqs. (6) and (7), respectively. We recall
that we have considered a basis in which the heavy leptons
mass matrix is diagonal, i.e., that their masses are
mg, = |G%||v,|/V2. Otherwise the matrices V¥, which
diagonalize the general matrix M® will appear in the
vertexes above. We think that this refinement is not
necessary at this time.

APPENDIX C: QUARK-SCALAR INTERACTIONS

From Eqgs. (13) and (14) we obtain the Yukawa inter-
actions with the charged scalars that contribute to the EDM.
Interactions among D, -type and Jp quarks:

—Lyp, s, = DLKDLJRJRY__» (C1)
where Jz = (00J), and with
0
2 —i0,

Kp, = va 00 0 (2

el /141 \o o m

Interactions among U, -type and jp-type quarks:

~Lyu,j, = UKy, jrY ™, (C3)

with

015006-8



ELECTRON AND NEUTRON ELECTRIC DIPOLE MOMENT ...

m; 0 O
\/Eeigl J1
KULjR = 72 Vg 0 mjz 0 . (C4)
w1+ \o 0 o0

Interactions among J; and Dg-type quarks:

—Ly;,p, = J1Kj,p,DrY ", (C5)
with
v [e® 0 0 0
v, |e " i
K;p,=—fF2——| 0 0 o0 |VZ. (C6)
1,y 12 2| - - -
LAY Fy F5 Fy
Interactions among j; -type and Up-type quarks:
~Lyj,u, = JLKj,u, UrY ™", (C7)
with
o Gu Gp Gp
|”l|el : Ut
=0 | Gy Gy Gy |VY. (C8)

KjLUR - ) 2
\/ 1917+ [, 0 0 0

For the numerical values for the matrices VZ’RD see
Egs. (15) and (16) and for those of the parameters in
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Egs. (C1)-(C8) see below Eq. (16). Notice that both
matrices left- and right-handed survive in different inter-
actions in the scalar sector.

APPENDIX D: SCALAR-PHOTON
INTERACTIONS

Now, from the covariant derivatives of the scalar’s
Lagrangian

Ls= Y (D'g)"(D'ehy) (D1)

i=n.px

where D' are the covariant derivatives, we can find the
vertexes for the interactions between scalars and photons.
The A, Y{,Y7, vertexes are both equal to ie(k~ — k™) ,, and
the vertex A, Y""Y™" is 2ie(k™ — k™). The terms k™ and
k™ indicate, respectively, the momenta of the positive
and negative charge scalars. The momenta are all going
into the vertex and the modulus of the electric charge of the
electron is given by

= gsin Oy (D2)

t
e=g—=—
RViEwT
with 1 = sy //1 — 4s3,.
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