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A large class of two- and three-Higgs-doublet models with discrete symmetries has been employed in the
literature to address various aspects of flavor physics. We analyze how the precision measurement of the
Higgs to diphoton signal strength would severely constrain these scenarios due to the nondecoupling
behavior of the charged scalars, to the extent that in the presence of exact discrete symmetry, the number of
additional noninert scalar doublets can be constrained no matter how heavy the nonstandard scalars are. We
demonstrate that if the scalar potential is endowed with appropriate global continuous symmetries together
with soft breaking parameters, decoupling can be achieved thanks to the unitarity constraints on the
mass-square differences of the heavy scalars.
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I. INTRODUCTION

The behavior of the scalar boson observed at the CERN
Large Hadron Collider (LHC) is tantalizingly close to that
of the Standard Model (SM) Higgs boson. A very timely
and relevant question is whether this scalar is the only one
of its type as predicted by the SM, or it is the first to have
been discovered in a family of more such species arising
from an underlying extended scalar sector. A natural
extension of the SM is realized by adding more SU(2)
scalar doublets, which we consider in this paper. There
are two advantages for choosing doublets. First, the ρ
parameter remains at unity at tree level. Second, it is
straightforward to find a combination, namely,

h ¼ 1

v

Xn
i¼1

vihi; with v2 ¼
Xn
i¼1

v2i ¼ ð246 GeVÞ2 ð1Þ

[vi is the vacuum expectation value (vev) of the ith doublet
and hi is the corresponding real scalar field], which has
SM-like couplings with fermions and gauge bosons. This is
not in general a mass eigenstate. But when we demand that
this is indeed the physical state observed at the LHC with a
mass mh ≈ 125 GeV, we are automatically led to the so-
called alignment limit. This limit is motivated by the LHC
data on the Higgs boson signal strengths in different
channels which are showing increasing affinity toward
the SM predictions. In this paper we pay specific attention
to the h → γγ process. Though this process is loop driven
and has a small branching ratio, it played an important role
in the Higgs discovery. Importantly, this branching ratio is
expected to be measured in LHC-14 with much greater
accuracy. Now, additional SU(2) scalar doublets would
bring in additional states, both charged and neutral, in the

spectrum. Here our primary concern is how those charged
scalars couple to h and how much they contribute to the
h → γγ rate as virtual states in loops. This leads to the
observation that even when the masses of the charged
scalars floating in the loop are taken to very large values,
they do not necessarily decouple from this process.
Deciphering the underlying reasons behind this constitutes
the motive of this paper. Although this has been noted in the
past in the context of two-Higgs-doublet models (2HDM),
only some cursory remarks were made on it without
exploring its full implications [1–6]. We investigate the
role of symmetries that are imposed on the scalar potential
in figuring out under what conditions the decoupling of
heavy charged scalars in the h → γγ loop takes place. The
upshot is that if the potential has an exact Z2 symmetry and
both the scalars receive vevs, which is the case for a large
class of 2HDM scenarios [7], the contribution of the
charged scalar does not decouple. If Z2 is softly broken
by a term in the potential, then decoupling can be achieved
at the expense of the tuning of parameters. On the other
hand, a global U(1) symmetry followed by its soft breaking
can ensure decoupling. For simplicity, we first demonstrate
this behavior in the context of 2HDM. We then address the
same question, for the first time, in the context of three-
Higgs-doublet models (3HDM). It is not difficult to foresee
what happens if we add more doublets, which leads us to
draw an important conclusion: unless decoupling is
ensured, e.g., as we did by imposing a global U(1)
symmetry in the 2HDM potential, precision measurements
of the h → γγ branching ratio can put constraints on the
number of additional noninert scalar doublets regardless of
how heavy the charged scalars are. We recall that only
lower bounds on charged scalar masses have been placed
from processes like b → sγ, as the effects decouple when
their masses are heavy for all such flavor observables.
Thus, precision measurements of h → γγ would provide
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complementary information. Incidentally, whatever we
comment on h → γγ applies for h → Zγ as well at least
on a qualitative level.
It should be noted that in multidoublet scalar models, the

production cross section as well as the tree-level decay
widths of the Higgs boson remain unaltered from their
respective SM expectations in the alignment limit. Only the
loop induced decay modes like h → γγ and h → Zγ will
pick up additional contributions induced by virtual charged
scalars. However, the branching ratios into these channels
are too tiny compared to other dominant modes. As a result,
the total Higgs decay width will be hardly modified.
Considering all these, the expression for the diphoton
signal strength is simplified to

μγγ ≡ σðpp → hÞ
σSMðpp → hÞ ·

BRðh → γγÞ
BRSMðh → γγÞ ¼

Γðh → γγÞ
ΓSMðh → γγÞ :

ð2Þ

For convenience, we parametrize the coupling of h to the
charged scalars as

ghHþ
i H

−
i
¼ κi

gm2
iþ

MW
; ð3Þ

wheremiþ is the mass of the ith charged scalar (H�
i ). As we

will see later, the decoupling or nondecoupling behavior of
the ith charged scalar from μγγ is encoded in κi. The
expression of the diphoton decay width of the Higgs is
given by [8]

Γðh → γγÞ ¼ α2g2

210π3
m3

h

M2
W

����AW þ 4

3
At þ

X
i

κiAiþ

����
2

; ð4Þ

where, using τx ≡ ð2mx=mhÞ2, the expressions for AW, At,
and Aiþ are given by

AW ¼ 2þ 3τW þ 3τWð2 − τWÞfðτWÞ;
At ¼ −2τt½1þ ð1 − τtÞfðτtÞ�;

Aiþ ¼ −τiþ½1 − τiþfðτiþÞ�: ð5Þ

Since we are concerned with heavy charged scalars, we
can take τx > 1 for x ¼ ðW; t; H�

i Þ, and then fðτÞ ¼
½sin−1ð ffiffiffiffiffiffiffi

1=τ
p Þ�2. Now plugging Eq. (4) into Eq. (2), we

obtain

μγγ ¼
jAW þ 4

3
At þ

P
iκiAiþj2

jAW þ 4
3
Atj2

: ð6Þ

In the limit the charged scalar is very heavy, the quantity
Aiþ saturates to 1=3. If κi also saturates to some finite value
in that limit, then the charged scalar would not decouple
from the h → γγ loop. Then no matter how heavy the
charged scalar is, μγγ will differ from its SM value. If the
experimental value of μγγ eventually settles very close to
the SM prediction, then such nondecoupling scenarios will
be disfavored. The decoupling would happen only if κi falls
with increasing charged scalar mass. In what follows, we
will illustrate these features by considering some popular
doublet extensions of the SM scalar sector.

II. TWO HIGGS-DOUBLET MODELS

We consider a 2HDM with ϕ1 and ϕ2 as the two
scalar doublets. Then we impose a Z2 symmetry in the
potential, namely, ϕ1 → ϕ1 and ϕ2 → −ϕ2, to avoid Higgs
mediated flavor-changing neutral current in the fermionic
sector. The expression of the scalar potential is displayed
below [8]

V2HDM ¼ λ1

�
ϕ†
1ϕ1 −

v21
2

�
2

þ λ2

�
ϕ†
2ϕ2 −

v22
2

�
2

þ λ3

�
ϕ†
1ϕ1 þ ϕ†

2ϕ2 −
v21 þ v22

2

�
2

þ λ4ððϕ†
1ϕ1Þðϕ†

2ϕ2Þ − ðϕ†
1ϕ2Þðϕ†

2ϕ1ÞÞ

þ λ5

�
Reϕ†

1ϕ2 −
v1v2
2

�
2

þ λ6ðImϕ†
1ϕ2Þ2; ð7Þ

where the λ5 term arises due to soft breaking of Z2. We
assume all the lambdas to be real; i.e., CP is not broken
explicitly. It is also implicitly assumed that both the scalar
doublets receive vevs.
First, it is important to count the number of free

parameters. As we have assumed the parameters to be
real, there are only eight free parameters. Two of them, v1
and v2, can be traded for v and tan β≡ v2=v1. All the
remaining parameters, except λ5, can be traded for four
physical scalar masses [mh;mH;mA;m1þð≡mHþÞ] and the
rotation angle (α) in the neutral CP even sector. The
lambdas can be expressed in terms of physical masses as

λ1 ¼
1

2v2cos2β

�
m2

Hcos
2αþm2

hsin
2α −

sin α cos α
tan β

ðm2
H −m2

hÞ
�
−
λ5
4
ðtan2β − 1Þ; ð8aÞ

λ2 ¼
1

2v2sin2β
½m2

hcos
2αþm2

Hsin
2α − sin α cos α tan βðm2

H −m2
hÞ� −

λ5
4
ðcot2β − 1Þ; ð8bÞ
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λ3 ¼
1

2v2
sin α cos α
sin β cos β

ðm2
H −m2

hÞ −
λ5
4
; ð8cÞ

λ4 ¼
2

v2
m2

1þ; ð8dÞ

λ6 ¼
2

v2
m2

A: ð8eÞ

The quantities that appear on the right-hand side of Eq. (8)
are all independent parameters. Since we work in the
alignment limit, it follows that αð¼ β − π=2Þ. This means
that we deal with seven independent parameters, out of
which five are unknown, namely, mH;mA;m1þ; tan β, and
λ5, while two are known, namely, v ¼ 246 GeV and
mh ≈ 125 GeV. As mentioned earlier, the SM-like Higgs
boson is recovered in this limit as shown in Eq. (1).
The charged scalar contribution to μγγ is controlled by

(putting i ¼ 1 in κi) [1,2,4,5,9]

κ1 ¼ −
1

m2
1þ

�
m2

1þ þm2
h

2
−
λ5v2

2

�
: ð9Þ

Clearly, κ1 saturates to −1 as the charged scalar becomes
excessively heavy. Decoupling can be achieved by tuning
m2

1þ ≃ λ5v2=2 [10]. Recalling our counting of independent
parameters, any adjustment between the charged scalar
mass and λ5 is nothing short of fine-tuning. On the other
hand, if the Z2 symmetry in the scalar potential is exact, i.e.,
λ5 ¼ 0, then the charged scalar will never decouple and will
cause μγγ to settle below its SM prediction. In Fig. 1 we
have plotted the allowed range of κ1 in 2HDM from the
present LHC data as well as from an anticipation of future
sensitivity.
An interesting possibility arises when we employ a U(1)

symmetry, rather than the usual Z2 symmetry, in the
potential. The choice λ5 ¼ λ6 will ensure U(1) symmetry

in the quartic terms. The bilinear term involving λ5
still breaks the U(1) symmetry softly. Then the mass
of the pseudoscalar gets related to the soft breaking
parameter λ5 as m2

A ¼ λ5v2=2. In this case, the expression
for κ1 reads [4]

κ1 ¼ −
1

m2
1þ

�
m2

1þ −m2
A þm2

h

2

�
: ð10Þ

In a previous paper [4], we provided a detailed analysis on
the unitarity and stability constraints on various combina-
tions of λi couplings when the 2HDM scalar potential has a
softly broken U(1) symmetry. We cite some of them here to
demonstrate “decoupling” for large individual quartic
couplings, as what is constrained from unitarity is only
their differences in certain combinations. For example,
ð2λ3 þ λ4Þ ≤ 16π implies ð2m2

1þ −m2
H −m2

A þm2
hÞ ≤

16πv2. Also, ðλ1 þ λ2 þ 2λ3Þ ≤ 16π=3 implies
ðm2

H −m2
AÞðtan2β þ cot2βÞ þ 2m2

h ≤ 32πv2=3. These rela-
tions, together with jm1þ −mHj ≪ ðm1þ; mHÞ arising from
the electroweak T parameter, restrict the splitting between
the charged scalar and the pseudoscalar mass (jm2

1þ −m2
Aj).

As displayed through more such relations among quartic
couplings and the associated plots in the plane of non-SM
scalar masses in [4], the individual scalar masses can
become very large without violating unitarity as long as
their mass-square differences are within certain limits.
Consequently, the numerator in Eq. (10) cannot grow
indefinitely with increasing m1þ. Thus κ1 becomes very
small in that limit and μγγ reaches the SM predicted value.
The key issue is that the Z2 symmetry breaking λ5 term was
not related to the mass of any particle in the spectrum, and
hence its adjustment vis-à-vis the charged scalar mass was
nothing short of fine-tuning. Now, the global U(1) breaking
λ5 is related to the pseudoscalar mass whose splitting with
the charged scalar mass is restricted from unitarity.

FIG. 1 (color online). (a) We display the constraints on κ1 in 2HDM coming from the measured values of μγγ at 95% C.L. by the CMS
(1.14þ0.26

−0.23 [11]) and ATLAS (1.17� 0.27 [12]) Collaborations. (b) We show what would be the 95% C.L. allowed range of κ1 if μγγ is
hypothetically measured to be 1� 0.1ð0.05Þ in future colliders. In both panels we have plotted Eq. (9) for two different values of λ5.
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A. Underlying dynamics behind decoupling

We now discuss the underlying reason behind decou-
pling or nondecoupling of nonstandard scalars from physi-
cal processes in the 2HDM context. The conclusion is
equally applicable for nHDM where n > 2. First, we write
down the 2HDM potential using a different notation,

V2HDM ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 − ðm2

12ϕ
†
1ϕ2 þ H:c:Þ

þ β1
2
ðϕ†

1ϕ1Þ2 þ
β2
2
ðϕ†

2ϕ2Þ2 þ β3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ

þ β4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ
�
β5
2
ðϕ†

1ϕ2Þ2 þ H:c:

	
:

ð11Þ

This parametrization does not a priori assume, unlike the
one used in this paper given in Eq. (7), that ϕ1 or ϕ2

necessarily acquires any vev. In this parametrization, in the
limit when the dimensionless couplings β2 ¼ β3 ¼
β4 ¼ β5 ¼ 0, the mass mixing parameter m2

12 ¼ 0, and
m2

22 > 0, the second Higgs doublet ϕ2 does not acquire any
vev, and the SM scalar potential is recovered with the
relation v2 ¼ v21 ¼ −m2

11=β1. This is the inert doublet
scenario with a perfectly Z2 symmetric potential, in which
all the nonstandard scalars decouple from physical proc-
esses when the parameter m2

22 controlling their masses is
taken to an infinitely large value. Note thatm2

22, in this case,
does not have its origin in spontaneous symmetry breaking
(SSB), and this is why its large value could ensure
decoupling. On the contrary, if we try to establish the
equivalence between the two parametrizations, given in
Eq. (11) and Eq. (7), we have to go to a situation when both
the scalars receive vevs, and only then do we obtain the
following relations:

m2
11 ¼ −ðλ1v21 þ λ3v2Þ; m2

22 ¼ −ðλ2v22 þ λ3v2Þ;

m2
12 ¼

λ5
2
v1v2; β1 ¼ 2ðλ1 þ λ3Þ;

β2 ¼ 2ðλ2 þ λ3Þ; β3 ¼ 2λ3 þ λ4;

β4 ¼
λ5 þ λ6

2
− λ4; β5 ¼

λ5 − λ6
2

: ð12Þ

Note that when both the doublets receive vevs, one can
trade the two parameters m2

11 and m2
22 in favor of v1 and

v2. Then the magnitude of the third parameter m2
12, or

equivalently λ5, has nothing to do with SSB, and this
parameter provides the regulator whose large value
ensures decoupling of all nonstandard scalars from
physical processes. However, while employing m2

12 (or
equivalently λ5 in our parametrization) for decoupling,
one cannot escape from some tuning of parameters for
softly broken Z2 as explained around Eq. (9), but no such
tuning is required for softly broken U(1) (discussed

before). Nondecoupling would result when the symmetry
of the potential is exact (m2

12 ¼ 0), and at the same time,
both the scalars receive vevs (which implies λ5 ¼ 0). In
this case all the non-SM physical scalar masses would be
proportional to the electroweak vev, and there is no
independent mass-dimensional parameter that has non-
SSB origin. As illustrated in the inert doublet case, even
with an exactly symmetric potential, decoupling is
achieved in 2HDM.
Admittedly, the parametrization of Eq. (7) is less

general than that of Eq. (11). Any connection between
the two sets of parameters can be established only when
both the scalars receive vevs. The inert doublet scenario
can very easily be realized in the parametrization of
Eq. (11), while just setting v2 ¼ 0 in the parametrization
of Eq. (7) does not lead us to the same limit. To
appreciate this salient aspect, we consider a simpler
scenario when we have only one Higgs doublet. Then
the potential can be written in two equivalent ways:
V ∼ μ2jϕj2 þ λjϕj4, and V 0 ∼ λðjϕj2 − v2=2Þ2. They
become truly equivalent when μ2 < 0, and consequently,
the scalar receives a vev. But when μ2 > 0, the scalar
remains inert. In that case, putting v ¼ 0 in V 0 does not
take us to the physical situation given by V, as the latter
still contains, in addition to λ, an independent dimen-
sionful parameter μ2. Our Eqs. (7) and (11) are 2HDM
generalizations of V 0 and V, respectively.
We note that Eq. (7), where it is implicitly assumed that

both scalars receive vevs, covers a large class of 2HDM
models (Types I–IV), where a nonvanishing (and often
large) tan β has played an important role in addressing
phenomenological issues associated with processes like
b → sγ, Bs → lþl−, and B → Dð�Þlν [7].
To provide further intuition into the argument of decou-

pling and its close connection to the existence of some non-
SSB origin parameter, we draw the following analogy. It is
well known that the top quark in the SM does not decouple
from h → γγ. This is because the top quark receives all its
mass from SSB, and increasing its mass will invariably
imply enhancing the Yukawa coupling (ht). Now, suppose
that the top quark receives part of its mass (M) from some
non-SSB origin, i.e., mt ¼ htvþM. Then the top-loop
contribution will yield a prefactor htv=ðhtvþMÞ. In this
case, by taking M → ∞, the top quark contribution can be
made to decouple from the diphoton decay width of the
Higgs boson.

III. THREE-HIGGS-DOUBLET MODELS

S3 or A4 symmetric flavor models are typical examples
that employ three Higgs doublets. With ϕ1, ϕ2, and ϕ3 as
the three scalar SU(2) doublets, the scalar potential for the
S3 symmetric case can be written as (see, e.g., [13,14], and
also references therein for flavor physics discussions both
when the S3 symmetry is exact as well as when it is softly
broken),
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VS3
3HDM ¼ −μ21ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ − μ23ϕ

†
3ϕ3 þ λ1ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ2 þ λ2ðϕ†

1ϕ2 − ϕ†
2ϕ1Þ2

þ λ3fðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ2 þ ðϕ†
1ϕ1 − ϕ†

2ϕ2Þ2g þ λ4fðϕ†
3ϕ1Þðϕ†

1ϕ2 þ ϕ†
2ϕ1Þ þ ðϕ†

3ϕ2Þðϕ†
1ϕ1 − ϕ†

2ϕ2Þ þ H:c:g
þ λ5ðϕ†

3ϕ3Þðϕ†
1ϕ1 þ ϕ†

2ϕ2Þ þ λ6fðϕ†
3ϕ1Þðϕ†

1ϕ3Þ þ ðϕ†
3ϕ2Þðϕ†

2ϕ3Þg
þ λ7fðϕ†

3ϕ1Þðϕ†
3ϕ1Þ þ ðϕ†

3ϕ2Þðϕ†
3ϕ2Þ þ H:c:g þ λ8ðϕ†

3ϕ3Þ2: ð13Þ

Assuming the lambdas to be real, potential minimization conditions attribute a relation between two of the three vevs
(v1 ¼

ffiffiffi
3

p
v2). Using this relation, an alignment limit can be obtained for this model also [14].

Now we write the potential satisfying A4 symmetry (see, e.g., [15]),

VA4

3HDM ¼ −μ2ðϕ†
1ϕ1 þ ϕ†

2ϕ2 þ ϕ†
3ϕ3Þ þ λ1ðϕ†

1ϕ1 þ ϕ†
2ϕ2 þ ϕ†

3ϕ3Þ2 þ λ2ðϕ†
1ϕ1ϕ

†
2ϕ2 þ ϕ†

2ϕ2ϕ
†
3ϕ3 þ ϕ†

3ϕ3ϕ
†
1ϕ1Þ

þ λ3ðϕ†
1ϕ2ϕ

†
2ϕ1 þ ϕ†

2ϕ3ϕ
†
3ϕ2 þ ϕ†

3ϕ1ϕ
†
1ϕ3Þ þ λ4½eiϵfðϕ†

1ϕ2Þ2 þ ðϕ†
2ϕ3Þ2 þ ðϕ†

3ϕ1Þ2g þ H:c:�: ð14Þ

In one plausible scenario, the minimization conditions
require that all three vevs are equal [16]. This particular
choice automatically yields a SM-like Higgs as well as two
pairs of complex neutral states with mixed CP properties.
Note that for ϵ ¼ 0 in Eq. (14), the symmetry of the
potential is enhanced to S4. However, our conclusions do
not depend on the value of ϵ.
Thus, a 3HDM can provide an SM-like Higgs along with

two pairs of charged scalars, as exemplified with S3 and A4

scenarios. After expressing the lambdas in terms of the
physical masses, we obtain the following expressions for
κiði ¼ 1; 2Þ in the alignment limit, which are the same for
both S3 and A4:

κi ¼ −
�
1þ m2

h

2m2
iþ

�
for i ¼ 1; 2: ð15Þ

Clearly, the charged scalars do not decouple from the
diphoton decay width, since κi settles to −1 when miþ is
very large compared to mh. Note, both the charged scalars
contribute in the same direction to reduce μγγ .
Now we turn our attention to the case of a global

continuous symmetry in 3HDM potential. For illustration,
we consider that the symmetry is SO(2) under which ϕ1 and
ϕ2 form a doublet. The expression for the scalar potential is
similar to Eq. (13), only that now λ4 ¼ 0 and the potential
contains an additional bilinear term ð−μ212ϕ†

1ϕ2 þ H:c:Þ.
The real part of μ212 softly breaks the SO(2) symmetry and
prevents the occurrence of any massless scalar in the theory.
In any case, we assume μ212 to be real just like any other
parameters in the potential. The relevant minimization
conditions are given by

v1μ21 þ v2μ212 ¼ v1ðv21 þ v22Þðλ1 þ λ3Þ

þ 1

2
v1v23ðλ5 þ λ6 þ 2λ7Þ; ð16aÞ

v2μ21 þ v1μ212 ¼ v2ðv21 þ v22Þðλ1 þ λ3Þ

þ 1

2
v2v23ðλ5 þ λ6 þ 2λ7Þ: ð16bÞ

Note that nonzero μ212 requires v1 ¼ v2. An interchange
symmetry (1↔2) is accidentally preserved even after
spontaneous symmetry breaking. We will have three CP
even scalars ðh0; H; hÞ, two pseudoscalars ðA1; A2Þ, and
two pairs of charged scalars ðH�

1 ; H
�
2 Þ. Among these, h0,

A1, and H�
1 are odd under the interchange symmetry and

the rest are even under it. Being odd under this interchange
symmetry, h0 does not couple to gauge bosons as h0VV
(V ¼ W, Z). The appearance of such an exotic scalar was
noted earlier in the context of an S3 symmetric 3HDM
[14,17,18]. The soft breaking parameter (μ212) gets related to
the mass of h0 as

m2
h0 ¼ 2μ212: ð17Þ

It is straightforward to express the lambdas in terms of the
physical masses. We then obtain

κ1 ¼ −
1

m2
1þ

�
m2

1þ −m2
h0 þ

m2
h

2

�
; ð18aÞ

κ2 ¼ −
�
1þ m2

h

2m2
2þ

�
: ð18bÞ

The similarity between Eqs. (18a) and (10) is striking. Note
that ðjm2

1þ −m2
h0 jÞ is constrained from unitarity. Therefore,

when the first charged Higgs mass m1þ is very large, κ1
becomes vanishingly small. However, this decoupling does
not occur in κ2, which contains the second charged Higgs
mass m2þ. It is not difficult to intuitively argue that with an
extended global symmetry SOð2Þ × Uð1Þ, together with an
extra soft breaking parameter which is related to mA2,
decoupling in κ2 can be ensured. Starting from the softly
broken SO(2) symmetric potential, this additional U(1)
extension (ϕ3 → eiαϕ3) and its soft breaking can be
realized by putting λ7 ¼ 0 in Eq. (13) and introducing a
term that softly breaks this U(1). A crucial observation we
make in this paper is that the masses mA in the 2HDM
context and mh0 in the 3HDM context enter into the
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expressions of κi—e.g., see Eqs. (10) and (18a)—only
when they are related to soft global symmetry breaking
parameters.

IV. CONCLUSIONS AND OUTLOOK

To our knowledge, this is the first attempt toward
establishing a connection between decoupling or non-
decoupling of charged scalars from the diphoton decay
of the Higgs with the symmetries of the scalar potential. We
show that charged scalars in multidoublet scalar extensions
of the SM do not necessarily decouple from physical
processes, e.g., μγγ in the context of this paper, specifically
when the potential has an exact symmetry and all the
scalars receive vevs.
Here we give a few examples where the phenomenology

of such scenarios has been studied. A spontaneously
broken Z2 symmetric potential in 2HDM context, with a
tiny but nonvanishing v2, has been advocated to account for
the smallness of the neutrino mass and the stability of a
scalar dark matter on a cosmological scale [19]. A few
3HDM examples are also in order. Novel scalar sector
phenomenology with exotic scalar decay properties has
been studied with exact S3 symmetric potential [17,18].
General flavor physics studies were carried out in S3 [20] as
well as in A4 [16] symmetric scenarios.
In such scenarios, a precisely measured μγγ can smell

the presence of nonstandard scalars even if they are
superheavy. In fact, μγγ can constrain the number of such
doublets. Table I shows that each additional pair of
charged scalars (H�

i ) reduces μγγ approximately by 0.1
when the potential has an exact discrete symmetry. Our
illustrations are based on two- and three-Higgs-doublet
models that are motivated by flavor symmetries. We have
explicitly demonstrated how soft breaking of a global U(1)
symmetry can ensure decoupling in 2HDM in the

alignment limit. In the case of 3HDM, with a softly
broken global SO(2) symmetry in the potential, decou-
pling can be ensured for one pair of charged scalars (H�

1 ),
while the second pair (H�

2 ) still does not decouple.
Employing the soft breaking terms of an extended global
continuous symmetry, namely, SOð2Þ × Uð1Þ, the non-
decoupling effects of H�

2 can be tamed. If we have more
pairs of charged scalars in the theory stemming from
additional scalar doublets, even more enhanced or
extended global continuous symmetries—only softly bro-
ken—would be required to ensure decoupling of all
charged scalars from μγγ . Keeping in mind the expected
accuracy in the measurement of the hhh vertex in the high
luminosity option of LHC or in the future linear collider,
whose tree level expression in the alignment limit remains
the same as in SM even for the multidoublet Higgs
structure, μγγ may offer a better bet for diagnosing the
underlying layers of the Higgs dynamics.
To sum up, if future measurement of μγγ is found to be

consistent with the SM prediction to a high degree of
precision—say better than 10%—noninert type multi-
Higgs-doublet models with exact discrete symmetries will
be constrained. We have demonstrated in this paper that the
soft breaking terms in the potential, which are often used in
the literature, can play an important role in ensuring
decoupling, albeit with some tuning. To avoid this, one
must start with a global continuous symmetry in the
potential followed by its soft breaking. In the future, it
would be interesting to explore the consequences of global
symmetries in the potential for nondoublet scalar exten-
sions in the present context.
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TABLE I. Behavior of 2HDM and 3HDM scenarios in the alignment limit strictly when all the doublets receive vevs. In the case of
exact discrete symmetries, every charged scalar pair reduces μγγ approximately by 0.1. Although an explicit expression for μZγ is not
shown in text, its predictions in different scenarios are displayed. In the last column where we say “Possible,” we mean that decoupling
can be achieved with some tuning, while in the last row “Partial” implies that only the first charged scalar decouples.

Model Expression for κi Prediction μγγ Prediction μZγ Decoupling?

2HDM

Softly broken Z2 −ð1þ m2
h

2m2
1þ
− λ5v2

2m2
1þ
Þ Depends on λ5 Depends on λ5 Possible

Exact Z2 −ð1þ m2
h

2m2
1þ
Þ ≤ 0.9 ≤ 0.96 No

Softly broken U(1) −ð1þ m2
h

2m2
1þ
− m2

A
m2

1þ
Þ Depends on mA Depends on mA Yes

3HDM

Exact S3 −ð1þ m2
h

2m2
iþ
Þ for i ¼ 1, 2 ≤ 0.8 ≤ 0.93 No

Exact A4 −ð1þ m2
h

2m2
iþ
Þ for i ¼ 1, 2 ≤ 0.8 ≤ 0.93 No

Softly broken SO(2) κ1 ¼ −ð1þ m2
h

2m2
1þ
−

m2

h0
m2

1þ
Þ κ2 ¼ −ð1þ m2

h
2m2

2þ
Þ Depends on mh0 Depends on mh0 Partial

GAUTAM BHATTACHARYYA AND DIPANKAR DAS PHYSICAL REVIEW D 91, 015005 (2015)

015005-6



[1] A. Djouadi, V. Driesen, W. Hollik, and A. Kraft, Eur. Phys.
J. C 1, 163 (1998).

[2] A. Arhrib, M. C. Peyranere, W. Hollik, and S. Penaranda,
Phys. Lett. B 579, 361 (2004).

[3] W.-F. Chang, J. N. Ng, and J. M. Wu, Phys. Rev. D 86,
033003 (2012).

[4] G. Bhattacharyya, D. Das, P. B. Pal, and M. Rebelo, J. High
Energy Phys. 10 (2013) 081.

[5] P. Ferreira, J. F. Gunion, H. E. Haber, and R. Santos, Phys.
Rev. D 89, 115003 (2014).

[6] D. Fontes, J. Romao, and J. P. Silva, Phys. Rev. D 90,
015021 (2014).

[7] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, and
J. P. Silva, Phys. Rep. 516, 1 (2012).

[8] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson,
Front. Phys. 80, 1 (2000).

[9] B. Swiezewska and M. Krawczyk, Phys. Rev. D 88, 035019
(2013).

[10] J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019
(2003).

[11] V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C
74, 3076 (2014).

[12] G. Aad et al. (ATLAS Collaboration), arXiv:1408.7084.
[13] E. Barradas-Guevara, O. Flix-Beltrn, and E. R. Juregui,

Phys. Rev. D 90, 095001 (2014).
[14] D. Das and U. K. Dey, Phys. Rev. D 89, 095025

(2014).
[15] E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012

(2001).
[16] R. de Adelhart Toorop, F. Bazzocchi, L. Merlo, and A. Paris,

J. High Energy Phys. 03 (2011) 035.
[17] G. Bhattacharyya, P. Leser, and H. Pas, Phys. Rev. D 83,

011701 (2011).
[18] G. Bhattacharyya, P. Leser, and H. Pas, Phys. Rev. D 86,

036009 (2012).
[19] S. Gabriel and S. Nandi, Phys. Lett. B 655, 141

(2007).
[20] S.-L. Chen, M. Frigerio, and E. Ma, Phys. Rev. D 70,

073008 (2004).

NONDECOUPLING OF CHARGED SCALARS IN HIGGS … PHYSICAL REVIEW D 91, 015005 (2015)

015005-7

http://dx.doi.org/10.1007/BF01245806
http://dx.doi.org/10.1007/BF01245806
http://dx.doi.org/10.1016/j.physletb.2003.10.006
http://dx.doi.org/10.1103/PhysRevD.86.033003
http://dx.doi.org/10.1103/PhysRevD.86.033003
http://dx.doi.org/10.1007/JHEP10(2013)081
http://dx.doi.org/10.1007/JHEP10(2013)081
http://dx.doi.org/10.1103/PhysRevD.89.115003
http://dx.doi.org/10.1103/PhysRevD.89.115003
http://dx.doi.org/10.1103/PhysRevD.90.015021
http://dx.doi.org/10.1103/PhysRevD.90.015021
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://dx.doi.org/10.1103/PhysRevD.88.035019
http://dx.doi.org/10.1103/PhysRevD.88.035019
http://dx.doi.org/10.1103/PhysRevD.67.075019
http://dx.doi.org/10.1103/PhysRevD.67.075019
http://dx.doi.org/10.1140/epjc/s10052-014-3076-z
http://dx.doi.org/10.1140/epjc/s10052-014-3076-z
http://arXiv.org/abs/1408.7084
http://dx.doi.org/10.1103/PhysRevD.90.095001
http://dx.doi.org/10.1103/PhysRevD.89.095025
http://dx.doi.org/10.1103/PhysRevD.89.095025
http://dx.doi.org/10.1103/PhysRevD.64.113012
http://dx.doi.org/10.1103/PhysRevD.64.113012
http://dx.doi.org/10.1007/JHEP03(2011)035
http://dx.doi.org/10.1103/PhysRevD.83.011701
http://dx.doi.org/10.1103/PhysRevD.83.011701
http://dx.doi.org/10.1103/PhysRevD.86.036009
http://dx.doi.org/10.1103/PhysRevD.86.036009
http://dx.doi.org/10.1016/j.physletb.2007.04.062
http://dx.doi.org/10.1016/j.physletb.2007.04.062
http://dx.doi.org/10.1103/PhysRevD.70.073008
http://dx.doi.org/10.1103/PhysRevD.70.073008

