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We report a complete calculation of the quark and glue momenta and angular momenta in the
proton. These include the quark contributions from both the connected and disconnected insertions.
The quark disconnected insertion loops are computed with Z4 noise, and the signal-to-noise ratio is
improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors
constructed from the overlap operator. The calculation is carried out on a 163 × 24 quenched
lattice at β ¼ 6.0 for Wilson fermions with κ ¼ 0.154, 0.155, and 0.1555, which correspond to pion
masses at 650, 538, and 478 MeV, respectively. The chirally extrapolated u and d quark
momentum/angular momentum fraction is found to be 0.64ð5Þ=0.70ð5Þ, the strange momentum/
angular momentum fraction is 0.024ð6Þ=0.023ð7Þ, and that of the glue is 0.33ð6Þ=0.28ð8Þ. The
previous study of quark spin on the same lattice revealed that it carries a fraction of 0.25(12) of
proton spin. The orbital angular momenta of the quarks are then obtained from subtracting the spin
from their corresponding angular momentum components. We find that the quark orbital angular
momentum constitutes 0.47(13) of the proton spin with almost all of it coming from the
disconnected insertions.

DOI: 10.1103/PhysRevD.91.014505 PACS numbers: 12.38.Gc, 11.15.Ha, 11.30.Rd, 14.20.Dh

I. INTRODUCTION

Determining the contributions from quarks and gluons to
the nucleon spin is one of the most challenging issues in
QCD both experimentally and theoretically. Since the
contribution from the quark spin is found out to be small
(∼25% of the total proton spin) from the global analysis of
deep inelastic scattering data [1], it is expected that the rest
should come from glue spin and the orbital angular
momenta of quarks and glue.
The quark spin contribution from u, d, and s has been

studied on the lattice [2,3] since 1995 using either the
quenched approximation or dynamical fermions with
heavier quark mass [4]. Recently, it has been carried out
with light dynamical fermions [5,6] and only for strange
quarks (not renormalized) in Ref. [7]. The calculation of
disconnected insertion (DI) contributions to quark spin

from u, d, s, and c using the anomalous Ward identity with
light overlap fermions is under progress [8].
As for the quark orbital angular momenta, lattice calcu-

lations have been carried out for the connected insertions
(CI) [9–15]. They are obtained by subtracting the quark spin
contributions from those of the quark angular momenta. It
has been shown that the contributions from u and d quarks
mostly cancel each other. Thus, for connected insertion,
quark orbital angular momenta turn out to be small in the
quenched calculation [9,10] and nearly zero in dynamical
fermion calculations [11–15]. On the other hand, gluon
helicity distribution ΔGðxÞ=GðxÞ from COMPASS, STAR,
HERMES, and PHENIX experiments is found to be close to
zero [16–20]. The latest global fit [21] with the inclusion of
the polarized deep inelastic scattering (DIS) data from
COMPASS [22] and the 2009 data from the Relativistic
Heavy Ion Collider (RHIC) [21] gives a glue contributionR
0.2
0.05 ΔgðxÞdx ¼ 0.1�0.06

0.07 to the total proton spin of 1=2ℏ
with a sizable uncertainty. Furthermore, it is argued based on
analysis of single-spin asymmetry in unpolarized lepton
scattering froma transversely polarized nucleon that the glue
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orbital angular momentum is absent [23]. In this given
context, we know from lattice and experiments thus far that
∼25% of the proton spin comes from the quark spin, CI
orbital angular momenta have negligible contributions, and
gluon helicity from experiments is∼20%. Sincewe have not
been able to identify the rest (∼50%) of the proton spin, it
appears that we have encountered a “dark spin” conundrum.
In this work, we give a complete calculation of the quark

and glue momenta and angular momenta on a quenched
lattice. The quark contributions to both the connected and
disconnected insertions are included. We have been able to
obtain the glue momentum and angular momentum for the
first time, mainly because the overlap operator is used for the
gauge-field tensor [24,25], the construction of which is much
less noisy than that from thin gauge links. Combining with
earlier work on the quark spin [2], we obtain the quark orbital
angular momenta. We find that the u and d quark orbital
angular momenta indeed largely cancel in the connected
insertion. However, their contributions together with that of
the strange quark are large (∼50%) in the DI where the quark
spin for the u; d, and s in DI are large and negative.
These results from our lattice calculations are improved

by satisfying the momentum and angular momentum sum
rules for the quark and glue contributions. The renormal-
ization and mixing of the quark and glue energy-momen-
tum operators are performed perturbatively, and the final
results are reported in the MS scheme at 2 GeV.
The manuscript is organized as follows. Section II

discusses the general formalism about the quark and glue
energy-momentum tensor operators and their contributions
to the proton momenta and angular momenta via the
associated form factors. The lattice formulation is presented
in Sec. III. In Sec. IV, the stochastic method for computing
the quark loops in the disconnected insertions and the
computation of glue operators constructed from the overlap
operator are described. Utilization of unbiased subtraction
and discrete symmetries for variance reduction is also
discussed in the same section. The choice of momenta
and the separation of the T1, T2, and T3 form factors are
described in Secs. V and VI, respectively. The renormal-
ization of the quark and glue energy-momentum tensor
operators and their mixing and matching to the MS scheme
at the 2 GeV scale is discussed in Sec. VIII D. We give the
numerical details in Sec. VII and the results in Sec. VIII.
We conclude with a summary in Sec. IX.

II. GENERAL FORMALISM

The Lorentz group generators, Jμν, for angular momen-
tum operators are given by [26]

Jμν ≡
Z

d3xM0μνð~xÞ: ð1Þ

Here, M0μν is the angular momentum density, which is
defined as

MμναðxÞ ¼ T fμαgxν − T fμνgxα; ð2Þ

where T fμνg is the energy-momentum tensor and has the
Belinfante-improved form. It is gauge invariant and con-
served [27], and f� � �g stands for the symmetrization of
indices.
One can construct gauge-invariant energy-momentum

tensor operators for quarks and gluons separately. As a
result, we can write T fμνg as the gauge-invariant sum

T fμνg ¼ T fμνgq þ T fμνgg; ð3Þ

where the superscripts, q and g, stand for quarks and
gluons, respectively. The operators, T f0igq and T f0igg, have
the following twist-2 forms:

T f0igq ¼ i
4

X
f

ψ̄f½γ0 ~Di þ γi ~D0 − γ0D⃖i − γiD⃖0�ψf; ð4Þ

and

T f0igg ¼ −
1

2

X3
k¼1

½Ga;0kGa;i
k þ Ga;ikGa;0

k �

¼ −
1

2

X3
k¼1

2Trcolor½G0kGi
k þ GikG0

k�: ð5Þ

In Eq. (4), ψf denotes the quark field operator for the flavor,
f. In Eq. (5), a is the color index, and G’s are the gauge-
field strength tensors.
Using Eqs. (1), (2), and (3), one can write the ith

component of the angular momentum operators for quarks

and gluons, ~Jq;g, as

Jq;gi ¼ 1

2
ϵijk

Z
d3xðT f0kgq;gxj − T f0jgq;gxkÞ ð6Þ

so that the total angular momentum is

~J ¼ ~Jq þ ~Jg: ð7Þ

In a similar manner, the linear momentum operators are
given by

Pq;g
i ¼

Z
d3xT f0igq;g: ð8Þ

Substituting the explicit form of T f0igq from Eq. (4) into
Eq. (6), and using the QCD equations of motion, one

can obtain the gauge-invariant decomposition of ~Jq as
[28,29]
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~Jq ¼
Z

d3x

�
1

2
ψ̄ ~γ γ5ψ þ ψ†f~x × ði ~DÞgψ

�
; ð9Þ

where the color indices are suppressed. From the spin-1
2

field theory, one can identify the first term of Eq. (9) as

the quark spin operator ð1
2
~ΣqÞ and the second term as

the orbital angular momentum operator (~Lq). Thus, we
can write the total angular momentum for quarks as

~Jq ¼ 1

2
~Σq þ ~Lq: ð10Þ

Similarly, using equations of motion and superpoten-
tials, it is shown that Eqs. (5) and (6) lead to a gauge-
invariant glue angular momentum operator [28,29] as

~Jg ¼
Z

d3x½~x × ð~E × ~BÞ�; ð11Þ

where ~E and ~B are the electric and magnetic fields for
gluons, respectively. Hence, the angular momentum
operator in QCD can be expressed as the following
gauge-invariant sum of operators [29]:

~JQCD ¼ ~Jq þ ~Jg ¼ 1

2
~Σq þ ~Lq þ ~Jg: ð12Þ

They represent the quark spin, the quark orbital angular
momentum, and glue angular momentum, respectively.
There are discussions in the literature as to whether the
glue operator can be further decomposed into the spin
and orbital angular momentum as in the case of the
quarks [28,30–34]. We shall not address this issue in the
present work.
To identify the missing dark spin from first principles,

we need to measure all the three quantities in Eq. (12) using
lattice QCD.
From the first term of the Eq. (9), we see that the spin

contribution from quarks can be computed using the
flavor singlet axial-vector operator, ψ̄γμγ5ψ , and it has a
well-defined matrix element. There have already been a
few studies on the lattice [2–5] in this regard. However,
both the second term of the Eq. (9) and the term of the
Eq. (11) involve the spatial coordinate ~x. While they are
natural operators for hadronic models in which the
origin of the proton is prescribed, it is shown that a
straightforward application of the lattice calculation of
the moments of the spatial coordinate is complicated by
the periodic condition of the lattice and will lead to
wrong results [35]. Hence, instead of calculating the
orbital angular momentum Lq directly using lattice, we
will calculate the total angular momentum Jq for quarks
and then subtract the quark spin contributions to
determine Lq.

The matrix element of T ð0iÞq;g between two nucleon
states can be written in terms of three form factors
(T1, T2, and T3) as [29]

ðp0; s0jT f0igq;gjp; sÞ ¼
�
1

2

�
ūðp0; s0Þ

�
T1ðq2Þðγ0p̄i þ γip̄0Þ

þ 1

2m
T2ðq2Þðp̄0ðiσiαÞ þ p̄iðiσ0αÞÞqα

þ 1

m
T3ðq2Þq0qi

�
q;g
uðp;sÞ; ð13Þ

where p and p0 are the initial and final momenta of the
nucleon, respectively, and p̄ ¼ 1

2
ðp0 þ pÞ. qμ ¼ p0

μ − pμ is
the momentum transfer to the nucleon, m is the mass of the
nucleon, and uðp; sÞ is the nucleon spinor. s and s0 are the
initial and final spins, respectively. The spinor, uðp; sÞ,
satisfies the following normalization conditions:

ūðp;sÞuðp;sÞ¼2m;
X
s

uðp;sÞūðp;sÞ¼pþm: ð14Þ

By substituting Eq. (13) into Eqs. (6) and (8), and then
taking q2 → 0 limit, one obtains

Jq;g ¼ 1

2
½T1ð0Þ þ T2ð0Þ�q;g; ð15Þ

hxiq;g ¼ T1ð0Þq;g; ð16Þ

where hxiq;g ¼ T1ð0Þq;g is the first moment of the momen-
tum fraction carried by the quarks or gluons inside a
nucleon. The other form factor, T2ð0Þq;g, can be interpreted
as the anomalous gravitomagnetic moment for quarks and
gluons in an analogy to the anomalous magnetic moment,
F2ð0Þ [36].
Since momentum is always conserved and the nucleon

has a total spin of 1
2
, we write the momentum and angular

momentum sum rules using Eqs. (12), (15), and (16) as

hxiq þ hxig ¼ T1ð0Þq þ T1ð0Þg ¼ 1; ð17Þ

Jq þ Jg ¼ 1

2
f½T1ð0Þ þ T2ð0Þ�q þ ½T1ð0Þ þ T2ð0Þ�gg ¼ 1

2
:

ð18Þ

It is interesting to note that from Eqs. (17) and (18) one
obtains that the sum of the T2ð0Þ’s for the quarks and glue
is zero, i.e.,

T2ð0Þq þ T2ð0Þg ¼ 0: ð19Þ

The vanishing of T2ð0Þ in the context of a spin-1=2 particle
was first derived classically from the post-Newtonian
manifestation of the equivalence principle [37]. More
recently, this has been proven by Brodsky et al. [38] for
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composite systems from the light-cone Fock space
representation.
Since we are going to evaluate Jq;g (or Lq;g) and hxiq;g in

this work, it is clear from Eqs. (15) and (16) that we need to
compute both T1ð0Þ and T2ð0Þ. However, T2ð0Þ cannot be
computed directly at q ¼ 0 because the T2 form factor in
Eq. (13) is proportional to q. Instead, we shall compute
T1ðq2Þ and T2ðq2Þ separately at some q2 ≠ 0 values [11]
and then separately extrapolate them to q2 → 0 for both the
quark and glue contributions.

III. LATTICE FORMALISM

A. Operators and matrix elements
in Euclidean space-time

To carry out lattice calculations, we use the Pauli–
Sakurai convention [39–41] for the γ matrices in

Euclidean space-time. We can then write the energy-
momentum tensor for quarks and gluons as

T qðEÞ
f4ig ¼ ð−1Þ i

4

X
f

ψ̄f½γ4 ~Di þ γi ~D4 − γ4D⃖i − γiD⃖4�ψf;

ð20Þ

T gðEÞ
f4ig ¼ ðþiÞ

�
−
1

2

X3
k¼1

2Trcolor½G4kGki þ GikGk4�
�
: ð21Þ

The matrix elements for both quarks and gluons transform
in a similar manner as

hp0; s0jT q;gðEÞ
f4ig jp; si ¼

�
1

2

�
ūðEÞðp0; s0Þ

�
T1ð−q2Þðγ4p̄i þ γip̄4Þ −

1

2m
T2ð−q2Þðp̄4σiαqα þ p̄iσ4αqαÞ

−
i
m
T3ð−q2Þq4qi

�
q;g
uðEÞðp; sÞ; ð22Þ

where the normalization conditions are

ūðEÞðp; sÞuðEÞðp; sÞ ¼ 1;X
s

uðEÞðp; sÞūðEÞðp; sÞ ¼ pþm
2m

; ð23Þ

and the lhs of Eqs. (13) and (22) are related by

ðp0; s0ffiffiffiffiffiffiffi
2m

p jT f0igq;gj p; sÞffiffiffiffiffiffiffi
2m

p ⟷ hp0; s0jT q;gðEÞ
f4ig jp; si: ð24Þ

From now on, we will consider the Euclidean operators
only and drop the superscript, E.

B. Quark energy-momentum tensor operator

We discretize T q
f4ig by using the relations for right and

left derivatives in the lattice [42],

~Dμψ
LðxÞ ¼ 1

2a
½UμðxÞψLðxþ aμÞ

− U†
μðx − aμÞψLðx − aμÞ�; ð25Þ

ψ̄LðxÞD⃖μ ¼
1

2a
½ψ̄Lðxþ aμÞU†

μðxÞ
− ψ̄Lðx − aμÞUμðx − aμÞ�; ð26Þ

where a is the lattice spacing, ψL’s are the Lattice quark
field operators, and U’s are the gauge links. Using the
relations in Eqs. (25) and (26), we get

T q
f4igðxÞ ¼

−i
8a

½ψ̄fðxÞγ4UiðxÞψfðxþ aiÞ − ψ̄fðxÞγ4U†
i ðx − aiÞψfðx − aiÞ

þ ψ̄fðx − aiÞγ4Uiðx − aiÞψfðxÞ − ψ̄fðxþ aiÞγ4U†
i ðxÞψfðxÞ

þ ψ̄fðxÞγiU4ðxÞψfðxþ a4Þ − ψ̄fðxÞγiU†
4ðx − a4Þψfðx − a4Þ

þ ψ̄fðx − a4ÞγiU4ðx − a4ÞψfðxÞ − ψ̄fðxþ a4ÞγiU†
4ðxÞψfðxÞ�: ð27Þ

C. Glue energy-momentum tensor operator

It is well known that gauge operators obtained from the

link variables are very noisy due to the large fluctuations in

high-frequency modes. A preliminary study of the glue
momentum fraction in the nucleon on a quenched lattice
concluded that configurations in the order of several
hundred thousands might be needed for a precise signal
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[43]. This is a tall order for dynamical fermion calculations.
On the other hand, a smeared operator will improve the
signal, and hypercubic (HYP) smearing has been applied to
calculate the glue momentum fraction in the pion with
reasonable precision [44].
Because of the exponentially local nature of the overlap

Dirac operator through chiral smearing [45–47], the sub-
dimensional long-range order of the topological structure
has been discovered [48,49] with the help of the local
topological charge operator derived from the massless
overlap Dirac operator, i.e., qðxÞ ¼ Trγ5ð1 − 1

2
Dovðx; xÞÞ

[50–53]. Prompted by this success, it is shown that the
gauge-field tensor can be similarly derived from the
massless overlap operator Dov [24,25],

Trs½σμνDovðx; xÞ� ¼ cTa2GμνðxÞ þOða3Þ; ð28Þ

where Trs is the trace over the spin. cT ¼ 0.11157 is the
proportional constant at the continuum limit for the
parameter κ ¼ 0.19 in the Wilson kernel of the overlap
operator that is used in this work. The glue energy-
momentum tensor in Eq. (21) constructed with this
gauge-field tensor was used in calculating the glue momen-
tum fraction, hxig, which resulted in a first observation with
a much better signal [54].
We shall use the energy-momentum tensor with the

noise-estimated gauge-field tensor as defined in Eq. (21)
from the overlap Dirac operator to calculate the glue
momentum and angular momentum in the nucleon.

D. Two-point correlation functions

To obtain T1ð0Þq;g and T2ð0Þq;g, we first need to calculate
the two-point and three-point functions (both polarized and
unpolarized) for protons (neutrons). The two-point function
is defined (with the color indices suppressed) as

GNN
αβ ð~p; t; t0Þ ¼

X
~x

e−i~p·ð~x−~x0Þh0jT½χαð~x; tÞχ̄βð~x0; t0Þ�j0i;

ð29Þ

where t is the nucleon sink time, ~p is the momentum of the
nucleon, and x0 is the source position. The interpolating
fields, χ’s, for nucleons that we use are given by [55,56]

χγðxÞ ¼ ϵabcψ
TðuÞa
α ðxÞðCγ5Þαβψ ðdÞb

β ðxÞψ ðuÞc
γ ðxÞ; ð30Þ

χ̄γ0 ðxÞ ¼ −ϵdefψ̄
ðuÞf
γ0 ðxÞψ̄ ðdÞe

ρ ðxÞðγ5CÞρσψ̄TðuÞd
σ ðxÞ; ð31Þ

where u and d stand for up and down quarks, respectively.
C ¼ γ2γ4 is the charge conjugation operator with the
Pauli–Sakurai γ matrices. The letters, a; b;…, stand for
the color indices. The Greek letters, α; β;…, are the spin
indices.
Upon Grassmann integration for Eq. (29), we obtain the

unpolarized/polarized proton two-point function on a
gauge configuration U as

Tr½Γunpol;polGNNð~p; t; t0;UÞ� ¼
X
~x

e−i~p·ð~x−~x0ÞϵabcϵdeffTr½Γunpol;polSðuÞadðx; x0;UÞ�Tr½ ~SðuÞbeðx; x0;UÞSðdÞcfðx; x0;UÞ�

þ Tr½Γunpol;polSðuÞadðx; x0;UÞ ~SðdÞbeðx; x0;UÞSðuÞcfðx; x0;UÞ�g
¼

X
~x

e−i~p·ð~x−~x0ÞNunpol;pol½x;U�; ð32Þ

where Γunpol;pol are the unpolarized/polarized projection
operators and Nunpol;pol½x;U� stands for the trace part
of two-point functions (without the Fourier factor).
SðfÞðx; y;UÞ is the quark propagator with flavor f from
the point y to x on the gauge configuration U, and

~S ¼ ðCγ5Þ−1STðCγ5Þ; ð33Þ

On the other hand, if we insert a complete set of energy
eigenstates in Eq. (29), and take the trace with the
unpolarized projection operator, then at a large time
separation, we get the two-point functions for nucleons as

Tr½ΓunpolGNNð~p; t; t0Þ� !ðt−t0≫1=ΔEÞ a6

ð2kÞ3 jϕðpÞj
2

× e−i~p:~x0
Ep þm

Ep
e−Epðt−t0Þ; ð34Þ

where κ is the hopping parameter, m is the mass of the
nucleon, and Ep is its ground-state energy.ΔE is the energy
gap between the ground state and first excited state. ϕðpÞ is
the vacuum-to-nucleon transition matrix element due to the
interpolation field χ, and we treat it as a function of p to
account for the possible p-dependent lattice systematics.

E. Three-point correlation functions

The three-point functions for T q;g
f4ig (or any generic

operator) is defined as

GNT 4iN
αβ ð~p0; t2; ~q; t1; ~p; t0Þ
¼

X
~x1;~x2

e−i~p
0·ð~x2−~x1Þe−i~p·ð~x1−~x0Þ

× h0jT½χαð~x2; t2ÞT f4igð~x1; t1Þχ̄βð~x0; t0Þ�j0i; ð35Þ
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where t2 is the nucleon sink time, t1 is the current insertion time, and t0 is the nucleon source time. ~p and ~p0 are the initial
and final momenta of the nucleon, respectively, and ~q ¼ ~p0 − ~p is the momentum transfer.
By inserting a complete set of energy eigenstates in Eq. (35) and then taking the trace with Γunpol;pol, we get the three-

point functions as

Tr½Γunpol;polGðfÞNT 4iNð~p0; t2; ~q; t1; ~p; t0Þ� !ðt1−t0Þ;ðt2−t1Þ≫1=ΔE

a6

ð2κÞ3 ϕðpÞϕðp
0Þe−i~p:~x0 1

4

1

2κ

1

EpEp0
e−Epðt2−t1Þe−Ep0 ðt1−t0Þ½a1T1ðq2Þ þ a2T2ðq2Þ þ a3T3ðq2Þ�; ð36Þ

where ai’s are constant coefficients that depend upon the momentum and energy of the proton and, therefore, are known
a priori. For the unpolarized case, they can be written as

a1 ¼ ðp0
i þ piÞððEp þmÞðEp0 þmÞ þ p0

jpjÞ þ ðEp0 þ EpÞðp0
iðEp þmÞ þ piðEp0 þmÞÞ;

a2 ¼ −
1

2m
fðEp þmÞððE2

p0 − E2
pÞp0

i þ ðp0
i þ piÞqjp0

jÞ
− ðEp0 þmÞððE2

p0 − E2
pÞpi − ðp0

i þ piÞqjpjÞ þ ðEp0 þ EpÞðp0
jpiqj − p0

ipjqjÞg;

a3 ¼
2

m
ðEp0 − EpÞqiððEp þmÞðEp0 þmÞ − p0

jpjÞ; ð37Þ

and for the polarized case, they are

a1 ¼ ð−iÞϵijlðEp0 þ EpÞðp0
jðEp þmÞ − pjðEp0 þmÞÞ þ ϵkjlðp0

i þ piÞp0
jpk;

a2 ¼
−i
2m

fðEp þmÞðEp0 þmÞϵijlðEp0 þ EpÞqj
− ððEp þmÞp0

j þ ðEp0 þmÞpjÞðϵijlðE2
p0 − E2

pÞ þ ϵkjlðp0
i þ piÞqkÞ

− ðϵijkðEp0 þ EpÞðp0
lpkqj þ p0

jplqkÞ þ ϵijlðEp0 þ EpÞp0
kpkqjÞg;

a3 ¼
−2i
m

ϵkjlðEp0 − EpÞqip0
jpk: ð38Þ

Here, the subscript i stands for the spatial direction of the
energy-momentum operator, and l is the direction of
polarization of the nucleon.
The three-point functions for quarks have two topologi-

cally distinct contributions in the path-integral diagrams:
one from connected insertions (CI) and the other from
disconnected insertions (DI) [57–59] (see Fig. 1). They
arise purely out of Wick contractions, and it needs to be
stressed that they are not Feynman diagrams in perturbation
theory. In the case of CI, quark/antiquark fields
from the operator are contracted with the quark/antiquark
fields of the proton interpolating fields. In the case of DI,
the quark/antiquark fields from the operator contract

themselves to form a current loop, as in the case of vacuum
polarization.
Thoughnotshownin thefigure, the loopis in fact connected

with the proton propagator through the gauge background
fluctuations. In practice, the uncorrelated part of the loop and
the proton propagator is subtracted. The disconnected inser-
tion refers to the fact that the quark lines are disconnected.
For currents with up and down quarks, we have con-

tributions from both CI and DI, and with strange quarks, we
have DI only.
The current loop for our operator T f4ig with a quark

flavor f is given by

L½t1; ~q;U� ¼ ð−1Þ−i
8a

X
~x1

ei~q·ð~x1−~x0ÞfTr½SðfÞmnðx1 þ ai; x1;UÞγ4Unm
i ðx1Þ� − Tr½SðfÞmnðx1 − ai; x1;UÞγ4U†nm

i ðx1 − aiÞ�

þ Tr½SðfÞmnðx1; x1 − aiÞγ4Unm
i ðx1 − aiÞ� − Tr½SðfÞmnðx1; x1 þ ai;UÞγ4U†nm

i ðx1Þ�
þ Tr½SðfÞmnðx1 þ a4; x1;UÞγiUnm

4 ðx1Þ� − Tr½SðfÞmnðx1 − a4; x1;UÞγiU†nm
4 ðx1 − a4Þ�

þ Tr½SðfÞmnðx1; x1 − a4;UÞγiUnm
4 ðx1 − a4Þ� − Tr½SðfÞmnðx1; x1 þ a4;UÞγiU†nm

4 ðx1Þg

¼ þi
8a

X
~x1

ei~q·ð~x1−~x0ÞL½x1;U�; ð39Þ
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where L½x1;U� is the trace part of the current loop. The
gauge-averaged DI three-point functions can then be
written as

Tr½Γunpol;polGðfÞNT 4iNð~p0; t2; ~q; t1; ~p; t0Þ�DI
¼ hTr½Γunpol;polGNNð~p0; t2; t0;UÞ� × L½t1; ~q;U�i
− hTr½Γunpol;polGNNð~p0; t2; t0;UÞ�i × hL½t1; ~q;U�i;

ð40Þ

where h� � �i denotes the average over the gauge ensemble.
It is important to note that the three-point functions for
gluons have the similar form as DI.
The computation of the CI is relatively straightforward.

We shall use the sequential source technique [60–62] for
CI. This fixes the source point t0 and the sink time slice t2.
However, the computation of the DI is numerically chal-
lenging as it contains not only the usual propagators from
the source, x0, to any point, x, but also the propagators
from any insertion position, x1, to any other lattice points.

This would require inverting the fermion matrix at each
point of the lattice to construct the all-to-all propagators.
Naively, this entails inversion of a million by million
(∼163 × 24 × 3 × 4) sparse matrix for our 163 × 24 lattice
(3 and 4 being the number of color and spin indices,
respectively) on each gauge configuration. This is unattain-
able by using the computing powers of today’s super-
computers. Instead, we shall compute it with the stochastic
method. Specifically, we adopt the complex Z2 noise [63]
for the estimation together with unbiased subtraction [64]
to reduce variance. The detailed description of the
method and the usefulness of discrete symmetries that
are applicable to both DI and glue will be presented in
Sec. IV B.

F. Ratios of correlation functions

After evaluating two-point and three-point correlation
functions, we take the following ratios between three-point
to two-point functions, which at a large time separation
involve the combinations of T1ðq2Þ, T2ðq2Þ, and T3ðq2Þ∶

Tr½Γunpol;polGNT 4iNð~p0; t2; ~q; t1; ~p; t0Þ�
Tr½ΓunpolGNNð~p0; t2; t0Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ΓunpolGNNð~p; t2 − t1 þ t0; t0Þ�
Tr½ΓunpolGNNð~p0; t2 − t1 þ t0; t0Þ�

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ΓunpolGNNð~p0; t1; t0Þ�
Tr½ΓunpolGNNð~p; t1; t0Þ�

×
Tr½ΓunpolGNNð~p0; t2; t0Þ�
Tr½ΓunpolGNNð~p; t2; t0Þ�

s
!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE ½a1T1ðq2Þ þ a2T2ðq2Þ þ a3T3ðq2Þ�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEp þmÞp : ð41Þ

Since Tq
1ðq2Þ and Tq

2ðq2Þ for the CI are shown to have quite different q2 behavior [10–12], we need to separately extrapolate
T1ðq2Þ and T2ðq2Þ to q2 ⟶ 0 (we shall do this both for CI and DI as well as for the glue contribution). To achieve this, we
shall combine results from different kinematics for both the polarized and unpolarized three-point functions into the ratios in
Eq. (41) at a particular q2. The ratios then appear as different combinations in different ai’s from which one can separate
T1ðq2Þ, T2ðq2Þ, and T3ðq2Þ and then extrapolate T1ðq2Þ and T2ðq2Þ in q2 to obtain T1ð0Þ and T2ð0Þ. The procedure to
extract T1ðq2Þ, T2ðq2Þ, and T3ðq2Þ is discussed in detail in Sec. VI.

t0 t2

t

t1

(a)

t0 t2

t

t1

(b)

FIG. 1. Quark line diagrams of the three-point function with current insertion in the Euclidean path integral formalism. (a) Connected
insertions (CI) and (b) disconnected insertions (DI).
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1. Special case: ~p0 ¼ 0 or ~p ¼ 0

If we consider the special case with ~p0 ¼ 0 for the polarized three-point functions, we obtain

Tr½Γpol
l GNT 4iNð~0; t2; ~q; t1;−~q; t0Þ�
Tr½ΓunpolGNNð~0; t2; t0Þ�

·
Tr½ΓunpolGNNð~0; t1; t0Þ�
Tr½ΓunpolGNNð~q; t1; t0Þ�

!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE −i
4
ϵijlqj½T1 þ T2�ðq2Þ; ð42Þ

where ½T1 þ T2�ðq2Þ ¼ T1ðq2Þ þ T2ðq2Þ. Similarly, if we consider ~p ¼ 0, we get

Tr½Γpol
l GNT 4iNð~q; t2; ~q; t1; ~0; t0Þ�
Tr½ΓunpolGNNð~q; t2; t0Þ�

·
Tr½ΓunpolGNNð~q; t1; t0Þ�
Tr½ΓunpolGNNð~0; t1; t0Þ�

!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE −i
4

Ep0 þm

m
ϵijlqj½T1 þ T2�ðq2Þ: ð43Þ

In the unpolarized case, the three-point functions vanish when either ~p0 ¼ 0 or ~p ¼ 0.
We shall use the Eqs. (42) and (43) to check the extracted values of T1ðq2Þ and T2ðq2Þ by comparing ½T1ðq2ÞþT2ðq2Þ�

against ½T1 þ T2�ðq2Þ obtained directly at comparable q2.

2. Special case: ~p0 ¼ ~p

If we consider the forward matrix element in which ~p0 ¼ ~p and take the following ratio with unpolarized three-point
functions, we obtain

Tr½ΓunpolGNT 4iNð~p0; t2; ~0; t1; ~p0; t0Þ�
Tr½ΓunpolGNNð~p0; t2Þ�

!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE
T1ð0Þ ¼ hxi: ð44Þ

For the polarized case, the above ratio vanishes. We see that
Eq. (44) gives us the first moment of the parton distribution,
or T1ð0Þ, directly, which has been calculated on the same
lattice in Ref. [41]. The value of T1ð0Þ obtained from
Eq. (44) can be checked against the q2 extrapolated value of
T1ð0Þ obtained from Eq. (41) or vice versa.
Since Eq. (44) allows a direct determination of T1ð0Þ

without requiring one to perform q2 → 0 extrapolation, this
results in a much clearer signal for T1ð0Þ as compared to
that obtained from Eq. (41). The results from both the
methods are presented in Sec. VIII, and, in fact, we shall
combine the former one with the extrapolated value of
T2ð0Þ from Eq. (41) in order to construct Jq;g. Please note
that these two methods for determining T1ð0Þ are inde-
pendent of each other since, in the q2 → 0 extrapolation

method, we do not take into account the q2 ¼ 0 data point
that comes from Eq. (44). As mentioned earlier, this
provides us a check for the value of T1ð0Þ.

3. Ratios for disconnected insertions

As mentioned in Sec. III E, the sink time is fixed for CI.
But in DI, the sink time need not be fixed, and we can sum
over the insertion time, t1, between the source and the sink
time, i.e., from t1 ¼ t0 þ 1 to t2 − 1 to gain more statistics
[2,41,65,66]. Moreover, such summation helps in sup-
pressing the excited state contamination [41,65]. This is
similarly true for gluons. Then, the corresponding ratios at
large time separation for Eqs. (41), (42), (43), and (44)
become

Xt2−1
t1¼t0þ1

Tr½Γunpol;polGNT 4iNð~p0; t2; ~q; t1; ~p; t0Þ�
Tr½ΓunpolGNNð~p0; t2; t0Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ΓunpolGNNð~p; t2 − t1 þ t0; t0Þ�
Tr½ΓunpolGNNð~p0; t2 − t1 þ t0; t0Þ�

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ΓunpolGNNð~p0; t1; t0Þ�
Tr½ΓunpolGNNð~p; t1; t0Þ�

·
Tr½ΓunpolGNNð~p0; t2; t0Þ�
Tr½ΓunpolGNNð~p; t2; t0Þ�

s
!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE ½a1T1ðq2Þ þ a2T2ðq2Þ þ a3T3ðq2Þ�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEp þmÞp × t2 þ const;

ð45Þ

Xt2−1
t1¼t0þ1

Tr½Γpol
l GNT 4iNð~0; t2; ~q; t1;−~q; t0Þ�
Tr½ΓunpolGNNð~0; t2; t0Þ�

·
Tr½ΓunpolGNNð~0; t1; t0Þ�
Tr½ΓunpolGNNð~q; t1; t0Þ�

!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE−i
4
ϵijlqj½T1 þ T2�ðq2Þ × t2 þ const;

ð46Þ
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Xt2−1
t1¼t0þ1

Tr½Γpol
l GNT 4iNð~q;t2;~q;t1;~0;t0Þ�
Tr½ΓunpolGNNð~q;t2;t0Þ�

·
Tr½ΓunpolGNNð~q;t1;t0Þ�
Tr½ΓunpolGNNð~0;t1;t0Þ�

!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE −i
4

Ep0 þm

m
ϵijlqj½T1þT2�ðq2Þ× t2þconst;

ð47Þ

Xt2−1
t1¼t0þ1

Tr½ΓunpolGNT 4iNð~p0; t2; ~0; t1; ~p0; t0Þ�
Tr½ΓunpolGNNð~p0; t2Þ�

!ðt1−t0Þ;ðt2−t1Þ≫1=ΔE hxi × t2 þ const: ð48Þ

We then extract the slopes in t2 and obtain T1ðq2Þ; T2ðq2Þ,
½T1 þ T2�ðq2Þq;g, and hxiq;g in the DI the same way as is
done for the CI.

IV. STOCHASTIC ESTIMATOR
AND VARIANCE REDUCTION

A. Noise estimate of current loop in DI, gauge-field
tensor, and unbiased subtraction

As we mentioned in Sec. III E, we adopt the complex Z2

(or Z4) noise [63] to compute the current loop in DI,
because ZN noise has been shown to have the minimum
variance [63,67].
As we can see from Eq. (28), the calculation of the

gauge-field tensor involves trace over spin indices of the
massless overlap Dirac operator [24,54]. Moreover, T f4igg
involves trace over color indices [see Eq. (5)], and the
corresponding three-point function involves a sum over
space. This is basically the same as the quark loop
calculation. Since we adopt the Zolotarev approximation
for the sign function in the overlap operator, it entails an
inversion of the Wilson fermion kernel with multishifts
[68]. Thus, we again use the complex Z2 noise to estimate
the trace of Eq. (28) to construct the glue energy-momen-
tum tensor in Eq. (21).
It has been shown that the off-diagonal matrix element

contributions to the variance can be reduced by subtracting
a judiciously chosen set of traceless N × N matrices QðpÞ

[64], which satisfy
P

N
n¼1Q

ðpÞ
n;n ¼ 0; p ¼ 1;…; P. Then, the

expectation value is unchanged when M−1 is substituted
with M−1 −

P
P
p¼1 λpQ

ðpÞ (λp is a constant), and yet the
variance can be reduced. A natural choice for the set of
traceless matrices is the hopping parameter expansion of
the inverse of the Wilson fermion matrix, DW [64], and it

has been applied to the study of the quark orbital angular
momentum [9], the flavor-singlet scalar meson [69],
determinant estimate [70], the quark momentum fraction
hxi [41], and the strangeness electromagnetic form factor
[66]. We see a reduction of the errors by more than a factor
of 2 with negligible cost. We shall adopt this unbiased
subtraction with hopping expansion of the Wilson Dirac
fermion to the fourth order.

B. Discrete symmetries and transformations

Since both the DI and glue operators are stochastically
estimated, the signals for the corresponding three-point
functions are usually noisy. To improve the signals, we take
advantage of discrete symmetries to further reduce the
variance from the gauge noise. We will tap parity, γ5
hermiticity, and charge-γ5 hermiticity (CH transformation)
[41,71,72] to filter out the noise contributions that would be
zero with infinite statistics. This is the same idea as the
unbiased subtraction in Sec. IVA.

1. Two-point functions and current loop

Since the three-point functions for DI are constructed by
multiplying (or correlating) the nucleon propagator with the
current loop on each gauge configuration, we can consider
the parity, CH, and γ5 transformation properties of each of
them. In Table I, we show the outcome of parity and CH
transformations on the polarized and unpolarized nucleon
propagators. Here, we use the shorthand notation:
fð~p;t;t0;UÞ¼Tr½ΓunpolGNNð~p;t;t0;UÞ� and gð~p;t;t0;UÞ¼
Tr½ΓpolGNNð~p;t;t0;UÞ�.
Similarly, the outcome of the parity, γ5, and CH trans-

formations for the loop of the energy-momentum tensor in
Eq. (39) are shown in Table II.

TABLE I. Table showing the outcome of the parity and CH transformations on unpolarized and polarized nucleon propagators with
equal and opposite momenta. Up and U� denote the parity and C transformed gauge links, respectively.

Nucleon propagators Parity CH transformations

fð~p; t; t0;UÞ fð−~p; t; t0;UpÞ ½fð−~p; t; t0;U�Þ��
fð~p; t; t0;UÞ þ fð−~p; t; t0;UÞ Even ½fð~p; t; t0;U�Þ þ fð−~p; t; t0;U�Þ��
gð~p; t; t0;UÞ gð−~p; t; t0;UpÞ −½gð−~p; t; t0;U�Þ��
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2. Construction of disconnected three-point functions

According to the charge conjugation and γ5 hermiticity
(CH) theorem [60], after gauge averaging, the path
integral for hOi in QCD is either real or imaginary
(except in the case with chemical potential). Using the
transformation properties given in Tables I and II, one

can decide on the right combination of real and imagi-
nary components of the nucleon propagator and the loop
to satisfy the total parity and CH transformation proper-
ties and the γ5 hermiticity for the quark loop [9,41,66]. In
this way, we obtain the unpolarized three-point functions
(DI) as

Tr½ΓunpolGNT 4iNð~p0; t2; ~q; t1; ~p; t0Þ�DI
¼

�
1

8a

���X
~x2

cosð~p0 · ð~x2 − ~x0ÞÞRe½Nunpol½x2;U��
X
~x1

sinð~q · ð~x1 − ~x0ÞÞRe½L½x1;U��

−
X
~x2

sinð~p0 · ð~x2 − ~x0ÞÞRe½Nunpol½x2;U��
X
~x1

cosð~q · ð~x1 − ~x0ÞÞRe½L½x1;U��
	


ð49Þ

and the polarized three-point functions (DI) as

Tr½Γpol
l GNT 4iNð~p0; t2; ~q; t1; ~p; t0Þ�DI

¼
�

i
8a

���X
~x2

cosð~p0 · ð~x2 − ~x0ÞÞIm½Npol
l ½x2;U��

X
~x1

sinð~q · ð~x1 − ~x0ÞÞRe½L½x1;U��

−
X
~x2

sinð~p0 · ð~x2 − ~x0ÞÞIm½Npol
l ½x2;U��

X
~x1

cosð~q · ð~x1 − ~x0ÞÞRe½L½x1;U��
	


: ð50Þ

V. CHOICE OF MOMENTA

The momenta we shall choose for computing the first
moment of themomentum fraction carried by quarks for both
CIandDIhavebeendiscussedindetail inRef. [41].Forthecase
of glue, we shall use the same momenta as in the case of DI.
For angular momenta, we have discussed earlier that (see

Sec. III F) we need to combine several kinematics into the
ratios in Eq. (41) for CI or in Eq. (45) for DI at a particular q2

fromwhich one can separateT1ðq2Þ,T2ðq2Þ, andT3ðq2Þ. For
this purpose, we first take several momenta to set up the
suitable kinematics. Since both the two-point and three-point
functions are subject to larger noise with higher momenta,
we have limited ourselves to momenta not exceeding 2 (in
lattice units). With these momenta under consideration, we
can construct four different values of q2 for which
~p ≠ ~p0 ≠ ~q ≠ 0. Since the momentum projection is folded
in the sequential source at the sink time t2 in the CI
computation, we have chosen only the cases for which ~p0 ¼
ð1; 0; 0Þ in order to reduce the computational cost. In contrast,

the computation of the valence quark propagators in DI is
separate from the loopcomputation in each configuration; this
means that themomentum in the nucleon two-point functions
can be chosen independently of the momentum transfer
carried by the costly loop calculation, only constrained by
momentum conservation. This allows us to choose all the
available momenta at the same computational cost. Similar is
the case for the glue contributions.

VI. SEPARATION OF T1, T2, AND T3

In this section, we will discuss how to separate T1, T2,
and T3 at a particular value of q2 (for details, see the
Appendix). Using the available momenta, we obtain several
ratios of three-point to two-point functions (both polarized
and unpolarized) for all the three directions of the operator,
T 4i, at every q2. We then average over the ratios with the
same coefficients, ai’s, and extract them either by fitting a
constant (for CI) or by fitting a slope (for DI and glue). This
results in more than three different equations that contain
T1, T2, and T3 with different coefficients ai’s. Though

TABLE II. Table showing the outcome of the parity, γ5, and CH transformations on the quark loop for the energy-momentum tensor in
Eq. (39).

Loop Parity γ5 hermiticity CH transformations

L½t1; ~q;U� −L½t1;−~q;Up� þi
8a

P
~x1
ei~q·ð~x1−~x0ÞRe½L½x1;U�� −½L½t1;−~q;U����
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these equations are analytically different, numerically they
are correlated since they are computed on the same set of
configurations. While solving for T1, T2, and T3, such
correlations must be taken into account. Therefore, we
construct a covariance matrix, C, between these equations
for every q2. We then construct χ2 as

χ2 ¼
XN
ij

½Ri − ða1;iT1 þ a2;iT2 þ a3;iT3Þ�

× C−1
ij ½Rj − ða1;jT1 þ a2;jT2 þ a3;jT3Þ�; ð51Þ

where N is the number of equations and Ri’s are the fitted
values of the ratios. Minimizing the χ2 in Eq. (51) with
respect to T1, T2, and T3, we obtain the three equations

2
64
R0
1

R0
2

R0
3

3
75 ¼

2
64
a11 a12 a13
a21 a22 a23
a31 a32 a33

3
75
2
64
T1

T2

T3

3
75; ð52Þ

where

amk ¼ 2am;iC−1
ij ak;j; R0

k ¼ 2ak;iC−1
ij Rj; ðm;k¼ 1;2;3Þ

ð53Þ

and the sum over i; j is implicitly implied. Solving the
system of equations in Eq. (52), we can separate T1, T2, and
T3 at that q2.

VII. NUMERICAL PARAMETERS

We use 500 gauge configurations on a 163 × 24 lattice
generated with Wilson action at β ¼ 6.0 in the quenched
approximation. They are produced by the pseudoheatbath
algorithm with 10,000 sweeps between consecutive con-
figurations. The values of the hopping parameter we have
used are κ ¼ 0.154, 0.155, and 0.1555. The critical hop-
ping parameter, κc ¼ 0.1568, is obtained by a linear
extrapolation to the zero pion mass [73]. Using the nucleon
mass to set the lattice spacing at a ¼ 0.11 fm, the corre-
sponding pion masses are 650(3), 538(4), and 478(4) MeV,
and the nucleon masses are 1291(9), 1159(11), and 1093
(13) MeV, respectively. In the present work, we use the
periodic boundary condition in the spatial directions. In the
temporal direction, the Dirichlet boundary condition is
imposed at t ¼ 1 and t ¼ 24. This provides a larger time
separations than those available with periodic boundary
conditions.
The quark loops for DI and overlap operator for glue are

computed separately using complex Z2 noise vectors [63].
The number of noise vectors we use for DI is 500 on each
gauge configuration. Also for the case of quarks, we shall
define two κ’s for the quark mass: κv for valence quarks and
κloop for quarks in the current loop in the case of DI. For the
strange quark currents, we have fixed κloop ¼ 0.154, which

is close to the strange quark mass as determined from the ϕ
meson mass, and κv takes the values 0.154, 0.155, and
0.1555. For up and down quarks, we consider equal masses
for valence quarks and quarks in the current loop, i.e.,
κloop ¼ κv ¼ 0.154, 0.155, and 0.1555. The source time for
the quark propagators is fixed at t0 ¼ 4. In the case of CI,
the sink time is fixed at t2 ¼ 16.
We estimate the gauge-field tensor from the overlap

operator stochastically with two complex Z2 noise vectors
on each configuration, but with dilution in color and spin
indices. For the space-time points, we perform a dilution
with multiple grids to cover the whole space-time points.
The points on the grid are separated by two sites on top of
odd/even dilution. Therefore, the taxi-driver distance
equals 4 in our case. The reason behind the grid dilution
approach is that, unlike the quark loop, the overlap operator
is exponentially local with a range of falloff to be about two
lattice spacings in the taxi-driver distance.
We use multiple nucleon sources (16 in this work) to

increase the statistics in the cases of DI and glue. We
correlate all the corresponding two-point functions with the
already computed DI and the glue energy-momentum
tensor. This has shown to reduce the error significantly
[41,66]. In the case of CI, we use only one nucleon
source.
The error analysis is performed by using the jackknife

procedure. The correlations among different quantities are
taken into account by constructing the corresponding
covariance matrices. To extract various physical quantities,
we use correlated least-χ2 fits. To determine T1ð0Þ and
T2ð0Þ, we first separate T1ðq2Þ, T2ðq2Þ, and T3ðq2Þ at finite
q2 using the method discussed in Sec. VI for every
jackknife sample. T1ð0Þ and T2ð0Þ are then obtained by
extrapolating q2 to zero with a dipole form. Alternatively,
T1ð0Þ can be directly computed from the forward matrix
element as discussed in Sec. III F 2. We should point out
that we do not take into account the forward matrix value of
T1ð0Þ when we perform the q2 → 0 extrapolation for
T1ðq2Þ. The values of T1ð0Þ obtained from both the
methods are consistent within errors and presented in
Sec. VIII. Since T1ð0Þ obtained from forward matrix
element is more precise with a smaller error, we shall
use it in the following discussion as well as combining with
q2-extrapolated value of T2ð0Þ to construct 2J.

VIII. RESULTS AND DISCUSSION

A. Connected insertions

We first present our results for the CI. The analyses are a
straightforward extension of those in Ref. [41]. In Fig. 2(a),
we plot ½Tu

1ðq2Þ þ Tu
2ðq2Þ� and ½Td

1ðq2Þ þ Td
2ðq2Þ� as func-

tions of q2 for κ ¼ 0.1555, the smallest quark mass, where
T1ðq2Þ and T2ðq2Þ are obtained by using Eqs. (41) and (52).
We also plot ½T1 þ T2�uðq2Þ and ½T1 þ T2�dðq2Þ obtained
directly from Eqs. (42) and (43) at slightly different but
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comparable q2’s. We see that the latter agrees within 2σ of
the error band of the former, which is obtained from a dipole
fit in q2. This is a cross-check of our procedure of extracting
T1ðq2Þ and T2ðq2Þ. We also show ½Tu

1ðq2Þ þ Td
1ðq2Þ� and

½Tu
2ðq2Þ þ Td

2ðq2Þ� and their error bands in Fig. 2(b). Also
plotted is ½Tu

1ð0Þ þ Td
1ð0Þ� from Eq. (44). We see that its

error is smaller than that from the separately extrapolated
Tu
1ð0Þ and Td

1ð0Þ. Thus, we shall use ½Tu
1ð0Þ þ Td

1ð0Þ�
obtained from Eq. (44) and combine with ½Tu

2ð0ÞþTd
2ð0Þ�

obtained from the dipole fit to get the angular momentum
Jq for the CI. We follow the similar procedure for other
κv values.

B. Disconnected insertions

For the DI, we show one of the ratios in Eq. (45) plotted
against the sink time, t2, in Fig. 3(a) and the ratio in
Eq. (46) similarly plotted in Fig. 3(b) with κv ¼ κloop ¼
0.1555 at q2 ¼ 0.144.
We fit the slope from t2 ¼ 8 where the two-point

function begins to be dominated by the nucleon to
t2 ¼ 12. We plot ½T1 þ T2�ðq2Þ so obtained in Fig. 3(c)
and compare them to T1ðq2Þ þ T2ðq2Þ extracted from six
combinations of a1T1ðq2Þ þ a2T2ðq2Þ þ a3T3ðq2Þ. We see
that they are consistent with each other within errors. The
error bands are from the dipole fits of T1ðq2Þ and T2ðq2Þ.
T1ð0Þ (in red squares) is from the forward matrix element,
which has smaller error than the q2 extrapolated value of
T1ð0Þ. Thus, in a similar manner as in CI, we shall combine
it with the extrapolated T2ð0Þ to obtain the angular
momentum Jq (DI). We follow the similar procedure for
other κ values and strange quarks.
Finally, we perform a linear chiral extrapolation of κv to

obtain T1ð0Þ þ T2ð0Þ for the u; d quarks at the chiral limit.

This is shown in Fig. 3(d). For the strange quark, on the
other hand, we fix the loop at κloop ¼ 0.154 and then
extrapolate the κv to the chiral limit.

C. Glue

We perform the similar analysis for the glue momentum
and angular momentum. The plots for the glue first moment
are shown in Figs. 4(a) and 4(b). For angular momentum,
they are plotted in Figs. 5(a)–5(c), and 5(d). The first clear
signal for the glue momentum fraction was seen with the
overlap operator [54]. Recently, the glue momentum
fraction was calculated by using the Feynman–Hellmann
theorem [74]. In our current work, clear signals of both the
glue momentum and angular momentum fractions have
been observed with direct calculation of the glue operators
in the nucleon.
In Table III, we list the lattice results on the quark

momentum fractions hxi≡ T1ð0Þ for CI (u and d) and DI
(u=d and s) as well as that for glue. We also list the
corresponding T2ð0Þ and total angular momenta fraction
2J ¼ T1ð0Þ þ T2ð0Þ for each quark flavor and glue. As
explained in Sec. VIII A, the T2ð0Þ at q2 ¼ 0 for CIðuÞ and
CIðdÞ are obtained from separate dipole fits in q2 as shown
in Fig. 2, while the T2ð0Þ for CIðuþ dÞ is obtained from
the dipole fit of the sum of CIðuÞ and CIðdÞ that leads to a
smaller error than that obtained from the separate dipole
fits. We note that the T2ð0Þ from the quark and the glue
sectors have similar magnitude but with opposite sign
that results in cancellation within errors. This is consistent
with Eq. (19), which results from momentum and
angular momentum conservation. Consequently, the total
unrenormalized momentum, hxiq þ hxig ¼ 0.95ð7Þ, and
angular momentum, 2Jq þ 2Jg ¼ 0.95ð9Þ, are the
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FIG. 2 (color online). CI plots at κ ¼ 0.1555. (a) The sum of T1ðq2Þ and T2ðq2Þ, extracted from Eqs. (41) and (52) along with error
bands from the dipole fit, is compared to ½T1 þ T2�ðq2Þ obtained from Eqs. (42) and (43) at comparable q2 values for u and d quarks in
the CI. (b) The sum of u and d quark contributions for T1ðq2Þ and T2ðq2Þ. The red square at q2 ¼ 0 is ½Tu

1ð0Þ þ Td
1ð0Þ�, which is

obtained from forward matrix elements using Eq. (44). The black square at q2 ¼ 0 is ½Tu
2ð0Þ þ Td

2ð0Þ�, which is obtained from dipole fit.
To construct Juþd (CI), we add the values represented by the red and black squares.

M. DEKA et al. PHYSICAL REVIEW D 91, 014505 (2015)

014505-12



 0

 1

 2

 3

 4

 5

 6  8  10  12  14  16

3-
pt

 t
o 

2-
pt

 R
at

io

sink time (t2)

Ratios between 3-pt to 2-pt for <x>g

κv = 0.1555 
 (pion mass = 478 MeV)

Ratio
Fitted line

(a)

0.0

0.1

0.2

0.3

0.4

0.5

 0  0.02  0.04  0.06  0.08

<x
> g

mq a

Chiral Extrapolation for <x>g

(b)

FIG. 4 (color online). Plots for glue first moment: (a) ratio between three-point and two-point functions obtained by using Eq. (48) at
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FIG. 3 (color online). DI plots for u; d at κv ¼ κloop ¼ 0.1555. (a) One of the ratios in Eq. (45) plotted against the sink time, t2.
The term with form factor T3ðq2Þ does not appear in this particular ratio. The slope is fitted to obtain ½a1T1ðq2Þ þ a2T2ðq2Þ�u;d. (b) The
ratio in Eq. (46) plotted against the sink time, t2. The slope is fitted to obtain ½T1 þ T2�u;dðq2Þ. (c) The sum of separately extracted
T1ðq2Þ and T2ðq2Þ is compared with ½T1 þ T2�ðq2Þ. T1ð0Þ (red square) is from the forward matrix element. To construct J, the value
represented by the red square is used as T1ð0Þ. (d) Chiral extrapolation of T1ð0Þ and T2ð0Þ for the u=d quark. The red and black squares
in this figure represent chirally extrapolated values of T1ð0Þ and T2ð0Þ, respectively. Please note that they are not renormalized in
this figure.
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same within errors and consistent with and close to
unity.

D. Renormalization

Before presenting the final results, we discuss renorm-
alization and mixing of quark and glue operators and
matching to the MS scheme at a certain scale. The momenta
hxi and angular momenta J for the quarks and glue are
calculated with lattice regularization. To match to the MS
scheme at a scale μ in order to be able to compare with
experiments, the renormalized matching and mixing of the
momentum fraction (and angular momentum) can be
written in the matrix equation

2
664
hxiMS

q ðμ;CIÞ
hxiMS

q ðμ;DIÞ
hxiMS

g ðμÞ

3
775¼

2
664
Zqqðaμ;g0Þ 0 0

0 Zqqðaμ;g0Þ Zqgðaμ;g0Þ
Zgqðaμ;g0Þ Zgqðaμ;g0Þ Zggðaμ;g0Þ

3
775

×

2
664
hxiLq ðCIÞ
hxiLq ðDIÞ
hxiLg

3
775; ð54Þ

where the hxiLq and hxiLg are lattice matrix elements that
satisfy the momentum sum rule and the subscript q refers to
the flavor-singlet quark component. The CI part corre-
sponds to the moment of the parton distribution function for
the valence and connected-sea (CS) quarks, whereas the DI
part is the corresponding moment for the disconnected sea
(DS) [59]. The valence, CS, and DS parton degrees of
freedom are defined in the path-integral formulation of the
hadronic tensor [59], and the separation of CS from DS
patrons has been achieved [75] by combining HERMES
data on the strangeness distribution [76], the CT10
globally fitted parton distribution functions, and the lattice
calculation of the ratio of hxi of the strange to that of u (or
d) in the DI [54]. It is important to note that valence and CS
parton moments do not have contributions from the glue
moment. Only the DS patron moment receives contribu-
tions from the glue moments through mixing. Since the
energy-momentum tensors for the quark and glue are
gauge invariant operators, their matrix elements do not
mix with those of gauge-variant operators [77].
The quark and glue momentum fractions in the MS

scheme sum to unity provided the scheme-dependent
renormalization constants, Zðaμ; g0Þ’s, satisfy the con-
straints [77,78]
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FIG. 5 (color online). Similar types of plots as in Fig. 3 for the glue at κv ¼ 0.1555.
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Zqq þ Zgq ¼ 1; Zqg þ Zgg ¼ 1; ð55Þ

and the lattice quark and glue momentum fractions are
normalized to satisfy the momentum sum rule, i.e.,

hxiLq þ hxiLg ¼ 1; ð56Þ

where hxiLq ¼ hxiLq ðCIÞ þ hxiLq ðDIÞ. The sum-rule
improved lattice matrix elements in Eq. (56) are defined as

hxiLq;g ¼ ZL
q;ghxiLq;g; ð57Þ

where hxiLq;g are the unrenormalized matrix elements from
the lattice calculation and ZL

q;g are the lattice normalization
constants that account for lattice systematics.
Since both the momenta and angular momenta are

derived from the same energy-momentum tensor operators,
both ZL

q and ZL
g can be determined from the momentum and

angular momentum sum rules

ZL
q hxiLq þ ZL

g hxiLg ¼ 1; ð58Þ

ZL
qJLq þ ZL

g JLg ¼ 1

2
: ð59Þ

Even though the lattice calculated momenta and angular
momenta are correlated, the direct fitting of ZL

q;g can lead to
large errors since the values of hxiLq and 2JLq are close, as
are those of hxiLg and 2JLg . The condition number of the
2 × 2 matrix of these matrix elements is ∼17. Instead, one
can choose to fit ZL

q;g from the momentum sum rule in
Eq. (58) and

ZL
qTL

2;qð0Þ þ ZL
g TL

2;gð0Þ ¼ 0; ð60Þ

which leads to a smaller condition number of ∼8.6, but the
uncertainties in the lattice normalization factors ZL

q;g can
still be large.
In view of the fact that the total unrenormalized lattice

momentum hxiq þ hxig ¼ 0.95ð7Þ and angular momentum
2Jq þ 2Jg ¼ 0.95ð9Þ are the same within errors, we shall
simply scale both to unity with ZL

q ¼ ZL
g ¼ 1.05 and ignore

their errors in this work.
For the renormalization constants, Zqq, Zqg, Zgq, and Zgg

in Eq. (54), we shall compute them perturbatively. Lattice

perturbation calculation has been carried out to match the
energy-momentum tensor operators from the lattice to the
MS scheme [79]. To one-loop order, they are

Zqq ¼ 1þ g20
16π2

CF

�
8

3
logða2μ2Þ þ fqq

�
;

Zqg ¼ −
g20

16π2

�
2

3
Nf logða2μ2Þ þ fqg

�
;

Zgq ¼ −
g20

16π2
CF

�
8

3
logða2μ2Þ þ fgq

�
;

Zgg ¼ 1þ g20
16π2

�
2

3
Nf logða2μ2Þ þ fgg

�
: ð61Þ

For the negative mass parameter ρ ¼ 1.368 used in
the overlap operator, we obtain fqq ¼ −7.60930,
fgq ¼ −2.37600, fqg ¼ 0.0, and fgg ¼ −3.76900. The
details of the calculation are presented in Ref. [79].
We note that if we do not use the sum-rule constraints for

the lattice results; i.e., if we set ZL
q;g ¼ 1, we find the total

momentum fraction to be 0.92(7) and two times the total
angular momentum fraction to be 0.92(9) in the MS scheme
at μ ¼ 2 GeV through Eq. (61).
We see that while the scheme- and scale-independent

factors associated with the anomalous dimensions γij
together with the unity in the diagonal terms in Eq. (54)
satisfy the constraints in Eq. (55), the scheme-dependent
finite factors fij do not. This may be attributed to the
artifact in the off-shell calculation of renormalization
factors [80]. In the literature, the finite factors fqq and
fqg have been calculated to determine Zqq and Zqg. On the
other hand, Zgq and Zgg are simply defined from the
constraints in Eq. (55) [44,74,81] as

Zgq ¼ 1 − Zqq; Zgg ¼ 1 − Zqg: ð62Þ

Since we have calculated all the finite factors fij, we shall
consider the average of the procedure such as the one in
Eq. (62) and replace fij in Eq. (61) with ~fij given by

~fqq ¼ ~fgq ¼
1

2
ðfqq þ fgqÞ; ~fqg ¼ ~fgg ¼

1

2
ðfqg þ fggÞ

ð63Þ

TABLE III. Unrenormalized lattice results of quark and glue momenta and angular momenta.

CIðuÞ CIðdÞ CIðuþ dÞ DIðu=dÞ DIðsÞ Glue Total

hxi 0.408(38) 0.149(19) 0.558(43) 0.036(7) 0.023(6) 0.298(53) 0.95(7)
T2ð0Þ 0.283(107) −0.217ð76Þ 0.061(20) −0.002ð2Þ −0.001ð3Þ −0.056ð49Þ 0.00(6)
2J 0.691(122) −0.069ð78Þ 0.620(48) 0.034(7) 0.022(7) 0.242(73) 0.95(9)

LATTICE STUDY OF QUARK AND GLUE MOMENTA AND … PHYSICAL REVIEW D 91, 014505 (2015)

014505-15



so that the constraints in Eq. (55) are satisfied. Although
this procedure has an ambiguity, this systematic is expected
to make negligible contributions to the final momentum
and angular momentum fractions in the MS scheme. Since
the prefactor g20=ð16π2Þ ¼ 6.33 × 10−3 is small, the effects
in the finite factors in the renormalization constants are
much smaller than unity. We find that the corresponding
differences in the quark and glue momentum fractions
due to the finite factors that are obtained by using
Eqs. (62) and (63) are less than 1%, which is much smaller
than the statistical errors of the physical quantities we
calculate.
Since our inverse lattice spacing is determined to be

1=a ¼ 1.74 GeV from the nucleon mass [9], logða2μ2Þ ¼
0.279 is small because 1=a is close to the scale μ≃ 2 GeV.
Moreover, the factor g20=ð16π2Þ ¼ 6.33 × 10−3 is also
small. As a result, the diagonal renormalization coefficients
Zqq ¼ 0.9641 and Zgg ¼ 0.9881 (for the quenched case
with Nf ¼ 0) are close to unity, and the off-diagonal
mixing coefficients Zgq ¼ 0.0359 and Zqg ¼ 0.0119 are
close to zero. We see from Eq. (54) that there are only
subpercent changes from the lattice results to those in the
MS scheme at μ≃ 2 GeV. We report our results in the MS
scheme at μ ¼ 2 GeV.

E. Discussion

In Table IV, we list the renormalized quark momentum
fractions hxi≡ T1ð0Þ for CI (u and d) and DI (u=d and s)
as well as that of glue. We also list the corresponding T2ð0Þ
and total angular momenta fraction 2J ¼ T1ð0Þ þ T2ð0Þ
for each quark flavor and glue. These values are obtained at
μ ¼ 2 GeV in MS scheme as explained in Sec. VIII D. To
obtain results for different flavor, we note that hxiLq ðCIÞ is
the linear sum of those of u and d in the CI, and hxiLq ðDIÞ is
the linear sum of those of u, d, and s in the DI. Thus, in
practice, Eq. (54) is extended to the bases of the direct
product of flavor and CI and DI plus the glue, and the
renormalization constants in Eq. (61) modified in such a
way that NF is replaced with unity and fqg is replaced with
1=NF. The exception to this change is Zgg, where the NF

factor is zero for the present quenched calculation.
We see from Table IV that the strange momentum

fraction hxis ¼ 0.024ð6Þ is in the range of uncertainty of

hxis from the CTEQ fitting of the parton distribution
function from experiments, which is 0.018 < hxis <
0.040 [82]. The glue momentum fraction of 0.334(55) is
smaller than, say, the CTEQ4M fit of 0.42 at μ ¼ 1.6 GeV
[83], but only by 1.5σ. The smallness of our value of hxig in
comparison to the experiment could be in part due to the
fact that ours is a quenched calculation. We expect the glue
momentum fraction to be larger than the present result
when dynamical configurations with a light fermion are
used in the calculation.
From Figs. 2(b) and 5(c) and Table IV, we find that

½Tu
2ð0Þ þ Td

2ð0Þ� (CI) is positive and Tg
2ð0Þ is negative so

that the total sum including the small ½Tu
2ð0Þ þ Td

2ð0Þ þ
Ts
2ð0Þ� (DI) can be naturally constrained to be zero [see

Eq. (19)] with the normalization constants ZL
q ¼ 1.05 and

ZL
g ¼ 1.05 close to unity. In analogy to F2ð0Þ, the anoma-

lous magnetic moment of the nucleon, T2ð0Þ, is termed as
the anomalous gravitomagnetic moment and has been
shown to vanish for composite systems by Brodsky et al.
[38]. As we explained in Sec. II, the vanishing of the total
T2ð0Þ is the consequence of momentum and angular
momentum conservation.
The flavor-singlet g0A, which is the quark spin contribu-

tion to the nucleon, has been calculated before on the same
lattice [2]. We can subtract it from the total quark angular
momentum fraction 2J to obtain the orbital angular
momentum fraction 2L for the quarks. As we see in
Table IV, the orbital angular momentum fractions 2L for
the u and d quarks in the CI have different signs, and they
add up to zero, i.e., 0.01(10). This is the same pattern seen
with dynamical fermions configurations with light quarks
[11–15]. The large 2L for the u=d and s quarks in the DI is
due to the fact that g0A in the DI is large and negative, i.e.,
−0.12ð1Þ for each of the three flavors. Altogether, the quark
orbital angular momentum constitutes a fraction of 0.47
(13) of the nucleon spin. The majority of it comes from the
DI. The quark spin fraction of the nucleon spin is 0.25(12),
and the glue angular momentum contributes a fraction of
0.28(8). We show all the different contributions to the
momentum, angular momenta, and orbital angular
momenta in Figs. 6(a)–6(c). The left panels show the
combinations of u and d contributions from CI and DI
separately, while the right panels show the contributions

TABLE IV. Renormalized values in the MS scheme at μ ¼ 2 GeV.

CIðuÞ CIðdÞ CIðuþ dÞ DIðu=dÞ DIðsÞ Glue

hxi 0.413(38) 0.150(19) 0.565(43) 0.038(7) 0.024(6) 0.334(55)
T2ð0Þ 0.286(108) −0.220ð77Þ 0.062(21) −0.002ð2Þ −0.001ð3Þ −0.056ð51Þ
2J 0.700(123) −0.069ð79Þ 0.628(49) 0.036(7) 0.023(7) 0.278(75)
gA 0.91(11) −0.30ð12Þ 0.62(9) −0.12ð1Þ −0.12ð1Þ —
2L −0.21ð16Þ 0.23(15) 0.01(10) 0.16(1) 0.14(1) —
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from the u and d quarks (with both CI and DI combined
together).
We note from Table IV that the orbital angular momenta

contribution from each quark flavor is strongly dependent
on the corresponding quark spin, particularly in the case of
DI. As opposed to earlier calculations [2–4], the recent
lattice calculations with light dynamical fermions [5–7]
have obtained smaller quark spin contributions from DI.
However, preliminary study [8] of the anomalous Ward
identity with light valence overlap fermions on 2þ 1-flavor
dynamical domain wall fermion sea configurations sug-
gests that the DI contributions are not small, though this
study has larger error bars. More detailed dynamical

fermion calculations with controlled statistical and system-
atic errors are needed to settle this issue.
We should point out that a smallΔuþ Δdþ Δs from the

DI does not explain the small quark spin g0A ¼ ðΔuþ
ΔdÞðCIÞ þ ðΔuþ Δdþ ΔsÞðDIÞ ∼ 0.25 from the global
fitting of DIS [1], in view of the fact that most of the lattice
calculation of ðΔuþ ΔdÞðCIÞ is ∼0.6, which is much
larger than 0.25. On the other hand, one could imagine that
ðΔuþ ΔdÞðCIÞ may turn out to be smaller than 0.6 when
the quark mass is close to the physical one in future lattice
calculations, such as in Ref. [14], where ðΔuþ ΔdÞðCIÞ is
found to be much smaller than 0.6 when the chiral
extrapolation of the lattice results is carried out.

(a)

(b)

(c)

FIG. 6 (color online). Pie charts for the quark and gluon contributions to the (a) momentum fraction, (b) angular momenta, and
(c) orbital angular momenta. The left panels show the quark contributions separately for CI and DI, and the right panels show the quark
contributions for each flavor with CI and DI summed together for u and d quarks.

LATTICE STUDY OF QUARK AND GLUE MOMENTA AND … PHYSICAL REVIEW D 91, 014505 (2015)

014505-17



However, this will not explain the octet g8A ¼
ðΔuþ ΔdÞðCIÞ þ ðΔuþ Δd − 2ΔsÞðDIÞ. When both the
CI and DI are small, the calculated g8A will be smaller than
the experimental value of g8A ¼ 0.579ð25Þ [84]. Thus, it is
difficult to explain simultaneously g0A and g8A with a small
ðΔuþ Δdþ ΔsÞ in DI. To clarify this issue, a full QCD
simulation for g0A and g8A (both CI and DI) around the
physical point by taking into account the SUð3Þ breaking
effect is necessary.
In the constituent quark model, the proton spin comes

entirely from the quark spin. On the other hand, in the
skyrmion, the total proton spin is from the collective
rotational motion of the pion field [85]. What we find in
the present calculation seems to suggest that the QCD
picture, aside from the glue contribution, is somewhere in
between these two models. Following Wilson’s renormal-
ization group approach to effective theories, it is suggested
[86] that the effective theory for baryons between the scale
of 4πfπ and ∼300 MeV may be a chiral quark model with
renormalized couplings and renormalized meson, quark,
and gluon fields that preserve chiral symmetry. Models like
the little bag model with the skyrmion outside the MIT bag
[87], the cloudy bag model [88], and quark chiral soliton
model [89] could possibly delineate the pattern of division
among the components of the proton spin with large quark
orbital angular momentum contribution.

IX. SUMMARY

In summary, we have carried out a complete calculation
of the quark and glue momentum and angular momentum
in the nucleon for the first time on a quenched 163 × 24
lattice with three quark masses. The calculation includes
both the CI and DI of the three-point functions for the quark
energy-momentum tensor. We have used complex Z2 noise
to estimate the quark loops in the DI and the gauge-field
tensor from the overlap operator in the glue energy-
momentum tensor. We find that reasonable signals can
be obtained for the glue operator constructed from the
overlap Dirac operator. After chiral extrapolation, the
momentum and angular momentum sum rules are used
to normalize the quark and glue momentum and angular
momentum fractions on the lattice. The renormalization
and mixing of the quark and glue energy-momentum
operators are obtained through one-loop perturbation,
and the final results are reported in the MS scheme at
2 GeV. The renormalized momentum fractions for the
quarks are 0.565(43) for the CI and 0.100(15) for the DI.
The glue momentum fraction is 0.334(55). We have
demonstrated that the vanishing anomalous gravitomag-
netic moment [see Eq. (19)] is a consequence of momen-
tum and angular momentum conservation.
After subtracting the quark spin (g0A) from a previous

calculation on the same lattice [2] from the angular

momentum 2J, we obtain the orbital angular fraction
2L. In the CI, we find that the u quark contribution is
negative, while the d quark contribution is positive. The
sum is 0.01(10), which is small. This behavior is the same
as observed in dynamical calculation with light quarks
[11–15]. The majority of the quark orbital angular momen-
tum turns out to come from the DI because the quark spin
from the DI is large and negative for each of the three
flavors. In the end, we find the quark orbital angular
momentum, the quark spin, and glue angular momentum
fractions of the nucleon spin are 0.47(13), 0.25(12), and
0.28(8), respectively.
Finally, this work should be extended to dynamical

fermion calculations with light quarks and continuum
and large volume limits to control the systematic errors
of lattice QCD. We are in the process of carrying out the
same calculation with the valence overlap fermion on
2þ 1-flavor dynamical domain wall fermion sea configu-
rations to remove the systematic errors due to the quenched
approximation.
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APPENDIX: SOLVING SYSTEM OF
KINEMATICAL EQUATIONS

In this section, we will discuss how to solve a system of
kinematical equations to extract T1, T2, and T3. As
mentioned in Sec. III F, we need to combine several
kinematics into the ratios in Eq. (41) for CI or in
Eq. (45) for DI at a particular q2 in order to separate
T1ðq2Þ, T2ðq2Þ, and T3ðq2Þ. Using the available momenta,
we obtain several ratios (for both polarized and unpolarized
nucleons) for all the three directions of the operator, T 4i, at
every q2. From these ratios, one can set up kinematical
equations to solve for T1, T2, and T3. For simplicity,
we will consider the CI only as we have considered
~p0 ¼ ð1; 0; 0Þ in this case in order to reduce computational
cost. The procedure for DI will be similar except that we
will have more available momenta.
If we consider the lowest q2 (¼ 0.1460 for κ ¼ 0.154)

and ~p0 ¼ ð1; 0; 0Þ, we obtain the following five different
equations as
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1

4
½Runpol

41 ð0; 1; 0Þ þ Runpol
41 ð0;−1; 0Þ þ Runpol

41 ð0; 0; 1Þ þ Runpol
41 ð0; 0;−1Þ�

¼ 1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEp þmÞp

×
h
T1ðq2Þfp0

1ðEp0 þ EpÞð3Ep0 þ Ep þ 4mÞg

þ 1

2m
T2ðq2Þfp0

1ðEp0 − EpÞ2ðEp0 þ EpÞ − p0
1q

2
2ð3Ep0 þ Ep þ 2mÞg�; ðA1Þ

1

4
½Runpol

42 ð0; 1; 0Þ − Runpol
42 ð0;−1; 0Þ þ Runpol

43 ð0; 0; 1Þ − Runpol
43 ð0; 0;−1Þ�

¼ 1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEp þmÞp

×

�
T1ðq2Þfð−2q2ÞðEp0 þmÞðEp0 þ EpÞg þ

1

2m
T2ðq2Þfð−q2ÞðEp0 þmÞðE2

p0 þ E2
p − q22Þg

þ 2

m
T3ðq2Þfq2ðEp0 − EpÞðEp0 þmÞðEp − Ep0 þ 2mÞg

�
; ðA2Þ

1

2
½Rpol

41 ð0; 1; 0Þ − Rpol
41 ð0;−1; 0Þ� ¼

1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEp þmÞp �

T1ðq2Þfð−q2ÞððEp0 þmÞðEp0 þ EpÞ þ 2p1
02Þg

þ 1

2m
T2ðq2Þfð−q2ÞðEp0 þmÞ2ðEp0 þ EpÞ − p0

1q
2
2ð3Ep0 þ 3Ep þ 4mÞg

�
; ðA3Þ

1

2
½Rpol

42 ð0;1;0Þ−Rpol
42 ð0;−1;0Þ� ¼

1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEpþmÞp

×

�
T1ðq2Þfð−p0

1ÞðE2
p0 −E2

p −q22Þgþ
1

2m
T2ðq2Þfð−p0

1ÞðEp0 þEpþ 2mÞðE2
p0 −E2

p −q22Þg

þ 2

m
T3ðq2Þfp0

1q
2
2ðEp0 −EpÞg

�
; ðA4Þ

1

2
½Rpol

42 ð0; 0; 1Þ − Rpol
42 ð0; 0;−1Þ� ¼

1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEp þmÞp

×

�
T1ðq2Þfð−p0

1ÞðE2
p0 − E2

pÞg þ
1

2m
T2ðq2Þfð−p0

1ÞðE2
p0 − E2

pÞðEp0 þ Ep þ 2mÞ

þ ð−p0
1ÞðEp0 þ EpÞq23g

�
; ðA5Þ

where R’s are the ratios in Eq. (41); e.g., the notation
Runpol
41 ð0; 1; 0Þ signifies the ratio for the unpolarized three-

point functions corresponding to the T 41 operator with a
momentum transfer of ~q ¼ ð0; 1; 0Þ.
For convenience, we shall write the Eqs. (A1), (A2),

(A3), (A4), and (A5) in the following manner:

R1 ¼ a1;1T1ðq2Þ þ a2;1T2ðq2Þ þ a3;1T3ðq2Þ; ðA6Þ

R2 ¼ a1;2T1ðq2Þ þ a2;2T2ðq2Þ þ a3;2T3ðq2Þ; ðA7Þ

R3 ¼ a1;3T1ðq2Þ þ a2;3T2ðq2Þ þ a3;3T3ðq2Þ; ðA8Þ

R4 ¼ a1;4T1ðq2Þ þ a2;4T2ðq2Þ þ a3;4T3ðq2Þ; ðA9Þ

R5 ¼ a1;5T1ðq2Þ þ a2;5T2ðq2Þ þ a3;5T3ðq2Þ: ðA10Þ

Here, ai;j’s are the constant coefficients of T1ðq2Þ, T2ðq2Þ,
and T3ðq2Þ, which include the factor, 14 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep0 ðEp0þmÞEpðEpþmÞ
p .

However, the Eqs. (A6), (A7), (A8), (A9), and (A10),
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though different, are numerically correlated since they are
computed on the same set of configurations. Such corre-
lations are taken into account by constructing a covariance
matrix, C, between these equations. This allows us to
define the corresponding χ2 as

χ2 ¼
XN
ij

½Ri − ða1;iT1 þ a2;iT2 þ a3;iT3Þ�

× C−1
ij ½Rj − ða1;jT1 þ a2;jT2 þ a3;jT3Þ�; ðA11Þ

where N is the number of equations that is equal to 5 in this
case. We then solve for T1, T2, and T3 by imposing the
following minimization conditions on the χ2 obtained from
Eq. (A11):

∂χ2
∂T1

¼ 0;
∂χ2
∂T2

¼ 0;
∂χ2
∂T3

¼ 0: ðA12Þ

This results in the three equations

R0
1 ¼ a11T1 þ a12T2 þ a13T3; ðA13Þ

R0
2 ¼ a21T1 þ a22T2 þ a23T3; ðA14Þ

R0
3 ¼ a31T1 þ a32T2 þ a33T3; ðA15Þ

where

amk ¼ 2am;iC−1
ij ak;j; R0

k ¼ 2ak;iC−1
ij Rj; ðm;k¼ 1;2;3Þ;

ðA16Þ

and the sum over i; j is implied according to Einstein’s
summation rule. Solving Eqs. (A13), (A14) and (A15), we
can separate T1, T2 and T3 at that q2.
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