
Quark number densities at imaginary chemical potential in Nf ¼ 2 lattice
QCD with Wilson fermions and its model analyses

Junichi Takahashi,1,* Hiroaki Kouno,2,† and Masanobu Yahiro1,‡
1Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan

2Department of Physics, Saga University, Saga 840-8502, Japan
(Received 28 October 2014; published 8 January 2015)

We investigate the temperature (T) dependence of quark number densities (nq) at imaginary and real
chemical potential (μ) by using Nf ¼ 2 lattice QCD and the hadron resonance gas (HRG) model. Quark
number densities are calculated at imaginary μ with lattice QCD (LQCD) on an 82 × 16 × 4 lattice with the
clover-improved Nf ¼ 2 Wilson fermion action and the renormalization-group-improved Iwasaki gauge
action. The results are consistent with the previous results of the staggered-type quark action. The nq
obtained are extrapolated to real μ by assuming the Fourier series for the confinement region and the
polynomial series for the deconfinement region. The extrapolated results are consistent with the previous
results of the Taylor expansion method for the reweighting factor. The upper bound ðμ=TÞmax of the region
where the extrapolation is considered to be reliable is estimated for each temperature T. We test whether T
dependence of nucleon and Δ-resonance masses can be determined from LQCD data on nq at imaginary μ
by using the HRG model. In the test calculation, nucleon and Δ-resonance masses reduce by about 10% in
the vicinity of the pseudocritical temperature.
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I. INTRODUCTION

There are many interesting topics on quantum chromo-
dynamics (QCD) at high density. The observation [1] of a
two-solar-mass neutron star has an impact on the equation
of state (EOS) of dense matter and the QCD phase diagram
at high density. The experiments of relativistic heavy-ion
collisions, for example the beam energy scan experiments,
are exploring QCD not only at finite temperature T but also
at finite quark-chemical potential μ [2,3]. Lattice QCD
(LQCD) is the first-principle calculation to study QCD, but
it has the serious sign problem at finite μ.
In LQCD, the fermion determinant detMðμ=TÞ becomes

complex for finite real μ, because

ðdetMðμ=TÞÞ� ¼ detMð−μ�=TÞ ¼ detMð−μ=TÞ: ð1Þ

This interferes with the use of Monte Carlo simulations
based on the importance sampling. For this reason, several
methods have been proposed to avoid the sign problem
[4,5]. Very recently, the complex Langevin method [6–9]
and the Lefschetz thimble theory [10,11] have attracted
much attention as the method to go beyond μ=T ¼ 1.
One of the methods to avoid the sign problem is the

imaginary-μ approach. For purely imaginary chemical
potential μ ¼ iμI, it is convenient to introduce the dimen-
sionless chemical potential θ ¼ μI=T. The first equality of
Eq. (1) shows that the fermion determinant detMðiθÞ is real

for imaginary μ. This makes LQCD simulations feasible
there. Observables at real μ are extracted from those at
imaginary μ by assuming functional forms for the
observables.
In the imaginary μ region, QCD has two characteristic

properties: one is the Roberge-Weiss (RW) periodicity and
the other is the RW phase transition [12]. Figure 1 shows a
schematic graph for the QCD phase diagram in the T − θ
plane. The QCD grand partition function ZðθÞ has a
periodicity of 2π=Nc in θ,

ZðθÞ ¼ Z

�
θ þ 2πk

Nc

�
; ð2Þ

where Nc is the number of colors and k ¼ 1;…; Nc. This is
a remnant of ZNc

symmetry in pure gauge theory and is
now called the RW periodicity. Meanwhile, the RW
transition is the first-order phase transition appearing at
T higher than some temperature TRW and θ ¼ π=Nc. This
transition line and its ZNc

images are plotted by the solid
lines in Fig. 1. The point located at ðT; θÞ ¼ ðTRW; π=NcÞ
is called the RW end point. Meanwhile, the dashed line
represents the transition line of confinement/deconfinement
crossover. The pseudocritical temperature TcðθÞ is a func-
tion of θ, and the value at θ ¼ 0 [13] is denoted by Tc0. As
shown later, TRW is located between 1.08 and 1.20Tc0, The
order parameter of the RW transition is a C-odd quantity,
such as the phase of the Polyakov loop or the quark number
density [14], where C means charge conjugation. The
existence of the RW transition and the RW periodicity is
numerically confirmed with LQCD simulations [15–20]
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and the underlying mechanism is clearly understood with
the effective model [14,21,22] by introducing a new
concept of extended ZNc

symmetry.
The quark number density nq is a fundamental quantity

to study high-density physics and important in determining
the EOS at finite real μ. The EOS plays an essential role in
investigating the structure of neutron stars. Moreover, nq is
useful to determine the strength of vector-type interaction
in the effective model [23,24]. For small real μ=T, the quark
number density was calculated with the Taylor expansion
method for the reweighting factor in which either the
staggered-type [25] or the Wilson-type quark action [26] is
taken. The quark number density is also computed at
imaginary μ in Refs. [17,18,27–29] with the staggered-
type quark action, and nq at real μ is deduced from that at
imaginary μ by assuming analytic forms for nq.
In this paper, we investigate the μ dependence of nq at

both imaginary and real μ. We first perform LQCD
simulations at imaginary μ with the Wilson-type quark
action since the quark number density at imaginary μ was
not calculated with the Wilson-type quark action. LQCD
simulations at imaginary μ do not require any special
prescription in numerical calculations since there is no sign
problem. The nq obtained at imaginary μ are extrapolated to
the real μ region by assuming functional forms for nq. The
extrapolated results are confirmed to be consistent with
the previous results [26] of the Taylor expansion method for
the reweighting factor. The upper bound ðμ=TÞmax of the
region where the extrapolation is considered to be reliable
is estimated for each T.
The hadron resonance gas (HRG) model is reliable in the

confinement region. For the 2þ 1-flavor case at zero
chemical potential, in fact, it is shown in Ref. [30] that
the model well reproduces LQCD data on pressure at
T < 1.2Tc0. As shown by the dashed line in Fig. 1, the
pseudocritical temperature TcðθÞ of deconfinement tran-
sition increases from Tc0 to TRW as θ increases from zero
to π=Nc. As for real μ, meanwhile, the pseudocritical
temperature TcðμÞ decreases as μ increases. When μ varies

from the purely imaginary value to the real value with T
fixed at Tc0, the system is, thus, in the confinement phase
for imaginary μ and in the deconfinement phase for real μ.
Using this property, one can suggest that T dependence of
nucleon and Δ-resonance masses in the vicinity of Tc0 can
be determined from nq at imaginary μ by using the HRG
model. We test how the suggestion works in this paper.
Actual LQCD simulations are done on an 82 × 16 × 4

lattice with the clover-improved two-flavor Wilson fermion
action and the renormalization-group-improved Iwasaki
gauge action. We confirmed that the nq calculated on an
82 × 16 × 4 lattice are consistent with the previous results
[18,29] calculated on a 163 × 4 lattice. We then adopted an
82 × 16 × 4 lattice to reduce simulation time and take more
trajectories. We consider two temperatures, T=Tc0 ¼ 0.93
and 0.99, in the confinement region and four temperatures,
T=Tc0 ¼ 1.08, 1.20, 1.35, and 2.07, in the deconfinement
region. Following the previous LQCD simulation [26],
we compute nq along the line of constant physics at
mPS=mV ¼ 0.80, where mPS and mV are pseudoscalar-
and vector-meson masses, respectively. This corresponds to
the case of the pion mass mπ ∼ 616 MeV and the quark
mass mq ∼ 130 MeV [24] for Tc0 ∼ 171 MeV [31]. The
analytic continuation is carried out with the Fourier series
for T < Tc0 and the polynomial series for T > TRW.
This paper is organized as follows. In Sec. II, we explain

the lattice action, the quark number density, and the
analytic continuation. In Sec. III, we show our simulation
parameters and numerical results for nq at both imaginary
and real μ. In Sec. IV, we test whether T dependence of
nucleon and Δ-resonance masses can be determined from
LQCD data on nq at imaginary μ by using the HRG model.
Section V is devoted to a summary.

II. FORMULATION

A. Lattice action

We use the renormalization-group-improved Iwasaki
gauge action Sg [32] and the clover-improved two-flavor
Wilson quark action Sq [33] defined by

S ¼ Sg þ Sq; ð3Þ

Sg ¼ −β
X
x

 
c0

X4
μ<ν;μ;ν¼1

W1×1
μν ðxÞ þ c1

X4
μ≠ν;μ;ν¼1

W1×2
μν ðxÞ

!
;

ð4Þ

Sq ¼
X
f¼u;d

X
x;y

ψ̄f
xMx;yψ

f
y; ð5Þ

where β ¼ 6=g2 for the gauge coupling g, c1 ¼ −0.331,
c0 ¼ 1 − 8c1, and

FIG. 1 (color online). QCD phase diagram in the imaginary μ
region. The solid and dashed lines stand for the RW phase
transition and the deconfinement crossover, respectively.
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Mx;y ¼ δxy − κ
X3
i¼1

fð1 − γiÞUx;iδxþî;y þ ð1þ γiÞU†
y;iδx;yþîg

− κfeμ̂ð1 − γ4ÞUx;4δxþ4̂;y þ e−μ̂ð1þ γ4ÞU†
y;4δx;yþ4̂g

− δxycSWκ
X
μ<ν

σμνFμν: ð6Þ

Here κ is the hopping parameter, μ̂ is the quark chemical
potential in lattice units, and the lattice field strength Fμν is
defined as Fμν ¼ ðfμν − f†μνÞ=ð8iÞ with fμν the standard
clover-shaped combination of gauge links. For the clover
coefficient cSW, we take the mean-field value estimated
from W1×1 in the one-loop level: cSW ¼ ðW1×1Þ−3=4 ¼
ð1 − 0.8412β−1Þ−3=4 [32]. The value of κ is determined at
μ ¼ 0 for each β along the line of constant physics with
mPS=mV ¼ 0.80 [31,34,35].

B. Quark number density

The quark number density nq is defined as

nq
T3

¼ 1

VT2

∂
∂μ lnZ ð7Þ

¼ NfN3
t

NV
tr

�
M−1 ∂M

∂μ̂
�
; ð8Þ

where V is the volume, Nf is the number of flavors, Nt is
the temporal lattice size, NV is the lattice volume, and M
is the fermion matrix. We apply the random-noise method
for the trace in Eq. (8). The number of noise vectors is about
4,000. The partition function Z is μ even (C even), so that nq
is μ odd (C odd) from Eq. (7). This means that nq is purely
imaginary for imaginary μ; actually,

n�q ¼
�
1

V
∂ lnZ
∂ðiθÞ

��
¼ 1

V
∂ lnZ
∂ð−iθÞ ¼ −nq: ð9Þ

We have confirmed in our LQCD simulations that the real
part of nq is zero at imaginary μ. For later convenience, we
represent the imaginary part of nq by nIq: nIq ¼ ImðnqÞ.

C. Analytic continuation

Our final interest is nq at real μ. We then extrapolate the
nq calculated at imaginary μ with LQCD to the real μ
region, assuming some functional forms for nq. As for the
pseudocritical line, it is shown in Refs. [20,36–38] that the
terms of order higher than μ2 are necessary.
In the imaginary-μ region, nq is a θ-odd function with the

RW periodicity. We then consider only a period −π=3 <
θ ≤ π=3 for simplicity. In the confinement region at
T < Tc0, the quark number density is smooth for any θ,
indicating that nq ¼ 0 at θ ¼ 0;�π=3 [14,21,22]. Hence nq
can be described with good accuracy by a partial sum
SnFðT; θÞ of the Fourier series,

nqðT; iθÞ
T3

≈ iSnFðT; θÞ ¼ i
Xn
k¼1

aðkÞF ðTÞ sin ð3kθÞ; ð10Þ

where the superscript n of SnFðT; θÞ represents the highest

order in the partial sum. The coefficients aðkÞF ðTÞ are
obtained by fitting the function (10) to LQCD data at
imaginary μ ¼ iμI. The analytic continuation from μ ¼ iμI
to μ ¼ μR can be made by replacing iμI=T with μR=T in
Eq. (10):

nqðT; μR=TÞ
T3

≈ gnF

�
T;

μR
T

�

¼
Xn
k¼1

aðkÞF ðTÞ sinh
�
3k

μR
T

�
: ð11Þ

Here note that the coefficients aðkÞF ðTÞ have already been
determined at imaginary μ.
In the region Tc0 < T < TRW, the system is in the

deconfinement region for small θ but in the confinement
region for large θ near π=3, as shown in Fig. 1. Because of
this property, the θ dependence of nq is complicated and
makes the analytic continuation difficult. We then do not
perform the analytic continuation in this region.
In the deconfinement region at T > TRW, the quark

number density is discontinuous at θ ¼ �π=3 where the
first-order RW phase transition takes place; note that nq is
the order parameter of the RW first-order transition [14].
Owing to this property, nq monotonically increases with θ,
as shown later in Fig. 2. This suggests that nq can be
described with good accuracy by a partial sum S2n−1p ðT; θÞ
of the polynomial series,

nqðT; iθÞ
T3

≈ iS2n−1p ðT; θÞ ¼ i
Xn
k¼1

að2k−1Þp ðTÞθ2k−1; ð12Þ

where the superscript n of S2n−1p ðT; θÞ represents the
highest order in the partial sum. Again, the analytic

FIG. 2 (color online). μI=T dependence of nIq=T3 at various
values of T. The LQCD data are shown by symbols with error
bars, although the error bars are quite small.
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continuation is made by replacing iμI=T with μR=T in
Eq. (12):

nqðT; μR=TÞ
T3

≈ g2n−1p

�
T;

μR
T

�

¼
Xn
k¼1

ð−1Þðk−1Það2k−1Þp ðTÞ
�
μR
T

�
2k−1

: ð13Þ

III. NUMERICAL RESULTS

Full QCD configurations with Nf ¼ 2 dynamical quarks
were generated with the hybrid Monte Carlo algorithm on a
lattice of Nx × Ny × Nz × Nt ¼ 82 × 16 × 4. The step size
of the molecular dynamics is δτ ¼ 0.02 and the step
number is Nτ ¼ 50. The acceptance ratio is more than
95%. We generated about 32,000 trajectories and removed
the first 4,000 trajectories for the thermalization of all the
parameters and measured nq at every 100 trajectories. The
relation of parameters κ and β to the corresponding T=Tc0
was determined in Refs. [31,34,35]; see Table I for the
relation.

A. Quark number density at imaginary μ

Figure 2 shows nIq=T3 as a function of θ for all the
temperatures we consider. The LQCD data are plotted by
symbols with error bars, although the errors are quite small.
The number density nIq should be zero at θ ¼ π=3 below
TRW but finite above TRW, since nIq is the order parameter
of the first-order RW phase transition. One can see from
this fact that TRW is located between 1.08 and 1.2Tc0. The
quark number density nIq=T3 behaves as the sine function
for T < Tc0, but monotonically increases up to θ ¼ π=3 for
T > TRW. As for T ¼ 1.08Tc0, the system is in the
deconfinement region for θ < 0.8 but in the confinement
region for 0.8 < θ < π=3, since nIq=T3 increases monoton-
ically up to θ ∼ 0.7 but decreases to zero for θ > 0.8. This
result is consistent with that of the staggered-type fermion
in Ref. [29]. The present result is, thus, independent of the
fermion action taken.

First we consider the case of T < Tc0 and determine the

coefficients aðkÞF ðTÞ of the Fourier series from the nq
calculated at imaginary μ with LQCD. In principle, nq is
described as an infinite series of sine functions for
imaginary μ and of hyperbolic sine functions for real μ,
as shown in Eqs. (10) and (11). The partial sum is valid
only when the series converges. Particularly for real μ, the
hyperbolic sine functions increase rapidly as μ=T becomes

large. In this sense, it is important that the coefficients aðkÞF
become small rapidly as k increases.
In Fig. 3, the results of χ2 fitting are compared with the

LQCD results. Here, two cases of S1F and S2F are plotted by
dashed and solid curves, respectively. The two results well
reproduce the LQCD data.
The coefficients obtained are tabulated in Table II for

three cases of S1F, S
2
F, and S

3
F and two cases of T ¼ 0.93Tc0

and 0.99Tc0, together with the values of χ2 per degree of
freedom (dof). As for T ¼ 0.93Tc0, the absolute value of

að2ÞF is much smaller than að1ÞF in S2F, but a
ð3Þ
F is comparable

to the absolute value of að2ÞF in S3F. In addition, the χ2=dof
value little changes between S2F and S3F. The result of S

2
F is,

thus, acceptable, but that of S3F is not. Similar discussion is
possible for T ¼ 0.99Tc0; note that the absolute value of

að2ÞF is comparable to that of að3ÞF in S3F if the error ranges of

að2ÞF and að3ÞF are taken into account. As shown in Fig. 3,
moreover, the deviation of LQCD data from the solid line
(the result of S2F) is rapidly oscillating with θ and cannot be
reproduced by the next-order term sinð9θÞ. Thus, the

coefficients higher than að2ÞF may not be determined from
the present LQCD data. We then consider S1F and S2F as the
extrapolation function from imaginary μ to real μ.
Next we consider the case of T > TRW and determine the

coefficients að2k−1Þp ðTÞ of the polynomial series. In Fig. 4,
the fitting results are compared with LQCD data for S3p in

TABLE I. Summary of the simulation parameter sets deter-
mined in Refs. [31,34,35]. Note that Tc0 ≃ 171 MeV, where Tc0
is the pseudocritical temperature of deconfinement transition at
μ ¼ 0. In the parameter setting, the lattice spacing a is about
0.14–0.2 fm.

κ β T=Tc0

0.141139 1.80 0.93(5)
0.140070 1.85 0.99(5)
0.138817 1.90 1.08(5)
0.137716 1.95 1.20(6)
0.136931 2.00 1.35(7)
0.135010 2.20 2.07(10)

FIG. 3 (color online). Results of χ2 fitting to LQCD data for the
case of T < Tc0. The results of S1F and S2F are plotted by dashed
and solid lines, respectively. LQCD data are shown by symbols
with error bars.
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panel (a) and for S5p in panel (b). For each case of
T ¼ 1.20Tc0, 1.35Tc0, and 2.07Tc0, two dashed lines stand
for the upper and lower bounds of χ2 fitting, respectively.
The fitting results well reproduce LQCD data. The resulting

coefficients að2k−1Þp ðTÞ are tabulated in Table III for three
cases of S3p, S5p, and S7p, together with the χ2=dof values.
For each temperature, S7p has the smallest χ2=dof value
among S3p, S5p, and S7p. Particularly at T ¼ 1.35Tc0, the
value is almost one. Nevertheless, for each temperature the

absolute value of að7Þp is comparable to that of að5Þp in S7p,

whereas the absolute value of að5Þp is smaller than that of

að3Þp in S5p by about an order of magnitude. We also
performed a fit with ratios of polynomials to take account

of the terms of order higher than að7Þp , following Ref. [37].
The resulting χ2=dof value is much larger than the case of

S7p. This may indicate that að7Þp and its higher-order
coefficients cannot be determined properly from the present
LQCD data. We then use S3p and S5p as the extrapolation
function from imaginary μ to real μ.

B. Quark number density at real μ

First we consider the case of T=Tc0 < 1. As the
extrapolation function from imaginary μ to real μ, we
consider g1F and g2F. Figure 5 shows the μ=T dependence of
nq=T3 for T ¼ 0.99Tc0. The result of the extrapolation is

shown by a pair of lines; the two lines correspond to the
upper and lower bounds of the extrapolation and the

uncertainty comes from the errors in aðkÞF . The g2F case
(solid line) has a larger error than the g1F case (dashed line),

because the former error comes from both að1ÞF and að2ÞF but

the latter comes only from að1ÞF . We also use symbols with
error bars to show the previous LQCD result [26] of the
Taylor expansion method for the reweighting factor. In the
previous calculation, nq is described by a polynomial series
of μ=T and the terms up to ðμ=TÞ3 are taken into account.
The result of g2F deviates from that of the Taylor expansion
method at μ=T > 0.8. To clarify what causes the deviation,
in Eq. (11) for g2F, we expand the hyperbolic sine function
into a polynomial series and discard the terms of order
higher than ðμ=TÞ3. We denote the resulting function by ḡ2F.
The result of ḡ2F (dotted line) is consistent with that of the
Taylor expansion method at μ=T < 1. Thus, the difference
between g2F and the Taylor expansion method comes from
the terms of order higher than ðμ=TÞ3, and g2F yields a
correction to the result of the Taylor expansion. From the
fact that the correction is small at μ=T < 0.8, we can
conclude that both the previous result of the Taylor
expansion method and the present result of g2F are reliable
at least at μ=T < 0.8.
Figure 6 shows μ=T dependence of nq=T3 at

T ¼ 0.93Tc0. The definition of lines is the same as in
Fig. 5. The difference between the two results of g1F and g2F

TABLE II. Coefficients of the Fourier series for S1F, S
2
F, and S3F.

T=Tc0 að1ÞF að2ÞF að3ÞF χ2=dof μI=T (fitting range)

0.93 0.250(2) 5.937 0 ∼ π=3
0.93 0.251(2) −0.00457ð216Þ 6.084 0 ∼ π=3
0.93 0.251(2) −0.00526ð219Þ 0.00440(214) 6.290 0 ∼ π=3
0.99 0.718(2) 11.06 0 ∼ π=3
0.99 0.728(3) −0.0179ð26Þ 7.453 0 ∼ π=3
0.99 0.727(3) −0.0137ð30Þ −0.00825ð276Þ 7.288 0 ∼ π=3

FIG. 4 (color online). Results of χ2 fitting to LQCD data for the case of T > TRW. Panels (a) and (b) show the results of S3p and S5p,
respectively. For each temperature, two dashed lines correspond to the upper and lower bounds of the χ2 fitting, respectively. LQCD data
are shown by symbols with error bars.
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reduces as T decreases from 0.99 to 0.93Tc0. The extrapo-
lation of g2F, thus, becomes more reliable as T decreases. As
mentioned above, the g2F extrapolation is reliable at least
at μ=T < 0.8 for T ¼ 0.99Tc0. This means that for

T ¼ 0.93Tc0 as well, the g2F extrapolation is reliable at
least at μ=T < 0.8.
Next we consider the case of T > TRW. As the extrapo-

lation function from imaginary μ to real μ, we consider g3p
and g5p. Figures 7, 8, and 9 show the μ=T dependence of
nq=T3 at T ¼ 1.20Tc0, 1.35Tc0, and 2.07Tc0, respectively.
The result of g3p (g5p) is plotted by a pair of dashed (solid)
lines; the two lines correspond to the upper and lower
bounds of extrapolation. For each temperature, the result of
g3p agrees with the previous result [26] of the Taylor
expansion method for the reweighting factor. In the
Taylor expansion method, nq is described by a polynomial
series and the terms up to ðμ=TÞ3 are taken. The highest
order taken is the same in the g3p extrapolation and the
Taylor expansion method. Thus, the agreement of nq
between the two methods is natural, although the coef-
ficients are determined with different procedures in the two
methods. The difference between g3p and g5p becomes small
as T increases. Contributions of order higher than ðμ=TÞ3,
thus, become small as T increases.

TABLE III. Coefficients of the polynomial series for S3p, S5p, and S7p.

T=Tc0 að1Þp að3Þp að5Þp að7Þp χ2=dof μI=T (fitting range)

1.20 4.437(4) −1.214ð7Þ 13.66 0–1
1.20 4.407(5) −1.024ð27Þ −0.1935ð260Þ 8.472 0–1
1.20 4.427(7) −1.274ð66Þ −0.4458ð1569Þ −0.4229ð1024Þ 7.245 0–1
1.35 4.675(3) −0.9973ð49Þ 6.036 0–1
1.35 4.662(5) −0.9223ð223Þ −0.06736ð1956Þ 5.308 0–1
1.35 4.695(7) −1.295ð67Þ −0.7986ð1469Þ −0.5310ð893Þ 1.011 0–1
2.07 5.174(2) −0.8904ð40Þ 9.161 0–1
2.07 5.177(4) −0.9056ð177Þ 0.01356(1531) 10.21 0–1
2.07 5.158(6) −0.7119ð432Þ 0.4381(932) 0.2819(574) 8.220 0–1

FIG. 6 (color online). μ=T dependence of nq=T3 at
T ¼ 0.93Tc0. See Fig. 5 for the definition of lines. Two cases
of g1F and g2F are plotted.

FIG. 5 (color online). μ=T dependence of nq=T3 at
T ¼ 0.99Tc0. The results of g1F, g

2
F, and ḡ

2
F are plotted by dashed,

solid, and dotted lines, respectively; see the text for the definition
of ḡ2F. For each case, the upper and lower bounds of χ

2 fittings are
shown by a pair of lines. The symbols denote LQCD results of the
Taylor expansion method for the reweighting factor in Ref. [26].

FIG. 7 (color online). μ=T dependence of nq=T3 at
T ¼ 1.20Tc0. Two cases of g3p and g5p are plotted. The upper
and the lower bounds of χ2 fitting are shown by a pair of dashed
lines for g3p and by a pair of solid lines for g5p. The symbols denote
LQCD results of the Taylor expansion method for the reweighting
factor in Ref. [26].
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Nowwe estimate the upper bound ðμ=TÞmax of the region
in which the extrapolation is considered to be reliable and
investigate T dependence of ðμ=TÞmax for T > TRW. For
this purpose, we define the relative difference δ between g3p
and g5p as δ ¼ jg5p − g3pj=g5p and assume that the extrapo-
lation is reliable when δ < 0.1. The relative difference δ
exceeds 10% at μ=T ≃ 0.72 for T ¼ 1.20Tc0, μ=T ≃ 1.2
for T ¼ 1.35Tc0 and μ=T ≃ 2.6 for T ¼ 2.07Tc0, as shown
in Fig. 10. The upper bound ðμ=TÞmax of the reliable
extrapolation is plotted as a function of T=Tc0 in Fig. 11.
The upper bound goes up as T increases, indicating that
contributions of order higher than ðμ=TÞ3 become less
important as T becomes high. Thus, the present result of g3p
and the previous result [26] of the Taylor expansion method
become more reliable as T increases.

IV. HADRON RESONANCE GAS MODEL

Now we consider the confinement region at θ ≥ 0 and
test whether nucleon and Δ-resonance masses can be
determined from the present LQCD results at θ ≥ 0 by
using the HRG model particularly in the vicinity of Tc0.
The HRG model considers noninteracting hadrons and

FIG. 8 (color online). μ=T dependence of nq=T3 at
T ¼ 1.35Tc0. Two cases of g3p and g5p are plotted. See Fig. 7
for the definition of lines. The symbols denote LQCD results of
the Taylor expansion method for the reweighting factor in
Ref. [26].

FIG. 9 (color online). μ=T dependence of nq=T3 at
T ¼ 2.07Tc0. Two cases of g3p and g5p are plotted. See Fig. 7
for the definition of lines. The symbols denote LQCD results of
the Taylor expansion method for the reweighting factor in
Ref. [26].

FIG. 10 (color online). μ=T dependence of nq=T3 and the
region of δ ≤ 0.1 for (a) T ¼ 1.35Tc0 and (b) T ¼ 2.07Tc0. The
relative difference δ exceeds 10% at μ=T ¼ ðμ=TÞmax represented
by the vertical dotted line. The dashed and solid lines denote the
mean values of g3p and g5p, respectively.

FIG. 11 (color online). T dependence of the upper bound
ðμ=TÞmax of the reliable extrapolation for the case of T > TRW.
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resonances, each classified with species i, i.e., with mass
mi, baryon number Bi and isospin I3i. For the 2þ 1-flavor
case at zero chemical potential, the HRG model well
reproduces LQCD data on pressure at T < 1.2Tc0 [30].
This means that the HRG model is applicable at T < Tc0
even if θ is finite, because TcðθÞ > Tc0 for any finite θ. The
pressure of the model is obtained by

pHRG ¼ −
T
V

X
i∈meson

lnZM
i ðT; V; μiÞ

−
T
V

X
i∈baryon

lnZB
i ðT; V; μiÞ ð14Þ

with

lnZM=B
i ¼ �Vgi

2π2

Z
∞

0

dpp2 ln ð1∓zie−ϵi=TÞ ð15Þ

for the energy ϵi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmi

p
, the degeneracy factor gi,

and the fugacity

zi ¼ eμi=T ¼ exp

�
BiμB þ 2I3iμiso

T

�
; ð16Þ

where μBð≡3μÞ and μiso are the baryon and isospin
chemical potentials, respectively. Here we consider only
the case of μiso ¼ 0. The baryon number density is easily
obtained as

nHRGB ¼ −
∂

∂μB p
HRG: ð17Þ

There are lattice artifacts in LQCD simulations. These were
already discussed in Refs. [25,26,39–41]. For small Nt, for
example, thermodynamic quantities exceed the Stefan-
Boltzmann (SB) limit. Since it is not easy to eliminate
the lattice artifact exactly, we take the following simple

prescription. We consider the lattice SB limit that is defined
by the lattice action with massless and free quarks and
normalize LQCD results with the corresponding values in
the lattice SB limit in order to reduce the lattice artifacts;
see Appendix A for the quark number density in the lattice
SB limit. For the HRG model, meanwhile, the quark
number density is normalized by the value in the continuum
SB limit. In the HRG model, we assume that nucleon mass
mN and Δ-resonance mass mΔ depend only on T. The
baryon masses are determined so as to reproduce the LQCD
result. Here we assume that the masses of 24 resonance
states above the mass threshold mB

cut are fixed at 1.8 GeV,
following Ref. [39]. But the contribution of 24 states to nq
is small.
Figure 12 shows the θ dependence of the normalized

quark number density nq=nSB for T ¼ 0.93 and 0.99Tc0.
The HRG-model results (solid lines) well reproduce the θ
dependence of LQCD results (symbols with error bars) for
both cases, T ¼ 0.93 and 0.99Tc0. This implies that mN
and mΔ depend little on θ. The resulting nucleon and
Δ-resonance masses are shown in Table IV, together with
χ2=dof values. The χ2=dof values are close to those for g2F
in Table II. The resulting masses are heavier than the
corresponding physical values because the quark mass is
much heavier than the physical value in our simulations. As
shown in Table IV, bothmN andmΔ decrease by about 10%
as T increases from 0.93 to 0.99Tc0.

FIG. 12 (color online). θ dependence of nq=nSB at T ¼ 0.93
and 0.99Tc0. The cross and square symbols with error bars
represent the LQCD results at T ¼ 0.93 and 0.99Tc0, respec-
tively, whereas the solid lines stand for the HRG model results.

TABLE IV. Results of χ2 fitting for baryon masses mN and mΔ
in the HRG model and χ2=dof values.

T=Tc0 mNðMeVÞ mΔðMeVÞ χ2=dof

0.93 1091 1547 6.625
0.99 940 1385 7.993

FIG. 13 (color online). μ=T dependence of nq=nSB in the real μ
region for T ¼ 0.99Tc0. The symbols with error bars stand for
LQCD results of the Taylor expansion method for the reweighting
factor in Ref. [26], while the solid line is the result of the
HRG model.
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Finally we consider the case of real μ. The HRG
model becomes less reliable as μ increases, because the
pseudocritical temperature TcðμÞ of deconfinement tran-
sition goes down from Tc0 as μ increases from zero.
Figure 13 shows the μ=T dependence of nq=nSB at
T ¼ 0.99Tc0. In the range μ=T < 0.4, the HRG model
result (solid line) is consistent with the previous LQCD
results [26] (symbols with error bars) based on the Taylor
expansion method for the reweighting factor. Beyond the
range, the HRG model overestimates the LQCD results.
The HRG model is, thus, reliable only at μ=T < 0.4 for the
case of T ¼ 0.99Tc0.

V. SUMMARY

We have investigated μ dependence of nq at imaginary
and real μ, performing LQCD simulations at imaginary μ
and extrapolating the results to the real-μ region by
assuming functional forms for nq. LQCD calculations were
done on an 82 × 16 × 4 lattice with the clover-improved
two-flavor Wilson fermion action and the renormalization-
group-improved Iwasaki gauge action. We considered two
temperatures below Tc0 and four temperatures above Tc0.
The quark number density was computed along the line of
constant physics at mPS=mV ¼ 0.80.
For imaginary μ, the quark number density calculated

with the Wilson-type fermion action is consistent with the
previous result [29] based on the staggered-type fermion
action. The LQCD results, thus, do not depend on the
fermion action taken.
We have extrapolated nq at imaginary μ to real μ,

assuming the Fourier series gnF for T < Tc0 and the
polynomial series g2n−1p for T > TRW; here the superscript
n represents the highest order in the partial sum. As for
T ¼ 0.99Tc0, the present result of g2F is consistent with the
previous result [26] of the Taylor expansion method for the
reweighting factor in the range μ=T < 0.8. The extrapola-
tion based on g2F is, thus, reliable at μ=T < 0.8 for
T ¼ 0.99Tc0. Furthermore, the difference between the
two results of g1F and g2F reduces as T decreases from
Tc0, indicating that higher-order contributions become less
important as T decreases. Therefore, the extrapolation
based on g2F is reliable at μ=T < 0.8 for any T less than Tc0.
For T > TRW, the previous study based on the Taylor

expansion method for the reweighting factor has contribu-
tions up to ðμ=TÞ3, but the present g5p extrapolation retains
contributions up to ðμ=TÞ5. Using this advantage of the
present method from the previous method, we have
estimated to what extent the Taylor expansion or the g3p
extrapolation works. The upper bound ðμ=TÞmax of the
reliable extrapolation goes up as T increases from TRW,
because higher-order contributions become less important.
The HRG model is reliable in the confinement region.

For the 2þ 1-flavor case at zero chemical potential, in fact,
the HRG model well reproduces LQCD data on pressure at

T < 1.2Tc0[30]. When μ is varied with T fixed at Tc0, the
system is in the confinement phase at imaginary μ but in the
deconfinement phase at real μ. This means that the HRG
model is more reliable at imaginary μ than at real μ, when T
is fixed at Tc0. We have then tested whether T dependence
ofmN andmΔ in the vicinity of Tc0 can be determined from
LQCD data on nq at imaginary μ by using the HRG model.
The HRG model well reproduces the LQCD results, when
mN and mΔ are assumed to depend on T only. This implies
that mN and mΔ little depend on θð¼ μI=TÞ. In our test
calculation, mN and mΔ reduce by about 10% when T
increases from 0.93Tc0 to 0.99Tc0. We propose this method
as a handy way of determining T dependence of mN and
mΔ in the vicinity of Tc0. This method is practical, since it is
not easy to measure T dependence of pole masses directly
with LQCD simulations.
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APPENDIX: QUARK NUMBER DENSITY FOR
THE WILSON FERMION IN THE MASSLESS

FREE-GAS LIMIT

We consider nq for the Wilson fermion in the lattice SB
limit (the massless free-gas limit). In the high-T limit, we
can consider a quark as a massless and noninteracting
particle, since the effects of finite quark mass and inter-
actions between quarks are negligible there. In the
Appendix of Ref. [26], the lattice SB limit is discussed
except for the quark number density.
The partition function with free Wilson fermions is

given by

Zðκ; μ̂Þ ¼ ðdetMÞNf ; ðA1Þ

Mxy ¼ δxy − κ
X3
i¼1

½ð1 − γiÞδxþî;y þ ð1þ γiÞδx−î;y�

− κ½eþμ̂ð1 − γ4Þδxþ4̂;y þ e−μ̂ð1þ γ4Þδx−4̂;y� ðA2Þ

on an Nx × Ny × Nz × Nt lattice. After the unitary trans-
formation to momentum space, we obtain
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Zð1=8; μ̂Þ ¼
�Y

k

det ~MðkÞ
�

NcNf ðA3Þ

det ~MðkÞ ¼ 16

84

�X
i

sin2ki þ
�
2
X
i

sin2
�
ki
2

��
2

þ 4

�
2
X
i

sin2
�
ki
2

�
þ 1

�
sin2
�
kt − iμ̂

2

��
2

ðA4Þ

in the massless quark limit κ ¼ 1=8, where ~M is the
fermion matrix in momentum space, and

ki ¼
2πji
Ni

; ji ¼ 0;�1;…; Ni=2 ðA5Þ

for the spatial components (i ¼ x; y; z) and

kt ¼
2πðjt þ 1=2Þ

Nt
; jt ¼ 0;�1;…; Nt=2 ðA6Þ

for the time component. The quark number density in the
lattice SB limit is then obtained as

nq
T3

¼ N3
t

NV

∂
∂μ̂ lnZð1=8; μ̂Þ

¼ NcNf
N3

t

NV

X
k

∂ det ~MðkÞ
∂μ̂ ½det ~MðkÞ�−1 ðA7Þ

with

∂ det ~MðkÞ
∂μ̂ ¼ −

1

82

�
2
X
i

sin2
�
ki
2

�
þ 1

�

× ðsinh μ̂ cos kt þ i cosh μ̂ sin ktÞ: ðA8Þ

The quark number density at imaginary μ is obtained by
replacing μ̂ with iμ̂I in Eqs. (A7) and (A8).
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