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We show that the experimental data on jVubj in various B meson decay modes suggest a possibility of
CP-violating right-handed current in the b → u transition. Its consequences in B → ππ; ρρ; DK are
examined and compared with experimental results in order to clarify possible signals of the CP violation in
these decay modes. As a result, we find that the CP-violating right-handed current is consistent with current
experimental data. Its signal might be discovered by precise CP measurements in future experiments.
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I. INTRODUCTION

Left-handedness is the most interesting nature of the
weak charged current. The charged weak bosonW couples
only to the left-handed fermions in the standard model
(SM), and this structure of the SM results in purely left-
handed charged currents. Another notable aspect of the
weak charged current is the Cabibbo-Kobayashi-Maskawa
(CKM) mixing in the quark sector [1,2]. Because of the
CKM mixing the strength of the quark charged current
varies depending on the flavors involved in a transition,
while the left-handedness remains universal apart from tiny
radiative corrections.
New physics (NP) beyond the SM may violate the

universality of the charged current. In particular, NP effects
are expected to be significant for CKM suppressed tran-
sitions if the supposed NP has a different flavor structure
from the SM. Among several CKM suppressed channels,
the b → u transition is most likely to be affected by NP in
this sense. Moreover, we can examine it with the competent
data of B factory experiments.
It was pointed out that a mixture of right-handed current

(RHC) in the b → u charged current explained the dis-
crepancy among magnitudes of the relevant CKM matrix
element, jVubj, determined by various B decay modes
[3–5]. Recently, the Belle Collaboration updated the data
on the pure tauonic B decay, B− → τν̄1 [6], and the new
result seems more consistent with the SM than the previous
one [7].
In this work, we revisit the possibility of RHC in the

b → u transition taking the new Belle data into account. In
Sec. II, we introduce the b → u RHC and explain how it
affects the jVubj determination in leptonic and semileptonic
B decays. Then, we show that the present experimental data
suggest a sizable CP-violating (CPV) RHC in this tran-
sition. According to this observation, we study possible

CPV signals in hadronic B decays, B → ππ, B → ρρ and
B → DK, in the presence of the b → u RHC in Sec. III. We
find that new CPV signals absent in the SM arise in direct
CP asymmetries and the measurement of angles of the
unitarity triangle. Comparing these possible signals of the
RHC with the relevant experimental data, we show that
the b → u CPV RHC is a viable NP scenario. We also
compare the b → u RHC induced by squark mixings in the
minimal supersymmetric standard model (MSSM) to the
experimental constraint obtained in Sec. II. Our conclusion
is given in Sec. IV.

II. EFFECTS OF THE RIGHT-HANDED CURRENT
IN jVubj DETERMINATION

A set of right-handed quark charged currents appears in
the SM once we introduce higher dimensional operators.
The gauge-invariant effective Lagrangian containing the
lowest dimensional operator responsible for the b → u
transition is expressed by

LR ¼ CR

Λ2
~ϕ†iDμϕūRγμbR þ H:c:; ð1Þ

where ϕ is the Higgs doublet, ~ϕ ¼ iσ2ϕ�, Λ represents the
energy scale of NP, and CR is a dimensionless constant that
depends on the details of NP. This Lagrangian leads to the
desired right-handed interaction as a result of the electro-
weak symmetry breaking.
Combined with the ordinary left-handed interaction, the

b → u transition is described by the following modified
charged current Lagrangian:

LCC ¼ −
gffiffiffi
2

p ūγμðVL
ubPL þ VR

ubPRÞbWþ
μ þ H:c:; ð2Þ

where g is the SU(2) gauge coupling, PLðRÞ ¼ ð1∓γ5Þ=2,
and VL

ub denotes the left-handed CKM matrix element. The
effective right-handed CKMmatrix element VR

ub is given by

VR
ub ¼ CRv2=2Λ2 ∼ 3 × 10−3CR

�
3 TeV
Λ

�
2

; ð3Þ
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where v≃ 246 GeV denotes the vacuum expectation value
of ϕ. The known magnitude of the b → u charged current
corresponds to jVL

ubj ∼ 3.6 × 10−3 and the right-handed
component induced by NP at the TeV scale is potentially
comparable.
In the rest of this section, we treat VL

ub and VR
ub as

complex parameters and determine their values using
experimental data of leptonic and semileptonic B meson
decay modes along with the unitarity of the left-handed
CKM matrix VL assuming that no SM interactions besides
the RHC in Eq. (2) are affected by NP. We emphasize that
the nonvanishing relative phase between VL

ub and VR
ub is a

new CPV degree of freedom.

A. B → τν̄

The pure tauonic B decay is a theoretically clean mode to
determine jVubj provided that the B meson decay constant
fB is known accurately enough. The decay rate is written as

ΓðB− → τ−ν̄Þ ¼ G2
FmBm2

τ

8π

�
1 −

m2
τ

m2
B

�
f2BjVexp

ub j2; ð4Þ

where jVexp
ub j is the effective CKM matrix element that is

determined by experiments assuming the SM. Since the
axial-vector current contributes to this decay mode, one
finds jVexp

ub j ¼ jVL
ub − VR

ubj in the presence of the RHC
in Eq. (2).
The present world average of the branching ratio

including the updated Belle data is provided by the
heavy flavor averaging group (HFAG) [8] as
BrðB → τν̄Þ ¼ ð1.14� 0.22Þ × 10−4. Using this value
and fB ¼ 190.5� 4.2 MeV [9], we obtain

jVexp
ub j ¼ jVL

ub − VR
ubj ¼ jVL

ubj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Re

�
VR
ub

VL
ub

�
þ
����VR

ub

VL
ub

����2
s

¼ ð4.22� 0.42Þ × 10−3: ð5Þ

B. B → πℓ ν̄

The axial-vector part in Eq. (2) does not contribute to the
process B → πℓν̄ owing to the parity invariance of the
strong interaction. The contribution of the vector part leads
to the following differential decay rate:

dΓ
dq2

¼ G2
F

192π2m3
B
λ3=2ðq2Þf2þðq2ÞjVexp

ub j2; ð6Þ

where qμ represents the momentum transfer,
λðq2Þ ¼ q4 − 2q2ðm2

B þm2
πÞ þ ðm2

B −m2
πÞ2, and jVexp

ub j ¼
jVL

ub þ VR
ubj, which reduces to the ordinary CKM matrix

element in the absence of the right-handed interaction. The
hadronic form factor fþðq2Þ plays a crucial role in the
determination of jVexp

ub j. We employ the one evaluated using
the light-cone sum rule (LCSR) [10] and its explicit form is

given in Appendix A 1 for completeness. The mass of the
charged lepton is neglected in Eq. (6).
Evaluating the branching ratio with Eqs. (6) and (A2),

and comparing it to the experimental result [8],
BrðB→ πℓν̄;0 < q2 < 16 GeV2Þ ¼ ð1.06� 0.04Þ× 10−4,
we obtain

jVexp
ub j ¼ jVL

ub þ VR
ubj ¼ jVL

ubj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Re

�
VR
ub

VL
ub

�
þ
����VR

ub

VL
ub

����2
s

¼ ð3.58� 0.47Þ × 10−3; ð7Þ

where the error includes 13% theoretical uncertainty in the
magnitude of fþðq2Þ [10] as well as the experimental
errors.

C. B → (ρ;ω)ℓ ν̄

Both the vector and axial vector currents give rise to the
decay B → Vℓν̄, where V denotes a vector meson and we
consider two modes with V ¼ ρ;ω. The differential decay
rate is given as

dΓ
dq2

¼ G2
FjpV jq2

96π3c2Vm
2
B

X
λ¼�;0

jHλj2; ð8Þ

where pV represents the three momentum of the vector
meson in the rest frame of the B meson, cV ¼ ffiffiffi

2
p

for
V ¼ ρ0;ω considered below, and the helicity amplitudes
H�;0 are expressed in terms of hadronic form factors Vðq2Þ
and A1;2ðq2Þ:
H� ¼ ðVL

ub − VR
ubÞðmB þmVÞA1ðq2Þ∓ðVL

ub þ VR
ubÞ

×
2mBjpV j
mB þmV

Vðq2Þ; ð9Þ

H0 ¼ ðVL
ub − VR

ubÞ
mB þmV

2mV

ffiffiffiffiffi
q2

p �
ðm2

B −m2
V − q2ÞA1ðq2Þ

−
4m2

BjpV j2
ðmB þmVÞ2

A2ðq2Þ
�
: ð10Þ

We use LCSR form factors [11] and they are explicitly
given in Appendix A 2.
We can experimentally determine the magnitude of the

b → u charged current, represented by jVexp
ub j, from the

branching ratio of B → Vℓν̄. Integrating the differential
rate in Eq. (8) over the phase space, we find

jVexp
ub j ¼ jVL

ubj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aVRe

�
VR
ub

VL
ub

�
þ
����VR

ub

VL
ub

����2
s

; ð11Þ

where aV ¼ −1.18ð−1.25Þ for V ¼ ρðωÞ. In our numerical
analysis, we employ the following experimental results
[12]:

TETSUYA ENOMOTO AND MINORU TANAKA PHYSICAL REVIEW D 91, 014033 (2015)

014033-2



jVexp
ub j ¼ ð3.56� 0.48Þ × 10−3; ð12Þ

for B → ρ0ℓν̄ and

jVexp
ub j ¼ ð3.08� 0.49Þ × 10−3; ð13Þ

for B → ωℓν̄, where the errors include theoretical uncer-
tainties in the form factors. Since a significant part of
theoretical uncertainties is involved in these errors, neither
the theoretical uncertainty in aV nor the effect of an
experimental cut in the phase space integration performed
to obtain Eq. (11) is taken into account in the present
analysis. We note that a precise study of decay distribution
in these modes with copious data at the SuperKEKB/Belle
II experiment may provide an improved method to probe
the RHC [13].

D. B → Xuℓ ν̄

Both the left- and right- handed currents contribute to the
inclusive b → u semileptonic process. However the inter-
ference between them is strongly suppressed because of the
small mass of the up quark. Thus, the decay rate is
proportional to jVexp

ub j2 ¼ jVL
ubj2 þ jVR

ubj2. In our numerical
analysis, we use the following result of the GGOU method
[14] given by HFAG [8]:

jVexp
ub j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVL

ubj2 þ jVR
ubj2

q
¼ jVL

ubj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

����VR
ub

VL
ub

����2
s

¼ ð4.39� 0.31Þ × 10−3; ð14Þ

where the statistic and systematic errors are linearly added
in order to take the sizeable method dependence into
account.

E. Unitarity triangle

Since the above five processes of direct jVubj measure-
ment are described by two independent quantities, jVL

ubj2 þ
jVR

ubj2 and ReðV�L
ubV

R
ubÞ, they are insufficient to determine

the absolute values of VL
ub and V

R
ub, and their relative phase.

In order to extract more information on VL
ub and VR

ub, we
utilize the unitarity of the CKM matrix VL assuming the
validity of the SM except for the VR

ub term in Eq. (2) as
stated previously.
The unitarity of VL is conveniently represented by the

unitarity triangle in Fig. 1, where the standard parametriza-
tion [15,16] is introduced. Measuring jVtdV�

tbj by the B–B̄
mixings and ϕ1 (or β) withCP violation in b → cc̄s decays,
together with results of kaon and b → c semileptonic decays
that give λ and A in the standard parametrization, we can
indirectly determine the magnitude and phase of VL

ub.
2

The mass difference in the Bd meson system due to the
Bd–B̄d mixing, denoted by ΔmBd

, is dominated by the top
quark loop in the SM and proportional to jVtdV�

tbj2; and
similarly in the Bs system, ΔmBs

∝ jVtsV�
tbj2. Theoretical

uncertainties of the relevant hadronic matrix elements are
reduced by taking the ratio of ΔmBd

and ΔmBs
owing to the

SU(3) flavor symmetry:

ΔmBd

ΔmBs

¼ mBd

mBs

ξ−2
����VtdV�

tb

VtsV�
tb

����2 ¼ mBd

mBs

ξ−2λ2fð1 − ρÞ2 þ η2g;

ð15Þ
where ξ ¼ 1.268� 0.063 [9] represents the SU(3) breaking
effect. Thus, we determine jVtdV�

tbj from the present
experimental data, ΔmBd

¼ 0.510� 0.003 ps−1 and
ΔmBs

¼ 17.761� 0.022 ps−1 [8]. The result is shown as
the red arc in Fig. 1.
The time-dependent CP asymmetries in b → cc̄s proc-

esses such as B → J=ψKS give sin 2ϕ1 with small theo-
retical uncertainty in the SM. This argument does not
change in the presence of the b → u RHC. The combined
experimental data sin 2ϕ1 ¼ 0.682� 0.019 [8] gives ϕ1

with a four-fold ambiguity. It turns out that only the
solution favored in the SM, as depicted in Fig. 1, is
consistent with the RHC.
Consequently, one of the apices of the unitarity triangle

ðρ; ηÞ is uniquely determined (with errors) and VL
ub ¼

λ3Aðρ − iηÞ is evaluated as

jVL
ubj ¼ ð3.43� 0.16Þ × 10−3;

ϕL
3 ¼ argVL�

ub ¼ 73.8°� 7.5°; ð16Þ

where λ ¼ 0.225 and A ¼ 0.823 are used [17].

F. Combined result

Combining the results in Eqs. (5), (7), (11), (12), (13),
(14), and (16), we obtain a constraint on VR

ub. Since
Eqs. (5), (7), (11), (14), and (16) are written in terms of
jVL

ubj, ReðVR
ub=V

L
ubÞ, and ImðVR

ub=V
L
ubÞ, it is convenient to

1

2
L

3
L

Vub
L Vud

Vcb Vcd

Vtb Vtd

Vcb Vcd

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1 (color online). Unitarity triangle (solid lines). Exper-
imental constraints from the B–B̄ mixings and CP violation in
b → cc̄s decays are also indicated by the red arc and the green
narrow sectors, respectively.

2Throughout this work, we follow the phase convention
employed by the particle data group [16], when we mention
the phases of VL

ub and VR
ub.
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represent the constraint in the complex VR
ub=V

L
ub plane. The

numerical result is presented in Fig. 2, where 1σ, 2σ, and 3σ
allowed regions are indicated by solid lines. The best fit is
given by

Re

�
VR
ub

VL
ub

�
¼ −4.21 × 10−3;

����Im
�
VR
ub

VL
ub

����� ¼ 0.551;

jVL
ubj ¼ 3.43 × 10−3; ð17Þ

with χ2min=dof ¼ 2.27. We obtain χ2min=dof ¼ 2.16 in the
SM and thus the scenario of the b → u RHC exhibits a
similar consistency as the SM among the above exper-
imental results in jVubj determination.
As seen in Fig. 2 and Eq. (17), a large relative phase

between VR
ub and VL

ub is favored. We examine its implica-
tion for CP violations in hadronic B decays in the next
section.

III. CP VIOLATIONS INDUCED BY THE b → u
RIGHT-HANDED CURRENT

As shown in the previous section, the present exper-
imental data related to the b → u transition allow the right-
handed b → u current with a large relative phase to the
left-handed counterpart. We examine possible conse-
quences of this new complex phase in CP violations in
hadronic B decays.

A. B → ππ

The time-dependent CP asymmetry in B → πþπ− is
described by the following formula [18]:

Aπþπ−ðtÞ ¼ Cπþπ− cosðΔmBd
tÞ − Sπþπ− sinðΔmBd

tÞ; ð18Þ

where the direct CP asymmetry Cπþπ− and the mixing-
induced CP asymmetry Sπþπ− are expressed as

Cπþπ− ¼ 1 − jρ̄ðπþπ−Þj2
1þ jρ̄ðπþπ−Þj2 ; ð19Þ

and

Sπþπ− ¼ 2Imððq=pÞρ̄ðπþπ−ÞÞ
1þ jρ̄ðπþπ−Þj2 ; ð20Þ

respectively. The amplitude ratio ρ̄ðπþπ−Þ is defined by

ρ̄ðπþπ−Þ ¼ AðB̄0 → πþπ−Þ
AðB0 → πþπ−Þ ; ð21Þ

and the ratio of the B–B̄ mixing coefficients is given as
q=p ¼ VL

tdV
L�
tb =V

L�
td V

L
tb for the Bd case under considera-

tion here.
The isospin analysis is mandatory to extract the infor-

mation on the weak phase in this process because of the
penguin pollution [19]. The decay amplitudes of the isospin
doublet ðBþ; B0Þ are expressed in terms of the isospin
amplitudes AI ¼ hðππÞIjB0i (I ¼ 0; 2):

AðBþ → πþπ0Þ ¼
ffiffiffi
3

2

r
A2; ð22Þ

AðB0 → πþπ−Þ ¼ 1ffiffiffi
3

p A2 þ
ffiffiffi
2

3

r
A0; ð23Þ

AðB0 → π0π0Þ ¼
ffiffiffi
2

3

r
A2 −

1ffiffiffi
3

p A0: ð24Þ

We note a simple triangle relation, AðBþ → πþπ0Þ ¼
AðB0 → πþπ−Þ= ffiffiffi

2
p þ AðB0 → π0π0Þ. The ðB̄0; B−Þ decay

amplitudes bear similar relations to ĀI ¼ hðππÞIjB̄0i. The
relative phase between A0 and A2 can be determined with a
twofold ambiguity as well as their magnitudes by meas-
uring the branching fractions of three decay modes in
Eqs. (22), (23), and (24); and likewise for ðB̄0; B−Þ and ĀI .
The ratio of B → πþπ− amplitudes in Eq. (21) is

expressed in terms of the isospin amplitudes as

ρ̄ðπþπ−Þ ¼ Ā2

A2

1þ z̄
1þ z

; ð25Þ

where z ¼ ffiffiffi
2

p
A0=A2, z̄ ¼

ffiffiffi
2

p
Ā0=Ā2, and they are obtained

from the relevant branching fractions as described above.
The amplitudes of I ¼ 2 are determined by the tree-levelW
boson exchange since the gluon penguin diagram has the
nature of ΔI ¼ 1=2. In the SM, the I ¼ 2 amplitudes are
governed by the single weak phase of VL

ub and thus there is

1

1

2 3

0.3 0.2 0.1 0.0 0.1 0.2 0.3

1.0

0.5

0.0

0.5

1.0

Re Vub
R Vub

L

Im
V

u
b

R
V

u
b

L

FIG. 2 (color online). Allowed region of VR
ub=V

L
ub (solid lines).

The constraints from jVubj and the unitarity triangle are com-
bined. Prediction of MSSM is also indicated by dashed lines. (See
Sec. III D.)
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no CP asymmetry in this channel except the small
correction due to the electroweak penguin diagrams.
In the presence of the right-handed b → u current in

Eq. (2), the amplitudes of I ¼ 2 consist of the left- and
right- handed contributions: A2 ¼ A2L þ A2R and Ā2 ¼
Ā2L þ Ā2R. Thus, the large imaginary part of VR

ub=V
L
ub

suggested by the analysis in Sec. II implies a possibility of
CP violation in the I ¼ 2 channel. We neglect the electro-
weak penguins in the following analysis because effects of
the RHC are expected to be larger than them.
The direct CP asymmetry in Bþ → πþπ0, which van-

ishes in the SM, is written as

ACPðBþ → πþπ0Þ ¼ 1 − jRππj2
1þ jRππj2

; ð26Þ

where the effect of the RHC in the I ¼ 2 channel is
represented by

Rππ ≡ 1þ Ā2R=Ā2L

1þ A2R=A2L
: ð27Þ

We note that Rππ depends on the relative phase of VL
ub and

VR
ub since we can express the relevant amplitude ratios as

A2R=A2L ¼ jA2R=A2LjeiðϕR
3
−ϕL

3
Þeiδππ ; ð28Þ

and

Ā2R=Ā2L ¼ jA2R=A2Lje−iðϕR
3
−ϕL

3
Þeiδππ ; ð29Þ

where ϕLðRÞ
3 ¼ argðVLðRÞ�

ub Þ is the weak phase of the left
(right)-handed current and δππ denotes a strong phase.
Other CPV observables are also affected by the RHC:

Cπþπ− ¼
�
1 − jRππj2

���� 1þ z̄
1þ z

����2
�
=

�
1þ jRππj2

���� 1þ z̄
1þ z

����2
�
;

ð30Þ

Sπþπ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−C2

πþπ−

q
sin

�
2ϕL

2 þ argðRππÞ þ arg

�
1þ z̄
1þ z

��
;

ð31Þ
and

Cπ0π0 ¼
�
1 − jRππj2

���� 2 − z̄
2 − z

����2
�
=

�
1þ jRππj2

���� 2 − z̄
2 − z

����2
�
;

ð32Þ

where ϕL
2 is one of the angles of the unitarity triangle in

Fig. 1 and Cπ0π0 is the counterpart of Cπþπ− in B → π0π0.
We note that Cπ0π0 is determined with the time-integrated

decay rate of the tagged B → π0π0 process. The exper-
imental data of these observables and relevant CP averaged
branching fractions are summarized in Table I. The phase
ϕL
2 is extracted from the unitarity triangle construction

indicated in Fig. 1 as ϕL
2 ¼ 84.7°� 7.5°.

We determine or constrain Rππ with these data as shown
in Fig. 3. The abscissa is the CP asymmetry ACPðBþ →
πþπ0Þ, which is uniquely related to jRππj as seen in
Eq. (26), and the ordinate is argðRππÞ, which represents
the possible discrepancy in the ϕ2 measurements between
B → ππ and the unitarity triangle as seen in Eq. (31). A
strong constraint is given for ACPðBþ → πþπ0Þ, while
argðRππÞ is restricted rather weakly because of the eightfold
ambiguity in the isospin analysis.
The dependence of Rππ on VR

ub is obtained by evaluating
A2R=A2L in the factorization approximation:

A2R

A2L
≃ 1.56

VR�
ub

VL�
ub

eiδππ ; ð33Þ

where we regard the strong phase δππ as an arbitrary
parameter, since it is expected to be nonzero and cannot

TABLE I. Experimental data in B → ππ, taken from the
compilation by HFAG [8].

Cπþπ− −0.31� 0.05
Sπþπ− −0.66� 0.06
Cπ0π0 −0.43� 0.24
ACPðBþ → πþπ0Þ −0.026� 0.039
BRðB → πþπ−Þ ð5.10� 0.19Þ × 10−6

BRðB → π0π0Þ ð1.91� 0.225Þ × 10−6

BRðB� → π�π0Þ ð5.48� 0.345Þ × 10−6

RHC 1

RHC 1

1.0 0.5 0.0 0.5 1.0

150

100

50

0

50

100

150

ACP B 0

ar
g

R

FIG. 3 (color online). Allowed region of the direct CP
asymmetry and the phase discrepancy in B → ππ. The dark
(light) red region is 1σ (2σ). The prediction of the CPV RHC is
also shown: The region between the black dashed ellipse and two
black dashed lines represents the 1σ prediction as indicated and
the region between the blue dotted lines is 2σ.
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be evaluated by the factorization method. A similar
expression is obtained for Ā2R=Ā2L replacing VR�

ub=V
L�
ub

by its complex conjugate. The details of the calculation
using renormalization group equations (RGE) and the
factorization is relegated in Appendix B 1.
In Fig. 3, taking the strong phase δππ as a free parameter,

we also present the prediction on ACPðBþ → πþπ0Þ and
argðRππÞ for the allowed range of VR

ub=V
L
ub shown in Fig. 2.

If VR
ub=V

L
ub has a significant imaginary part as suggested in

Sec. II, the almost vanishing ACPðBþ → πþπ0Þ requires
δππ ≃ 0 or π since the direct CP asymmetry in Eq. (26) is
expressed as

ACPðBþ → πþπ0Þ

¼ −2jA2R=A2Lj sinðϕR
3 − ϕL

3 Þ sin δππ
1þ 2jA2R=A2Lj cosðϕR

3 − ϕL
3 Þ cos δππ þ jA2R=A2Lj2

;

ð34Þ

and argðRππÞ is sizeable although its measurement suffers
from the eightfold ambiguity mentioned above. Figure 4
shows the p value of ϕL

2 þ argðRππÞ=2 assuming sin δππ ¼
0 as well as its range predicted for the allowed region of
VR
ub=V

L
ub in Fig. 2. The six-peak structure corresponds to

the eightfold ambiguity since each of the peaks at 127° and
143° consists of two solutions. The rather wide overlap
between the theoretical prediction and the experimentally
allowed region is partly due to the multifold ambiguity, and
shows that both the SM and the scenario of the CPV RHC
are consistent with the present B → ππ data.

B. B → ρρ

The isospin analysis can be applied to B → ρρ as in B →
ππ provided that the helicity state of the ρ mesons is
identified by the angular analysis [20]. The possible final
helicity states are ρLρL and ρTρT , where ρLðTÞ denotes the
longitudinal (transverse) helicity state of the ρ meson. The
final state of ρTρT is a mixture of CP-even and CP-odd

states, whereas ρLρL is purely CP even as ππ. Hence, we
can study CP violation in B → ρLρL in a similar manner as
B → ππ. We note that BABAR and Belle experiments have
reported the dominance of the longitudinal final states in
Bþ → ρþρ0 and B → ρþρ−. Although a 2.1σ difference
between BABAR and Belle in the fraction of the longi-
tudinal state in B → ρ0ρ0 exists [21], the longitudinal
fraction is likely to be sizeable. Accordingly, we focus
on CP violation in B → ρLρL in this work.
As in the above analysis of B → ππ, CPV observables

CρþL ρ
−
L
, SρþL ρ−L , Cρ0Lρ

0
L
, ACPðBþ → ρþLρ

0
LÞ are given in terms of

z, z̄, RρLρL and ϕL
2 . In addition to these observables, the

mixing-induced CP asymmetry in B → ρ0Lρ
0
L, denoted as

Sρ0Lρ0L , is measurable and represented as

Sρ0Lρ0L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−C2

ρ0Lρ
0
L

q
sin

�
2ϕL

2 þ argðRρLρLÞþ arg

�
2− z̄
2− z

��
:

ð35Þ

We summarize the experimental values of the CPV param-
eters as well as the relevant branching and longitudinal
fractions (fL’s) in Table II.
These experimental data constrain RρLρL and the allowed

region is presented in Fig. 5, in which ACPðBþ → ρþLρ
0
LÞ

and argðRρLρLÞ are chosen as axes. It turns out that
the triangles dictated by the isospin relation,
AðBþ → ρþLρ

0
LÞ ¼ AðB0 → ρþLρ

−
LÞ=

ffiffiffi
2

p þ AðB0 → ρ0Lρ
0
LÞ,

and the charge-conjugated one are squashed. Hence, only a
two-fold ambiguity remains in the isospin analysis in B →
ρLρL in contrast to the eightfold one in B → ππ. This
reduction of the number of solutions results in a more
stringent restriction on argðRρLρLÞ as seen in Fig. 5. In other
words, the possible discrepancy in the ϕ2 determinations
between B → ρLρL and the unitarity triangle are con-
strained more strongly.
We evaluate RρLρL in the presence of the CPV RHC using

the RGE and the factorization method as in the case of
B → ππ. We obtain A2R=A2L as
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2
L Arg R 2

p
va

lu
e
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1.0

FIG. 4 (color online). The p value of ϕL
2 þ argðRππÞ=2 assum-

ing sin δππ ¼ 0 (solid line). The 1σ (2σ) prediction of the CPV
RHC is also shown as the shaded region with vertical black
dashed (blue dotted) boundaries.

TABLE II. Experimental data in B → ρρ, taken from HFAG [8]
unless otherwise indicated.

CρþL ρ
−
L

−0.06� 0.13
SρþL ρ−L −0.05� 0.17
Cρ0Lρ

0
L

0.2� 0.8� 0.3
Sρ0Lρ0L 0.3� 0.7� 0.2
ACPðBþ → ρþLρ

0
LÞ 0.051� 0.054

BRðB� → ρ�ρ0Þ ð24.0� 1.95Þ × 10−6

BRðB → ρþρ−Þ ð24.2� 3.15Þ × 10−6

BRðB → ρ0ρ0Þ ð0.73� 0.275Þ × 10−6

fLðB� → ρ�ρ0Þ 0.950� 0.016 [22,23]
fLðB → ρþρ−Þ 0.977� 0.026 [24,25]
fLðB → ρ0ρ0Þ 0.618� 0.118 [22,26]
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A2R

A2L
≃ −0.91

VR�
ub

VL�
ub

eiδρLρL ; ð36Þ

where an independent strong phase δρLρL is introduced.
This calculation is described in Appendix B 2. The pre-
dicted region of RρLρL for the allowed VR

ub=V
L
ub shown in

Fig. 2 and arbitrary values of δρLρL is also depicted in Fig. 5.
One of the two experimentally allowed regions, which is
consistent with the SM, is also compatible with the scenario
of the CPV RHC. In Fig. 6, we present the p value of ϕL

2 þ
argðRρLρLÞ=2 assuming sin δρLρL ¼ 0 as well as its range
predicted for the allowed region of VR

ub=V
L
ub in Fig. 2. The

CPV RHC is consistent with one of the two possible
solutions that is also favored in the SM. One may judge
from Figs. 5 and 6 that the CPV RHC is incompatible with
the experimental data at the 1σ level. However this is not the

case because of the theoretical uncertainty in the factoriza-
tion.We consider that an uncertainty of a factor of 2 is likely.

C. B → DK

Two quark processes b̄ → c̄us̄ and b̄ → ūcs̄ (and their
charge conjugates) give rise toB� → DK� decays in the SM
and the latter is modified by the b → u RHC.We denote the
relevant decay amplitudes in the following manner:

AðBþ → D̄0KþÞ ¼ AB; ð37Þ

AðBþ → D0KþÞ ¼ ABrþeiðϕDKþδDKÞ; ð38Þ

AðB− → D0K−Þ ¼ AB; ð39Þ

AðB− → D̄0K−Þ ¼ ABr−eið−ϕDKþδDKÞ; ð40Þ

where amplitude ratios r� are defined to be positive. This
decay mode is employed to extract ϕL

3 ¼ argðVL�
ubÞ (or γ)

of the unitarity triangle in the SM [27–29], in which the
right-handed contribution vanishes and ϕDK ¼ ϕL

3 . We
stress that rþ ¼ r− in the SM, but this is not the case in
the presence of the CPV RHC in general. Thus a direct
CP asymmetry,

ACPðBþ → D0KþÞ ¼ ΓðBþ → D0KþÞ − ΓðB− → D̄0K−Þ
ΓðBþ → D0KþÞ þ ΓðB− → D̄0K−Þ

¼ r2þ − r2−
r2þ þ r2−

; ð41Þ

is induced in addition to a discrepancy between ϕDK and
ϕL
3 . Among several methods of extracting ϕ3 in the SM,

we focus on the most powerful one, that is the Dalitz plot
method [29], in which the neutral D meson in B� →
DK� is identified with its Dalitz decay D → KSπ

þπ−.
We extend the method to the case of rþ ≠ r− in the
following.
Amplitudes of the Dalitz decay are written as

AðD0 → KSðpKÞπþðpþÞπ−ðp−ÞÞ ¼ ADðsþ; s−Þ; ð42Þ

AðD̄0 → KSðpKÞπþðpþÞπ−ðp−ÞÞ ¼ ADðs−; sþÞ; ð43Þ

where sþ ¼ ðpK þ pþÞ2 and s− ¼ ðpK þ p−Þ2. We
neglect small meson-antimeson mixing and CP violation
in the neutral D meson system in the present work. Then,
the differential decay rate of B� → ðKSπ

þπ−ÞDK� is
represented as

dΓðB� → ðKSπ
þπ−ÞDK�Þ

¼ jABj2½jADðs∓; s�Þj2 þ r2�jADðs�; s∓Þj2
þ 2r�Refeið�ϕDKþδDKÞA�

Dðs∓; s�ÞADðs�; s∓Þg�dΦ;
ð44Þ

where dΦ is a phase-space factor.
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FIG. 5 (color online). Allowed region of the direct CP
asymmetry and the possible phase discrepancy in B → ρLρL is
shown in the same manner as Fig. 3. The prediction of the CPV
RHC is presented as well. The region between the two black
dashed ovals is 1σ and the region surrounded by the blue dotted
one is 2σ.
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FIG. 6 (color online). The p value of ϕL
2 þ argðRρLρLÞ=2

assuming sin δρLρL ¼ 0 and the prediction of the CPV RHC as
in Fig. 4.
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In the Dalitz plot method, the phase space is divided into 2k bins as illustrated in Fig. 7. The binning is symmetric with
respect to the diagonal line defined by sþ ¼ s−, and the ith bin (i ¼ 1; 2; � � � k) with sþ < s− and the ð−iÞth bin with
sþ > s− form a symmetric pair. The partial decay rate into the ith bin is written as

Γ�
i ¼

Z
i
dΓðB� → ðKSπ

þπ−ÞDK�Þ

¼ jABj2½T∓i þ r2�T�i þ 2r�
ffiffiffiffiffiffiffiffiffiffiffiffi
TiT−i

p
fci cosð�ϕDK þ δDKÞ∓si sinð�ϕDK þ δDKÞg�; ð45Þ

and that into the ð−iÞth bin is

Γ�
−i ¼

Z
−i
dΓðB� → ðKSπ

þπ−ÞDK�Þ

¼ jABj2½T�i þ r2�T∓i þ 2r�
ffiffiffiffiffiffiffiffiffiffiffiffi
TiT−i

p
fci cosð�ϕDK þ δDKÞ � si sinð�ϕDK þ δDKÞg�; ð46Þ

where

T�i ¼
Z
�i
dΦjADðsþ; s−Þj2; ð47Þ

c�i ¼
Z
�i
dΦRe½ADðsþ; s−ÞA�

Dðs−; sþÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffi
TiT−i

p
; ð48Þ

s�i ¼
Z
�i
dΦIm½ADðsþ; s−ÞA�

Dðs−; sþÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffi
TiT−i

p
; ð49Þ

and we have used ci ¼ c−i and si ¼ −s−i.
The Dalitz distribution jADðsþ; s−Þj2 is given by the

flavor-tagged neutral D meson decay and thus T�i’s are
known as well as jABj2, which is determined by the flavor
specificD decay in B� → DK�. We notice that the number
of unknown quantities (ci, si, r�, ϕDK , and δDK) is 2kþ 4,
that of observables (Γ�

�i) is 4k, and in principle, all the
unknown quantities can be determined provided k ≥ 2. In
particular, we can obtain the direct CP asymmetry in

Eq. (41) and the angle discrepancy ϕDK − ϕL
3 with the

(extended) Dalitz plot method.
It is possible to improve the analysis by using ci’s and

si’s independently extracted from data at a charm factory
[29]. The entangled D0D̄0 states produced near the thresh-
old exhibit quantum interference that depends on ci’s
and si’s.
In Ref. [30], experimental data of Belle corresponding

to Γ�
�i, T�i are shown for the optimized binning [31]

with k ¼ 8. The result for ci’s and si’s by the CLEO
Collaboration [32] is also summarized in Ref. [30]. Using
these data, we obtain a constraint on the direct CP
asymmetry ACPðBþ → D0KþÞ and the phase disagree-
ment argðRDKÞ [¼ −2ðϕDK − ϕL

3 Þ, see Eq. (55) below],
as presented in Fig. 8. Although the restriction is rather
mild at present, we confirm that the extended Dalitz plot

i

i
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s
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FIG. 7 (color online). An illustration of the binning in the Dalitz
plot method.
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FIG. 8 (color online). Allowed region of the direct CP
asymmetry and the possible phase discrepancy in B → DK as
in the same manner in Fig. 3. The prediction of the CPV RHC is
also shown. The region between two black dashed ellipses is 1σ
prediction as denoted and the whole plane is practically allowed
at the 2σ level.
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method does work and we expect a better sensitivity in
the future.
In order for a comparison with the allowed region

in Fig. 8, we evaluate the effect of the CPV RHC on
Bþ → D0Kþ and the charge conjugation mode. Their
amplitudes are decomposed into the left- and right- handed
contributions:

AðBþ → D0KþÞ ¼ jALjeiðϕL
3
þδLÞ þ jARjeiðϕR

3
þδRÞ; ð50Þ

and

AðB− → D̄0K−Þ ¼ jALjeið−ϕL
3
þδLÞ þ jARjeið−ϕR

3
þδRÞ; ð51Þ

where δL;R denote strong phases. It is convenient to
introduce an amplitude ratio as

RDK ¼ e2iϕ
L
3
AðB− → D̄0K−Þ
AðBþ → D0KþÞ ð52Þ

¼ 1þ jAR=ALjeið−ϕR
3
þϕL

3
þδÞ

1þ jAR=ALjeiðϕR
3
−ϕL

3
þδÞ ; ð53Þ

where δ ¼ δR − δL. Then, it is straightforward to obtain the
following relations from Eqs. (38), (40), and (41):

ACPðBþ → D0KþÞ ¼ 1 − jRDKj2
1þ jRDKj2

; ð54Þ

and

ϕDK ¼ ϕL
3 − argðRDKÞ=2: ð55Þ

The RGE and the factorization approximation gives

jAR=ALj ¼ 4.99jVR
ub=V

L
ubj; ð56Þ

as described in Appendix B 3.
We evaluate RDK in Eq. (53) for the allowed value of

VR
ub=V

L
ub shown in Fig. 2 and ϕ

L
3 determined by the unitarity

triangle taking δ as a free parameter. Then, we obtain
theoretical prediction on ACPðBþ→D0KþÞ and argðRDKÞ
as presented in Fig. 8. We find that the scenario of the CPV
RHC is disfavored at the 1σ level despite the moderate
current experimental constraint though it is not excluded at
2σ. This is due to the enhancement of the RHC contribution
in theDK mode shown in Eq. (56) compared to those in the
ππ and ρLρL modes in Eqs. (33) and (36). This notable
sensitivity, though it is derived in the factorization approxi-
mation,might play an important role in future experiments in
order to probe or exclude the CPV RHC.

D. Prediction of the MSSM

It has been pointed out that the b → u RHC is induced
by radiative corrections in the MSSM [4,33]. The

gluino-squark one-loop diagram with simultaneous
insertions of the left-right mixing in the (3,3) compo-
nent of the down-type squark mass matrix (ΔdLR

33 ) and
that in the (1,3) component of the up-type squark mass
matrix (ΔuRL

13 ) gives the dominant contribution and one
obtains

VR
ub ¼

αs
36π

δdLR33 δuRL13 ; ð57Þ

where the dimensionless mass insertion parameters
are defined by δdLR33 ¼ ΔdLR

33 =M2
SUSY and δuRL13 ¼

ΔuRL
13 =M2

SUSY, and the masses of relevant supersymmet-
ric partners are assumed to be common for simplicity
and denoted by MSUSY.
In Fig. 2, we present VR

ub=V
L
ub evaluated with VL

ub in
Eq. (16) and VR

ub in Eq. (57) for jδdLR33 δuRL13 j ¼ 0.1 and
0.3. We observe that the MSSM contribution is con-
sistent with the current experimental bound from
jVubj determination and the unitarity triangle within
2σ though the best fitted values do not seem to be
realized. A future experiment like SuperKEKB/Belle II
may find a signal of supersymmetry through the b →
u RHC.

IV. CONCLUSION

We have studied the scenario of the b → u right-handed
current. Our analysis combining the present experimental
results for direct jVubj determination with the unitarity
triangle suggests a significant CPV RHC in the b → u
transition as presented in Fig. 2.
According to this analysis, we have examined CPV

signals in two-body hadronic B decays: B → ππ,
B → ρρ, and B → DK. The expected signals in these
decay modes are new direct CP asymmetries, deviations
of ϕ2 in B → ππ; ρρ and that of ϕ3 in B → DK; they are
depicted in Figs. 3, 5, and 8 as well as the present
experimental constraints. Although the direct CP asym-
metries in B → ππ; ρρ are strongly constrained, a size-
able deviation of ∼50° in ϕ2 is not excluded. As for
B → DK, the effect of RHC is enhanced by QCD
radiative correction in the factorization approximation.
Hence the rather moderate current experimental bound
tightly restricts the CPV RHC. We have found that the
consistency of the suggested CPV RHC with the present
B → DK data is in between the 1σ and 2σ levels in the
factorization approximation. The prediction of the
MSSM is also compared to the allowed region of
VR
ub=V

L
ub as shown in Fig. 2.

In conclusion, the b → u right-handed current is a
new physics scenario that is still consistent with the
present experimental data. The suggested large CP
violation gives rise to the new CP violating signals
in hadronic B decays and they may be detected in a
future B factory experiment.
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APPENDIX A: HADRONIC FORM FACTORS
IN B → (π;ρ;ω)ℓ ν̄

We briefly summarize the hadronic form factors used in
our numerical analysis in the main text.

1. B → π

The hadronic form factor fþðq2Þ in Eq. (6) is defined as

hπjūγμbjB̄i ¼ fþðq2Þðpμ
B þ pμ

πÞ þ f−ðq2Þqμ: ðA1Þ

The result of LCSR is concisely parametrized in the
following form of pole dominance [10]:

fþðq2Þ ¼
r1

1 − q2=mπ2
1

þ r2
1 − q2=m2

fit

; ðA2Þ

where r1 ¼ 0.744, mπ
1 ¼ 5.32 GeV, r2 ¼ −0.486,

and m2
fit ¼ 40.73 GeV2.

2. B → ρ;ω

The form factors in Eqs. (9) and (10) are parametrized as

A1ðq2Þ ¼
rA1

1

1 − q2=mA1

fit
2
; ðA3Þ

A2ðq2Þ ¼
rA2

1

1 − q2=mA2

fit
2
þ rA2

2

ð1 − q2=mA2

fit
2Þ2 ; ðA4Þ

and

Vðq2Þ ¼ rV1
1 − q2=m2

1−
þ rV2
1 − q2=mV

fit
2
: ðA5Þ

The LCSR gives [11] rA1

1 ¼ 0.240, mA1

fit
2 ¼ 37.51 GeV2,

rA2

1 ¼ 0.009, rA2

2 ¼ 0.212, mA2

fit
2 ¼ 40.82 GeV2, rV1 ¼

1.045, rV2 ¼ −0.721, m1− ¼5.32GeV, mV
fit
2¼38.34GeV2

for B → ρ, and rA1

1 ¼ 0.217, mA1

fit
2 ¼ 37.01 GeV2,

rA2

1 ¼ 0.006, rA2

2 ¼ 0.192, mA2

fit
2 ¼ 41.24 GeV2, rV1 ¼

1.006, rV2 ¼ −0.713, m1− ¼5.32GeV, mV
fit
2¼37.45GeV2

for B → ω.

APPENDIX B: EVALUATION OF AMPLITUDES
BY THE FACTORIZATION

In this appendix, we describe the calculation of
B → ππ; ρρ; DK amplitudes in the factorization method.

1. B → ππ

The effective four-fermion Hamiltonian that contributes
to the I ¼ 2 channel in B → ππ is decomposed into the left
and right pieces as Heff ¼ HL þHR, and

HX ¼ 2
ffiffiffi
2

p
GFVudVX�

ub ½C1XðμÞO1XðμÞ
þ C2XðμÞO2XðμÞ� þ H:c:; ðB1Þ

where X ¼ L;R and μ denotes a renormalization scale. The
four-fermion operators are defined by

O1X ¼ ūαLγ
νdβLb̄

β
Xγνu

α
X; ðB2Þ

O2X ¼ ūαLγ
νdαLb̄

β
Xγνu

β
X; ðB3Þ

where α and β are color indices. Wilson coefficients CjX
(j ¼ 1; 2) are obtained by solving a set of renormalization
group equations in the leading order [34]. The relevant
anomalous dimensions are

γL ¼ αs
4π

�−2 6

6 −2
�
; γR ¼ αs

4π

�−16 0

−6 2

�
; ðB4Þ

for OjL and OjR, respectively. As a result, we obtain the
Wilson coefficients at the bottom quark mass scale (mb):

C1LðmbÞ ¼
1

2

��
αsðmbÞ
αsðmWÞ

	
−6=23

−
�
αsðmbÞ
αsðmWÞ

	
12=23

�
≃ −0.27; ðB5Þ

C2LðmbÞ ¼
1

2

��
αsðmbÞ
αsðmWÞ

	
−6=23

þ
�
αsðmbÞ
αsðmWÞ

	
12=23

�
≃ 1.12;

ðB6Þ

C1RðmbÞ ¼
1

3

��
αsðmbÞ
αsðmWÞ

	
24=23

−
�
αsðmbÞ
αsðmWÞ

	
−3=23

�
≃ 0.34;

ðB7Þ

and

C2RðmbÞ ¼
�
αsðmbÞ
αsðmWÞ

	
−3=23 ≃ 0.92; ðB8Þ

where αsðmZÞ ¼ 0.118 [16] and mb ¼ 4.2 GeV [35] are
used. We neglect the gluon penguin operators since they do
not contribute to the I ¼ 2 final state.
The amplitude ratio A2R=A2L is conveniently evaluated

by calculating Bþ → πþπ0 amplitudes, hπþπ0jHXjBþi,
at μ ¼ mb:
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hπþπ0jHLjBþi≃ GFffiffiffi
2

p VudVL�
ub ½fC1LðmbÞ þ C2LðmbÞ=3ghπ0jūγνγ5uj0ihπþjb̄γνdjBþi

þ fC2LðmbÞ þ C1LðmbÞ=3ghπþjūγνγ5dj0ihπ0jb̄γνujBþi�; ðB9Þ

and

hπþπ0jHRjBþi≃ GFffiffiffi
2

p VudVR�
ub ½2fC1RðmbÞ þ C2RðmbÞ=3ghπ0jūγ5uj0ihπþjb̄djBþi

þ fC2RðmbÞ þ C1RðmbÞ=3ghπþjūγνγ5dj0ihπ0jb̄γνujBþi�; ðB10Þ
where we have used Fierz rearrangement and ignored annihilation terms and nonfactorizable contributions. The matrix
elements of the vector currents in Eqs. (B9) and (B10) are expressed by the form factors in Eq. (A1) and those of the axial-
vector currents are given by the pion decay constant. The (pseudo)scalar operator in Eq. (B10) is related to the
corresponding (axial-)vector operator using the equation of motion of the quark fields and thus its matrix element is also
written in terms of the form factors (the decay constant). Interestingly, we do not need to specify the values of the form
factors and the decay constant since they disappear in the ratio hπþπ0jHRjBþi=hπþπ0jHLjBþi. Hence we obtain

A2R

A2L
¼ hπþπ0jHRjBþi

hπþπ0jHLjBþi≃
VR�
ub

VL�
ub

3

4

�
C2RðmbÞ þ C1RðmbÞ=3
C2LðmbÞ þ C1LðmbÞ

þ C1RðmbÞ þ C2RðmbÞ=3
C2LðmbÞ þ C1LðmbÞ

m2
π

mqMb

	
≃ 1.56

VR�
ub

VL�
ub

; ðB11Þ

where Mb denotes the bottom quark pole mass, mq
represents the average current mass of the up and down
quarks, and we employ Mb ¼ 4.91 GeV [35] and mq ¼
3.5 MeV [16] in our numerical calculation.
The factorization method described above should be

understood as a crude approximation that provides an order
of magnitude. We consider that an uncertainty of a factor of
2 remains even in the ratio in Eq. (B11). Furthermore it
gives no information on the phase shift by the strong
interaction, and thus we introduce a strong phase in
Eq. (33) by hand.

2. B → ρρ

The effective four-fermion Hamiltonian for B → ππ,
shown in Eqs. (B1), (B2), and (B3), also describes the
I ¼ 2 amplitudes in B → ρLρL. The relevant matrix ele-
ments are evaluated almost in the sameway as in the case of
B → ππ. We finally obtain

A2R

A2L
¼ hρþLρ0LjHRjBþi

hρþLρ0LjHLjBþi

¼ −
VR�
ub

VL�
ub

3

4

C2RðmbÞ þ C1RðmbÞ=3
C2LðmbÞ þ C1LðmbÞ

≃ −0.91
VR�
ub

VL�
ub

:

ðB12Þ

3. B → DK

The effective Hamiltonian for Bþ → D0Kþ and its
charge conjugation is given by Heff ¼ HL þHR and

HX ¼ 2
ffiffiffi
2

p
GFVcsVX�

ub ½C1XðμÞO1XðμÞ
þ C2XðμÞO2XðμÞ� þ H:c:; ðB13Þ

where the four-fermion operators are defined by

O1X ¼ c̄αLγ
νsβLb̄

β
Xγνu

α
X; ðB14Þ

O2X ¼ c̄αLγ
νsαLb̄

β
Xγνu

β
X: ðB15Þ

The renormalization of these operators are the same as
those in B → ππ in the leading order and hence the Wilson
coefficients are also given by Eqs. (B5), (B6), (B7),
and (B8).
Using Fierz rearrangement and ignoring annihilation

terms and nonfactorizable contributions, we evaluate the
amplitude ratio AR=AL as in the case of B → ππ.
Eventually, we obtain����AR

AL

���� ¼
����VR�

ub

VL�
ub

���� 2m2
D

MbMc

C2RðmbÞ þ 3C1RðmbÞ
C2LðmbÞ þ 3C1LðmbÞ

≃ 4.99

����VR�
ub

VL�
ub

����;
ðB16Þ

where Mc ¼ 1.77 GeV denotes the charm quark pole mass
[35] and we have neglected the up and strange quark masses.
The quark pole masses emerge when we utilize the equations
of motion of the quark fields in order to evaluate the
contribution of the RHC. We note that the B → K form
factors and the D meson decay constant appearing in each
amplitudeAX cancelout in the ratioofEq. (B16)as inB → ππ.
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