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We calculate the Oðα3sÞ short-distance, QCD collinear-factorized coefficient functions for all partonic
channels that include the production of a heavy quark pair at short distances. This provides the first power
correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse
momentum, pT , including the full leading-order perturbative contributions to the production of heavy
quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role
of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy
hadronic collisions. The consistency of QCD collinear factorization and nonrelativistic QCD factorization
applied to heavy quarkonium production is also discussed.
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I. INTRODUCTION

Both the cross section and polarization of heavy quar-
konium production in high-energy collisions have posed
significant challenges to our understanding of the pro-
duction mechanism [1]. Although the nonrelativistic QCD
(NRQCD) treatment of heavy quarkonium production is by
far the most theoretically sound [2–5], and generally
consistent with experimental data on inclusive production
of J=ψ and ϒ of large transverse momentum, pT , at the
Tevatron and the LHC [6–9], it has not been able to explain
fully the polarization of these heavy quarkonia produced at
high pT [10–13]. With a larger heavy quark mass, mQ, it
was expected that the NRQCD factorization formalism
should do a better job in describing the production ofϒ and
its polarization. However, recent data on polarization of
ϒð1S; 2S; 3SÞ measured by the CMS Collaboration at the
LHC [14] also show inconsistency with full next-to-
leading-order (NLO) NRQCD calculations [9,15]. In addi-
tion, global fits of data on J=ψ production from various
high-energy collisions, including eþe−, lepton-hadron, and

hadron-hadron collisions [7,16] show some discrepancies
in the shape of momentum spectra between theory pre-
dictions and data [17]. For some production channels of the
NRQCD calculations, the NLO corrections are orders
larger than their corresponding leading-order (LO) results,
which raises questions as to whether yet higher-order
contributions can be neglected. Motivated in part by these
challenges to existing theory, new approaches based on
QCD factorization [18–22] and soft-collinear effective
theory [23,24] have been proposed for the systematic study
of heavy quarkonium production at collider energies.
In Ref. [22], we developed an extended QCD factori-

zation formalism for heavy quarkonium production at large
transverse momentum pT ≫ mH ≫ ΛQCD in hadronic col-
lisions (or at a large energy E ≫ mH in eþe− collisions)
with heavy quarkonium mass mH. The new QCD fac-
torization formalism includes both collinear-factorized
leading-power (LP) and collinear-factorized next-to-
leading-power (NLP) terms in the 1=pT expansion of the
production cross section,
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where pμ ¼ PμðmH ¼ 0Þ is the massless part of the heavy
quarkoniummomentum in a frame in which the quarkonium
moves along the z-axis, and the renormalization scale μ and
the factorization scale μF are suppressed. We will often refer
to this result below as “QCD factorization” to distinguish it
from NRQCD factorization. In this factorized expression,P

f runs over all parton flavors f ¼ q; q̄; g, including heavy
flavors whenmQ ≪ pT , while

P
½QQ̄ðκÞ� indicates a sum over

both spin and color states of heavy quark pairs ½QQ̄ðκÞ�,
where κ ¼ sI with s ¼ v; a; t for vector, axial vector and
tensor spin states, and I ¼ 1; 8 for singlet and octet color
states, respectively. In Eq. (1), the variables z, u, and v, with
ū ¼ 1 − u and v̄ ¼ 1 − v are light-cone momentum frac-
tions; and Df→Hðz;mQÞ and D½QQ̄ðκÞ�→Hðz; u; v;mQÞ are
single-parton and heavy quark-pair fragmentation functions
(FFs), respectively [22]. In the factorization formula in
Eq. (1), we neglect all contributions involving twist-4
multiparton correlation functions of colliding hadrons, as
well as all terms atNLP involvingFFs not fromaheavyquark
pair, because these contributionsmust create the heavy quark
pair nonperturbatively.We thus expect them to be suppressed
by powers of heavy quark mass [22], and they could be
suppressed further by reasons similar to those that lead to the
OZI rule in evaluating decay rates.
The QCD factorization formalism in Eq. (1) effectively

organizes the contributions to heavy quarkonium production
at large pT in terms of the characteristic time when an active
heavy quark pair, which is necessary for a final-state heavy
quarkonuim, is produced. The LP contribution to the
production cross section is given by the hard partonic
scattering to produce an active parton (quark, antiquark,
or gluon) at a distance scale of Oð1=pTÞ, convolved with a
fragmentation function for this parton to evolve into a heavy
quark pair that transmutes into a heavy quarkonium. At LP
accuracy, the heavy quark pair is effectively produced at the
distance scale of Oð1=2mQÞ, a much longer distance

compared to scales over which the active parton was initially
produced. At NLP accuracy, the QCD factorization requires
not only the factorized NLP term in Eq. (1), but also a new
power-suppressed contribution to the DGLAP evolution of
heavy quarkonium FFs from a single active parton [22]. The
factorized NLP term in Eq. (1) describes the production of
the heavy quark pair directly at Oð1=pTÞ where the initial
hard collision took place. The power-suppressed contribu-
tion to the evolution of single-parton FFs sums up all leading
logarithmic contributions to the production of the heavy
quark pairs at distance scales from Oð1=μFÞ to Oð1=μ0Þ
where μF ∼ pT is the factorization scale and μ0 ∼ 2mQ is the
input scale at which the evolution of the FFs starts. Having
both LP and NLP contribution, the QCD factorization
formalism in Eq. (1) effectively covers all leading contribu-
tions to the production of the heavy quark pair, which
transmutes into an observed heavy quarkonium, no matter
where and when the heavy quark pair was produced [22]. If
we keep only the factorized LP contribution to the cross
section in Eq. (1), we include only the contribution to the
heavy quarkonium production when the heavy quark pair is
produced at the distance scale ≳Oð1=μ0Þ.
The predictive power of the QCD factorization formal-

ism in Eq. (1) relies on the universality of the FFs, and our
ability to calculate the evolution kernels of these FFs, as
well as the short-distance coefficient functions, perturba-
tively, to all orders in powers of αs. In Ref. [22], we
evaluated the mixing evolution kernels for one parton to
evolve into a heavy quark pair at Oðα2sÞ, as well as
evolution kernels for a heavy quark pair to evolve into
another heavy quark pair at OðαsÞ. In this paper, we
concentrate on the calculation of the short-distance coef-
ficient functions of the QCD factorization formalism in
Eq. (1). When A and B in Eq. (1) are hadrons, the cross
section is found using the following expressions, reflecting
collinear factorization for the incoming hadrons:
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where a, b represent active parton flavors, running over
quarks, antiquarks and gluons, and ϕA→aðxÞ and ϕB→bðxÞ
are the parton distribution functions (PDFs) of hadrons A
and B, respectively, with factorization scale dependence
suppressed. The short-distance coefficient functions for
producing a single parton at the LP, σ̂aþb→fðpcÞþX in Eq. (2),
are the same as the perturbative coefficient functions for
producing a light hadron, such as a pion, and are available
for both the LO and NLO in powers of αs in the literature

[25]. This is because the factorized short-distance coef-
ficient functions are not sensitive to the details of the
hadron produced in the final state, but only the properties of
the fragmenting parton. In the next section, we introduce
the method to calculate the short-distance hard parts at
NLP, σ̂aþb→½QQ̄ðκÞ�ðpcÞþX in Eq. (2), and present the detailed

calculations of the Oðα3sÞ coefficient functions for all
relevant spin-color states of a heavy quark pair pro-
duced from the scattering of a light quark and antiquark.
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The complete results of short-distance hard parts for all
parton-parton scattering channels at Oðα3sÞ are given in the
Appendix.
With the perturbatively calculated short-distance hard

parts in this paper, and the evolution kernels derived in
Ref. [22], the predictive power of the QCD factorization
formalism in Eq. (1) still requires our knowledge of the
universal FFs at an input scale μ0. Since both the short-
distance hard parts and evolution kernels are perturbative,
and the same for hadronic production of all heavy quarko-
nium states, it is these input FFs that carry the information
on the characteristics of the individual heavy quarkonia.
The universal input FFs are nonperturbative, and in
principle, should be extracted from fitting experimental
data, like the FFs for inclusive light hadron production.
However, with the NLP contributions, we will need many
more FFs (single-parton plus heavy quark pair FFs) for
each heavy quarkonium state produced. Extracting all these
FFs from inclusive cross sections of heavy quarkonium
production would not be an easy task.
Unlike the FFs to a light hadron, heavy quarkonium FFs

at the input scale μ0 have essentially one intrinsic hard
scale, the heavy quark mass mQ ∼Oðμ0Þ, which is suffi-
ciently separated from the momentum scale for the binding
of heavy quarkonium, mQv, with the heavy quark relative
velocity in the pair’s rest frame, v ≪ 1. The physics
between the mQ and μ0 could be perturbatively calculable.
It was proposed in Ref. [21], as a conjecture or a model, to
use NRQCD factorization to calculate these input FFs by
expressing all of them in terms of perturbatively calculated
coefficients and a few local NRQCD matrix elements,
organized in powers of v. Since the input momentum
scale μ0 ∼ μΛ, the NRQCD factorization scale ∼OðmQÞ,
the perturbatively calculated coefficient functions should be
free of the large logarithms and the power enhancement that
were seen in the NLO NRQCD coefficient functions for
heavy quarkonium production at large pT at collider
energies [6–9]. In Sec. III, we review the procedure to
calculate the heavy quarkonium FFs at the input scale
μ0 ≳ 2mQ in terms of NRQCD factorization.
Although there is no formal proof that ensures that

NRQCD factorization works for evaluating these universal
input FFs perturbatively to all orders in αs and all powers in
v-expansion, it has been demonstrated that such NRQCD
factorization should work up to two-loop radiative cor-
rections [18,19]. Explicit perturbative calculations in
Refs. [26,27] show that such factorization is indeed
possible for up to v4 in the velocity expansion since all
calculated perturbative coefficient functions are infrared
safe for LP single-parton FFs at Oðα2sÞ, as well as for NLP
heavy quark-pair FFs at OðαsÞ. Such perturbatively calcu-
lated input FFs in NRQCD factorization should provide a
good starting point to estimate or determine these much
needed universal but nonperturbative functions for heavy
quarkonium production.

If the NRQCD factorization for calculating the input FFs
is valid, the collinear factorization formalism in Eq. (1) may
be thought of as a reorganization of the perturbatively
calculated cross section by NRQCD factorization, with
resummation of large fragmentation logarithms. It also
provides a justification of NRQCD factorization applied to
heavy quarkonium production at large transverse momen-
tum, at least for the first and second power terms in the
1=pT expansion. In Sec. III, we discuss the connection
between the QCD factorization formalism in Eq. (1) and the
NRQCD factorization approach to heavy quarkonium
production [2]. With a proper matching, we introduce an
expanded factorization formalism which could smoothly
connect the QCD factorization in Eq. (1) for pT ≫ μ0
to the fixed-order calculation in NRQCD factorization for
pT ≳ μ0 ≳ 2mQ, including heavy quark mass effects.
In Subsec. III C, we provide an explicit example to

demonstrate that when pT ≫ mH, the QCD factorization
formalism in Eq. (1) catches all leading contributions to the
heavy quarkonium production. We show that the extremely
challenging calculation of the complete NLO contributions
to the production of a color-singlet, spin-1 heavy quark pair
in hadronic collisions can be effectively reproduced by the
much simpler LO perturbative QCD calculation of the hard
parts to produce a color-octet collinear and massless heavy
quark pair, convolved with equally simple LO fragmenta-
tion functions for the perturbatively produced pair to
fragment into the color-singlet, spin-1 heavy quark pair,
calculated in NRQCD factorization. The combination of
the two LO calculations reproduces more than 95% of the
full NLO contribution when pT is only a few times the
heavy quark mass. The same conclusion is also true for
other production channels in NRQCD calculations [28].
In Sec. IV, we discuss how to evaluate heavy quarkonium

polarization in the QCD factorization approach. Since both
short-distance partonic hard parts and evolution kernels of
heavy quarkonium FFs are perturbative, and not sensitive to
the long-distance details of the individual heavy quarko-
nium produced, the heavy quarkonium polarization should
be completely determined by the heavy quarkonium FFs at
the input factorization scale, μ0. With μ0 ≳mQ ≫ mQv, it
is very reasonable to apply the same NRQCD factorization
conjecture for calculating the unpolarized heavy quarko-
nium FFs at scale μ0 to the calculation of polarized heavy
quarkonium FFs at the same input scale. In this section, we
present the projection operators, within the NRQCD
factorization approach, for the calculation of polarized
heavy quarkonium FFs with the produced heavy quarko-
nium in either a transverse or a longitudinal polarization
state. As an example, we present our OðαsÞ calculation of

polarized heavy quarkonium FFs via a color-singlet 3S½1�1

heavy quark pair in NRQCD. A complete calculation of
polarized heavy quarkonium FFs in NRQCD for all
partonic channels is now available [26,27,29]. With the
perturbatively calculated polarized heavy quarkonium FFs,
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we demonstrate explicitly that the combination of QCD
factorization for heavy quarkonium production in Eq. (1)
and NRQCD factorization for the heavy quarkonium FFs
can not only reproduce the NLO color-singlet model
(CSM) calculation for the production rate, but also the
polarization of the produced heavy quarkonia. Clearly, a
full understanding of heavy quarkonium production and its
polarization requires a new global analysis of all heavy
quarkonium production data in terms of QCD factorization
formalism and the new set of evolution equations for
heavy quarkonium FFs [28]. Finally, our conclusions are
summarized in Sec. V.

II. PRODUCTION CROSS SECTION
AND PARTONIC HARD PARTS

In this section, we introduce a systematic method to
calculate all partonic hard parts of the collinear-factorized
NLP terms, dσ̂ab→½QQ̄ðκÞ�ðpcÞ, in Eq. (2) perturbatively. We
provide a detailed derivation of the hard parts for producing
a heavy quark pair in various spin-color states from the
scattering of a quark and an antiquark atOðα3sÞ, and present

our full results for all other partonic scattering channels,
including quark-gluon and gluon-gluon scattering channels
in the Appendix.

A. The formalism

As a consequence of QCD factorization, all factorized
partonic hard parts for heavy quarkonium production in
Eq. (2) are uniquely determined perturbatively by the
factorization formalism and the definition of fragmentation
functions (and parton distribution functions in the case of
hadronic collisions). Like the LP hard parts, the NLP
factorized partonic hard parts, dσ̂ab→½QQ̄ðκÞ�ðpcÞ in Eq. (2),
are insensitive to the long-distance details of the colliding
hadrons and the produced heavy quarkonium. The factori-
zation formalism in Eq. (1) is also valid when the colliding
hadrons, A and B, are replaced by two asymptotic colliding
parton states of flavor a and b, respectively, and the
produced heavy quarkonium, H, is replaced by an asymp-
totic state of a heavy quark pair with momentum p and
spin-color state ½QQ̄ðκÞ�. Together, the partonic analogs of
Eqs. (1) and (2) can be expressed symbolically as

dσaþb→½QQ̄ðκÞ�ðpÞ ≈
X
i;j;f

ϕa→i ⊗ ϕb→j ⊗ dσ̂iþj→fðpcÞ ⊗ Df→½QQ̄ðκÞ�

þ
X

i;j;½QQ̄ðκ0Þ�
ϕa→i ⊗ ϕb→j ⊗ dσ̂iþj→½QQ̄ðκ0Þ�ðpcÞ ⊗ D½QQ̄ðκ0Þ�→½QQ̄ðκÞ�; ð3Þ

where i, j, f represent the factorized active parton flavors,
including q, q̄, g, andQ; ½QQ̄ðκ0Þ� represents a heavy quark
pair of spin-color state κ0; and⊗ represents the convolution
over partonic momentum fractions as shown in Eqs. (1)
and (2). Unlike the cross section in Eq. (1), both the
partonic cross section on the left-hand side (lhs), and the
PDFs of a parton and FFs of a partonic state on the right-
hand side (rhs) of Eq. (3) can be calculated perturbatively in
terms of Feynman diagrams with proper regularizations.
Most importantly, the short-distance partonic hard parts in
Eq. (3) are the same as those in Eq. (2).
The fact that the cross section is factorizable ensures that

the perturbatively calculated partonic cross sections on the
lhs and PDFs and FFs on the rhs of Eq. (3) are all free of

infrared (IR) divergence, while the ultraviolet (UV) diver-
gences are taken care of by the renormalization, and all
collinear (CO) divergences are process independent and
canceled perturbatively order by order in powers of αs
between the lhs and the rhs to leave the partonic hard parts
free of any divergences. To derive the partonic hard parts in
Eq. (2), which are the same as those in Eq. (3), we expand
both sides of Eq. (3) order by order in powers of αs, and
then extract all partonic hard parts perturbatively by
calculating the corresponding partonic cross section in
the lhs, and the PDFs and FFs of partons on the rhs.
To evaluate the hard parts at the first nontrivial order in

hadronic collisions, we expand both sides of Eq. (3) to
Oðα3sÞ,

dσð3Þaþb→½QQ̄ðκÞ�ðpÞ ≈
X
i;j;f

ϕð0Þ
a→i ⊗ ϕð0Þ

b→j ⊗ dσ̂ð2Þiþj→fðpcÞ ⊗ Dð1Þ
f→½QQ̄ðκÞ�

þ
X

i;j;½QQ̄ðκ0Þ�
ϕð0Þ
a→i ⊗ ϕð0Þ

b→j ⊗ dσ̂ð3Þiþj→½QQ̄ðκ0Þ�ðpcÞ ⊗ Dð0Þ
½QQ̄ðκ0Þ�→½QQ̄ðκÞ�; ð4Þ

where the superscript ðmÞwithm ¼ 0; 1; 2; 3 indicates the power of αs of the corresponding quantity. Since the zeroth-order
parton PDFs and FFs are given by the δ-functions that fix the corresponding convolutions, the short-distance hard parts for
all possible channels of partonic scattering between parton flavors a and b are given by
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dσ̂ð3Þaþb→½QQ̄ðκÞ�ðpÞ ¼ dσð3Þaþb→½QQ̄ðκÞ�ðpÞ − dσ̂ð2Þaþb→gðpcÞ

⊗ Dð1Þ
g→½QQ̄ðκÞ�ðpÞ; ð5Þ

where the first term on the rhs, dσð3Þaþb→½QQ̄ðκÞ�ðpÞ, is the

perturbative cross section for two partons of flavors a and b
to produce a heavy quark pair of momentum p in a spin-
color quantum state ½QQ̄ðκÞ� at the order of α3s , which
covers all LO partonic processes to produce a heavy quark
pair at a large transverse momentum. Since we neglect the
heavy quark mass when pT ≫ mQ, this partonic scattering
amplitude, like the one in Fig. 1, can have a perturbative
divergence caused by the mass singularity of the gluon
propagator, when its invariant mass goes on shell,
p2 → 0, which leads to a divergent partonic cross section,

dσð3Þaþb→½QQ̄ðκÞ�ðpÞ. This perturbatively divergent contribution
is in fact a LP contribution, and is already included in the
LP fragmentation contribution, the first term on the rhs of
Eq. (1). Therefore, it should be systematically removed
when we calculate the short-distance partonic hard parts of
the NLP contribution to avoid double counting. In Eq. (5),
the second term is a natural result of the QCD factorization
formalism. Its role is to remove all possible LP contribu-
tions from the first term, and it can be referred to as a
subtraction term for removing the mass singularity or the
LP contribution.
Similarly, by expanding the factorized formalism for the

partonic scattering cross section in Eq. (3) to order α4s, we
derive the factorization formula for calculating the NLO
short-distance partonic hard parts of the NLP contribution as

dσ̂ð4Þaþb→½QQ̄ðκÞ�ðpÞ ¼ dσð4Þaþb→½QQ̄ðκÞ�ðpÞ − dσ̂ð3Þaþb→gðpcÞ ⊗ Dð1Þ
g→½QQ̄ðκÞ�ðpÞ

−
X
f

dσ̂ð2Þaþb→fðpcÞ ⊗ Dð2Þ
f→½QQ̄ðκÞ�ðpÞ

−
X
i

ϕð1Þ
a→i ⊗ dσ̂ð2Þiþb→gðpcÞ ⊗ Dð1Þ

g→½QQ̄ðκÞ�ðpÞ

−
X
j

ϕð1Þ
b→j ⊗ dσ̂ð2Þaþj→gðpcÞ ⊗ Dð1Þ

g→½QQ̄ðκÞ�ðpÞ

−
X
i

ϕð1Þ
a→i ⊗ dσ̂ð3Þiþb→½QQ̄ðκÞ�ðpÞ −

X
j

ϕð1Þ
b→j ⊗ dσ̂ð3Þaþj→½QQ̄ðκÞ�ðpÞ; ð6Þ

where the sum of i, j, f runs over all parton flavors, and all
lower-order short-distance partonic hard parts are well-

defined and calculable. For example, the dσ̂ð3Þaþb→½QQ̄ðκÞ�ðpcÞ
are given by Eq. (5), and dσ̂ð2Þaþb→fðpcÞ are the lowest-order
partonic cross sections given by lowest-order 2 → 2 par-
tonic scattering amplitudes, and are finite. In Eq. (6), the
subtraction term in the first line plays the same role as that
of the subtraction term in Eq. (5); the subtraction term in the
second line is to remove the power collinear divergence of

the partonic cross section, dσð4Þaþb→½QQ̄ðκÞ�ðpÞ, which has been
included in the evolution of the single-parton FFs via the
mixing kernels from a single fragmenting parton to a heavy

quark pair [22]. The four other subtraction terms in the last
three lines of Eq. (6) are needed to remove the logarithmic
collinear contributions that have been included in the
evolution of initial-state PDFs. The factorization formula
in Eq. (6) can be adapted for calculating the NLO
contribution of the power corrections in other scattering
processes—for example, we only need the first two lines
for high-energy heavy quarkonium production in eþe−
collisions.
In the remainder of this section, we provide the detailed

derivation of the first nontrivial short-distance hard parts for
a quark and an antiquark to produce a heavy quark pair in
all possible spin and color states. Because the heavy quark
mass is set to zero in the hard parts, we only need to
consider the production of a heavy quark pair in axial-
vector and vector spin states at the order of α3s . That is, we
calculate the partonic hard parts by using Eq. (5) with
a ¼ qðp1Þ and b ¼ q̄ðp2Þ of momentum p1 and p2,
respectively, and

dσ̂ð3Þqðp1Þþq̄ðp2Þ→½QQ̄ðκÞ�ðpÞ

¼ dσð3Þqðp1Þþq̄ðp2Þ→½QQ̄ðκÞ�ðpÞ

− dσ̂ð2Þqðp1Þþq̄ðp2Þ→gðpcÞ ⊗ Dð1Þ
gðpcÞ→½QQ̄ðκÞ�ðpÞ; ð7Þ

b

a

p

p
p

σ
ρ

FIG. 1 (color online). Sample partonic scattering amplitude for
aðpaÞ þ bðpbÞ → ½QQ̄ðκÞ�ðpÞ þ X that includes a leading power
contribution to the production rate of a heavy quark pair.
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where the produced pair ½QQ̄ðκÞ� can be in an axial-vector
or a vector spin state while in either singlet or octet
color state.
At the order of α3s , the scattering amplitude for

dσð3Þqðp1Þþq̄ðp2Þ→½QQ̄ðκÞ�ðpÞ is given by the Feynman diagrams

in Fig. 2. The diagrams in Figs. 2(c), 2(d), and 2(e) all have
divergent contributions caused by the same mass singu-
larity when the momentum of the gluon with a short bar
goes on shell, p2 → 0. As discussed above, any such
perturbatively divergent LP contribution should be
removed by a subtraction term, the second term on the

rhs of Eq. (7). The dσ̂ð2Þqðp1Þþq̄ðp2Þ→gðpcÞ of the subtraction

term is the lowest-order cross section for the partonic
process, qðp1Þ þ q̄ðp2Þ → gðpÞ þ g, given by the
Feynman diagrams in Fig. 3. At order α2s, the partonic

cross section dσ̂ð2Þqðp1Þþq̄ðp2Þ→gðpcÞ is perturbatively finite. The

function Dð1Þ
gðpcÞ→½QQ̄ðκÞ�ðpÞ of the subtraction term in Eq. (7)

is the lowest-order fragmentation function for a gluon to a
heavy quark pair. At order αs, it is given by the Feynman
diagram in Fig. 4, which is in cut diagram notation, where
the amplitude and complex conjugate are combined into a
forward scattering diagram and the final state is identified
by a vertical line. From the definition of the gluon
fragmentation function, two gluon lines in Fig. 4 are
contracted by the cut vertex [22],

VgðzÞ ¼
Z

d4pc

ð2πÞ4 z
2δ

�
z −

p · n̂
pc · n̂

�

×

�
1

N2
c − 1

XN2
c−1

a¼1

δa0a

�
1

2
~d μν
n̂ ðpcÞ

��
; ð8Þ

where the four-vector n̂μ with n̂2 ¼ 0 is an auxiliary vector
conjugate to the observed hadron momentum pμ, intro-
duced to help define the fragmenting gluon’s light-cone
momentum fraction, as well as its two transverse polari-
zation states (or “physical” polarization states). In Eq. (8),
the a and a0 are color indices of the fragmenting gluon in
the amplitude and its complex conjugate, respectively, and

~d μν
n̂ ðpcÞ ¼ −gμν þ pμ

cn̂ν þ n̂μpν
c

pc · n̂
−

p2
c

ðpc · n̂Þ2
n̂μn̂ν; ð9Þ

with ~d μν
n̂ ðpcÞpcμ ¼ ~d μν

n̂ ðpcÞn̂μ ¼ 0. In a frame where the
hadron is moving along the þz-axis, pμ ¼ ðpþ; 0−; 0⊥Þ
with hadron mass neglected, we can normalize the auxiliary
vector n̂μ as n̂μ ¼ ð0þ; 1−; 0⊥Þ, since the cut vertex, VgðzÞ,
is invariant when we rescale the vector n̂μ. At the lowest
order, the fragmenting gluon momentum pc above is
effectively equal to the momentum of the heavy quark
pair p in Fig. 4. Consequently, the LO perturbative gluon

FF, Dð1Þ
gðpcÞ→½QQ̄ðκÞ�ðpÞ, is divergent as the gluon momentum

goes on shell, p2
c → p2 → 0. It is clear from above

discussion that the second term in Eq. (7) matches precisely
the structure of the divergent piece of the partonic cross

section dσð3Þqðp1Þþq̄ðp2Þ→½QQ̄ðκÞ�ðpÞ to remove its mass singu-

larity when p2 → 0, and to leave the sum of these two
terms in Eq. (7) infrared safe (IRS) and perturbative. This
subtraction also avoids double counting of the LP con-
tribution, as required by QCD factorization.
The cancellation of the divergence between the first and

the second terms in Eq. (7) is exact at the phase space point
where the gluons with a short bar in Figs. 2(c–e) is on the
mass shell, with a physical polarization. It was shown in
Ref. [22], as part of the calculation of the evolution kernels
for a single parton to evolve into a heavy quark pair, that the
net effect of the second term in Eq. (7) is to replace each
gluon propagator with the short bar in Fig. 2 by a contact
term, found by rewriting the propagator as

p
1

p

2
p

ρ

σ

p
ρ

σ
ρ

p

σ

FIG. 3. Leading-order Feynman diagrams for qq̄ → gg
subprocess at Oðα2sÞ.

(a)

p

α

p
β

kp

1

μ2

(b)

p

σ
ρ

p

(c)

σ

(d)

ρ

p

σ

(e)

ρ

p

FIG. 2 (color online). Leading-order Feynman diagrams for the qq̄ → QQ̄g subprocess at Oðα3sÞ.

(1-v)

νμ

α β

vppu p (1-u) p

pp

FIG. 4 (color online). Lowest-order Feynman diagram (αs) for a
gluon to fragment into a heavy quark pair.
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GρσðpÞ ¼ i
p2 þ iε

�
−gρσ þ pρn̂σ þ pσn̂ρ

p · n̂
−

p2

ðp · n̂Þ2 n̂
ρn̂σ

�

þ i
p2 þ iε

�
p2

ðp · n̂Þ2 n̂
ρn̂σ

�
; ð10Þ

and keeping only the final, unphysical term,

GρσðpÞ → ip2

p2 þ iε

�
n̂ρn̂σ

ðp · n̂Þ2
�
≡ Gρσ

c ðpÞ: ð11Þ

Equation (11) shows the result of subtracting the contri-
bution of these diagrams to gluon fragmentation, which is
already included in the LP term.
As in Eq. (9), the first term in the right-hand side of

Eq. (10) vanishes when it is contracted by either pρ or n̂ρ,
defining the contribution from the gluon’s two transverse
polarization states. These are precisely the terms canceled
by the subtraction, which takes the physical polarizations
into account. In Eq. (10), the second term in the rhs is the
contact term, which is finite when the gluon line goes on
shell, p2 → 0. With this term included, the NLP contribu-
tion to the scattering amplitude in Fig. 2 is color gauge
invariant [30]. Then, the effect of the subtraction is to
specify a prescription for calculating the hard parts at this
order following Eq. (7), which can be represented as [22]

dσ̂ð3Þqþq̄→½QQ̄ðκÞ�ðpÞðp1; p2; pÞ ¼ dσð3Þqþq̄→½QQ̄ðκÞ�ðpÞðp1; p2; pÞc;
ð12Þ

where the subscript “c” indicates that the gluon propagators
with a short bar in Fig. 2 are replaced by corresponding
contact terms. These diagrams, in Figs. 2(c), 2(d) and 2(e),
with their perturbatively divergent leading power contri-
butions removed, are necessary for the gauge invariance
of the NLP contribution. In addition to quark-antiquark
scattering, the expression in Eq. (12) is also valid for
scattering of two partons of any flavors a and b at this order.
In general, the removal of the LP contributions to the

partonic scattering cross sections, or more specifically, the
cancellation of divergences when p2 → 0 between the first
and the second terms in Eq. (5), or the terms in Eq. (6), can
be handled by introducing a regulator for the divergence of
each term first, calculating all terms individually, and then
removing the regulator after all terms are combined and
divergent terms are canceled. Such a general approach for
calculating partonic hard parts beyond the LO contribution
derived here could be made algorithmic.
Having identified the contact-term prescription, Eq. (12),

it is now straightforward to calculate NLP partonic hard
parts for all partonic scattering channels at Oðα3sÞ, once we
specify the projection operators for the spin-color states of
the produced heavy quark pair, ½QQ̄ðκÞ�. The perturbatively
produced collinear heavy quark pair should have four spin
states, s ¼ v; a; t for vector, axial-vector, and two tensor

states, respectively, and nine color states, I ¼ 1; 8 for
singlet and octet color states, respectively. The correspond-
ing projection operators have been defined in Ref. [22],

~PðvÞðpÞji;kl ¼ ðγ · pÞjiðγ · pÞkl;
~PðaÞðpÞji;kl ¼ ðγ · pγ5Þjiðγ · pγ5Þkl;
~PðtÞðpÞji;kl ¼

X
α¼1;2

ðγ · pγα⊥Þjiðγ · pγα⊥Þkl; ð13Þ

for spin states of the produced heavy quark pair, and

~C½1�ba;dc ¼
�
δbaffiffiffiffiffiffi
Nc

p
��

δdcffiffiffiffiffiffi
Nc

p
�
;

~C½8�ba;dc ¼
X
A

½
ffiffiffi
2

p
ðtAÞba�½

ffiffiffi
2

p
ðtAÞdc�; ð14Þ

for the color states of the same pair. In Eq. (13), the spin
projection operators are independent of the momentum
fractions of the produced heavy quark and antiquark, and
the subscripts ji and kl represent the spinor indices of the
heavy quark pair in the scattering amplitude and its
complex conjugate, respectively. In Eq. (14), the tA, with
A ¼ 1; 2;…; N2

c − 1 are the generators in the fundamental
representation of the group SUðNcÞ color, and the sub-
scripts ba and dc, represent the color indices of the heavy
quark pair in the amplitude and those of its complex
conjugate, respectively, but with a; b; c; d ¼ 1; 2;…; Nc.
From Eq. (12), calculating the short-distance hard part,

dσ̂ð3Þqþq̄→½QQ̄ðκÞ�ðpÞ, is the same as calculating the partonic

cross section, dσð3Þqþq̄→½QQ̄ðκÞ�ðpÞ, with the divergent gluon

propagator of momentum p replaced by its contact con-
tribution. From the normalization defined by the factori-
zation formalism in Eqs. (1) and (2), we obtain the
expression for the NLP short-distance hard part as

Ep

dσ̂ð3Þqþq̄→½QQ̄ðκÞ�ðpÞ
d3p

¼ 1

2ŝ
jMqq̄→½QQ̄ðκÞ�j2c

1

8π2
δðŝþ t̂þ ûÞ;

ð15Þ

where 1=2ŝ is the partonic flux factor, jMqq̄→½QQ̄ðκÞ�j2c is the
partonic scattering amplitude squared with the initial-state
spin and color averaged and the spin-color state of the final-
state heavy quark pair defined by the projection operators
in Eqs. (13) and (14), and where subscript “c” again
indicates the use of the contact term of the divergent gluon
propagator of momentum p. Once more, this is equivalent
to the removal of the gluonic pole contribution from the
gluon with a short bar in Fig. 2, replacing the full
propagator by the contact term, Gρσ

c ðpÞ, Eq. (11). In
Eq. (15), the last factor including the δ-function is from
the two-particle phase space, with the differential element
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d3p=Ep moved to the left of the equation. The parton-level
Mandelstam variables in Eq. (15) are defined as

ŝ ¼ ðp1 þp2Þ2; t̂ ¼ ðp1 −pÞ2; and û ¼ ðp2 −pÞ2;
ð16Þ

with ŝþ t̂þ û ¼ 0 imposed by the δ-function. From
Eq. (15), calculating the NLP partonic hard parts at
Oðα3sÞ is equivalent to calculating the spin-color averaged
partonic scattering matrix element squared with the frag-
menting gluonic pole contribution removed.
For convenience, we introduce a slightly simplified

partonic hard part, H, to isolate the common factors for
all scattering channels,

Ep

dσ̂ð3Þqþq̄→½QQ̄ðκÞ�ðpÞ
d3p

≡
�
4πα3s
ŝ

�
1

ūuv̄v
Hqq̄→½QQ̄ðκÞ�ðŝ; t̂; ûÞδðŝþ t̂þ ûÞ; ð17Þ

where the functions H are defined by

Hqq̄→½QQ̄ðκÞ�ðŝ; t̂; ûÞ ¼ jMqq̄→½QQ̄ðκÞ�j2c
�
ūuv̄v
g6s

�
ð18Þ

with coupling constant gs. The factors u, ū, v and v̄ are
light-cone momentum fractions of heavy quark momenta
PQ and PQ̄ of the scattering amplitude and P0

Q and P0̄
Q in its

complex conjugate, respectively [22],

PQ¼p
2
þq1¼up¼1þζ1

2
p; PQ̄¼p

2
−q1¼ ūp¼1−ζ1

2
p;

P0
Q¼

p
2
þq2¼vp¼1þζ2

2
p; P0̄

Q¼p
2
−q2¼ v̄p¼1−ζ2

2
p:

ð19Þ

Here, alternate variables ζ1 and ζ2 represent the light-cone
momentum fraction flow between the heavy quark pair in
the scattering amplitude and its complex conjugate, respec-
tively. Although the total momentum of the heavy quark
pair in the amplitude and its complex conjugate is the same,
PQ þ PQ̄ ¼ P0

Q þ P0̄
Q ¼ p, the relative momenta between

the pair, q1 in the amplitude and q2 in the complex
conjugate amplitude, need not be the same. That is, ζ1
(or u) does not have to equal ζ2 (or v), while uþ ū ¼ 1
and vþ v̄ ¼ 1.
The expression in Eq. (18) is actually useful for

calculating the hard parts of all partonic scattering chan-
nels, including quark-gluon and gluon-gluon scattering
channels at Oðα3sÞ.

B. Short-distance coefficient for a heavy quark
pair in an axial-vector spin state

For calculating the short-distance coefficients,
or hard parts of the partonic process, qðp1Þ þ q̄ðp2Þ →
½QQ̄ðκÞ�ðpÞ þ g with κ ¼ a1 and a8, we only need to
consider two diagrams, (a) and (b) in Fig. 2. The other
three diagrams in the figure vanish because of the γ5
in the axial-vector spin projection operators in Eq. (13).
The only difference between producing a color-singlet

and a color-octet heavy quark pair in an axial-vector spin
state, ½QQ̄ða1Þ� vs ½QQ̄ða8Þ�, is the color factor. For
producing a color-singlet pair, we find that the four terms
from the square of two diagrams (a) and (b) in Fig. 2 have
the same color factor, which can be derived from the square
of diagram (a), as shown in Fig. 5,

C½1� ¼
�

1

Nc

�
2 X
A;B;D

Tr½tAtB� 1ffiffiffiffiffiffi
Nc

p Tr½tAtD� 1ffiffiffiffiffiffi
Nc

p Tr½tBtD�

¼ N2
c − 1

8N3
c

; ð20Þ

where ð1=NcÞ2 is from the average of the initial-state quark
and antiquark color, the 1=

ffiffiffiffiffiffi
Nc

p
factor is from the definition

of the color projection operator in Eq. (14), and all color
indices are from the labels in Fig. 5. Unlike the color-
singlet case, the color factor for producing a color-octet
heavy quark pair in an axial-vector spin state is not the
same for all four terms from the square of the two diagrams.

From Fig. 5, we find for color factors C½8�
ij† , with i and j

labeling diagrams in the figure,

C½8�
aa† ¼

�
1

Nc

�
2 X
A;B;D

Tr½tAtB�
ffiffiffi
2

p
Tr½tCtAtD�

ffiffiffi
2

p
Tr½tCtDtB�

¼
�
N2

c − 1

8N3
c

�
ðN2

c − 2Þ; ð21Þ

where the
ffiffiffi
2

p
factor is from the definition of the color

projection operator in Eq. (14), and generator tC projects
the octet state of the produced heavy quark pair, and is
summed over. Similarly, we find the color factor for the
other three terms from the squares of the diagrams (a)
and (b) in Fig. 2:

D

BA

σρ

ν

up

vp

vpup

μ

β

2
p

α
1

p

FIG. 5. Square of the diagram (a) in Fig. 2.
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C½8�
ab†

¼ −
�
N2

c − 1

4N3
c

�
;

C½8�
ba†

¼ −
�
N2

c − 1

4N3
c

�
¼ C½8�

ab†
;

C½8�
bb†

¼
�
N2

c − 1

8N3
c

�
ðN2

c − 2Þ ¼ C½8�
aa†

: ð22Þ

If we introduce two separate color factors,

C1 ¼
�
N2

c − 1

8Nc

�
and C2 ¼ −

�
N2

c − 1

4N3
c

�
; ð23Þ

we have

C½8�
aa†

¼ C½8�
bb†

¼ C1 þ C2 and C½8�
ab†

¼ C½8�
ba†

¼ C2: ð24Þ

For producing a color-singlet axial-vector heavy quark
pair, ½QQ̄ða1Þ�, the amplitude squared of diagram (a) in
Fig. 2, as shown in Fig. 5, is given by

jMaa†
qq̄→½QQ̄ða1Þ�j2

¼ C½1�g6s

�
1

2

�
2

Tr½γ ·p1γ
σγ · p2γ

α� ð−gαβÞ
ðp1 þp2Þ2

ð−gσρÞ
ðp1 þ p2Þ2

×Tr

�
γ ·pγ5γβ

γ · ðup−p1 −p2Þ
ðup−p1 −p2Þ2

γμ
�

×Tr

�
γ ·pγ5γν

γ · ðvp−p1 −p2Þ
ðvp−p1 −p2Þ2

γρ
�
ð−gμνÞ

¼ C½1�
�
g6s
ū v̄

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð25Þ

where the Feynman gaugewas used for this gauge-invariant
quantity. Similarly, we find the other three terms from the
squares of the diagrams (a) and (b) in Fig. 2:

jMab†

qq̄→½QQ̄ða1Þ�j2 ¼ C½1�
�
g6s
ūv

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð26Þ

jMba†
qq̄→½QQ̄ða1Þ�j2 ¼ C½1�

�
g6s
uv̄

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð27Þ

jMbb†
qq̄→½QQ̄ða1Þ�j2 ¼ C½1�

�
g6s
uv

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
: ð28Þ

Combining the four terms in Eqs. (25), (26), (27), and (28),
and using an identity satisfied by the momentum fractions
defined in Eq. (19),

1

ū v̄
þ 1

ūv
þ 1

uv̄
þ 1

uv
¼ 1

ūuv̄v
; ð29Þ

we derive the spin-color averaged matrix element
squared for the partonic channel, qðp1Þ þ q̄ðp2Þ →
½QQ̄ða1Þ�ðpÞ þ g, as

jMqq̄→½QQ̄ða1Þ�j2 ¼
�

g6s
ūuv̄v

�
4C½1�

�
t̂2 þ û2

ŝ3

�
; ð30Þ

where we have suppressed the subscript “c” for the squared
matrix element, because no LP subtraction is necessary for
these diagrams. From the definition of the modified hard
part in Eq. (18), we have

Hqq̄→½QQ̄ða1Þ�ðŝ; t̂; ûÞ ¼ 4

�
N2

c − 1

8N3
c

��
t̂2 þ û2

ŝ3

�
: ð31Þ

Since the spinor trace and the contraction of Lorentz
indices are independent of the color, we derive the partonic
scattering matrix element square for producing a ½QQ̄ða8Þ�
pair as

jMaa†

qq̄→½QQ̄ða8Þ�j2 ¼ C½8�
aa†

�
g6s
ū v̄

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð32Þ

jMab†

qq̄→½QQ̄ða8Þ�j2 ¼ C½8�
ab†

�
g6s
ūv

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð33Þ

jMba†
qq̄→½QQ̄ða8Þ�j2 ¼ C½8�

ba†

�
g6s
uv̄

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð34Þ

jMbb†
qq̄→½QQ̄ða8Þ�j2 ¼ C½8�

bb†

�
g6s
uv

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
: ð35Þ

Combining all four terms together, recognizing

1

ū v̄
C½8�
aa† þ

1

ūv
C½8�
ab† þ

1

uv̄
C½8�
ba† þ

1

uv
C½8�
bb†

¼ 1

ūuv̄v

�
1

2
ð1þ ζ1ζ2ÞC1 þ C2

�
; ð36Þ

and using C1 and C2 from Eq. (23), we obtain

Hqq̄→½QQ̄ða8Þ�ðŝ; t̂; ûÞ¼ 2

�
N2

c−1

8Nc

��
1þζ1ζ2−

4

N2
c

��
t̂2þ û2

ŝ3

�
;

ð37Þ
where ζ1 and ζ2 are heavy quark momentum fractions
defined in Eq. (19).

C. Short-distance coefficient for a heavy
quark pair production with vector spin

For producing a color-singlet heavy quark pair from
quark-antiquark scattering at Oðα3sÞ, only diagrams (a)
and (b) in Fig. 2 contribute, since the other three diagrams
can only produce the pair in a color-octet state. Since the
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color is independent of the spin state of the pair, the color
factor for producing a color-singlet pair in a vector spin
state is the same as C½1� in Eq. (20).
Similar to Eq. (25), we have from the diagram in Fig. 5

jMaa†
qq̄→½QQ̄ðv1Þ�j2

¼ C½1�g6s

�
1

2

�
2

Tr½γ · p1γ
σγ · p2γ

α� ð−gαβÞ
ðp1 þ p2Þ2

ð−gσρÞ
ðp1 þ p2Þ2

× Tr

�
γ · pγβ

γ · ðup− p1 − p2Þ
ðup− p1 − p2Þ2

γμ
�

× Tr

�
γ · pγν

γ · ðvp− p1 − p2Þ
ðvp− p1 − p2Þ2

γρ
�
ð−gμνÞ

¼ C½1�
�
g6s
ū v̄

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð38Þ

which is the same as jMaa†
qq̄→½QQ̄ða1Þ�j2. In the same way, we

find for the other three terms contributing to the production
of a ½QQ̄ðv1Þ� pair

jMab†
qq̄→½QQ̄ðv1Þ�j2 ¼ −C½1�

�
g6s
ūv

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð39Þ

jMba†
qq̄→½QQ̄ðv1Þ�j2 ¼ −C½1�

�
g6s
uv̄

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð40Þ

jMbb†
qq̄→½QQ̄ðv1Þ�j2 ¼ C½1�

�
g6s
uv

�
4

ŝ

�
t̂2 þ û2

ŝ2

�
; ð41Þ

where the interference terms have the opposite sign
compared to the corresponding terms for producing a
½QQ̄ða1Þ� pair, Eqs. (26) and (27). Combining Eqs. (38),
(39), (40), and (41), we obtain

Hqq̄→½QQ̄ðv1Þ�ðŝ; t̂; ûÞ ¼ 4

�
N2

c − 1

8N3
c

��
t̂2 þ û2

ŝ3

�
ζ1ζ2; ð42Þ

which differs from Hqq̄→½QQ̄ða1Þ�ðŝ; t̂; ûÞ only by an overall
factor of ζ1ζ2, and vanishes if the produced heavy quark
and antiquark have the same momentum.
For the production of a color-octet heavy quark pair in a

vector spin state from quark and antiquark scattering at
Oðα3sÞ, all five diagrams in Fig. 2 can contribute. With three
more diagrams for producing a ½QQ̄ðv8Þ� pair, each
combination of the diagrams in the scattering amplitude
and its complex conjugate has its unique color factor,

labeled C½8�
ij†

for diagram “i” multiplied by the complex

conjugate diagram “j” with i; j ¼ ðaÞ, (b), (c), (d), and (e)
in Fig. 2. We find, however, that all of these 25 color factors
can be expressed in terms of the two color factors, C1 and
C2, as defined in Eq. (23), and we present all of them in
Table I. To normalize the color factor involving the three-
gluon vertex, we take the following convention for the

Feynman rule of the three-gluon vertex. For the three-gluon
vertex of diagram (c) in Fig. 2, we let −gsfEAD ¼
ð−igsÞð−ifEADÞ, and include the “ð−ifEADÞ” in the calcu-
lation of the color factor, while keeping “ð−igsÞ” with the
calculation of the rest of diagram. We follow the same
convention for the three-gluon vertices in the complex
conjugate of the scattering amplitude.
From our discussion leading to Eq. (18), we need to

calculate the initial-state spin-color averaged scattering
amplitude square, jMqq̄→½QQ̄ðv8Þ�j2c, for a quark and an
antiquark to produce a heavy ½QQ̄ðv8Þ� pair with the LP
gluonic pole contribution removed. That is, we need to use
the contact term of the gluon propagator for the gluon with
a short bar and momentum p in Fig. 2. Although three
particles are produced in the final state, the scattering
process, qðp1Þ þ q̄ðp2Þ → ½QQ̄ðv8Þ�ðpÞ þ gðkÞ, has effec-
tively a “2 → 2” kinematics, and has three independent
external momenta due to momentum conservation,
p1 þ p2 ¼ pþ k. With the use of the contact term for
the gluon propagator, Eq. (11), in̂μn̂ν=ðp · n̂Þ2, the calcu-
lated partonic hard parts for this production channel,
qðp1Þ þ q̄ðp2Þ → ½QQ̄ðv8Þ�ðpÞ þ gðkÞ, can depend on
the ratios p1 · n̂=p · n̂ and p2 · n̂=p · n̂, if we choose p1,
p2, and p as the three independent momentum vectors for
this partonic subprocess.
In Eq. (11), the auxiliary vector n̂μ is defined to be

conjugate to the heavy quark pair momentum pμ, in the
sense defined after Eq. (9). Since the squares of the
diagrams in Fig. 2, jMqq̄→½QQ̄ðv8Þ�j2, are Lorentz invariant,
and the subtraction term that removes the LP contribution
in Eq. (7) is Lorentz invariant, the NLP hard part defined in
Eq. (18) is Lorentz invariant as well. That is, with the
“2 → 2” kinematics, the NLP hard parts can be expressed
in terms of the Mandelstam variables defined in Eq. (16), as
can the ratios p1 · n̂=p · n̂ and p2 · n̂=p · n̂. Since the inner
products, p1 · n̂, p2 · n̂, and p · n̂, are Lorentz scalars, we
can evaluate them in any Lorentz frame. The most
convenient choice of n̂μ makes the gluon polarization in
Eq. (9) transverse in the center of mass frame of the parton-
parton scattering, in which the heavy quark pair moves
along the z-axis, and the unobserved final-state parton of
momentum kμ ¼ pμ

1 þ pμ
2 − pμ with k2 ¼ 0 moves along

TABLE I. Color factors for all combinations of diagrams in the
scattering amplitude and its complex conjugate for the partonic
process, qþ q̄ → ½QQ̄ðv8Þ� þ g, expressed in terms of C1 and C2
defined in Eq. (23).

C½8�
ij†

(a) (b) (c) (d) (e)

(a) C1 þ C2 C2 −C1 C1 þ C2 C2
(b) C2 C1 þ C2 C1 C2 C1 þ C2
(c) −C1 C1 2C1 −C1 C1
(d) C1 þ C2 C2 −C1 C1 þ C2=2 C2=2
(e) C2 C1 þ C2 C1 C2=2 C1 þ C2=2
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the −z-axis, back-to-back to the pμ. In this frame, the
unobserved final-state parton momentum kμ should be
exactly proportional to the auxiliary vector n̂μ. Since the
contact term of the gluon propagator is invariant when
the vector n̂μ is rescaled, we can write the contact term of
the gluon propagator of momentum p in this frame as

in̂μn̂ν

ðp · n̂Þ2 ¼
ikμkν

ðp · kÞ2 : ð43Þ

Thus, we can replace n̂μ by kμ for our calculation of the
NLP hard parts in this frame. The Lorentz-invariant ratios
involving the n̂μ vector can be then expressed in terms of
the Mandelstam variables as

p1 · n̂
p · n̂

¼ −û
ŝ
;

p2 · n̂
p · n̂

¼ −t̂
ŝ
: ð44Þ

The Lorentz invariance of these ratios and of the scattering
amplitude ensures that the NLP hard parts evaluated in this
frame are valid in all other Lorentz frames, including the
center-of-mass frame of the colliding hadrons or the lab
frame. This simplification is specific to the 2 → 2 sub-
process that characterizes this calculation of the NLP cross
section at LO.
With the Feynman diagrams in Fig. 2, spin projection

operators in Eq. (13), the contact gluon propagator in
Eq. (43), and the calculated color factors in Table I, it is
straightforward to derive the hard parts for the partonic pro-
duction channel, qðp1Þ þ q̄ðp2Þ → ½QQ̄ðv8Þ�ðpÞ þ gðkÞ.
Since all color factors from combinations of the diagrams
in Fig. 2 and its complex conjugate can be expressed in
terms of two color factors, C1 and C2, as shown in Table I,
we express our calculated short-distance hard part of this
channel as

Hqq̄→½QQ̄ðv8Þ�ðŝ; t̂; ûÞ ¼ 2

�
N2

c − 1

8Nc

�
H1ðŝ; t̂; ûÞ

þ 4

�
−
N2

c − 1

4N3
c

�
H2ðŝ; t̂; ûÞ; ð45Þ

where we find that

H1 ¼
t̂2 þ û2

ŝ3
½ð1þ ζ1ζ2Þζ1ζ2 þ 4ð1 − ζ21Þð1 − ζ22Þ�

þ t̂2 − û2

ŝ3
½ð1 − ζ1ζ2Þðζ1 þ ζ2Þ�

−
ðt̂ − ûÞ2

ŝ3
½ζ21ð1 − ζ22Þ þ ζ22ð1 − ζ21Þ�;

H2 ¼
t̂2 þ û2

ŝ3
½ζ1ζ2� þ

t̂2 − û2

ŝ3
½ζ1ð1 − ζ22Þ þ ζ2ð1 − ζ21Þ�

þ 1

ŝ
½ð1 − ζ21Þð1 − ζ22Þ�: ð46Þ

This result for the ðv8Þ heavy pair color-spin configuration,
together with Eqs. (31), (37) and (42) for the ða1Þ, ða8Þ and
ðv1Þ configurations, respectively, gives the full Oðα3sÞ
contribution to heavy pair production in the light pair
channel. The partonic short-distance hard part for produc-
ing a heavy quark pair in a tensor spin state from the
scattering of a light quark pair vanishes at the order of α3s .
This is simply because the tensor spin projection operator
in Eq. (13) has an even number of Dirac γ matrices, and the
trace of an odd number of γ-matrices vanishes.
Using essentially the same methods described in this

section, we have calculated the NLP short-distance hard
parts for other partonic scattering channels at Oðα3sÞ,
including qþ g → ½QQ̄ðκÞ� þ q, gþ q → ½QQ̄ðκÞ� þ q,
and gþ g → ½QQ̄ðκÞ� þ g, with the produced heavy quark
pair in all possible spin-color states. The complete results of
perturbatively calculated hard parts for all partonic scatter-
ing channels are presented in the Appendix.

III. PREDICTIVE POWER AND CONNECTION
TO NRQCD

Even with the first nontrivial order of partonic hard
parts calculated in this paper, and additional future
improvement of the hard parts with higher-order perturba-
tive corrections, the predictive power of the QCD collinear
factorization formalism in Eq. (1) for heavy quarkonium
production still relies on knowledge of the nonperturbative,
but universal, heavy quarkonium fragmentation functions:
Df→Hðz; μ2F;mQÞ and D½QQ̄ðκÞ�→Hðz; u; v; μ2F;mQÞ. As
derived in Ref. [22], these universal heavy quarkonium
FFs satisfy a closed set of evolution equations that
determines their dependence on the factorization scale,
μF. The first nontrivial order of all evolution kernels is also
available in Ref. [22]. Higher-order corrections to these
evolution kernels could be systematically calculated in
perturbation theory. That is, we are able, in principle, to
derive all heavy quarkonium FFs at any factorization scale
μF with a set of input distributions at an initial factorization
scale, μ0 ≳ 2mQ, at which the power-suppressed contribu-
tion in 1=μ2F is compatible with the leading logarithmic
contribution in ln μ2F. Like all other QCD factorization
formalisms, the predictive power of the factorization
formula for heavy quarkonium production in Eq. (1) thus
depends on a set of nonperturbative input FFs (as well as
the input PDFs for hadronic collisions). Since both the
short-distance partonic hard parts and the evolution kernels
of these FFs are perturbatively calculated, it is the FFs at
input scale μ0 that are the most sensitive to the detailed
properties of the heavy quarkonia produced, including their
spin and angular momenta. If we were to follow the
procedure familiar for light parton PDFs and FFs, we
would need to extract heavy quarkonium nonperturbative
input FFs from experimental data or possible lattice QCD
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calculations, similar to the extraction of light hadron, such
as pion or proton, FFs.
However, unlike the light hadron FFs, heavy quarko-

nium FFs at the input scale μ0 ≳ 2mQ depend on a
large perturbative scale—the heavy quark mass,
mQ ∼Oðμ0Þ ≫ ΛQCD. Even more importantly, this per-
turbative scale is substantially separated from the momen-
tum scale needed for the binding of heavy quarkonium,
mQv and any other nonperturbative scales of the bound
state. With such a clear separation of momentum scales,
NRQCD is a natural effective theory of QCD to separate
the dynamics of the fragmentation process at the pertur-
bative scale μ0 ∼OðmQÞ from the physics at the scalemQv
and below. Appealing to NRQCD factorization for this
production process as a very plausible conjecture, we can,
at least as a reasonable model, express all heavy quarko-
nium FFs in terms of the universal NRQCD long-distance
matrix elements (LDMEs) with perturbatively calculated
functional dependence on the momentum fractions, z, ζ1,
and ζ2. In this approach, all input heavy quarkonium FFs
are expanded in terms of the LDMEs, according to their
effective powers in heavy quark velocity v in the heavy
quark pair’s rest frame. These LDMEs are the same as
those used in light parton FFs to heavy quarkonia, so that
this approach has the attractive feature of introducing no
new nonperturbative parameters relative to those that are
already in the LP expansion [31]. The perturbatively
calculated coefficient for each LDME is further expanded
in terms of the power of the strong coupling constant
αsðμ0Þ. With the small value of the velocity, v, the
perturbative expansion of all heavy quarkonium FFs
can be expressed in terms of a very small number of
universal LDMEs for each physical quarkonium state to
enhance the predictive power of the QCD factorization
formalism in Eq. (1) tremendously.

A. NRQCD factorization and input
fragmentation functions

The NRQCD factorization approach to heavy quarko-
nium production was proposed to express the inclusive
cross section for the direct production of a quarkonium
state H as a sum of “short-distance” coefficients times
NRQCD LDMEs [2],

σHðpT;mQÞ
¼

X
½QQ̄ðnÞ�

σ̂½QQ̄ðnÞ�ðpT;mQ; μΛÞh0jOH
½QQ̄ðnÞ�ðμΛÞj0i; ð47Þ

where pT is the transverse momentum of produced heavy
quarkonium, and μΛ ∼OðmQÞ is the ultraviolet cutoff of
the NRQCD effective theory, or equivalently the factori-
zation scale of the factorization formalism. When the phy-
sical scale pT ≫ mQ, it was demonstrated in Ref. [22] that
the perturbative expansion of the short-distance coefficient

functions, σ̂½QQ̄ðnÞ�ðpT;mQ; μΛÞ in Eq. (47), in powers of αs
is not always stable, since high orders in αs can be
enhanced by the powers of pT=mQ, as well as powers of
large logarithms in lnðpT=mQÞ. The QCD factorization
formalism in Eq. (1) was in fact proposed to reorganize
both of these large power and logarithmic enhancements.
With the input factorization scale, μ0 ∼OðmQÞ, and the

large momentum scale separation between μ0 and all other
nonperturbative scales of the heavy quarkonium, we
propose as above and as a conjecture, to use NRQCD
factorization for calculating the heavy quarkonium FFs at
the input scale μ0 as

Df→Hðz; μ20;mQÞ
¼

X
½QQ̄ðnÞ�

d̂f→½QQ̄ðnÞ�ðz; μ20;mQ; μΛÞhOH
½QQ̄ðnÞ�ðμΛÞi ð48Þ

for the heavy quarkonium FFs from a single parton of
flavor f ¼ q; q̄; g, and

D½QQ̄ðκÞ�→Hðz;u;v;μ20;mQÞ
¼

X
½QQ̄ðnÞ�

d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz;u;v;μ20;mQ;μΛÞhOH
½QQ̄ðnÞ�ðμΛÞi

ð49Þ

for the heavy quarkonium FFs from a perturbatively
produced heavy quark pair of the spin-color state κ defined
in Sec. II. In Eq. (48), d̂f→½QQ̄ðnÞ�ðz; μ20;mQ; μΛÞ is the
perturbatively calculable short-distance coefficient function
for an off-shell parton of flavor f to evolve into a
nonrelativistic heavy quark pair represented by ½QQ̄ðnÞ�
with n expressed in terms of the standard spectroscopic

notation, 2Sþ1L½1;8�
J , according to the spin S, orbital angular

momentum L, and total angular momentum J, as well as
the color state ([1] for singlet and [8] for octet) of the pair.
Similarly, d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; u; v; μ20;mQ; μΛÞ are the short-
distance coefficient functions for an off-shell perturbatively
produced heavy quark pair with the spin-color quantum
number κ to evolve into the same nonrelativistic heavy
quark pair state ½QQ̄ðnÞ�.
Since the short-distance coefficient functions,

d̂f→½QQ̄ðnÞ�ðz; μ20;mQ; μΛÞ in Eq. (48), and d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�
ðz; u; v; μ20;mQ; μΛÞ in Eq. (49), are not sensitive to the
details of the produced heavy quarkonium H, they can be
calculated systematically by projecting the factorization
formalisms in Eqs. (48) and (49) on a pair of nonrelativistic
heavy quarks of mass mQ. Note that the heavy quarkonium
fragmentation functions defined in both Eqs. (48) and (49)
are boost invariant along the direction of heavy quarkonium
momentum pμ. Let ½QQ̄ðcÞ� be such a state with c
expressed in terms of the standard spectroscopic notation.
The corresponding projection operators for such a non-
relativistic heavy quark pair are given in Appendix A of

KANG et al. PHYSICAL REVIEW D 91, 014030 (2015)

014030-12



Ref. [26], or in the references therein. By expanding both
sides of the factorization formulas in Eqs. (48) and (49)
order-by-order in powers of αs, the short-distance coef-
ficient functions can be perturbatively extracted by calcu-
lating both sides in perturbation theory.
For example, by expanding the factorization formula

in Eq. (49) for producing a nonrelativistic heavy quark

pair, ½QQ̄ð1S½8�0 Þ�, to zeroth order in power of αs, we
have [26]

Dð0Þ
½QQ̄ðκÞ�→½QQ̄ð1S½8�

0
Þ�ðz; u; vÞ ¼ d̂ð0Þ½QQ̄ðκÞ�→½QQ̄ð1S½8�

0
Þ�ðz; u; vÞ;

ð50Þ

where the superscript “(0)” indicates the zeroth order in
powers of αs, the dependence on the heavy quark mass and
factorization scales are suppressed, and the normalization

of NRQCD LDMEs, hO½QQ̄ð1S½8�
0
Þ�

½QQ̄ðnÞ� ð0Þið0Þ ¼ 1 with n ¼ 1S½8�0 ,

is used. The perturbatively produced heavy quark pair
states, ½QQ̄ðκÞ�, are defined in terms of relativistic heavy
quark field operators in QCD with the vector, axial-vector,
and tensor spin states and singlet and octet color states,
along with the projection operators defined in Ref. [22]. On
the other hand, the NRQCD states of a heavy quark pair are
defined in terms of nonrelativistic heavy quark fields of
NRQCD. As a result, there can be nontrivial matching
coefficients even at zeroth order in αs. With our definition
of heavy quarkonium FFs and the normalization of
NRQCD LDMEs, we have, for example,

d̂ð0Þ½QQ̄ða8Þ�→½QQ̄ð1S½8�
0
Þ�ðz; u; vÞ

¼ 1

N2
c − 1

1

2mQ
δð1 − zÞδð2u − 1Þδð2v − 1Þ; ð51Þ

where u ¼ ð1 − ζ1Þ=2 and v ¼ ð1 − ζ2Þ=2. A complete list
of the zeroth-order short-distance coefficient functions can
be found in Ref. [26].
Beyond the LO in αs, the partonic FFs to a nonrelativistic

heavy quark pair on the left-hand side of the factorization
formulas in both Eqs. (48) and (49) have several types of
perturbative divergences, as do the NRQCD LDMEs to a
nonrelativistic heavy quark pair on the right-hand side of
these equations. With the finite heavy quark mass, mQ, the
partonic FFs on the left-hand side of Eqs. (48) and (49)
have no CO divergence. The UV divergence associated
with the composite operators defining the FFs are system-
atically removed by the UV counterterms (UVCT),
required as a necessary part of the definition of these
FFs, while the UV divergences associated with the virtual
loop diagrams are taken care of by the standard renorm-
alization of QCD perturbation theory. The factorization
scheme, associated with the cancellation of the UV

divergence between the partonic FFs and the UVCT, should
be chosen to be the same as the factorization scheme used
to calculate the short-distance partonic hard parts of the
QCD collinear factorization formalism in Eq. (1). For
calculating the partonic FFs for producing a heavy quark
pair in a nonrelativistic S-wave state, the IR divergence
associated with contributions from individual Feynman
diagrams completely cancels at any given order of αs after
we sum up all contributions at this order. However, for
calculating the partonic FFs of producing a heavy quark
pair in a nonrelativistic P-wave or higher orbital angular
momentum state, IR divergences (as well as what is often
referred to as the rapidity divergence [32–36] in the context
of transverse-momentum-dependent factorization formal-
ism [37]) cannot be completely canceled by summing over
contributions from all diagrams [27]. Instead, IR divergen-
ces (and the rapidity divergences) should be canceled by
corresponding divergences in the NRQCD LDMEs on the
rhs of the factorization formalism, as required by factori-
zation. In addition to the UV and IR divergences, the
partonic FFs for producing a pair of heavy quarks have
Coulomb divergences from the exchange of soft gluons
between the pair. The Coulomb divergence of the partonic
FFs on the lhs of Eqs. (48) and (49) should be exactly
canceled by the Coulomb divergence of the NRQCD
LDMEs on the rhs to ensure the validity of the factoriza-
tion. Although there is no formal proof for the NRQCD
factorization formalisms in Eqs. (48) and (49), the NLO
calculation of the short-distance hard parts for both the
single parton and heavy quark pair FFs in Refs. [26,27]
confirms that all UV, IR (as well as rapidity), and Coulomb
divergences are completely canceled to leave all hard parts
at this order infrared safe (IRS). NRQCD factorization
effectively predicts the functional dependence of the heavy
quarkonium FFs in terms of momentum fractions: z, u, and
v (or equivalently z, ζ1 and ζ2), and NRQCD LDMEs up to
the approximation to truncate the perturbative expansion in
powers of αs and v in Eqs. (48) and (49) [28].
It is the input FFs that are the most sensitive to the

characteristics of the individual heavy quarkonia produced
in high-energy scattering, since both the short-distance
partonic hard parts in the QCD collinear factorization
formalism in Eq. (1) and the evolution kernels of the
FFs are perturbatively calculated and completely universal
for the production of any heavy quarkonium states. The
input FFs determine the difference in the production of
various states, including their spin and polarization depend-
encee, as well as the normalization of their production rates.
The QCD factorization in Eq. (1) assures that these input
FFs are universal regardless of whether the heavy quarko-
nium state is produced in hadron-hadron, lepton-hadron or
lepton-lepton collisions. In summary, input FFs are essen-
tial for understanding the characteristic differences between
all heavy quarkonium states produced.
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B. Relation between QCD factorization
and NRQCD factorization

The NRQCD factorization for the input FFs in Eqs. (48)
and (49) is independent of the QCD collinear factorization
in Eq. (1). The two factorizations have their own power
counting and perturbative expansions. The QCD factori-
zation is valid up to the first-power corrections in the 1=p2

T
expansion of the cross section, while the short-distance
hard parts and evolution kernels of FFs can be systemati-
cally improved by calculating higher-order corrections in
powers of αs. As noted above, although the NRQCD
factorization has not been fully proved perturbatively for
high orders in powers αs and v, explicit NLO calculation up
to v4 in LDMEs verifies the factorization. In order to best
compare with experimental data, it is important to get the
most accurate calculations from each factorization series,
and in particular, the NRQCD factorization for the input
FFs to test the universality of these functions.
If the NRQCD factorization for the input FFs in Eqs. (48)

and (49) is valid to all orders in αs and the relative heavy
quark velocity v, the validity of the QCD collinear
factorization formalism for heavy quarkonium production
in Eq. (1) effectively ensures that the NRQCD factorization
for the production cross section in Eq. (47) is valid at least
for the LP and NLP terms in the 1=pT expansion. In
addition, the QCD factorization formalism reorganizes the
perturbative expansion of NRQCD factorization by resum-
ming all powers of lnðpT=mQÞ. However, this equivalence
between QCD factorization and NRQCD factorization does
not say anything about the validity of the NRQCD
factorized cross section in Eq. (47) beyond the NLP terms.
In terms of QCD collinear factorization in Eq. (1), all

partonic hard parts for production cross sections and
evolution kernels of the FFs are calculated with the heavy
quark mass neglected. The heavy quark mass dependence
of the NRQCD factorization for the production cross
section can be systematically included by the following
perturbative matching formalism:

EP
dσAþB→HþX

d3P
ðP;mQÞ≡ EP

dσQCDAþB→HþX

d3P
ðP;mQ ¼ 0Þ

þ EP
dσNRQCDAþB→HþX

d3P
ðP;mQ ≠ 0Þ

− EP
dσQCD-AsymAþB→HþX

d3P
ðP;mQ ¼ 0Þ;

ð52Þ

where σQCD is given in Eq. (1) with the input FFs calculated
in NRQCD factorization, σNRQCD is given by Eq. (47) with
only the LP and NLP terms in the 1=pT expansion, and the
“asymptotic” σQCD-Asym is defined to be the same as σQCD

with the FFs expanded to a fixed order in both αs and v to
match the order used to calculate σNRQCD. If the NRQCD

factorization formalism in Eq. (47) is valid beyond the NLP,
the σNRQCD in Eq. (52) should include terms beyond the
NLP. In Eq. (52), the first term on the rhs is more reliable
for large pT , while the second term is more suited for the
low-pT region, and the third term effectively removes the
double counting at any given fixed order in powers of αs.
Consequently, the combined formula in Eq. (52) could be
consistent with experimental measurement of heavy quar-
konium cross sections for a wider range of pTð> mQÞ.

C. An example

In this subsection, we provide an explicit example to
demonstrate how the very large and complex NLO con-
tribution to the heavy quarkonium production calculated in
the color-singlet model (also in NRQCD) can be repro-
duced by a much simpler and fully analytic LO calculation
in terms of QCD factorization, Eq. (1) with the FFs
calculated in NRQCD. The same comparison for other
partonic production channels can be found in Ref. [28].
From the QCD factorization formalism in Eq. (1) and the

NRQCD factorization formalisms in Eqs. (48) and (49), we
found that the LO contribution to the production of a color-

singlet spin-1 heavy quark pair, ½QQ̄ð3S½1�1 Þ�, which matches
to a physical heavy quarkonium H by a NRQCD LDME,
hOH

½QQ̄ð3S½1�
1
Þ�i, is given by the combination of producing a

color-octet heavy quark pair, which fragments into a color-

singlet and spin-1 NRQCD state, ½QQ̄ð3S½1�1 Þ�. At the order
of αs, only the pair in a vector ½QQ̄ðv8Þ� or an axial-vector
½QQ̄ða8Þ� spin state can fragment into the spin-1 NRQCD
state.1 The LO partonic hard parts at Oðα3sÞ for producing a
heavy quark pair in both ½QQ̄ðv8Þ� and ½QQ̄ða8Þ� pertur-
bative states are given in the Appendix found from the
detailed derivation given in Sec. II. The OðαsÞ heavy

quarkonium FFs, Dð1Þ
½QQ̄ðκÞ�→½QQ̄ð3S½1�

1
Þ�→H

with κ ¼ a8, v8,

can be calculated by using Eq. (49).
At the order of αs, the relevant Feynman diagrams for cal-

culating the heavy quarkonium FFs, Dð1Þ
½QQ̄ðκÞ�→½QQ̄ð3S½1�

1
Þ�→H

with κ ¼ a8, v8, in NRQCD are given in Fig. 6, where the
amplitude and its complex conjugate are combined together
in the cut diagram notation. As in the standard NRQCD
calculation, the momenta of the heavy quark and antiquark
(upper lines of the diagrams) are fixed at p=2, and Dirac
indices of these lines are contracted with an NRQCD singlet
spin-1 projection operator [26]. The only difference for the
fragmentation between a vector ½QQ̄ðv8Þ� and an axial-
vector ½QQ̄ða8Þ� state is that the lower fragmenting heavy
quark and antiquark lines in Fig. 6 are contracted with
different projection operators, as defined in Eq. (13).
We obtain

1The contribution from the vector spin state, ½QQ̄ðv8Þ�, was
not included in our previous short paper (Ref. [21]).
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DCR
½QQ̄ðv8Þ�→½QQ̄ð3S½1�

1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
×
αs
2π

Δ−ðu; vÞ
z

1 − z

�
ln ðrðzÞ þ 1Þ þ ð1 − 4zþ 2z2Þ

�
1 −

1

1þ rðzÞ
��

; ð53Þ

DCR
½QQ̄ða8Þ�→½QQ̄ð3S½1�

1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
×
αs
2π

Δþðu; vÞzð1 − zÞ
�
ln ðrðzÞ þ 1Þ þ

�
1 −

1

1þ rðzÞ
��

ð54Þ

for the fragmentation of a ½QQ̄ðv8Þ� state and of a ½QQ̄ða8Þ� state, respectively. In Eqs. (53) and (54), the superscript
“CR” indicates the use of a cutoff regularization scheme for the logarithmic UV divergence, the function
rðzÞ≡ z2μ2=ð4m2

Qð1 − zÞ2Þ, and Δ�ðu; vÞ are defined as

Δþðu; vÞ ¼
1

4

�
δ

�
u −

z
2

�
þ δ

�
ū −

z
2

���
δ

�
v −

z
2

�
þ δ

�
v̄ −

z
2

��
;

Δ−ðu; vÞ ¼
1

4

�
δ

�
u −

z
2

�
− δ

�
ū −

z
2

���
δ

�
v −

z
2

�
− δ

�
v̄ −

z
2

��
: ð55Þ

As explained in Sec. III A, UV counterterms are needed to
calculate the FFs perturbatively in order to renormalize the
composite operators that define these heavy quarkonium
FFs. In deriving Eqs. (53) and (54), we renormalized the
UV divergence by a cutoff μ2 on the transverse momentum
integration, dk2T , which is directly connected to the
virtuality of the fragmenting heavy quark pair. The heavy
quark mass, mQ, effectively removes the potential CO
divergence.

The perturbatively calculated FFs in Eqs. (53) and (54)
are not unique due to the renormalization of the perturba-
tive UV divergence. Just like the light hadron FFs, the exact
expression of heavy quarkonium FFs depend on the
factorization scheme, which is a direct consequence of
the renormalization ambiguity for removing the perturba-
tive UV divergence. For a comparison, we also list here the
same FFs calculated with dimensional regularization and
the MS renormalization scheme [26,27]:

DDR
½QQ̄ðv8Þ�→½QQ̄ð3S½1�

1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
×
αs
2π

Δ−ðu; vÞ
z

1 − z

�
ln

�
μ2

4ð1 − zÞ2m2
Q

�
þ ð1 − 4zþ 2z2Þ

�
; ð56Þ

DDR
½QQ̄ða8Þ�→½QQ̄ð3S½1�

1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
×
αs
2π

Δþðu; vÞzð1 − zÞ
�
ln

�
μ2

4ð1 − zÞ2m2
Q

�
− 1

�
; ð57Þ
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FIG. 6. Leading-order Feynman diagrams representing the fragmentation of a heavy quark pair to another heavy quark pair.
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for the fragmentation of a ½QQ̄ðv8Þ� state and a ½QQ̄ða8Þ�
state, respectively. In Eqs. (56) and (57) the superscript
“DR” indicates the use of dimensional regularization. The
difference between the FFs in Eqs. (53) and (54) and those
in Eqs. (56) and (57) reflects the factorization scheme
dependence of the perturbatively calculated FFs, which
should lead to differences in fitted values of the NRQCD
LDMEs—for example, the value of hOH

½QQ̄ð3S½1�
1
Þ�i in these

equations.
From Eq. (55), it is clear thatΔþðu; vÞ andΔ−ðu; vÞ have

different symmetry properties under the transformation of
u↔ū ¼ 1 − u or v↔v̄ ¼ 1 − v, or equivalently, ζ1↔ − ζ1
or ζ2↔ − ζ2: Δþðu; vÞ is symmetric, while Δ−ðu; vÞ is
antisymmetric. That is, when the relative momentum
fraction of the heavy quark pair in the amplitude or in

its complex conjugate reverses its direction, the calculated

FF, Dð1Þ
½QQ̄ða8Þ�→½QQ̄ð3S½1�

1
Þ�→H

ðz; u; v; μ2;mQÞ, which is

proportional to Δþðu; vÞ, is symmetric, while

Dð1Þ
½QQ̄ðv8Þ�→½QQ̄ð3S½1�

1
Þ�→H

ðz; u; v; μ2;mQÞ is antisymmetric.

This symmetry property effectively requires that under
the same transformation, only the symmetric part of
partonic hard parts for producing a ½QQ̄ða8Þ� pair, or the
antisymmetric part of partonic hard parts for producing a
½QQ̄ðv8Þ� pair, can give a nonvanishing contribution to the
production cross section at this order. For example, the LO
QCD factorization contribution from Eq. (1) to hadronic

J=ψ production via a color-singlet ½QQ̄ð3S½1�1 Þ� channel can
be symbolically given by

dσAþB→J=ψ ¼
X
ab

ϕA→a ⊗ ϕB→b ⊗
�
dσ̂Aab→½QQ̄ðv8Þ� ⊗ Dð1Þ

½QQ̄ðv8Þ�→½QQ̄3S½1�
1
Þ�→J=ψ

þ dσ̂Sab→½QQ̄ða8Þ� ⊗ Dð1Þ
½QQ̄ða8Þ�→½QQ̄ð3S½1�

1
Þ�→J=ψ

�
; ð58Þ

where
P

a;b sums over all possible initial-state parton
flavors, and the superscripts “A” and “S” represent the
“antisymmetric” and “symmetric” properties of the par-
tonic hard parts under the transformation ζ1↔ − ζ1 or
ζ2↔ − ζ2.
The relation between the partonic cross sections dσ̂ and

the short-distance hard parts, H, is given in Eq. (17). The
complete results for short-distance hard parts at Oðα3sÞ are
listed in the Appendix, and their derivation was given in
Sec. II. The symmetric part for producing a color-octet
axial-vector pair, ½QQ̄ða8Þ�, was derived in one of our
previous papers on the subject [21], and is summarized
here:

HS
qq̄→½QQ̄ða8Þ�g ¼

ðN2
c − 4ÞðN2

c − 1Þ
4N3

c

�ðt̂2 þ û2Þ
ŝ3

�
; ð59Þ

HS
gq→½QQ̄ða8Þ�q ¼

ðN2
c − 4Þ
4N2

c

�ðŝ2 þ û2Þ
−t̂3

�
; ð60Þ

HS
gg→½QQ̄ða8Þ�g ¼

ðN2
c − 4Þ

N2
c − 1

�ð−ŝ t̂−t̂ û−û ŝÞ3
ðŝ t̂ ûÞ3

�
; ð61Þ

where the superscript “S” indicates keeping only the
symmetric terms of the hard parts under the transformation
of ζ1↔ − ζ1 or ζ2↔ − ζ2.
For the production of a color-octet vector pair, ½QQ̄ðv8Þ�,

we need only the hard parts that are antisymmetric under
the transformation of ζ1↔ − ζ1 or ζ2↔ − ζ2. That is, only
the terms that are of odd powers in both ζ1 and ζ2 are
relevant. From Eqs. (45) and (46), we obtain

HA
qq̄→½QQ̄ðv8Þ�g ¼

ðN2
c − 4ÞðN2

c − 1Þ
4N3

c

�ðt̂2 þ û2Þ
ŝ3

�
ζ1ζ2 ð62Þ

¼ ζ1ζ2HS
qq̄→½QQ̄ða8Þ�g; ð63Þ

where the superscript “A” indicates keeping the antisym-
metric terms when ζ1↔ − ζ1 or ζ2↔ − ζ2. From the
Appendix, we find that the relation in Eq. (63) is actually
true for all partonic scattering channels at Oðα3sÞ,

HA
ab→½QQ̄ðv8Þ�c ¼ ðu − ūÞðv − v̄ÞHS

ab→½QQ̄ða8Þ�c; ð64Þ

where the identities u − ū ¼ ζ1 and v − v̄ ¼ ζ2 are used,
and a, b and c, run over all possible parton flavors: quark,
antiquark and gluon.
In Fig. 7, we compare the NLO results of J=ψ production

(solid line), calculated in terms of the color-singlet model (a
special case of NRQCD), with the LO results of QCD
factorization (dashed line). Both results are for J=ψ
production multiplied by the branching ratio to a μþμ−

pair and evaluated at the Tevatron energy
ffiffiffi
S

p ¼ 1.96 TeV
and in the central rapidity region with jyj < 0.6. The NLO
results of the CSM calculation are from Ref. [38]. The LO
QCD factorization results were generated by using Eq. (1),
or more precisely, Eq. (58), for proton-antiproton collisions
with the LO partonic hard parts and the perturbative FFs
calculated in this section without evolution (or resumma-
tion). We set the factorization scale μF equal to the
renormalization scale μ, and μF ¼ μ ¼ pT . To be consistent
with our factorized LO calculations, we used CTEQ6L1
parton distribution functions [39] and the one-loop
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expression for αs with nf ¼ 5 active flavors and

Λð5Þ
QCD ¼ 165 MeV. In addition, we set the charm quark

mass mQ ¼ 1.5 GeV, and NRQCD LDME,

hOJ=ψ

½QQ̄ð3S½1�
1
Þ�i ¼ 1.32 GeV3. From the upper and central

panels of Fig. 7, we find that our LO contribution to the
production cross section, which is effectively a NLP
contribution from the QCD factorization formalism in
Eq. (1), gives a nice description of the very complicated
NLO CSM results when the J=ψ’s pT is sufficiently large.
In addition, as shown in Ref. [28], the QCD factorization
formalism in Eq. (1) with fully analytical LO short-distance
hard parts and fully analytical NLO FFs calculated in
NRQCD, without higher-order resummation or evolution,
can reproduce the state-of-the-art, numerical NLO NRQCD
results, channel by channel for pT ≳ 10 GeV.
In Fig. 7, we have also plotted the LO results of the CSM

(dot-dashed line), which is much more than an order of
magnitude smaller than the NLO results of the CSM
calculation. This is exactly caused by the order-p2

T=m
2
Q

power enhancement that the NLO has over the LO in the
CSM calculation (the same issue appears in NRQCD
calculations as well) [22]. That is, the expansion of
CSM in powers of αs is not perturbatively reliable because
some of the higher-order terms are enhanced by large
powers and/or logarithms of such large powers [22].

Although the LO QCD factorization results (solid line)
are from the NLP terms (∼Oð1=p6

TÞ) of the QCD factori-
zation formalism, they are still power enhanced in com-
parison to the LO CSM results, which are actually of the
Oð1=p8

TÞ [22]. The key difference between the QCD
factorization formalism in Eq. (1) and the NRQCD fac-
torization formalism in Eq. (47) is that all perturbatively
calculated short-distance hard parts and evolution kernels
of the QCD factorization formalism are evaluated at a
single hard scale so that they are free of any large higher-
order enhancement from the power of large momentum
ratios or the logarithms of such large ratios.

IV. HEAVY QUARKONIUM POLARIZATION

Understanding the polarization of produced heavy quar-
konia is critically important for determining the true QCD
dynamics, as well as the mechanism of production. In terms
of the QCD factorization formalism in Eq. (1), as pointed
out earlier in this paper, all hadronic properties of the heavy
quarkonia, including their spin and polarizations, are only
sensitive to the FFs at the input scale μ0 ≳ 2mQ, since all
perturbatively calculated partonic hard parts and evolution
kernels of FFs are insensitive to the details of the produced
states. In this section, we adapt the same NRQCD factori-
zation conjecture to evaluate the input FFs to a polarized
heavy quarkonium state. We introduce the basic method for
calculating these input FFs, and present a complete
example for the calculation of the input FFs to a polarized
J=ψ via a polarized color-singlet and spin-1 nonrelativistic
heavy quark pair (3S½1�1 ). A complete set of polarized heavy
quarkonium FFs, and their derivation in detail, calculated to
NLO in the NRQCD factorization approach, including all
possible partonic scattering channels at this order, can be
found in Refs. [26,27,29].
If we keep only the LP term in QCD collinear factori-

zation, Eq. (1), for the production of a heavy quarkonium at
pT ≫ mQ, the hard partonic collision produces a single,
energetic virtual parton state at the short-distance scale
∼Oð1=pTÞ, followed by a fragmentation process to gen-
erate a physical J=ψ , represented by the FFs of the
produced single parton. Although the single-parton FFs
to a heavy quarkonium are nonperturbative, their factori-
zation scale dependence is given by the DGLAP evolution
equations with perturbatively calculated evolution kernels
(expanded in powers of αs). The DGLAP equations evolve
the fragmentation process, initiated by the energetic parton,
perturbatively, to the input scale, μ0 ≳ 2mQ or a distance
scale ∼Oð1=2mQÞ, where a heavy quark pair emerges from
the fragmenting parton, and the pair eventually fragments
into a heavy quarkonium nonperturbatively. The polariza-
tion of the produced heavy quarkonium from this LP
production chain is determined by the polarization of the
fragmenting parton at the input scale, and the dynamics
behind the emergence of the heavy quark pair from the

10 9

10 7

10 5

0.001

0.1

0.8
0.9
1.0
1.1
1.2
1.3
1.4

10 20 30 40 50
1.0

0.9

0.8

0.7

0.6

0.5

LO FF

LO CSM

NLO CSM

S 1.96 TeV

y 0.6

Cut off

FIG. 7 (color online). Upper panel: Comparison of LO QCD
factorization results with FFs calculated in the “CR”—the cutoff
regularization and renormalization scheme (solid line) with the
LO (dot-dashed line) and NLO (dashed line) results calculated in
CSM. Middle panel: Ratio of LO QCD factorization results over
NLO CSM results. Lower panel: Polarization parameter evalu-
ated with the LO QCD factorization formalism and FFs given in
Eqs. (68) and (69).
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fragmenting parton, as well as the emergence of the heavy
quarkonium from the heavy quark pair.
In this whole LP production chain of a heavy quarko-

nium at high pT , no heavy quark pair was produced in the
fragmentation process all the way down to the input scale
μ0 ≳ 2mQ, at which the logarithmic contribution in terms of
lnðμ0=ð2mQÞÞ is comparable with the corrections in powers
of 2mQ=μ0. More precisely, the heavy quark pair, necessary
for the production of the heavy quarkonium, is only
produced as a part of the input FFs. When the available
phase space for radiation is much smaller than the mass of
heavy quarks, the polarization of the J=ψ should be very
much the same as the polarization of the heavy quark pair,
which is more or less the same as the polarization of the
“final” parton, most often a gluon that splits into the pair.
Since a virtual gluon of invariant mass much less than its
momentum is likely to be transversely polarized, the LP
QCD factorization formalism for the production naturally
predicts that J=ψ produced at a high pT is transversely
polarized, which is also consistent with the prediction of the
NRQCD factorization formalism [1]. However, almost all
data on the polarization of high-pT J=ψ as well as ϒ,
produced at Tevatron and the LHC energies, do not favor
the dominance of transverse polarization at the current
values of pT ; instead, they are consistent with no strong
polarization. This is in fact an outstanding puzzle whose
solution must be crucial for understanding the true mecha-
nism of heavy quarkonium production in high-energy
collisions.

If the NLP term in the QCD factorization formalism in
Eq. (1) is important, which seems to be the case [9,28,31,40],
heavy quark pairs produced at all distance scales from
Oð1=pTÞ to Oð1=2mQÞ could contribute to the production
of heavy quarkonia significantly, and the knowledge of
heavy quarkonium FFs from a heavy quark pair at the input
scale μ0 is then crucial for understanding the polarization of
produced heavy quarkonia. In the following, we use an
example to describe the calculations of these input FFs to a
polarized J=ψ . More details for fragmentation via other
NRQCD states can be found in Ref. [29].
Like the perturbative NRQCD calculation for the unpo-

larized heavy quarkonium FFs, as discussed in the previous
section, we use the same Feynman diagrams in Fig. 6 for cal-
culating the FFs to a polarized heavy quarkonium, but with
different spin projection operators to identify the polarization
states of the produced heavy quark pair (the upper lines in
Fig. 6). For a heavy quark pair moving in theþz-direction, we
can write pμ ¼ p · n̂n̄μ þ p2=ð2p · n̂Þn̂μ, with two auxiliary
vectors, n̄μ ¼ðn̄þ; n̄−; n̄⊥Þ¼ ð1;0;0⊥Þ and n̂μ ¼ ð0; 1; 0⊥Þ,
and we define the polarization vector for a longitudinally
polarized spin-1 heavy quark pair,

ϵμλ¼0 ¼
1ffiffiffiffiffi
p2

p
�
p · n̂n̄μ −

p2

2p · n̂
n̂μ
�
; ð65Þ

with p · ϵ0 ¼ 0 and ϵ20 ¼ −1. From ϵμλ¼0, we can derive the
following spin polarization tensors in this frame, which is
effectively the S-helicity frame [41],

Pμν
L ðpÞ≡ ϵ�μ0 ϵν0 ¼

1

p2

�
p · n̂n̄μ −

p2

2p · n̂
n̂μ
��

p · n̂n̄ν −
p2

2p · n̂
n̂ν
�
;

Pμν
T ðpÞ≡ 1

2

X
λ¼�1

ϵ�μλ ϵνλ ¼
1

2
½−gμν þ n̄μn̂ν þ n̂μn̄ν� ¼ 1

2
½PμνðpÞ − Pμν

L ðpÞ; �; ð66Þ
for producing a longitudinally and transversely polarized spin-1 heavy quark pair of momentum p, respectively. The tensor
PμνðpÞ in Eq. (66) is defined as

PμνðpÞ ¼
X

λ¼0;�1

ϵ�μλ ϵνλ ¼ −gμν þ pμpν

p2
; ð67Þ

which is the polarization tensor for an unpolarized spin-1 heavy quark pair of total momentum p, which was used for calculating
the unpolarized input FFs in the last section.
Similar to those unpolarized input FFs, presented in Eqs. (53), (54), (56) and (57), we derive the input FFs to a polarized

heavy quarkonium H via a color-singlet spin-1 NRQCD heavy quark pair, by using the polarization tensors in Eq. (66),

DL;CR

½QQ̄ðv8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δ−ðu; vÞ ×

αs
2π

z
1 − z

�
ln ðrðzÞ þ 1Þ −

�
1 −

1

1þ rðzÞ
��

;

DT;CR

½QQ̄ðv8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δ−ðu; vÞ ×

αs
2π

zð1 − zÞ
�
1 −

1

1þ rðzÞ
�
; ð68Þ
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for the fragmentation of a ½QQ̄ðv8Þ� state, and [21]

DL;CR

½QQ̄ða8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δþðu; vÞ ×

αs
2π

zð1 − zÞ
�
ln ðrðzÞ þ 1Þ −

�
1 −

1

1þ rðzÞ
��

;

DT;CR

½QQ̄ða8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δþðu; vÞ ×

αs
2π

zð1 − zÞ
�
1 −

1

1þ rðzÞ
�

ð69Þ

for the fragmentation of a ½QQ̄ða8Þ� state. Comparing with those unpolarized input FFs derived in the last section, it is clear
that the relation DðpÞ ¼ 2DTðpÞ þDLðpÞ is satisfied. Similarly, in a dimensional regularization and MS renormalization
scheme, we have

DL;DR

½QQ̄ðv8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δ−ðu; vÞ ×

αs
2π

z
1 − z

�
ln

�
μ2

4ð1 − zÞ2m2
Q

�
− 1

�
;

DT;DR

½QQ̄ðv8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δ−ðu; vÞ ×

αs
2π

zð1 − zÞ ð70Þ

for the fragmentation of a ½QQ̄ðv8Þ� state, and

DL;DR

½QQ̄ða8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δþðu; vÞ ×

αs
2π

zð1 − zÞ
�
ln

�
μ2

4ð1 − zÞ2m2
Q

�
− 3

�
;

DT;DR

½QQ̄ða8Þ�→½QQ̄ð3S½1�
1
Þ�→H

ðz; u; v; μ2;mQÞ

¼ 1

2N2
c

hOH
½QQ̄ð3S½1�

1
Þ�i

3mQ
Δþðu; vÞ ×

αs
2π

zð1 − zÞ ð71Þ

for the fragmentation of a ½QQ̄ða8Þ� state. In Eqs. (68),
(69), (70), and (71) above, we have assumed that the
NRQCD LDME for an unpolarized spin-1 heavy quark pair
to an unpolarized heavy quarkoniumH, hOH

½QQ̄ð3S½1�
1
Þ�i, is the

same as that for a polarized spin-1 heavy quark pair to a
polarized heavy quarkonium H in the same polariza-
tion state.
In the polarized input FFs in Eqs. (68), (69), (70), and

(71), it is interesting to note the following feature: the FFs
to a longitudinally polarized heavy quark pair are enhanced
by a logarithmic term, lnðrðzÞ þ 1Þ ≈ lnð1=ð1 − zÞ2Þ þ � � �,
as z → 1, while those to a transversely polarized pair are
not. This is a natural result of the UV power counting,

because only the p · n̂n̄μ term of the longitudinal polari-
zation vector, ϵμ0 in Eq. (65), which leads to an equivalent
spin contraction γ · p for the produced heavy quark pair,
picks up the leading logarithmic UV divergence of the
diagrams in Fig. 6 when the fragmenting heavy quark pair
is in a vector or axial-vector spin state (contracted by γ · n̂
or γ · n̂γ5). While the UV divergence, when the transverse
momentum of the radiated gluon k2⊥ → ∞, is renormalized
leading to the logarithmic factorization scale μ2 depend-
ence of the FFs, the opposite limit when k2⊥ → 0 corre-
sponding to z → 1 gives the logarithmic enhancement of
the FFs to a longitudinally polarized heavy quark pair. That
is, a perturbatively produced color-octet heavy quark pair,
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in either a vector or an axial vector spin state, is more likely
to fragment into a longitudinally polarized color-singlet
spin-1 NRQCD heavy quark pair when the momentum
fraction z, carried by the NRQCD heavy quark pair,
is large.
From the QCD factorization formalism in Eq. (1), the

hadronic cross section for heavy quarkonium production at
large pT is proportional to a convolution of two PDFs and
one FF for each partonic scattering channel. With two
steeply falling PDFs as a function of parton momentum
fraction x, the hadronic production cross section is domi-
nated by the phase space where the momentum fractions x
of colliding partons are small while the produced outgoing
hadron momentum fraction z is large [42]. That is, the
heavy quarkonium produced by the fragmentation of a
perturbatively produced heavy quark pair via a color-
singlet and spin-1 NRQCD heavy quark pair is likely to
be longitudinally polarized. To demonstrate this feature
quantitatively, we define the polarization parameter,

αðpÞ≡ σTAþB→J=ψðpÞ − σLAþB→J=ψðpÞ
σTAþB→J=ψðpÞ þ σLAþB→J=ψðpÞ

; ð72Þ

where σTAþB→J=ψðpÞ and σLAþB→J=ψðpÞ are the cross sections

for producing a transversely and a longitudinally polarized
J=ψ of momentum p, respectively, and are given by the
same factorized expressions in Eq. (58) with the FFs
replaced by corresponding FFs to a transversely (or
longitudinally) polarized J=ψ in Eq. (68) [or in
Eq. (69)]. In the bottom panel of Fig. 7, we have plotted
the polarization parameter αðpÞ for J=ψ production as a
function of its pT . It is clear from Fig. 7 that most J=ψ’s
produced through spin-1 and color-singlet heavy quark
pairs are longitudinally polarized [21]. Like the cross
section shown in Fig. 7, the polarization parameter α,
calculated by using the QCD factorization formalism at the
LO and with the calculated FFs, completely reproduces the
NLO CSM calculation in Ref. [43]. Having the complete
set of input FFs to a polarized heavy quarkonium [29],
which are universal, it should be straightforward in terms of
the QCD factorization formalism in Eq. (1) to evaluate the
production rate for both transversely and longitudinally
polarized heavy quarkonia in high-energy hadron-hadron,
hadron-lepton, and lepton-lepton scatterings, and to test the
QCD factorization formalism and our understanding of the
mechanism responsible for the heavy quarkonium produc-
tion, which we leave for future work.
There have been many proposals to resolve the polari-

zation puzzle of heavy quarkonum polarization [1], and
many of them are within the NRQCD factorization
approach [9,31,40]. By adjusting the value of NRQCD
LDMEs so that the two leading power production channels,

via ½QQ̄ð3S½8�1 Þ� and ½QQ̄ð3P½8�
J Þ� states, which likely pro-

duce the transversely polarized J=ψ , are canceled between

them, it is possible to leave the production dominated by

the channel with an unpolarized ½QQ̄ð1S½8�0 Þ� state. As
demonstrated in Ref. [31], the contribution from this
channel for the relevant pT region cannot be reproduced
by the QCD factorized fragmentation restricted to LP.
Instead, as demonstrated in Ref. [28], the contribution

from the ½QQ̄ð1S½8�0 Þ� channel from the state-of-the-art NLO
NRQCD calculation is completely reproduced by the LO
contribution from QCD factorization in Eq. (1), evaluated
with heavy quarkonium FFs calculated in NRQCD, and is
found to be dominated by the NLP contribution for the
most relevant pT range of the existing data. It seems likely,
then, that the NLP contribution to heavy quarkonium
production is crucial for resolving the outstanding puzzles
of heavy quarkonium polarization at the current collision
energies.
In terms of the QCD factorization formalism in Eq. (1),

there are two major sources of NLP contributions that could
generate heavy quarkonium polarization different from
that at the LP. One is directly from the NLP term of
the factorization formalism, or more specifically, from the
heavy quark pair FFs to a heavy quarkonium, and the other
is indirectly from the LP term due to the NLP corrections to
the evolution equations of the single-parton FFs to a heavy
quarkonium [22].
The direct contribution to heavy quarkonium polariza-

tion should come from the knowledge of input FFs to a
polarized heavy quarkonium, since the partonic hard parts
are insensitive to the details of the hadronic states pro-
duced. Like the color-singlet contribution discussed in this
section, longitudinally polarized heavy quarkonia at large
pT can be naturally estimated using the model FFs of
Refs. [26,27,29], in this direct NLP contribution.
As required by the consistency of QCD factorization at

NLP accuracy, which was pointed out in Ref. [22], the
DGLAP evolution equation for the factorization scale
dependence of the single-parton FFs to a heavy quarko-
nium needs to be modified to include an NLP correction.
This modification takes into account the power-suppressed
contribution to the evolution of single-parton FFs, in which
a single parton evolves into a heavy quark pair, in addition
to its evolution to other single partons at LP. The pair
subsequently evolves into a heavy quarkonium via the
heavy quark pair FFs. While the LP evolution of the single-
parton FFs leads to a dominance of transverse polarization,
the NLP correction to the evolution of single-parton FFs
could lead to more longitudinally polarized heavy quarko-
nia. It is clear that both the direct and the indirect NLP
contributions to heavy quarkonium production from the
QCD factorization formalism in Eq. (1) reduce the domi-
nance of transversely polarized heavy quarkonia, as pre-
dicted by the purely LP fragmentation contribution to
heavy quarkonium production. It is therefore critically
important to evaluate the production rate of polarized
heavy quarkonia in high-energy scattering in terms of
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the QCD factorization formalism in Eq. (1) using the heavy
quarkonium FFs calculated in the NRQCD factorization
approach [26,27,29].

V. SUMMARY AND CONCLUSIONS

We have calculated, in terms of the QCD collinear
factorization formalism in Eq. (1), a complete set of
short-distance partonic hard parts at Oðα3sÞ for the NLP
contribution to hadronic heavy quarkonium production at
large transverse momentum pT at collider energies. This
new factorization formalism organizes the production cross
section of heavy quarkonia at large pT in terms of a power
expansion of 1=pT , with both the LP and NLP contribu-
tions factorized into convolutions of perturbatively calcu-
lable short-distance partonic hard parts and the universal
but nonperturbative heavy quarkonium FFs [22]. Like all
QCD factorization formalisms, the short-distance partonic
hard parts are insensitive to the details of the hadrons
produced. The short-distance hard parts at LP are the same
as the hard parts for LP hadronic production of light
hadrons, and are available in the literature for both LO
and NLO at Oðα2sÞ and Oðα3sÞ, respectively [25]. Our
calculated LO partonic hard parts to the NLP contribution
atOðα3sÞ, in principle, depend on the separation of LP from
the NLP contribution to the cross section from the same
partonic scattering diagrams. In practice, as discussed in
Sec. II, we introduce a gluon contact term to remove the LP
contribution analytically in our calculation at Oðα3sÞ.
With the short-distance partonic hard parts calculated in

this paper and the evolution kernels for the scale depend-
ence of FFs calculated in Ref. [22], the predictive power of
the QCD factorization formalism for heavy quarkonium
production still depends on our knowledge of heavy
quarkonium FFs at an input scale μ0. Because of the large
heavy quark mass,mQ ≫ ΛQCD, and the clear separation of
momentum scales between the perturbative scales,
μ0 ≳mQ, and the nonperturbative scales of the input
FFs, such as heavy quark momentum ∼mQv, and energy
∼mQv2, we have proposed, as a conjecture or model, to use
NRQCD factorization to evaluate the heavy quarkonium
FFs at the input scale. Then, the large number of unknown
heavy quarkonium FFs from either a single parton or a
heavy quark pair can be factorized into perturbatively
calculable functional dependence on momentum fractions,
z, ζ1 and ζ2, at the NRQCD factorization scale
μΛ ∼mQ ∼Oðμ0Þ, which can be combined with a few
universal NRQCD LDMEs organized in terms of their
effective powers in heavy quark velocity v. This increases
the predictive power of the QCD factorization formalism,
as well as its testability. Since the QCD factorization of the
production cross section and the NRQCD factorization of
the universal FFs at the input scale are two independent
factorizations, using different expansion parameters and
power counting, we can improve overall predictive power

or accuracy on the production cross section by increasing
the perturbative accuracy of each perturbative expansion.
If the NRQCD factorization for the universal input FFs

is proved to be valid, the QCD factorization approach
with calculated FFs in NRQCD is effectively equal to the
NRQCD factorization for the first two powers of the 1=pT
expansion of the production cross section, although the
QCD factorization and NRQCD factorization organize
their perturbative expansions of the cross section differ-
ently. The QCD factorization includes all-order resumma-
tion of lnðp2

T=m
2
QÞ-type large logarithmic contributions at

high pT , and is more suited for heavy quarkonium
production in the high-pT region, while the NRQCD
factorization, including the explicit heavy quark mass
dependence, is better for the production at pT ≳mQ. We
proposed a matching equation in Eq. (52) to expand the
coverage of the factorization formalism for heavy quarko-
nium production at collider energies.
Understanding the polarization of produced heavy quar-

konia in high-energy scattering is a major challenge for the
NRQCD factorization formalism. We demonstrated that the
QCD collinear factorization including the NLP contribu-
tion associated with short-distance heavy pair production
has potentially both direct and indirect ways to suppress the
dominance of transverse polarization predicted by the LP
fragmentation contribution. Since short-distance coeffi-
cients are insensitive to hadron properties, the universal
FFs at the input scale are largely responsible for the
polarization of produced heavy quarkonia, while the
NLP corrections to the evolution equations of single-parton
FFs may also be very important to reduce the dominance of
transverse polarization. The input FFs to a polarized heavy
quarkonium state, both longitudinal and transverse, are
now calculated in the NRQCD factorization approach
[26,27,29]. With the partonic short-distance hard parts
calculated in this paper, the evolution kernels of heavy
quarkonium FFs calculated in Ref. [22], and input FFs to a
polarized heavy quarkonium, we are now in a position to
evaluate, consistently, QCD predictions for the polarization
of heavy quarkonia produced in high-energy scatterings.
By calculating partonic hard parts for heavy quarkonium
production in eþe− and lepton-hadron collisions, and using
the existing universal evolution kernels and input FFs, it is
completely possible to perform a QCD global analysis of
all data on heavy quarkonium production to test our
understanding on how heavy quarkonia are really pro-
duced, forty years since the first heavy quarkonium, J=ψ ,
was discovered [44,45].
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APPENDIX: PARTONIC HARD PARTS

In this appendix, we summarize the partonic hard parts
for the NLP contribution to heavy quarkonium production
from all partonic scattering channels, iðp1Þ þ jðp2Þ →
½QQ̄ðκÞ�ðpÞ þ kðp3Þ, for hadronic collisions. We define
the hard part, Hij→½QQ̄ðκÞ�, in terms of the invariant partonic
cross section,

Ep

dσ̂ij→½QQ̄ðκÞ�
d3p

¼ 4πα3s
ŝ

1

ūuv̄v
Hij→½QQ̄ðκÞ�δðŝþ t̂þ ûÞ;

ðA1Þ
with Mandelstam variables defined as

ŝ ¼ ðp1 þ p2Þ2 ¼ ðpþ p3Þ2;
t̂ ¼ ðp2 − p3Þ2 ¼ ðp − p1Þ2;
û ¼ ðp1 − p3Þ2 ¼ ðp − p2Þ2:

As discussed in Sec. II, the partonic hard parts at NLP
depend on the subtraction of the LP contribution from the
partonic scattering, and the corresponding choice of the
regularization. The following results are calculated by
using the gluon contact term to remove the LP contribution
at this order analytically. The dependence on the auxiliary
vector n̂μ, which defines the gluon contact term, is kept
explicit, in the form of p · n̂≡ pþ for any momentum
vector p. More discussion on the definition and the choice
of n̂μ can be found in Sec. II.

(1) Quark-antiquark scattering:

Hqq̄→½QQ̄ða1Þ�g ¼
N2

c − 1

2N3
c

t̂2 þ û2

ŝ3
; ðA2Þ

Hqq̄→½QQ̄ðv1Þ�g ¼
N2

c − 1

2N3
c

t̂2 þ û2

ŝ3
ζ1ζ2; ðA3Þ

Hqq̄→½QQ̄ða8Þ�g ¼
N2

c − 1

4Nc

t̂2 þ û2

ŝ3

�
N2

c − 4

N2
c

þ ζ1ζ2

�
; ðA4Þ

Hqq̄→½QQ̄ðv8Þ�g ¼
N2

c − 1

4Nc

t̂2 þ û2

ŝ3

�
N2

c − 4

N2
c

þ ζ1ζ2

�
ζ1ζ2

−
N2

c − 1

4Nc

�
2

�
1

û
pþ
1

pþ þ 1

t̂
pþ
2

pþ

��
t̂2 þ û2

ŝ2
−

1

N2
c

�
ð1 − ζ21Þð1 − ζ22Þ

þ 1

2

��
1

t̂
pþ
1

pþ −
1

û
pþ
2

pþ

�
t̂2 þ û2

ŝ2
−
�
1

t̂
−
1

û

��

×

�
t̂ − û
ŝ

ðζ21 þ ζ22 − 2ζ21ζ
2
2Þ þ

N2
c − 4

N2
c

ðζ1 þ ζ2Þð1 − ζ1ζ2Þ
��

: ðA5Þ

In Eq. (A5), the term proportional to ζ1ζ2 comes from the contribution of ðaÞ þ ðbÞ in Fig. 2, and the term
proportional to ðζ1 þ ζ2Þð1 − ζ1ζ2Þ comes from the contribution of interference between ðaÞ þ ðbÞ and
ðcÞ þ ðdÞ þ ðeÞ in Fig. 2. It is straightforward to check charge conjugation symmetry:

Hqq̄→½QQ̄ðκÞ�gðp1; p2; p3; ζ1; ζ2Þ ¼ Hqq̄→½QQ̄ðκÞ�gðp2; p1; p3;−ζ1;−ζ2Þ: ðA6Þ

Results for q̄q initial states can be obtained from results of qq̄ initial states by exchanging p1 and p2:

Hq̄q→½QQ̄ðκÞ�gðp1; p2; p3; ζ1; ζ2Þ ¼ Hqq̄→½QQ̄ðκÞ�gðp2; p1; p3; ζ1; ζ2Þ
¼ Hqq̄→½QQ̄ðκÞ�gðp1; p2; p3;−ζ1;−ζ2Þ: ðA7Þ
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(2) Quark-gluon and gluon-quark scattering: Similarly, results for qg, q̄g, gq and gq̄ initial states are given by the
following crossing relationships:

Hqg→½QQ̄ðκÞ�qðp1; p2; p3; ζ1; ζ2Þ ¼ −
Nc

N2
c − 1

Hqq̄→½QQ̄ðκÞ�gðp1;−p3;−p2; ζ1; ζ2Þ; ðA8Þ

Hq̄g→½QQ̄ðκÞ�q̄ðp1; p2; p3; ζ1; ζ2Þ ¼ −
Nc

N2
c − 1

Hqq̄→½QQ̄ðκÞ�gðp1;−p3;−p2;−ζ1;−ζ2Þ; ðA9Þ

Hgq→½QQ̄ðκÞ�qðp1; p2; p3; ζ1; ζ2Þ ¼ −
Nc

N2
c − 1

Hqq̄→½QQ̄ðκÞ�gðp2;−p3;−p1; ζ1; ζ2Þ; ðA10Þ

Hgq̄→½QQ̄ðκÞ�q̄ðp1; p2; p3; ζ1; ζ2Þ ¼ −
Nc

N2
c − 1

Hqq̄→½QQ̄ðκÞ�gðp2;−p3;−p1;−ζ1;−ζ2Þ; ðA11Þ

where the overall color factor accounts for differences of averaging over initial color states. We give the results for gq
initial states explicitly:

Hgq→½QQ̄ða1Þ�q ¼ −
1

2N2
c

û2 þ ŝ2

t̂3
; ðA12Þ

Hgq→½QQ̄ðv1Þ�q ¼ −
1

2N2
c

û2 þ ŝ2

t̂3
ζ1ζ2; ðA13Þ

Hgq→½QQ̄ða8Þ�q ¼ −
1

4

û2 þ ŝ2

t̂3

�
N2

c − 4

N2
c

þ ζ1ζ2

�
; ðA14Þ

Hgq→½QQ̄ðv8Þ�q ¼ −
1

4

û2 þ ŝ2

t̂3

�
N2

c − 4

N2
c

þ ζ1ζ2

�
ζ1ζ2

þ 1

4

�
2

�
1

ŝ
pþ
2

pþ −
1

û
pþ
3

pþ

��
û2 þ ŝ2

t̂2
−

1

N2
c

�
ð1 − ζ21Þð1 − ζ22Þ

þ 1

2

��
1

û
pþ
2

pþ þ 1

ŝ
pþ
3

pþ

�
û2 þ ŝ2

t̂2
−
�
1

û
−
1

ŝ

��

×

�
û − ŝ
t̂

ðζ21 þ ζ22 − 2ζ21ζ
2
2Þ þ

N2
c − 4

N2
c

ðζ1 þ ζ2Þð1 − ζ1ζ2Þ
��

: ðA15Þ

(3) Gluon-gluon scattering:

Hgg→½QQ̄ða1Þ�g ¼
2

N2
c − 1

S42
S33

; ðA16Þ

Hgg→½QQ̄ðv1Þ�g ¼
2

N2
c − 1

S42
S33

ζ1ζ2; ðA17Þ

Hgg→½QQ̄ða8Þ�g ¼
N2

c

N2
c − 1

S42
S33

�
N2

c − 4

N2
c

þ
�
1 − 5

S23
S32

�
ζ1ζ2

�
; ðA18Þ
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Hgg→½QQ̄ðv8Þ�g ¼
N2

c

N2
c − 1

S42
S33

�
N2

c − 4

N2
c

þ
�
1 − 5

S23
S32

�
ζ1ζ2

�
ζ1ζ2

−
N2

c

N2
c − 1

S2
S23

�
2

�
t̂3
pþ
1

pþ þ û3
pþ
2

pþ − ŝ3
pþ
3

pþ

�
ð1 − ζ21Þð1 − ζ22Þ

þ 1

2

�
−3

�
t̂3
pþ
1

pþ þ û3
pþ
2

pþ − ŝ3
pþ
3

pþ

�
þ 2S22

S3

�
t̂2
pþ
1

pþ þ û2
pþ
2

pþ − ŝ2
pþ
3

pþ

�
− 4S3

�

× ðζ21 þ ζ22 − 2ζ21ζ
2
2Þ
�
; ðA19Þ

where we have used the method described in Ref. [46] to write these expressions in symmetric form, with symmetric
variables defined as

S2 ¼ −ŝ t̂−t̂ û−û ŝ;

S3 ¼ ŝ t̂ û : ðA20Þ
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