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We study the dijet production in the Randall–Sundrum model at the LHC with QCD next-to-leading
(NLO) order accuracy. Our results show that the QCD NLO corrections can increase the total cross sections
by more than 80% and reduce the scale dependence. We also explore in detail several important kinematic
distributions at the NLO level. Moreover, we discuss the upper limits of the Klauza-Klein graviton
excluded mass range and the allowed parameter space for the coupling constant and Klauza-Klein graviton
mass, using the experiment data.
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I. INTRODUCTION

Searching for new physics is one of the most important
tasks at the LHC. In many extensions of the standard model
(SM), there exist massive particles that couple to quarks or
gluons, which may be observed as a narrow resonance
in dijet production, such as the W0, Z0, excited quarks,
axigluon, and Klauza-Klein (KK) graviton from extra
dimensions. Therefore, the study of dijet events provides
a possibility to probe new physics effects. In the SM, the
dijet events are mostly produced through QCD interactions
in hadron colliders, which predicts a smooth and steeply
falling dijet mass spectrum. Experiments at the LHC have
already used the dijet invariant mass to constrain the mass
of these new resonances [1–3]. The Randall–Sundrum (RS)
model [4,5] is one among various new physics models
which can solve the large hierarchy problem of the weak
and the Plank scale.
In the RS model, the extra dimension is assumed to be

located on a S1=Z2 orbifold, which has two fixed points,
ϕ ¼ 0 and ϕ ¼ π. They correspond to a high energy brane
and the brane we live on, respectively. A graviton is the
only particle that can propagate through the bulk between
these two branes. The five-dimensional warped matric is
given by

ds2 ¼ e−2krjϕj
�
ημν þ

2

M3=2
P

hμν

�
dxμdxν − r2dϕ2;

0 ≤ jϕj ≤ π; ð1Þ
where ϕ is the five-dimensional coordinate, k is a scale of
order of the Plank scale, r is the compactification radius of
the extra-dimensional circle, and hμν is the graviton metric.
Solving the five-dimensional Einstein equation and using

Eq. (1), we can get the relation between the four-dimen-
sional reduced Plank scale M̄p and the five-dimensional
Plank scale MP [4],

M̄p ¼ M3
P

k
ð1 − e−2krπÞ: ð2Þ

The physical massm of a field in four dimensions is related
to the fundamental mass parameter m0 as the following:

m ¼ e−krπm0: ð3Þ
Thus, the hierarchy problem can be solved by assuming
kr ∼ 12.
There also exist KK towers of the massive spin-2

graviton that can interact with the SM fields, and their
four-dimensional effective Lagrangian is given by [6,7]

L ¼ −
1

M̄p
TαβðxÞhð0Þαβ ðxÞ −

1

Λπ
TαβðxÞ

X∞
n¼1

hðnÞαβ ðxÞ; ð4Þ

with

κ ¼ 1

Λπ
¼ 1

M̄p
e2krπ ¼ x1k

mKKM̄p
; ð5Þ

where κ stands for the coupling constant between the KK
graviton and SM particles and Λπ is around the electroweak
scale. mKK is the mass of the first KK excitation mode of
the graviton, which we will focus on in this paper. x1 is the
first root of the first-order Bessel function. Then the masses
of the first KK excitation modes are given by

mKK ¼ kx1e−krπ ¼
k
M̄p

x1
κ
: ð6Þ

From Eqs. (5) and (6), the graviton sector of the RSmodel is
completely determined by two parameters mKK and k=M̄p.
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The RS KK graviton can be produced through both the
gg fusion and the qq̄ annihilation at the leading order (LO).
The detailed Feynman rules of the graviton couplings can
be found in Ref. [8], and the propagator for the massive
spin-2 KK states is [9]

PG
μν;ρσðkÞ ¼

i
2

Bμν;ρσðkÞ
k2 −m2

KK þ imKKΓKK
; ð7Þ

where

Bμν;ρσðkÞ ¼
�
ημρ −

kμkρ
m2

KK

��
ηνσ −

kνkσ
m2

KK

�

þ
�
ημσ −

kμkσ
m2

KK

��
ηνρ −

kνkρ
m2

KK

�

−
2

n − 1

�
ημν −

kμkν
m2

KK

��
ηρσ −

kρkσ
m2

KK

�
; ð8Þ

where ΓKK is the width of the heavy resonance,
respectively.
The LO cross section and the signal for dijet production

via KK graviton exchange have been calculated in the
RS model in Refs. [10,11]. To put more a stringent bound
on the parameters of the model at the LHC, we need the
QCD next-to-leading-order (NLO) corrections to promote
the theoretical accuracy. Presently, many processes are
available for NLO accuracy, including single KK graviton
production [9,12] and graviton decay to different final
states such as Drell–Yan [13,14], diphoton [15,16], ZZ
[17,18], WþW− [19,20], Z þmissing energy [21], and tt̄
[22]. Since K factors at the NLO level in these processes
are large, it is also essential to go beyond LO for dijet
final state process. In this paper, we present a QCD
NLO calculation to the KK-graviton production and decay
in the dijet channel at the LHC and give constraints on
the relative parameters with NLO accuracy through
comparing with the latest dijet event data from the
CMS collaboration [3].
This paper is organized as follows. In Sec. II we show the

analytic results for the LO and QCD NLO cross sections
and the consistent treatment for including the QCD NLO
effects of KK graviton decay width. In Sec. III we present
the numerical predictions for inclusive and differential
cross sections at the LHC. We simulate the signal for
RS KK graviton at the LHC and update the constraints on
the KK graviton mass using the recent measurement with
the NLO results. Some of the lengthy analytic expressions
are summarized in the Appendix.

II. ANALYTICAL RESULTS

In this section, we present the analytical results for dijet
production via KK graviton exchange. The QCD NLO
corrections can be factorized into two independent gauge
invariant parts, i.e., a KK graviton produced at the NLO
with a subsequent decay at the LO and produced at the LO
with a subsequent decay at the NLO, similar to the cases
of Refs. [22,23]. We neglect interference between radiation
in the two stages, which are expected to be small, of order
OðαsΓKK=MKKÞ [24–26]. This whole procedure can be
illustrated as

jMtree
2→2j2 ¼ jMtree

pro j2 ⊗ jMtree
dec j2 ⊗ jPGj2;

jMreal
2→3j2 ¼ fjMtree

pro j2 ⊗ jMreal
dec j2

þ jMreal
pro j2 ⊗ jMtree

dec j2g ⊗ jPGj2;
Mtree�

2→2M
loop
2→2 ¼ fjMtree

pro j2 ⊗ ðMtree�
dec Mloop

dec Þ þ jMtree
dec j2

⊗ ðMtree�
pro Mloop

pro Þg ⊗ jPGj2; ð9Þ

where we have suppressed the possible Lorentz indices
here for simplicity.

A. Leading-order results

The LO Feynman diagrams for the production and decay
of the KK graviton are shown in Fig. 1. After summing over
spin and color of the final state particles and averaging over
spin and color of the initial states, the amplitude squares are

jMtree
qq̄→qq̄j2 ¼

1

512
κ4ðs4 þ 10s3tþ 42s2t2

þ 64st3 þ 32t4ÞRðsÞ ð10Þ

jMtree
gg→qq̄j2 ¼ −

3

256
κ4tðs2 þ 2stþ 2t2Þðsþ tÞRðsÞ ð11Þ

jMtree
qq̄→ggj2 ¼ −

1

24
κ4tðs2 þ 2stþ 2t2Þðsþ tÞRðsÞ ð12Þ

jMtree
gg→ggj2 ¼

1

64
κ4ðs4 þ 4s3tþ 6s2t2 þ 4st3 þ 2t4ÞRðsÞ;

ð13Þ

where the Mandelstam variables s; t; u are defined as

s¼ðp1þp2Þ2; t¼ðp1−p3Þ2; u¼ðp1−p4Þ2: ð14Þ

RðsÞ represents the LO contribution from propagator for
Breit–Wigner resonance, which can be written as

FIG. 1 (color online). Tree-level Feynman diagrams for KK graviton production and decay into dijet.
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RðsÞ ¼ 1

ðs2 −m2
KKÞ2 þ Γ2

KKm
2
KK

: ð15Þ

Throughout this paper, we work in the ’t Hooft–
Feynman gauge.
At hadron colliders, the LO total cross section is

obtained by convoluting the partonic cross section with
the parton distribution functions, which is

σðpp → jjÞ

¼
X
qq̄

X
ab

Z
dx1dx2½Gq=pðx1; μfÞGq̄=pðx2; μfÞσ̂qq̄→ab

þ ðx1↔ x2Þ�

þ
X
ab

Z
dx1dx2Gg=pðx1; μfÞGg=pðx2; μfÞσ̂gg→ab;

ð16Þ
where μf is the factorization scale. The LO partonic cross
section is defined as

σ̂Bij→ab ¼
1

2s

Z
dPS2jMLO

ij→abj2: ð17Þ

B. NEXT-TO-LEADING-ORDER QCD
CORRECTIONS

1. Virtual corrections

The loop diagrams for the production part are shown
in Fig. 2. The virtual corrections contain both UV and
IR divergences, with the UV divergences renormalized by
introducing counterterms. Using the on-shell subtraction
scheme, we define all the renormalization constants for
massless quarks and gluons, which are given by

δZOS
q ¼ −

αs
3π

Cϵ

�
1

ϵUV
−

1

ϵIR

�
;

δZOS
G ¼ −

αS
2π

�
nf
3
−
5

2

�
Cϵ

�
1

ϵUV
−

1

ϵIR

�
−
αS
6π

Cϵ

�
1

ϵUV

�
;

ð18Þ

where Cϵ ¼ Γð1þ ϵÞð4πμ2r=m2
t Þϵ and nf ¼ 5 is the num-

ber of flavors of the massless quarks and μr is the

renormalization scale. For the qq̄ initial states, the
renormalized virtual corrections to partonic cross section
are

σ̂Vqq̄ ¼ σ̂Bqq̄
αs
2π

Dϵ

�
Av;q
2

ϵ2IR
þ Av;q

1

ϵIR
þ Av;q

0

�
; ð19Þ

with

Dϵ ¼
Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2r
s

�
ϵ

Av;q
2 ¼ −

8

3
;

Av;q
1 ¼ −4;

Av;q
0 ¼ 8

9
ðπ2 − 15Þ: ð20Þ

For the gluon initial states, the renormalized virtual
corrections are

σ̂Vgg ¼ σ̂Bgg
αs
2π

Dϵ

�
Av;g
2

ϵ2IR
þ Av;g

1

ϵIR
þ Av;g

0

�
: ð21Þ

with

Av;g
2 ¼ −6;

Av;g
1 ¼ 2nf − 33

3
;

Av;g
0 ¼ 1

18
ð35nf þ 36π2 − 609Þ

þ 1

18s

�
12m2

t ð6C0m2
t þ 3C0sþ 11Þ

− 12ð5m2
t þ sÞ

�
ln

�
μ2r
m2

t

�
þ ln

�
μ2r
s2

��
þ 47s

�
;

ð22Þ

where C0 is the finite scalar integral in Ref. [27], which
shows as

FIG. 2 (color online). One-loop Feynman diagrams for the production of the KK graviton.
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C0ð0; 0; s;m2; m2; m2Þ

¼ xs
m2ð1 − x2sÞ

�
−
1

2
ln2xs þ 2 lnðxsÞ lnð1þ xsÞ

þ 2Spð−xsÞ þ
π2

6

�
; ð23Þ

with

SpðzÞ ¼
Z

1

0

dt
lnð1 − ztÞ

t
;

xs ¼ −Kðsþ iϵ; mt; mtÞ;

Kðz;m;m0Þ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4mm0=½z − ðm −m0Þ2�

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4mm0=½z − ðm −m0Þ2�

p
z ≠ ðm −m0Þ2;

Kðz;m;m0Þ ¼ −1 z ¼ ðm −m0Þ2: ð24Þ

Note that in above renormalized amplitudes all the UV
divergences cancel each other, leaving the remaining IR
divergences and the finite terms.

2. Real corrections

The real corrections consist of radiation of an additional
gluon, or massless quark (antiquark) in the final state. For
real particle emission, the phase space integration contains
both soft and collinear singularities. We adopt the two-
cutoff phase space slicing method [28] to isolate all the IR
singularities, where the phase space is divided into different
regions by introducing two small cutoffs δs and δc. The soft
cutoff δs separates the phase space into the soft region and
hard region according to the soft condition Ei ≤ δss, which
can be written as

σ̂Rij ¼ σ̂Sij þ σ̂Hij : ð25Þ
Furthermore, the hard piece is divided into two regions by
collinear cutoff δc according to the collinear condition
−δcs < ðpi − p5Þ2 < 0,

σ̂Hij ¼ σ̂HC
ij þ σ̂HC

ij : ð26Þ
The σ̂HC

ij contains the collinear divergences, which can
be obtained by integration over the phase space of the

emitted partons. The hard noncollinear part σ̂HC
ij is finite,

and we can compute it using standard Monte Carlo
integration techniques.
Soft gluon emission.—In the limit that the energy of

the emitted gluon becomes small, i.e., E5 ≤ δs
ffiffiffi
s

p
=2, the

amplitude square can be factorized into the Born ampli-
tudes times an eikonal factor Φeik,

X
jMrealð1þ 2→ 3þ 4þ 5Þj2soft → ð4παsÞ

X
jM0j2Φeik;

ð27Þ

with

Φeik ¼ CI
s

p1 · p5p2 · p5

; ð28Þ

where CI ¼ CF for the qq̄ initial state and CI ¼ CA for the
gg initial state. Here we only consider the situation for the
initial state. Then the parton level cross section in the soft
region can be expressed as

σ̂Sij ¼
1

2s

Z
jMrealj2jsoftdΓsoft

3 ; ð29Þ

where dΓsoft
3 is the three-body phase space in the soft

region, which can be factorized:

dΓjsoft3 ¼ dΓ2

��
4π

s

�
ϵ Γð1 − ϵÞ
Γð1 − 2ϵÞ

1

2ð2πÞ2
�
dS; ð30Þ

with

dS ¼ 1

π

�
4

s

�
−ϵ Z δs

ffiffi
s

p
=2

0

dE5E1−2ϵ
5 sin1−2ϵθ1dθ1sin−2ϵθ2dθ2:

ð31Þ
After the integration over the soft gluon phase space, we

have

σ̂Sij ¼
αs
2π

σ̂BijDϵ

�
As
2

ϵ2
þ As

1

ϵ
þ As

0

�
; ð32Þ

with

As
2 ¼ 2CI;

As
1 ¼ −4CI ln δs;

As
0 ¼ 4CIln2δs: ð33Þ

For soft gluon radiated from outgoing partons, it gives the
same results. Here we do not show their expressions.
Collinear emission.—In this section we discuss the

collinear singularities in σHC, which is treated differently
according to whether the singularities are from the initial or
final state.
Initial state collinear radiation.—The real emission

diagrams from initial states are shown in Fig. 3. In the
hard collinear region, E5 > δs

ffiffiffi
s

p
=2 and 0 < −ti5 < δcs,

the emitted hard gluon (quark) is collinear to one of the
incoming partons. As a consequence of the factorization
theorem, the matrix element square can be factorized
into the product of the born amplitude square and the
Altarelli–Parisi splitting functions Pijðz; ϵÞ [29],
X̄

jM3ð1þ 2 → 3þ 4þ 5Þj2coll

→ ð4παsμ2ϵr Þ
X

jM0j2
�
−2P101ðz; ϵÞ

zt15
þ −2P202ðz; ϵÞ

zt25

�
:

ð34Þ
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Here z denotes the fraction of the momentum of 1 (2)
carried by parton 10 (20) with the emitted parton 5 taking a
fraction ð1 − zÞ.
Moreover, the collinear three body final phase space can

be factorized in the collinear limit. For example, in the limit
0 < −t15 < δcs, it has the following form [28]:

dΓ3ð1þ 2 → 3þ 4þ 5Þjcoll
→ dΓð10 þ 2 → 3þ 4Þjs0¼zs

×
ð4πÞϵ

16π2Γð1 − ϵÞ dzdt15½−ð1 − zÞt15�−ϵ: ð35Þ

Substituting the matrix elements square and phase space
in collinear limits into the hard collinear cross section,
we have

dσHC
ij ¼ αs

2π
Dϵ

�
−
1

ϵ

�
δ−ϵc fdσ̂Bqq̄½P101ðz;ϵÞG1=pðx1=zÞG2=pðx2Þ

þP202ðz;ϵÞG2=pðx1=zÞG1=pðx2Þþðx1↔x2Þ�
þ dσ̂Bgg½P101ðz;ϵÞG1=pðx1=zÞG2=pðx2Þ
þP202ðz;ϵÞG2=pðx1=zÞG1=pðx2Þ�g

×
dz
z

�
1−z
z

�
−ϵ
dx1dx2; ð36Þ

where Gi=P is the bare parton distribution function (PDFs).
Final state collinear radiation.—The real emission

diagrams from final states are shown in Fig. 4. The
treatment of the final state collinear singularities is much
the same as that in the previous case of the initial state
situation. But for indistinguishable final states, there is
no need to introduce fragmentation functions. For proc-
ess 1þ 2 → 3þ 4þ 5 with 5 splitting from parton 4,
following similar treatment as for the initial state, we
have

dσ1þ2→3þ4þ5
HC ¼ dσ1þ2→3þ40

0

αs
2π

Dϵ

�
−
1

ϵ

�
δ−ϵc

×
Z

dzz−ϵð1 − zÞ−ϵP440 ðz; ϵÞ: ð37Þ

Expanding the integrand and performing the integration
over z yields the final state hard-collinear terms

dσ1þ2→3þ4þ5
HC;F ¼ dσ1þ2→3þ40

0

αs
2π

Dϵ

�
A40→45
1

ϵ
þ A40→45

0

�
;

ð38Þ
where

Aq→qg
1 ¼ CFð3=2þ 2 lnδsÞ;

Aq→qg
0 ¼ CF½7=2− π2=3− lnδs − lnδcð3=2þ 2 lnδsÞ�;

Ag→qq̄
1 ¼ −nf=3;

Ag→qq̄
0 ¼ nf=3ðlnδc − 5=3Þ;

Ag→gg
1 ¼ CAð11=6þ 2 lnδsÞ;

Ag→gg
0 ¼ CA½67=18− π2=3− ln2δs − lnδcð11=6þ 2 lnδsÞ�:

ð39Þ

Hard noncollinear emission.—We also have to consider
contributions from the hard noncollinear part, which is
finite. The hard noncollinear partonic cross section is given
by

σ̂HCij ¼ 1

2s

Z
HC

X̄
jM3

ijj2dPS3: ð40Þ

We can calculate the amplitude square of these real
radiation diagrams directly in four dimensions. Besides
the channels we have considered in the LO diagram, there
are also qg and q̄g initial state processes. The detail results
are given in the Appendix.

FIG. 3 (color online). Real correction Feynman diagrams for the production of the KK graviton.
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3. Mass factorization

After adding the renormalized virtual corrections and the two-cutoff real corrections, the parton level cross section still
contain some collinear divergences which can be absorbed into a redefinition of the PDFs at the NLO, namely mass
factorization [30]. This procedure means we replace the bare PDF Ga=pðxÞ with renormalized PDF Ga=pðx; μfÞ and then
convolute it with the partonic cross section. With the MS convention, the scale-dependent PDFGa=pðx; μfÞ is given by [28]

Ga=pðx; μfÞ ¼ Ga=pðxÞ þ
X
b

�
1

ϵ

��
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2r
μ2f

�
ϵ
� Z

1

x

dz
z
PabðzÞGb=pðx=zÞ: ð41Þ

This replacement will produce a collinear singular term, which will be combined with the hard collinear contribution
in Eq. (36). Then the expression for the remaining collinear contribution after considering the gg initial state contribution
will be

dσcoll;Iij ¼ αs
2π

Dϵ

�
½ ~Gq=pðx1; μfÞGq̄=pðx2; μfÞ þ Gq=pðx1; μfÞ ~Gq̄=pðx2; μfÞ

þ
X
α¼q;q̄

�
Asc
1 ðα → αgÞ

ϵ
þ Asc

0 ðα → αgÞ
�
Gq=pðx1; μfÞGq̄=pðx2; μfÞ þ ðx1↔ x2Þ�dσ̂Bqq̄

þ ½ ~Gg=pðx1; μfÞGg=pðx2; μfÞ þ Gg=pðx1; μfÞ ~Gg=pðx2; μfÞ

þ 2

�
Asc
1 ðg → ggÞ

ϵ
þ Asc

0 ðg → ggÞ
�
Gg=pðx1; μfÞGg=pðxq; μfÞ�dσ̂Bgg

�
dx1dx2; ð42Þ

where

Asc
1 ðq → qgÞ ¼ Asc

1 ðq̄ → q̄gÞ ¼ CFð3=2þ 2 ln δsÞ;
Asc
1 ðg → ggÞ ¼ 2CA ln δs þ ð11CA − 2nfÞ=6;

Asc
0 ¼ Asc

1 ln

�
s
μ2f

�
;

~Ga=pðx; μfÞ ¼
X
a0

Z
1−δsδaa0

x

dy
y
Ga0=pðx=y; μfÞ ~Paa0 ðyÞ;

~PijðyÞ ¼ PijðyÞ ln
�
δc

1 − y
y

s
μ2f

�
− P0

ijðyÞ: ð43Þ

Finally, the NLO total cross section for pp → jj in the MS factorization scheme is

σNLO ¼
Z

dx1dx2½Gq=pðx1; μfÞGq̄=pðx2; μfÞ þ ðx1 ↔ x2Þ�ðσ̂Bqq̄ þ σ̂Vqq̄ þ σ̂Sqq̄ þ σ̂HC;F
qq̄ þ σ̂HC

qq̄ Þ

þ
Z

dx1dx2Gg=pðx1; μfÞGg=pðx2; μfÞðσ̂Bgg þ σ̂Vgg þ σ̂Sgg þ σ̂HC;F
gg þ σ̂HC

gg Þ þ σ̂coll;I

þ
Z

dx1dx2
X
α¼q;q̄

½Gg=pðx1; μfÞGα=pðx2; μfÞ þ ðx1 ↔ x2Þ�σ̂HC
αg Þ: ð44Þ

FIG. 4 (color online). Real correction Feynman diagrams for the decay of the KK graviton.
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Note that the above expression contains no singularities
since 2Av

2 þ As
2 ¼ 0, 2Av;q

1 þ As;q
1 þ 2Asc

1 ðq → qgÞ ¼ 0,
2Av;g

1 þ As;g
1 þ 2Asc

1 ðg → ggÞ ¼ 0 for the initial state cal-
culation. And similar results can be obtained for final states.

4. Consistent treatment of KK graviton decay in
perturbation theory

In the narrow width approximation (NWA) [23], the
production cross section for a specific decay channel is
given by the total cross section times the branching fraction
of the decay channel, which requires a consistent treatment
of the decay at the NLO. For the Breit–Wigner resonance,
there is a similar procedure. In this subsection, we briefly
review the basic idea of this procedure in the NWA, then
introduce the method we use for Breit–Wigner resonance.
The perturbative expansion of cross section and decay

width can be written as

σNLO ¼ σ0 þ αsσ1 ð45Þ

ΓNLO ¼ Γ0 þ αsΓ1: ð46Þ

Following the approach in Ref. [23], by expanding the
cross section to OðαsÞ and discarding terms of orderOðα2sÞ
or higher, we can write the differential cross sections as

σNLOi ¼ σ0 ×
Γi
0

Γ0

þ σ0 ×
αsΓi

1

Γ0

þ αsσ1 ×
Γi
0

Γ0

− αsσ0 ×
Γi
0

Γ0

Γ1

Γ0

;

ð47Þ

where σ0 and Γ0 are the lowest-order contributions to the
production rate and total decay width and αsσ1 and αsΓ1 are
the corresponding NLO corrections. Meanwhile, Γi

0 and
αsΓi

1 are the LO differential decay width and its NLO
corrections for the channel i we considered. Following the
above approach, we expand the KK graviton propagator
with NLO decay width as

1

ðs2 −m2
KKÞ2 þ ½Γ0 þ αsΓ1�2m2

KK

¼ 1

ðs2 −m2
KKÞ2 þ Γ2

0m
2
KK

−
2αsm2

KKΓ0Γ1

½ðs2 −m2
KKÞ2 þ Γ2

0m
2
KK�2

;

¼ RðsÞ½1 − 2αsRðsÞm2
KKΓ0Γ1�; ð48Þ

and then we can rewrite similar cross section for Breit–
Wigner resonance as

σNLOi ¼ ½1 − 2αsRðsÞm2
KKΓ0Γ1�σ0 ⊗ Γi

0

þ αsσ
1 ⊗ Γi

0 þ αsσ
0 ⊗ Γi

1; ð49Þ

where in the convolution the LO width is always used in the
propagator.
Now we turn to the calculations of NLO QCD correc-

tions for the decay width of the KK graviton. The KK
graviton can decay to all the particles in the SM, which is
shown in Fig. 5. The LO decay width has been calculated
in Ref [4], and the calculation of NLO total decay width is
straight forward. Figure 6 shows the mass dependence of
the LO and NLO decay width, which can be fitted as

Γ0 ¼ 3.15 × 10−3mKK;

αsΓ1 ¼ 2.08 × 10−3αsmKK: ð50Þ

III. NUMERICAL RESULTS

A. Cross section

In this subsection, we present the numerical results for
total and differential cross sections for dijet production via a
RS KK graviton at the LHC. In our numerical calculations,
we use the two-loop evaluation for αsðQÞ [31] and CTEQ
PDFs [32]. We use the CTEQ6M PDF for the NLO
calculation and CTEQ6L PDF for the LO calculation in
our numerical calculations of total and differential cross
sections, respectively. We assume k=M̄p ¼ 0.1 and mKK ¼
1.5 TeV or 2 TeV for the RS model unless specified, so the
coupling strength between the graviton and the Standard

FIG. 5 (color online). Decay channels of the KK graviton.
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FIG. 6 (color online). The LO and NLO decay widths of the KK
graviton for different KK graviton mass.
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Model particles will be fixed when the graviton mass is set,
as shown in Eq. (5).
For the final state jets, we use the anti-kt jet algorithm

[33] with the distance parameter D ¼ 0.5 to combine QCD
partons into jets. We reconstruct the trigger jet using the
FASTJETalgorithm [34]. We also require the final state jets
to satisfy the following basic kinematic cuts according to
ones used in the CMS study [3],

pTj
> 30 GeV; jηjj < 2.5:

Here pTj
and ηj are the transverse momentum and

pseudorapidity of the final state jets, respectively.
Both the renormalization and factorization scales are

fixed to the invariant mass mjj of the dijet final states,

where mjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEj1 þ Ej2Þ2 − j~pj1 þ ~pj2j2

q
.

We have checked that the Breit–Wigner approximation is
applicable at the LO and calculated the full LO results
including all the channels. The results show that the
contribution from the s channel, which we discuss in

our work, is dominant, since contributions from the t
and u channels are about 6% of the full LO total cross
section. After taking the experiment kinematics require-
ment shown below, their contributions are extremely
smaller and are only about 3%. The reason is that t and
u channels are obviously suppressed by the kinematics
effect from the KK graviton propagator.
In Fig. 7 we show that the dependence of the NLO total

cross section on the arbitrary cutoffs δs and δc is indeed
very weak. Here σother includes the contribution from the
Born cross section and the virtual corrections. Both the soft
plus hard collinear contributions and the hard noncollinear
contributions depend strongly on the cutoffs, especially for
the small cutoffs (δs < 10−2). However, after combining
every contribution (σsoft þ σhard-coll þ σvirtual þ σhard-noncoll),
such dependence on the cutoffs cancels each other. The
final results for σNLO are almost independent of the cutoff
for δs < 10−2. We take δs ¼ 10−3 and δc ¼ δs=50 to obtain
the numerical results presented below.
Figure 8 shows the NLO K factor, which is defined as the

ratio of the NLO cross section σNLO to the LO cross section
σLO, as a function of the KK graviton mass at the LHC with
different center-of-mass energies. We can see that the total
QCD NLO corrections can be large, which can increase the
total cross sections by about 80%–100%. Numerical results
show that the NLO corrections from the production part are
dominant and agree with the ones given in Refs. [12,20,22].
The contributions from the decay part are relatively small
but can still reach about 20%–30%.
We further present the ratios between the total cross

sections from the different channels at both the LO and the
NLO in Fig. 9. It can be found that the contribution from
the gg channel is dominant at the low KK graviton mass
region for the large PDF of the gluon, and the contribution
from the qq̄ channel becomes more important at the high
mass region since the PDF of the valence quark decreases
more slowly than the gluon. The NLO corrections can
change the ratio between different channels significantly.
In Fig. 10, we show scale dependencies of the LO and

NLO total cross sections. At the LO, the scale dependence
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FIG. 7 (color online). Total cross sections for pp → G → jj at
the LHC as a function of δs in the phase space slicing treatment.
The δc is chosen to be δc ¼ δs=50.
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is purely from the factorization scale. Figure 10 shows that
the factorization scale dependence of the NLO cross section
is significantly reduced compared to the LO result.

B. Differential cross section

We separately present invariant mass and transverse
momentum distribution in this subsection. Following the
experimental analysis in Ref. [3], we consider wide jets as
the final states, which are formed by clustering additional

jets into the closest leading jet if within a distance
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
< 1.1. To account for resolution of

the detectors, we also add a Gaussian smearing to the
energy of final state jets [35], where the width is set as

ΔEj=Ej ¼ 0.5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej=GeV

q
⊕ 0.02: ð51Þ

Figure 11 gives the invariant mass distributions of the
dijet. At the LO it is a Breit–Wigner distribution with a
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FIG. 9 (color online). The ratios of the total cross sections from different channels for the graviton as functions of the graviton mass at
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center value mKK and width ΓKK. At the NLO there could
exist an additional hard parton besides the two leading jets
in the final state. Thus, the NLO corrections push the peak
of the distributions to the lower invariant mass region. We
also show separate contributions from initial state and final
state corrections in Fig. 11. It can be seen that the initial
state corrections shift the invariant mass distributions to a
higher region while the final state corrections tend to shift it
in the opposite way, which is a consequence of different
origins of the additional radiated parton.

Figure 12 shows the normalized invariant mass distri-
butions with different KK graviton mass and collider
energy. Collider energy shows weak impact on the shape
of the distribution.
In Fig. 13, we display differential cross sections for the

transverse momentum pT of the leading jet and the next-to-
leading jet for different center-of-mass energies and KK
graviton masses. We find that the NLO QCD corrections
enhance the LO results at both low pT and high pT . There is
a sharply falling in pT distribution at about half the KK
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graviton mass, which is called the Jacobian edge [36]. The
edge is broadened by the KK graviton width and real
corrections at NLO.

C. Signal analysis

A search for the KK-graviton has been performed in the
dijet mass spectrum by CMS [3], based on the LO
theoretical prediction. Following Ref. [3], in Fig. 14 we
present the generic upper limits at the 95% confidence level
for the cross section σ × A, where A represents efficiency
due to the kinematic requirement of jΔηjjj < 1.3 and

mjj > 890 GeV. In this subsection, we use CTEQ6M
PDF for NLO calculation and CTEQ6L1 PDF for LO
calculation. We also assume k=M̄pl ¼ 0.1 for the RS
model. Due to the large QCD NLO corrections, the upper
limit of the excluded mass range of the graviton is
promoted from 1.45 to more than 1.6 TeV.
Figure 15 shows the allowed parameter space for the

KK graviton mass and its coupling to SM particles, based
on the upper limit for the total cross section in Ref. [3].
In our calculation, we consider the coupling region
0.15 TeV−1 ≤ κ ≤ 0.50 TeV−1 and the mass region
1.5 TeV ≤ mKK ≤ 3.5 TeV the same as in the experiment
analysis. In Fig. 15, the red and blue region corresponds to
the 95% C.L. exclusions at the LO and NLO, respectively.
It can be seen from Fig. 15 that the NLO corrections
significantly tighten the allowed parameter space.

IV. CONCLUSION

In conclusion, we have investigated dijet production in
the RS model at the LHC, including QCD NLO corrections
to the production and decay of the KK graviton. Our results
show that the QCDNLO corrections increase the total cross
sections by more than 80% and reduce the scale uncer-
tainties. Furthermore, we have also explored the distribu-
tions for final state dijet invariant mass, jet transverse
momentum with QCD NLO accuracy. Finally, we have
discussed the constraints on the KK graviton mass and the
allowed parameter space of graviton mass and its coupling,
based on dijet measurement at the LHC. We have found
that the upper limit of the KK graviton excluded mass range
is promoted from 1.45 to more than 1.6 TeV based on our
NLO calculations. The allowed parameter space is tight-
ened as well.
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APPENDIX: HARD NONCOLLINEAR PARTONIC
CROSS SECTION

In this Appendix we collect the hard noncollinear
amplitude square. We use Breit–Wigner approximation
and ignore the interference between initial and final state
radiation. For simplicity, we define the following invariant
variables:

sij ¼ ðpi þ pjÞ2: ðA1Þ

For radiations from incoming partons, we have
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FIG. 14 (color online). Observed upper limits at 95% C.L. on
σ × A for resonances decaying to the dijet final state compared
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jMreal
qq̄ðgÞ→qq̄j

2 ¼ −
nfπαsκ4s34RðsÞ

48ðs13 þ s14 − s34Þðs23 þ s24 − s34Þðs13 þ s14 þ s23 þ s24 − s34Þ
× ½−3s34ðs213 þ s214 þ s223 þ s224Þ þ 3s34ðs13 þ s14 þ s23 þ ss24Þðs213 þ s214 þ s223 þ s224Þ
− 4ðs313s24 þ 3s213s14s23 þ 3s13s24ðs214 þ s223Þ þ s14s23ðs214 þ s223 þ 3s224ÞÞ�; ðA2Þ

and

jMreal
qq̄ðgÞ→ggj

2 ¼ 4παsκ
4s234½s313s23 þ s13s323 þ s14s24ðs214 þ s224Þ�RðsÞ

9ðs13 þ s14 − s34Þðs23 þ s24 − s34Þðs13 þ s14 þ s23 þ s24 − s34Þ
; ðA3Þ

and

jMreal
ggðgÞ→qq̄j2 ¼

9nfαsκ4πs234RðsÞ
32ðs13 þ s14 − s34Þðs23 þ s24 − s34Þðs13 þ s14 þ s23 þ s24 − s34Þ
× ½2s313s14 þ 2s13s314 þ 3s213s14s23 þ s314s23 þ 3s13s14s223 þ s14s323 þ s133s24

þ 3s13s214s24 þ 3s213s23s24 þ 3s214s23s24 þ 3s13s223s24 þ 2s323s24 þ 3s13s14s224

þ 3s14s23s224 þ s13s324 þ 2s23s324 − ðs13 þ s14 þ s23 þ s24Þ3s34 þ 3ðs13 þ s14 þ s23 þ s24Þ2s234
− 4ðs13 þ s14 þ s23 þ s24Þs334 þ 2s434�; ðA4Þ

and

jMreal
ggðgÞ→ggj

2 ¼ 3παsκ
4s234RðsÞ

4ðs13 þ s14 − s34Þðs23 þ s24 − s34Þðs13 þ s14 þ s23 þ s24 − s34Þ
× fðs213 þ s13s23 þ s223Þ2 − 2s334ðs13 þ s14 þ s23 þ s24Þ þ 3s234½ðs13 þ s23Þ2 þ ðs14 þ s24Þ2�
− 2s34½ðs13 þ s23Þ3 þ ðs14 þ s24Þ3� þ ðs214 þ s14s24 þ s224Þ2 þ s434g: ðA5Þ

The other results can be obtained by crossing symmetry.
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