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We calculate the two-photon exchange corrections to electron-proton scattering with nucleon and Δ
intermediate states. The results show a dependence on the elastic nucleon and nucleon-Δ-transition
form factors used as input which leads to significant changes compared to previous calculations. We
discuss the relevance of these corrections and apply them to the most recent and precise data set and
world data from electron-proton scattering. Using this, we show how the form factor extraction from
these data is influenced by the subsequent inclusion of physical constraints. The determination of the
proton charge radius from scattering data is shown to be dominated by the enforcement of a realistic
spectral function. Additionally, the third Zemach moment from the resulting form factors is calculated.
The obtained radius and Zemach moment are shown to be consistent with Lamb shift measurements in
muonic hydrogen.
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I. INTRODUCTION

The basic building block of visible matter, the nucleon,
and its electromagnetic interaction lie at the heart of several
precise QED calculations. One of those refers to the Lamb
shift, the splitting between the j ¼ 1=2 2S and 2P levels of
hydrogen. The measurement of this energy splitting ini-
tially triggered the development of quantum field theory
since this shift goes beyond the prediction of the Dirac
equation. Nowadays, the Lamb shift can be measured not
only in regular electronic hydrogen but also in muonic
hydrogen. However, the results are inconsistent when using
the same proton structure information for both [1]. The
required proton structure information is partly encoded
in the electromagnetic nucleon form factors (NFFs); most
relevant are the gradients at the origin, defining the radius.
The Lamb shift inconsistency can be expressed via the
electric proton radius rpE. Furthermore, recent measure-
ments of the NFFs from electron-proton scattering have
been used to determine rpE with a claimed accuracy that
excludes the value from the muonic Lamb shift [2,3].
However, previous physically motivated fits to the same
data found perfect agreement with the latter value [4] but
were criticized due to small systematic deviations from the

data. Besides possibly neglected experimental systematics,
radiative corrections could also explain such deviations in
principle. Earlier physically constrained fits to the world
NFF data found similar values for rpE [5] in agreement with
the result from muonic hydrogen.
Particularly interesting in this regard are corrections

with intermediate resonant states that have not been
included in the standard corrections to elastic electron-
proton (e-p) scattering. The largest contribution of this kind
is expected from the graph with two photons (see Fig. 1)
and the first excited state of the nucleon, the Δ resonance,
since it has the lowest mass and the strongest nucleon
coupling of such resonances. Cosmologically, it is largely
responsible for the Greisen-Zatsepin-Kuzmin (GZK) cutoff
which limits the energy of cosmic ray protons via their
interaction with photons from the microwave background
[6]. Phenomenologically, information on this resonance
comes mainly from photo- and electroproduction proc-
esses, but it can also be seen in neutrino reactions. Such
information including the momentum dependence of the
vertices [7,8] is used in this work to calculate the given
correction. The calculation requires a treatment in the
Rarita-Schwinger formalism for spin-3=2 [9].
The other main interest of this paper lies in the

theoretical constraints that one can impose on suitable
NFF parametrizations. An example of an analytically
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reasonable parametrization is based on a conformal map-

ping of the domain of analyticity onto the unit circle and a

subsequent expansion, often denoted by z. This is widely
used for transition form factors in heavy meson decays (see
e.g. [10–14]). In such works, unitarity constraints from the
physical pair-production region are also often introduced,
based on an operator product expansion. For the NFFs, a
continuum contribution due to 2π exchange occurs far
below the pair-production threshold, but close to the
physical scattering region. The spectral function corre-
sponding to this continuum and higher pole contributions
can be determined from related processes. Loose con-
straints from the spectral function on coefficients in a z
expansion have been introduced in a recent analysis [15].
The complete known information on this spectral function
can be included via dispersion relations. We examine in this
paper whether loose constraints are sufficient to obey the
tight constraint on the nucleon spectral functions set by
unitarity.
We perform a complete analysis of the current world

cross sections on elastic electron-proton cross sections in
order to extract the NFFs. Here, we examine the interplay
of statistical and systematic effects with the inclusion of
the theoretical constraints from analyticity and unitarity.
The inclusion of the complete data range also allows us to
extract the “third Zemach moment,”which is relevant in the
calculation of the Lamb shift, especially in muonic hydro-
gen [16]. The particular pursuit of accuracy in this work is
needed for subsequent work on the NFFs for timelike
momentum transfer. These can be related to the spacelike
form factors via the inclusion of weight functions with as
particular analytic behavior in dispersion relations [17].
The paper is structured as follows. In Sec. II of this work,

we explicitly calculate the TPE corrections including
nucleon and Δ intermediate states and realistic vertices.
In Sec. III, we discuss in detail the theoretical constraints
that can be imposed on the NFFs and perform fits to TPE-
corrected cross sections. The extracted NFFs are used in
Sec. IV to determine the third Zemach moment. We
conclude with a discussion in Sec. V. Further details on
fits and statistics are given in the Appendixes.

II. FORM FACTOR EXTRACTION
AND CORRECTIONS

A. Definitions of form factors and helicity amplitudes

First, we consider the hadronic matrix element of the
electromagnetic current for the nucleon ground state.
The helicity can either be conserved or flipped, which is
parametrized in the common separation into the Dirac FF,
F1, and the Pauli FF, F2,

hNðp0ÞjJμemjNðpÞi¼ ieūðp0Þ
�
γμF1ðtÞþ i

σμνqν
2mN

F2ðtÞ
�
uðpÞ

¼ ieūðp0ÞΓμðtÞuðpÞ; ð1Þ

where t ¼ q2 ¼ ðp0 − pÞ2 ¼ −Q2 is the invariant momen-
tum transfer squared, and mN is the nucleon mass. For
electron-nucleon scattering, we have Q2 ≥ 0. Fp=n

1 ð0Þ and
Fp=n
2 ð0Þ are given in terms of the proton or neutron electric

charge and anomalous magnetic moment, respectively. The
separation of these form factors in their isoscalar and
the isovector parts is given by Fs

i ¼ ðFp
i þ Fn

i Þ=2 and
Fv
i ¼ ðFp

i − Fn
i Þ=2 for i ¼ 1; 2, correspondingly. In order

to avoid interference terms, the cross section is often
considered in a different FF basis, the electric and magnetic
Sachs form factors Gp;n

E;MðtÞ

GEðtÞ ¼ F1ðtÞ − τF2ðtÞ;
GMðtÞ ¼ F1ðtÞ þ F2ðtÞ; ð2Þ

with τ ¼ −t=4m2
N . At first order in the fine-structure

constant α, the Born-approximation, the differential cross
section can be expressed through these Sachs FFs as

dσ
dΩ

¼
�
dσ
dΩ

�
Mott

τ

ϵð1þ τÞ
�
G2

MðQ2Þ þ ϵ

τ
G2

EðQ2Þ
�
; ð3Þ

where ϵ ¼ ½1þ 2ð1þ τÞ tan2ðθ=2Þ�−1 is the virtual photon
polarization, θ is the electron scattering angle in the
laboratory frame, and ðdσ=dΩÞMott is the Mott cross section,
which corresponds to scattering off a pointlike particle.
Two quantities out of energies, momenta and angles

suffice to determine this cross section and are related for
such an elastic process. Specifically, in the laboratory frame
with the initial nucleon at rest and neglecting the electron
mass, we can write

Q2 ≈ 4E1E3sin2
�
θ

2

�
; ð4Þ

where E1ðE3Þ are the energies of the incoming (outgoing)
electron.
Moreover, we are interested here in the transition from

the nucleon to the Δ resonance with the corresponding
matrix element,

FIG. 1. Box graph, calculated here with different form factor
parametrizations, crossed box implied.
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hΔðp0ÞjJνemjNðpÞi ¼ Ψμðp0ÞΓμν
γN→Δðp0; qÞuðpÞ ð5Þ

where in addition to the usual Dirac spinor uðpÞ we

introduce the Rarita-Schwinger spinor field ΨðaÞ
μ ðpÞ [9].

Due to the spin-3=2 nature of the Δ, this has two indices,
the Lorentz index μ and the spinor index ðaÞ, which is

neglected in the formulas for clarity. As for the NFFs, the
first suggestions for NΔ-vertex decompositions were con-
structed in a way that diagonalizes the cross section [18].
However, for a comparison to previous similar calculations
in the literature, we consider here a parametrization given
in Ref. [19]

Γμν
γN→Δðp0; qÞ ¼ ieFdipðq2Þ

2m2
Δ

fg1½gνμp0q − p0νγμq − γνγμp0 · qþ γνp0qμ� þ g2½p0νqμ − gνμp0 · q�

þ g3=mΔ½q2ðp0νγμ − gνμp0Þ þ qνðqμp0 − γμp0 · qÞ�gγ5T3: ð6Þ

where T3 is the isospin transition factor, p0 the four-
momentum of the outgoing Δ and q of the incoming
photon. Linear combinations of g1; g2 and g3 describe the
magnetic, electric and Coulomb parts gM, gE and gC of the
transition, respectively, that can be obtained from experi-
ment for vanishing q2. Here, a dipole-behavior Fdip ¼
Λ4=ðΛ2 − q2Þ2 of the q2 dependence is assumed, with

Λ ¼ 0.84 GeV. The inclusion of a more realistic q2

dependence is possible with a reformulation via helicity
amplitudes, since these can be given from resonance-
electroproduction data analyses. For the introduction of
these, we stay close to Ref. [20,21]. In order to relate their
set of form factors C3ðq2Þ; C4ðq2Þ and C5ðq2Þ to the
helicity amplitudes, we rewrite the vertex as

hΔðp0ÞjJem · ϵjNðpÞi ¼ Ψμðp0ÞΓC
νFμνuðpÞ

¼ Ψμðp0Þ
�
C3ðq2Þ
mN

γν þ
C4ðq2Þ
m2

N
p0
ν þ

C5ðq2Þ
m2

N
pν

�
γ5ðqμϵν − qνϵμÞuðpÞ: ð7Þ

Here, the polarization vector of the (virtual) photon
ϵμ can correspond to a right-/left-handed transverse or a
longitudinal polarization. Using again the reference frame
with the initial nucleon at rest and the photon in z-direction,
the polarization vectors can be written as

ϵμðR=LÞ ¼∓ 1ffiffiffi
2

p ð0;1;�i;0Þ; ϵμðSÞ ¼ 1ffiffiffiffiffiffi
Q2

p ðq3;0;0; q0Þ:
ð8Þ

These polarizations induce the possible transitions of the
helicity λ in the hadron (R) states jR; λi,

A1=2ðQ2Þ ¼ N

�
Δ;þ 1

2

����Jemμ · ϵμðRÞ
����N;−

1

2

	
ξ; ð9Þ

A3=2ðQ2Þ ¼ N

�
Δ;þ 3

2

����Jemμ · ϵμðRÞ
����N;þ 1

2

	
ξ;

ð10Þ

S1=2ðQ2Þ ¼ N
q3
Q2

�
Δ;þ 1

2

����Jemμ · ϵμðSÞ
����N;þ 1

2

	
ξ; ð11Þ

where N ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πα=mNðW2 −m2

NÞ
p

and the phase ξ is
determined empirically here. The transverse (T) and longi-
tudinal (L) parts of the cross section of the

electroproduction of the Δ at its mass can be given in
terms of these helicity amplitudes as

σTðW ¼ mΔÞ ¼
2mN

mΔΓΔ
ðA2

1=2ðQ2Þ þ A2
3=2ðQ2ÞÞ;

σLðW ¼ mΔÞ ¼
2mN

mΔΓΔ

Q2

q23
S21=2ðQ2Þ: ð12Þ

The approximations inherent in the Breit-Wigner-
definitions of mass mΔ and width ΓΔ are expected to be
small compared to the remaining uncertainties. For the Δ
resonance this approximation is more reasonable than for
higher partial waves. For higher resonances, masses and
widths should always be taken from the pole position
obtained in a dynamical coupled-channel approach (see for
example Ref. [22]).

B. Two-photon exchange corrections

The corrections to the electron-proton cross sections at
order α3 are given by the interference of the one-photon-
exchange amplitudeM1γ and the amplitudes from vacuum
polarization, vertex corrections, self-energy corrections and
the two-photon-exchange amplitude M2γ and additionally
the contribution from Bremsstrahlung. The main data set
that we will consider in this work already contains a set of
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calculations of such corrections by Maximon and Tjon
[23]. This calculation contains improvements towards
earlier works by Mo and Tsai [24] but still uses a soft-
photon approximation, particularly relevant for the two-
photon-exchange (TPE) contribution. This contribution to
the corrected cross section can be expressed through a
factor of ð1þ δ2γÞ as

dσcorr
dΩ

¼ ðM†
1γ þM†

2γ þ � � �ÞðM1γ þM2γ þ � � �Þ

¼ dσ1γ
dΩ

ð1þ δ2γ þ � � �Þ;

⇒ δ2γ |{z}≈

OðαÞ

2ReðM†
1γM2γÞ

jM1γj2
: ð13Þ

We briefly discuss the soft-photon approximation by
Maximon and Tjon since only the difference between a new
evaluation and this approximation is required for the data.
They separate the IR-divergent part of the TPE amplitude
by considering the poles in the photon propagators, i.e. one
vanishing photon momentum. The resulting factor is

δMax-Tjon
2γ;IR ¼ −

2α

π
ln
E1

E3

ln
Q2

λ2
ð14Þ

where λ is an infinitesimal photon mass and E1ðE3Þ again
the incoming (outgoing) electron energy. The logarithmic
infrared singularity in λ is canceled by a term in the
Bremsstrahlung correction, so that the complete cross
section is λ-independent. The same cancellation takes
place, if both δ2γ;IR and the Bremsstrahlung correction
are calculated in the older approximation scheme by Mo
and Tsai. The hard two-photon corrections without exci-
tations of the intermediate states have been calculated by
Blunden et al. [25]. However, these are not included in the
supplied e-p scattering cross sections. Thus these calcu-
lations are carried out here for the kinematics required by
the data. Since some of the data contain the TPE calculation
by Maximon and Tjon and some that by Mo and Tsai,
we calculate the difference to these approximations. This
calculation serves as a cross-check and starting point for the
Δ TPE. Also for an excited intermediate Δ resonance there
exist approximate calculations [26–28], but without real-
istic information on all vertices, including the Q2 depend-
ence. Thus we improve upon these calculations and apply
them to the required cross-section kinematics. The general
structures that we consider in the following are as in
Ref. [26] the interference between the 1γ amplitude,

M1γ ¼ −
e2

q2
ūeðp3Þγμueðp1ÞūNðp4ÞΓνuNðp2Þ; ð15Þ

and the 2γ amplitude,

Mbox
2γ ¼ −ie4

Z
d4k
ð2πÞ4 L

box
μν Hμν

N=ΔDðkÞDðq − kÞ:

In this notation, the metric tensor from the photon
propagator has already been contracted and the leptonic
tensor for the box and crossed box graph, respectively, is
given by

Lbox
μν ¼ ūeðp3ÞγμSFðp1 − k;meÞγνueðp1Þ;

Lxbox
μν ¼ ūeðp3ÞγνSFðp3 þ k;meÞγμueðp1Þ;

whereas the hadronic tensor for nucleon or Δ intermediate
states are

Hμν
N ¼ ūNðp4ÞΓμðq− kÞSFðp2 þ k;mNÞΓνðkÞuNðp2Þ and

Hμν
Δ ¼ ūNðp4ÞΓμα

γΔ→Nðp2 þ k;q− kÞ
× Sαβðp2 þ kÞΓβν

γN→Δðp2 þ k; kÞuNðp2Þ; ð16Þ

respectively. ΓμðqÞ is the elastic nucleon vertex from Eq. (1)
and Γμα

γΔ→Nðp; kÞ the transition vertex from Eq. (6). One can
write Γμα

γΔ→Nðp; kÞ ¼ γ0½Γαμ
γN→Δðp; kÞ�†γ0 if one considers

the momenta of Δ and photon in the conjugated vertex
reversed to the original one, as in Ref. [29], for a discussion
see also Ref. [30]. In the denominator of the photon
propagator for the pure nucleon graph, we include an
infinitesimal photon mass λ

DðkÞ ¼ 1

k2 − λ2 þ iϵ
; ð17Þ

to regulate the infrared divergences. The loop containing the
Δ is not IR divergent because of the mass of the Δ.
The propagators of the nucleon and the electron have the

usual form

SFðk;mÞ ¼ kþm
k2 −m2 þ iϵ

: ð18Þ

For the case of the Δ, the propagator has the structure
−SFðpΔ; mΔÞPαβðpΔÞ with the projector for the spin-3=2
components

PαβðpΔÞ ¼ gαβ −
1

3
γαγβ −

1

3p2
Δ
ðpΔγαpΔβ þ γβpΔpΔαÞ:

ð19Þ
In both the nucleon- and Δ-TPE graphs, ultraviolet

divergences are suppressed by the momentum dependence
of the form factors.
Numerically, the form factors appearing at the photon-

baryon vertices are handled analogously to the denomi-
nators of the propagators. Therefore, the integrals take the
structure of 4-point functions through replacements of the
general form
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1

ðΛ2 − k2Þk2 ¼
1

Λ2

�
1

k2
þ 1

Λ2 − k2

�
: ð20Þ

C. Results on two-photon-exchange calculations

We use two independent symbolic manipulation pro-
grams, FORM [31] and FEYNCALC [32] for the analytic
replacements and the trace algebra. We further reduce the
integral expressions to scalar Passarino-Veltman integrals
[33] which are well known and can subsequently be
evaluated via the program LOOPTOOLS [34].

1. Two-photon exchange: Nucleon intermediate states

We calculate the differences to the two soft-photon
approximations contained in the different cross sections.
In Fig. 2, we show the ϵ dependence at Q2 ¼ 3 GeV2

which allows us to compare to previous calculations by
Blunden et al. In this case, we can confirm that the
dependence on the NFF parametrization largely cancels
out. The use of the pole fit parametrization from Ref. [25]
here indeed reproduces their result. Lowering the Q2 value
in the calculation decreases the nucleon-TPE correction.

2. Two-photon exchange: Δ intermediate states

For the Δ intermediate state, the situation is different. In
order to identify the main sources of uncertainty for the Δ
TPE, we perform two different procedures for the treatment
of the nucleon-Δ transition and vary the NFF input for both
of them. First, we consider the γNΔ vertex from Eq. (6) and
calculate the individual contributions to the correction
factor Eq. (13) of the form

δ2γ;Δ ¼ CMg2M þ CEg2E þ CCg2C þ CMEgEgM

þ CCMgCgM þ CCEgCgE; ð21Þ

with gM ¼ g1, gE ¼ g2 − g1 and gC ¼ g3. In this case, the
Q2 dependence of the γNΔ vertex is assumed to follow a
dipole behavior and only the photocouplings gM; gE; gC at
Q2 ¼ 0 are fixed to the experimental values. This approach
is again directly comparable to an older calculation, by
Kondratyuk et al., if we use the same values for g1; g2; g3 as
7,9 and 0, respectively. Recent values of 6.59, 9.08 and
7.12, as used in [28] taken from [7], change the corrections
less than the NFF variations shown in Fig. 3. This plot
shows the contributions to δ2γ;Δ as defined in Eq. (21) for
different parametrizations of the NFFs used in the 1γ
amplitude of the interference term. First, we tried also
here to reproduce an older calculation by Kondratyuk et al.
by using the FFs quoted in their paper [26]. This attempt
failed, and we tested other NFFs as input, e.g. the dipole
parametrization of the Sachs FFs as a reasonable first
approximation. Looking for possible reasons for the
deviation, we also considered the NFFs used in a later
paper by Kondratyuk et al. [35] onΔ production. Instead of
the Sachs form factors, in that work, the Dirac and Pauli
FFs are parametrized as dipole FFs, which contradicts
empirical as well as theoretical information. However, the
TPE calculation based on this agrees with the Kondratyuk
calculation, as shown in Fig. 3 (grey, dash-dotted). The
small deviations here are of the order of changes due to the
numerical precision of constants required in the TPE
integrals. We also show the large range that is covered
by using a dipole (green, long-dashed) or monopole (blue,
short-dashed) for the Sachs FFs. The red (solid) curve
shows the TPE contribution calculated with the most
realistic FFs, from our dispersion relation fit, albeit one
to not fully corrected data [4]. The numerical values
corresponding to the DR-FFs in Fig. 3 are tabulated in
Table I. The dominating magnetic contribution shows the
largest deviation from Kondratyuk et al. if we neglect the
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FIG. 2 (color online). Dependence of the TPE with nucleon intermediate state on the nucleon form factors at Q2 ¼ 3 GeV2. The
correction factor δ2γ;N is calculated once with dipole Sachs FFs and once with the simplified pole fit from Ref. [25]. Left panel:
Difference of our calculation to the soft-photon approximation by Mo and Tsai [24]. Right panel: Difference of our calculation to the
soft-photon approximation by Maximon and Tjon [23].
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sign change in the Coulomb-contribution. As discussed in
Ref. [28], a sign change here can be related to the correct
inclusion of the photon momentum direction. For the
comparison to the Kondratyuk calculation, this sign change
has no impact on the whole correction δ2γ;Δ due to their
approximation gC ¼ 0. This complete correction is shown
in the left panel of Fig. 4. The mixing terms of the
Coulomb- with other contributions are ≤ 10−10 for our
DR-FF input.

The right panel of Fig. 4 shows the results of our second
calculation that employs different information on the
γNΔ-vertices to examine the uncertainties. We consider
here the helicity amplitudes, Eq. (11), obtained from data
on electroproduction of nucleon resonances [8]. These can
be parametrized conveniently by a set of FFs, determined in
Ref. [21] and used in Ref. [27] for a similar calculation
albeit without realistic NFFs. This form of the γNΔ vertex
does not deviate significantly from recent data and is
numerically well treatable. Even though the curvature in
the ϵ dependence of the correction changes slightly when
the helicity amplitudes are used, the relative change in
magnitude at different kinematics is smaller than the NFF
dependence. For most of the given kinematics, we can see
the calculation in the left panel as an upper limit.
The comparison with Ref. [28] is reassuring: they

employ different transition form factors in the main part,
however, with a consistent treatment of the four-momentum
signs in a Kondratyuk-like calculation, they obtain the
same sign change for the Coulomb contribution as we do.
Moreover, their shown result from such a calculation with
gC ¼ 0 also deviates from the original paper [26] but the
NFF dependence is not further studied or discussed at all.
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FIG. 3 (color online). Individual contributions to TPE with Δ intermediate state at Q2 ¼ 3 GeV2.

TABLE I. The ϵ dependence of the coefficients CM;CME;
CE; CC for Q2 ¼ 3 GeV2 and the NFF parametrization from [4].

ϵ CM × 104 CME × 104 CE × 104 CC × 104

0.1 2.55 1.15 −1.37 0.84
0.2 2.48 0.73 −1.42 0.74
0.3 2.39 0.40 −1.44 0.60
0.4 2.26 0.14 −1.44 0.41
0.5 2.11 −0.05 −1.41 0.17
0.6 1.92 −0.21 −1.35 −0.16
0.7 1.68 −0.32 −1.27 −0.63
0.8 1.37 −0.40 −1.15 −1.35
0.9 0.89 −0.48 −1.01 −2.78
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Further calculations for different kinematics and assump-
tions are not directly comparable [36–39].

3. Application to cross sections

We apply our calculated corrections to the electron-
proton scattering data with the highest quoted precision
at low Q2. The corresponding measurements have been
carried out at the Mainz Microtron (MAMI) for six
different energies of the incoming electron beam with
three spectrometers by the A1 Collaboration [2,3]. We
display the cross sections with an offset for these six energy
settings in Fig. 5 depending on the scattering angle θ.
The original data contains an approximation of the two-
photon correction that is only valid in the limit Q2 → 0,
which even has the wrong sign for some kinematical
regions, as shown by Arrington [40]. This approximation
is given in the simple form

δF ¼ Zαπ
sin θ

2
− sin2 θ

2

cos2 θ
2

ð22Þ

by Feshbach and Kinley [41]. We subtract this and replace
it by our calculations. For the nucleon intermediate state,
we have seen that the dependence on the nucleon form
factors is small at low Q2 and thus we use a simple pole fit
for the nucleon form factors in these calculations. For the
correction from the Δ intermediate state we employ here
the γNΔ vertex from Eq. (6) with recent values on the
photocouplings g1 ¼ 6.59; g2 ¼ 9.08; g3 ¼ 7.12. This
serves here as an upper limit for the correction compared
to the calculation based on the helicity amplitudes. Since in
this case the dependence on the NFFs in the 1γ amplitude is
also significant (see Fig. 4), we use those from a previous
dispersion relation fit here.
Besides the original MAMI cross sections, we show

in Fig. 5 the same data corrected by our nucleon-TPE

calculation (red, þ) and the nucleonþ Δ-TPE calculation
(black, x). Here, we omit the error bars to show the
corrections more clearly. Q2 remains below 1 GeV2 for
the shown MAMI data. Besides the last MAMI data set
with the highest precision, we partly include in the
following analysis former world data on electron-proton
scattering. First, this serves as a consistency check, and,
second, for an evaluation of the proton structure depend-
ence of the third Zemach moment (see below), a larger
data range is needed. Care has been taken about the
treatment of the IR divergences. The MAMI data set
contains the IR-approximation by Maximon and Tjon,
the world data compilation by I. Sick [42] contains the
one by Mo and Tsai.

III. THEORETICALLY CONSTRAINED
FIT FUNCTIONS

In this section, we introduce the relevant analytic
structure of the nucleon form factors and the known
information on the spectral function. We point out two
distinct procedures based on analyticity and unitarity to
constrain the FFs via the physical and unphysical region of
timelike momentum transfer (see Fig. 6). We show which
input has the largest impact on the FFs in the spacelike
region. Based on this reasoning, we provide the FF para-
metrizations used in this work.

A. Analytic structure and spectral decomposition
of the form factors

For timelike momentum transfer, the NFFs are defined
via the matrix element

Iμ ¼ hNðpÞN̄ðp̄Þjjemμ ð0Þj0i

¼ ūðpÞ
�
γμF1ðtÞ þ i

σμνqν

2mN
F2ðtÞ

�
vðp̄Þ: ð23Þ
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FIG. 4 (color online). Dependence of the TPE with Δ intermediate state on the nucleon form factors atQ2 ¼ 3 GeV2. Left panel: NΔγ
vertex as given by Kondratyuk. Right panel: NΔγ vertex directly matched to helicity amplitudes from electroproduction of nucleon
resonances.
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The insertion of a complete set of intermediate states jλi
yields the imaginary part of the FFs, the spectral function,

ImIμ∝
X
λ

hNðpÞjJ̄Nð0Þjλihλjjemμ ð0Þj0ivðp̄Þδ4ðpþp̄−pλÞ;
ð24Þ

for more details, see Ref. [5]. By using an unsubtracted
dispersion relation (DR) for the FFs,

FiðtÞ ¼
1

π

Z
∞

t0

ImFiðt0Þdt0
t0 − t

; i ¼ 1; 2; ð25Þ

with t0 ¼ 4M2
πð9M2

πÞ the isovector (isoscalar) threshold,
we relate the spectral function in the timelike region to the
FFs in the spacelike region. Eq. (25) shows directly that the
lowest mass states are the most relevant.
The lowest-lying state jλi ¼ j2πi leads to the continuum

in the isovector ðvÞ channel,

ImGð2πÞ
E;v ¼ q3t

mN
ffiffi
t

p FπðtÞ�f1þðtÞ;

ImGð2πÞ
M;v ¼ q3tffiffiffiffi

2t
p FπðtÞ�f1−ðtÞ; ð26Þ

where Fπ is the pion vector form factor, f1� are the
analytically continued pion-nucleon p-wave helicity scat-
tering amplitudes and qt is the pion momentum. Up to
40M2

π , these expressions are well known and include the ρ
meson as intermediate state. Information on Fπ can be
taken from Refs. [43,44], on f1� from [45]. In the isoscalar
channel, the lightest vector mesons are ω and ϕ. Their
widths are negligible compared to the isovector continuum.
Therefore, the corresponding spectral function can be well
approximated by δ distributions. A summary of the masses
and widths of the lightest vector mesons is given in Table II.
Specifically, we consider parametrizations for the 2π,

KK̄, and ρπ continuum, as obtained or updated in
Refs. [4,47,48]. The δ distributions from the narrow vector
mesons yield pole terms. We obtain for the complete
isoscalar and vector parts of the Dirac and Pauli form
factors, respectively,

Fs
i ðtÞ ¼

X
V¼KK̄;ρπ;s1;s2;…

aVi
m2

V − t
;

Fv
i ðtÞ ¼

X
V¼v1;v2;…

aVi
m2

V − t
þ ai þ bið1 − t=ciÞ−2

2ð1 − t=diÞ
; ð27Þ

with i ¼ 1; 2. The last term in the isovector form factor
corresponds to the parametrization of the two-pion con-
tinuum with values that we updated in Ref. [4]. For the light
isoscalar vector mesons, the residua in the pole terms can
be related to their couplings. Only rough estimates exist for
these: 0.5 GeV2 < jaω1 j < 1 GeV2, jaω2 j < 0.5 GeV2 [49]
and jaϕ1 j < 2 GeV2, jaϕ2 j < 1 GeV2 [48].
We want to emphasize here that the spectral function in

both isospin channels is well known up to at least 40M2
π .

Additional continua due to higher numbers of pions are

FIG. 5 (color online). The impact of TPE corrections on the
electron-proton scattering cross sections with the highest quoted
precision [2]. From the original data, we subtract the Feshbach
approximation and add our calculations. We display the cross
section divided by that one calculated by dipole Sachs FFs to
make the deviations clearer.

FIG. 6. The analytic structure of the FFs: shown is the
continuation of t ¼ q2 into the complex plane, where the FFs
are analytic functions except for the cut on the real axis t > 4M2

π .
The physical FFs from scattering are defined on the negative
real axis, those from creation/annihilation (t > tphys ¼ 4m2

N) just
above the real axis as Fðt0 ¼ tþ iϵÞ for infinitesimal ϵ. This
ϵ-prescription also holds in the region 4M2

π < t < 4m2
N .
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strongly suppressed, as has been calculated in Chiral
Perturbation Theory [50].

B. Conformal mappings and related constraints

A procedure to deal with constraints from analyticity and
unitarity via the physical region has been proposed by
Okubo in 1971 for the example of Kaon decays [10,51].
This is based on a conformal mapping which has also
been considered explicitly for NFFs in order to facilitate
numerical procedures at that time [52]. Following Ref. [53],
we write a function that maps the cut in the t-plane onto the
unit circle in a new variable z:

zðt; tcutÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffi
tcut

p ; ð28Þ

where tcut ¼ 4M2
π is the lowest singularity of the form

factors with Mπ the charged pion mass. This allows us to
expand for example the Sachs form factors in the new
variable z:

GE=MðzðtÞÞ ¼
Xkmax

k¼0

ekzðtÞk: ð29Þ

The first coefficients are determined by the form factor
normalizations to the charge and anomalous magnetic
moment of the proton, respectively. For the remaining
coefficients, one can motivate bounds, as suggested in
Refs. [15,54]. They parameterize the unit circle by zðtÞ ¼
eiθðtÞ and integrate over it. For Eq. (28), this leads to the
following expression for the coefficients:

ek≥1 ¼
2

π

Z
∞

tcut

dt
t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut

t − tcut

r
ImGðtÞ sin½kθðtÞ�

Inserting for the spectral function the δ-distribution terms
given in the last section and partly also the two-pion
continuum, one finds the specific bounds on the absolute
values of the coefficients jekj < 10. Equivalently, such
bounds can be given for the individual isospin channels.
For completeness, we comment here on the procedure to

include constraints from analyticity and unitarity in Kaon
decays, based on Okubo’s ideas [10,51]. These ideas were

used and improved in several analyses also concerning
heavy meson decays (see for example [11,12,55,56]). The
main ingredient in this method is the two-point correlation
function of the respective current

Πμνðq2Þ ¼ i
Z

d4xeiq·xh0jTjμðxÞjνð0Þj0i

¼ 1

q2
ðqμqν − q2gμνÞΠTðq2Þ þ qμqν

q2
ΠLðq2Þ ð30Þ

that defines the transverse and longitudinal polarization
functions ΠT=L, respectively. On the one hand, these can be
approximated for large spacelike momentum transfer by an
operator product expansion (OPE). Moreover, since they
are analytic below the respective threshold, they satisfy a
dispersion relation

1

n!
dnΠL=Tðq2Þ

dq2n

����
q2¼0

¼ 1

π

Z
∞

0

dt
ImΠL=TðtÞ
ðt − q2Þnþ1

����
q2¼0

; ð31Þ

where a sufficiently high number of subtractions n is
required for a finite dispersion relation. On the other hand,
by unitarity, we can express the imaginary part of the
polarization functions by inserting the sum over all allowed
intermediate states Y

ImΠL=Tðq2Þ ¼ 1

2

X
Y

Z
dρYð2πÞ4δ4ðq − pYÞPμν

L=T

× h0jjμjYihYjj†νj0i ≥ ImΠL=T
Y ðq2Þ; ð32Þ

where dρY is the phase space weighting and Pμν
L=T the

longitudinal/transverse helicity projector. Defining ImΠT=L
Y

as the part due to only specific intermediate states, this
clearly never exceeds the complete expression. For the case
of electromagnetic NFFs, it has been shown [15] that to first
order in the OPE the contribution from the physical region
is small compared to that of the unphysical region con-
firming the results from earlier dispersion analyses, for
example Ref. [4].
For the discussion of the convergence of a z-expansion

approach e.g. for the pion FF in the timelike region,
see Ref. [57].

TABLE II. Overview: Masses and widths of vector mesons with JPC ¼ 1−− in both isospin channels,
in MeV [46].

Isoscalar (IG ¼ 0−) Mass Width Isovector (IG ¼ 1þ) Mass Width

ωð782Þ 782.65 0.00849 ρð770Þ 775.26 see 2π-cont.
ϕð1020Þ 1019.461 0.00427 ρð1450Þ 1465 0.4
ωð1420Þ 1400–1450 0.215 ρð1700Þ 1720 0.25
ωð1650Þ 1670 0.315
ϕð1680Þ 1680 0.150
ϕð2170Þ 2175 0.061
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C. Fit results

In this section, we show the results of fits to electron-
proton scattering cross sections. We employ different form
factor parametrizations, partlywith high flexibility andpartly
including theoretical constraints, and fit them to different
data sets. Here, we discuss the treatment of statistical and
systematical uncertainties, as well as the impact of different
data and corrections. The variations in the FF parametriza-
tions allow us to analyse the influence of theoretical con-
straints and their explicit manifestation in the spectral
function. We give the detailed results of the best physi-
cally-motivated fit in terms of the cross section, the form
factor ratio, parameters and an error analysis for the radii.
Specifically, we consider here four different form

factor parametrizations, given in the first column of
Table III. The second column lists the corresponding
fit results to only the MAMI cross sections. Column three
shows the results of the fits to the combination of MAMI
data and world e-p cross sections. For each result, we
quote the electric and magnetic radius and the χ2 per
degrees of freedom (ndf).
The first parametrization is an unconstrained z expan-

sion, Eq. (29), as we have used in Ref. [58]. In contrast to
that work, here we explicitly include the normalization

and point out the related uncertainty for such unphysical
fits. We fit nine parameters per form factor and refit all 31
MAMI normalization parameters. The result is a χ2 value
that is to our knowledge lower than in any other published
fit. Both electric and magnetic radius from this are far
from any previous values. However, a probabilistic inter-
pretation of this fit is hampered by the lack of complete
knowledge on the statistical uncertainties. We give the
statistical details of this fit in Appendix A. Further
details are given there on the error scaling procedure that
has been performed by the A1 Collaboration on their
published data.
The fit in the second row in Table III is based on the same

parametrization as before but includes bounds on the
coefficients. We note an increase of the χ2=ndf and
simultaneously, of the electric radius, but a decrease in
the magnetic one. The spectral function from this fit, shown
in the left panel of Fig. 7, illustrates why we reject the
extrapolation beyond the data for such a fit as unphysical. If
we proceed similar to Ref. [15], include the 2π continuum
and raise the z-expansion cut to the isoscalar threshold at
9M2

π, we still obtain unrealistic oscillations in the spectral
function far below 40M2

π, where we can exclude them,
similar to Fig. 7.

TABLE III. Radius values rpE and rpM in fm from fits with different parametrizations and data sets, with the corresponding χ2=ndf. The
world data contains the basis from Ref. [42] and the MAMI data [2].

Parametrization MAMI (1422 data points) World data incl. MAMI (1922 data points)

Unconstrained z expansion rE ¼ 0.64; rM ¼ 1.97; ðχ2r ¼ 1.12Þ rE ¼ 0.85; rM ¼ 0.98; ðχ2r ¼ 1.17Þ
z expansion, jekj < 10 rE ¼ 0.91; rM ¼ 0.79; ðχ2r ¼ 1.17Þ rE ¼ 0.89; rM ¼ 0.77; ðχ2r ¼ 1.23Þ
DR approach rE ¼ 0.84; rM ¼ 0.85; ðχ2r ¼ 1.41Þ rE ¼ 0.84; rM ¼ 0.85; ðχ2r ¼ 1.32Þ
Combination of the above rE ¼ 0.84; rM ¼ 0.85; ðχ2r ¼ 1.38Þ rE ¼ 0.84; rM ¼ 0.85; ðχ2r ¼ 1.30Þ

FIG. 7 (color online). Left panel: The spectral function generated by the constrained z-expansion fit, as given in Table III. Right panel:
The spectral function expected from unitarity as fulfilled in Eq. (26).
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In contrast, the full inclusion of the physical constraints
from the spectral function as shown in the right panel of
Fig. 7 is realized in the dispersion relation fit. As given in
the third row of Table III, this increases the χ2 further. If we
consider an error scaling analogously to the A1
Collaboration for a dispersion relation fit instead of a
spline fit (see Appendix A), we obtain here a χ2=ndf of 1.1.
We do not find further improvement by including more

effective pole terms above t ¼ 40M2
π . At this point, the

deterioration of the fit for fully included constraints could
still be related to unknown continua above t ¼ 40M2

π that
are not well described by pole terms. Therefore, we
perform a new conformal mapping with tcut ¼ 40M2

π and
add an expansion in the new variable to the above
dispersion relation fit. Numerically, we only find a
convergence of the new fit, if we fix the normalization
parameters of the MAMI data which would correspond to
a slightly smaller χ2=ndf. In absolute values, it remains
unaffected on the percent level showing no improvement
for this combined approach of dispersion relations and
conformal mapping. The results of this attempt are given
in row 4 of Table III.
For the given results, the χ2 is calculated with a

diagonal covariance matrix as suggested by the A1
Collaboration. Alternatively, we checked whether the
inclusion of the systematic errors in the covariance
matrix improves the fits. Partly, we also replaced the
normalization parameters by the corresponding uncer-
tainties in the covariance matrix (see Appendix B for
details). However, this procedure does not improve the
fits significantly.
All cross sections are corrected by our TPE calcula-

tions. As we have seen in Fig. 5, at the kinematics of the
MAMI data, the contribution δ2γ;Δ is significantly smaller
than δ2γ;N . For the higher Q2 values occurring in the other
cross sections, δ2γ;Δ is more relevant. However, regarding
the fits, the influence of the parametrization is much
stronger than the influence of the included radiative
corrections. We evaluate this influence mainly from the
χ2 values of the fits and the corresponding extracted
electromagnetic radii.
The world data compilation on e-p scattering that is

partly included in the fits consists of 23 individual data sets
itself. The treatment of their normalization uncertainty adds
a source of ambiguity to these fits. Some authors fit the
normalization for each set freely, others insist on a fixed
data normalization, despite the large uncertainty of at least
several % [42]. However, compared to the choice of the
data set, the normalization treatment in the world data set is
negligible. The values given here consider freely fitted
normalizations in the world data set.
For definiteness, we explicitly show the results of the

pure DR fit to the MAMI data in Fig. 8. The parameters
of this fit are listed in Table IV. Important for the
comparison to the data is the inclusion of the

normalization parameters, here applied to the cross
sections to shift them accordingly. In order to illustrate
the composition of the data from the different spec-
trometers, we include a close-up of the data sets in
Appendix C. This also shows that the deviations of the
fit from the individual data sets are approximately
Gaussian distributed, which would allow an error
scaling as described in Appendix A. The prediction
from this DR fit for the form factor ratio is given in
Fig. 9. In comparison we show recent measurements
from Jefferson Laboratory using recoil polarization
techniques that yield the form factor ratio directly
[59,60], but were not fitted here. Below Q2≃
0.2 GeV2, unphysical fits tend to produce oscillations
in the magnetic form factor, clearly visible in the ratio
[2,58]. Full constraints lead to the disappearance of the
oscillations, as shown in Fig. 9. Due to the lack of a
probabilistic interpretation of the χ2 values in our case,
common methods like an ellipse in the χ2 landscape
around the minimum fail here. Instead, we choose a
bootstrapping procedure for a further error estimation of
individual fits. For the DR approach fit to the MAMI
data, we obtain the following 3σ uncertainties:

FIG. 8 (color online). The DR approach as given in Table IV.

THEORETICAL CONSTRAINTS AND SYSTEMATIC … PHYSICAL REVIEW D 91, 014023 (2015)

014023-11



rpE ¼ 0.840ð0.828–0.855Þ fm; ð33Þ

rpM ¼ 0.848ð0.843–0.854Þ fm: ð34Þ

For the exact error procedure, see Appendix D. Despite
the improvements performed here, these values agree well
within their errors with previous dispersion relation fits
[4,5]. Regarding the radius extraction, the TPE corrections
are much less relevant than the inclusion of constraints on
the FFs. Specifically, for the parametrizations in Table III,
we find fits to the uncorrected cross sections with changes
in the radii of less than 1%. This also holds for an inclusion
of only the nucleon-TPE. Due to this insensitivity of the
radii to the corrections, we refrain from another iteration of
the TPE calculation with NFFs extracted from the cor-
rected data.

IV. MUONIC HYDROGEN AND THE THIRD
ZEMACH MOMENT

As mentioned earlier, the proton charge radius is also
relevant in QED calculations of atomic energy splittings,
like e.g. the Lamb shift. This partly depends not only on the
proton radius but also on higher moments of the charge
distribution, the Zemach moments hrnið2Þ. Following an
overview over such calculations for hydrogenlike atoms
[61], or more specifically Ref. [16], one can consider the
proton structure contribution to the hydrogen Lamb shift at
leading Oðα4Þ and Oðα5Þ as

ΔE ¼ 2πα

3
jϕnð0Þj2

�
hr2Ei −

mrα

2
hr3ið2Þ þ � � �

�
; ð35Þ

since jϕnð0Þj2, the wave function of the nth S state at the
origin, contains α3. mr is the reduced mass of the lepton-
proton system, showing a larger relative impact of the
second term for muonic than for regular hydrogen.
Disagreements between several field theoretical calcula-
tions of the Oðα5Þ corrections to the Lamb shift in muonic
hydrogen (see below) motivate our phenomenological
determination of the third Zemach moment in this work.
Zemach originally calculated the hyperfine shift in

hydrogen and for this aim introduced a convolution of
the electric and magnetic distributions [62]. In later
determinations of the Lamb shift, higher moments of the
charge distribution also went under the name “Zemach
moment” [16,63]:

hrnið2Þ ¼
Z

d3rrnρð2ÞðrÞ ð36Þ

where

TABLE IV. The parameters obtained from the DR-approach fit to the MAMI data: regular (upper panel) and normalization parameters
(lower panel). The latter have to be multiplied to the cross sections to allow for a meaningful comparison to the data, cf. Eq. (B1). The
normalizations are assigned to the data as given in [2]. Masses mV are given in GeV and couplings aVi in GeV2.

V isoscalar mV aV1 aV2 V isovector mV aV1 aV2
ω 0.783 0.500 −0.190 v1 2.330 −1.911 0.314
ϕ 1.019 0.375 −0.861 v2 2.192 0.644 2.265
s1 3.052 −0.446 0.512 v3 4.272 0.173 −0.322
s2 1.571 0.095 −2.388 v4 2.454 0.158 0.064
s3 2.580 0.760 −0.538 v5 2.492 0.142 −0.372

n1 0.9982 n5 1.0059 n9 1.0056 n13 1.0052 n17 1.0008 n21 0.9995 n25 1.0056 n29 1.0078
n2 0.9928 n6 1.0017 n10 1.0025 n14 1.0044 n18 1.0076 n22 0.9975 n26 1.0080 n30 0.9985
n3 1.0051 n7 1.0003 n11 1.0000 n15 1.0023 n19 1.0055 n23 0.9996 n27 1.0004 n31 1.0060
n4 1.0078 n8 0.9975 n12 1.0031 n16 1.0006 n20 1.0035 n24 0.9984 n28 1.0011

FIG. 9 (color online). Result from the DR approach as given in
Table IV: The prediction for the form factor ratio, compared to
polarization measurements [59,60] that are not included in the
fit here.
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ρð2ÞðrÞ ¼
Z

d3r0ρEðr0ÞρEðjr0 − rjÞ ¼
Z

d3q
ð2πÞ3 e

−iqrG2
Eðq2Þ:

ð37Þ

In the limit of a proton mass that dominates the system, it
was shown [64] that one can approximate the third Zemach
moment as

hr3ið2Þ ¼
48

π

Z
∞

0

dq
q4

�
G2

Eðq2Þ − 1þ q2hr2Ei
3

�
: ð38Þ

The terms that are neglected in this limit correspond to
higher-order recoil corrections [61,65]. The larger sensi-
tivity was initially used as an argument for a Lamb shift
measurement in muonic hydrogen [64]. After these mea-
surements, it was debated whether the third Zemach
moment could solve the radius discrepancy [66–68]. For
some FF parametrizations without physical motivation that
were fitted to older data, the latter solution was shown to be
improbable [69]. However, the impact of more realistic FFs
that agree with physical constraints and fully radiatively
corrected data on Eq. (38) was called for. Field theoreti-
cally, the Oðα5Þ-contribution has been considered in
[64,65,70–74], using and pointing out different approx-
imations and yielding partly deviating results. A recent
calculation in heavy baryon chiral perturbation theory
including the Δ resonance [75,76] found only for the
sum of inelastic and elastic contribution a similar value to
some of the previous works, but large deviations for the
individual parts.
The DR-fits yield for the third Zemach-moment the

following 3σ-bootstrap-errors:

hr3ið2Þ ¼ ð1.3–3.8Þ fm3 ð39Þ

Using this upper limit in the Lamb-shift calculation for
muonic hydrogen would shift the proton charge radius

rpE ¼ ð0.841 → 0.843Þ fm: ð40Þ

Thus, the discrepancy between regular electronic and
muonic hydrogen is largely untouched by our results.

V. DISCUSSION AND CONCLUSIONS

In the first part of this work, we have explicitly
calculated the two-photon corrections to electron-proton
scattering including nucleon and Δ intermediate states
using phenomenological information on the vertices. In
particular, we have analysed the main uncertainties in
these calculations. On the one hand, we varied the
γNΔ-vertices from a previous implementation by
including the Coulomb contribution and updating the
photocoupling values. Alternatively, we also employed
data on the Q2 dependence of the nucleon-Δ transition

from electroproduction of nucleon resonances in terms of
helicity amplitudes. On the other hand, we found that the
dominating uncertainty is based on the choice of the NFFs
in the 1γ amplitude that enters the cross section correction.
This dependence is what we expect analytically from the
partial cancellation of the FF dependence in the TPE
correction Eq. (13). Numerically, we show that this
dependence leads to deviations of more than a factor 10
to a previous calculation for some kinematics given there.
We apply our TPE calculation to the MAMI cross

sections on e-p scattering [2], where the kinematical
conditions lead to a much smaller Δ contribution δ2γ;Δ
compared to the pure nucleon contribution δ2γ;N . In contrast
to this, for example at Q2 ¼ 3 GeV2, the contributions
from an excited intermediate state are of the same order as
the elastic contribution.
The second part of this work deals with the determi-

nation of the elastic electromagnetic NFFs. For this aim,
we perform fits to the corresponding scattering cross
sections. Regarding the data treatment, our work has
several advantages towards most other analyses.
Specifically, we employ our full TPE corrections, instead
of old approximations with partly the wrong sign.
Moreover, we use the cross sections directly instead
of the FFs extracted from the latter via a Rosenbluth
separation, which would induce further systematic errors.
However, the most relevant advantage of our fits is the
inclusion of the full physically motivated constraints
from analyticity and unitarity. We show how their
subsequent consideration influences the fits. Starting
from a flexible fit function based on a conformal
mapping without constraints, we can describe the data
perfectly in a statistical sense. But we show explicitly,
that even rough constraints on such a function still lead
to an unrealistic spectral function. Thus we turn to a
dispersion relation approach to include the full mass-
related information from the spectral function. We want
to emphasize that the extrapolation from the lowest data
points to the origin corresponds to an uncertainty that
we expect to be biased. Any curvature in the real FF
below the given data obviously leads to a bias due to the
missing data. This might explain why rpE in conventional
fits tends to come out larger, also in statistically sophis-
ticated analyses [77].
In the third part, we have determined the third Zemach

moment from our form factor fits. Note that for this
calculation, the form factors are relevant beyond the data
range of the corresponding MAMI measurement. Thus it
was crucial to include further cross sections, also in a region
where the TPE corrections including the Δ become more
relevant. However, constraining the asymptotic behavior of
the NFFs according to quark counting rules as in Ref. [4]
has a similar effect on the extracted Zemach moment. The
remaining discrepancy between the radius values from
ordinary and muonic hydrogen remains largely unaffected
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by our results. Measurements of hydrogen energy splittings
(see [78]) lead to proton charge radii that are 1–2σ off
the small value obtained in our physical fits. However, the
uncertainties of the spectroscopic radius determination is
under debate [79].
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APPENDIX A: STATISTICS AND CONSTRAINTS

The improved radiative corrections also interfere with
the normalization. As recommended by the A1
Collaboration [2], after the inclusion of our calculated
corrections we refit the normalization parameters using a
flexible fit function. This is suggested in order to adjust
the different data sets relative to each other by maximizing
their overlap. Here, we compare their suggestion to use a
polynomial for this procedure to the use of an uncon-
strained z expansion as used in [58]. Both alternatives give
variations of the normalization parameters in the range of
1%. Here, a few words on statistics are at hand. This
normalization procedure gives for the polynomial an
absolute χ2 of 1563, as for the uncorrected data. For a z
expansion with the normalization parameters from a spline
fit, the χ2=ndf is the same again. However, with fitted
normalizations, the absolute χ2 is further reduced to 1537.
Considering this result from a purely statistical standpoint
put forward for example in [2], one should prefer this fit
towards any of those given in the same reference due to the
small χ2 value. In terms of the one-sided p value,

pðχ2; ndfÞ ¼ Γðndf=2; χ2=2Þ
Γðndf=2Þ ; ðA1Þ

this fit gives an acceptable data description with at least
pð1537; ð1422 − 51ÞÞ ≈ 0.1. The “best” value published
so far for fits to these data [2] amounts to pð1563;
ð1422 − 51ÞÞ ≈ 0.04. However, due to frequent misunder-
standings of this basic fact, we point out again that a strict

probabilistic interpretation of χ2 values is only valid if the
errors are well known. This is not the case for the Mainz A1
data where several effects that contribute to the statistical
error cannot be quantified a priori. According to Ref. [2],
chapter 8, these effects include the normalization to
the luminosity measurement, the uncertainty of the current
measurement for the 315 MeV data, the statistical error
of the background estimation and undetected slight varia-
tions of the detector and accelerator performance. In the
A1 analysis [2], their size is approximated under the
assumption that the deviations of the data from a certain
spline fit follow a Gaussian distribution. Specifically, these
deviations are considered individually for each of the 18
data sets (six energies, three spectrometers). The widths of
the distributions of the deviations are used to scale the
errors. This is carried out iteratively until a χ2 close to 1 is
obtained. While this might be the best available approxi-
mation of the errors in this case, it results in their statistical
meaning vanishing.
According to the Weierstrass approximation theorem,

in general, a polynomial with a sufficient number of
degrees of freedom can fit any curve. Therefore the
polynomial fit used in the Mainz-A1 error scaling
procedure might describe the data too precisely and thus
be nonsuitable to estimate the unknown errors. The
distributions of the deviations between a DR-fit and
the individual MAMI data sets, as shown in Fig. 10,
would allow us to perform an error-scaling for this fit
analogous to the A1 procedure. However, unless speci-
fied otherwise, we refrain from an additional error scaling
in this work.

APPENDIX B: FITTING PROCEDURE

In contrast to the original MAMI analysis, we partly
consider the inclusion of the correlated errors in the fitting
procedure, by minimizing the χ2 function,

χ2¼
X
k

ðnkCi−CðQ2
i ;θi; ~pÞÞ½V−1�ijðnkCj−CðQ2

i ;θi; ~pÞÞ;
ðB1Þ

where Ci are the cross section data at the points Q2
i ; θi and

CðQ2
i ; θi; ~pÞ are the cross sections for a given FF para-

metrization for the parameter values contained in ~p. The
covariance matrix is given by

Vij ¼ σiσjδij þ νiνj; ðB2Þ

where σi are the statistical and νi the systematical errors,
here uncorrelated and correlated, respectively. Note that
the correlated errors considered here have not been given in
the original publication but only in the later online version.
For the inclusion of the normalization uncertainty, we
perform two alternative methods, once via free fit param-
eters nk in Eq. (B1) and once via their treatment as
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completely correlated systematical errors in the covariance matrix. In principal, these methods were shown to be
equivalent [80].

APPENDIX C: CROSS SECTIONS AND DISPERSON RELATION FIT

See Fig. 11 for a comparison of the cross sections obtained from the dispersion relation fit with two-photon exchange
corrected and uncorrected data.

FIG. 10 (color online). The distributions of the deviations between a DR-fit and the individual MAMI data sets, that correspond to six
different energy settings of the incoming electron beam and three different spectrometers.
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APPENDIX D: BOOTSTRAP PROCEDURE

To estimate the fit errors for the radii, we use a bootstrap
procedure following Ref. [81]. We simulate a high number
of data sets compared to the number of data points by
randomly varying the points in the original set within the
given errors assuming their normal distribution. We fit to
each of them separately, derive the radius from each fit and
consider the distribution of these radius values, which is
sometimes denoted as bootstrap distribution. The artificial
data sets represent many real samples. Therefore, our radius

distribution represents the probability distribution that
one would get from fits to data from a high number of
measurements. Although standard books on numerics refer
to this as the “quick and dirty”method, the wide acceptance
nowadays can be put on firm statistical ground [82]. The
precondition for using this method are independent and
identically distributed data points which is fulfilled in our
case, since the χ2 sum does not depend on the sequential
order of the contributing points. For n simulated data sets,
the errors thus scale with 1=

ffiffiffi
n

p
.

FIG. 11 (color online). Results from the DR approach as given in Table IV. Close-up of the cross sections with specified spectrometers
A (red, squares), B (blue, circles) and C (green, triangles). Energies of the incoming electron beam given.
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