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We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front
quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson
from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point
and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of
a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the
pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function
and fortifies our observation that the LFQM with effective degrees of freedom represented by the
constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and
antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be
expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation and
effectively indicate that the constituent quark and antiquark in the LFQM may be considered as the dressed
constituents including the zero-mode quantum fluctuations from the vacuum.
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I. INTRODUCTION

Hadronic distribution amplitudes (DAs) provide essen-
tial information on the QCD interaction of quarks, anti-
quarks, and gluons inside the hadrons and play an essential
role in applying QCD to hard exclusive processes. They are
the longitudinal projection of the hadronic wave functions
obtained by integrating the transverse momenta of the
fundamental constituents [1–3]. These nonperturbative
quantities are defined as vacuum-to-hadron matrix ele-
ments of particular nonlocal quark or quark-gluon oper-
ators and thus encode important information on bound
states in strong interaction physics. It has motivated many
studies using various nonperturbative models [4–11] and
led to developing distinct phenomenological models over
the past two decades. Among them, the light-front quark
model (LFQM) appears to be one of the most efficient and
effective tools in hadron physics as it takes advantage of the
distinguished features of the light-front dynamics (LFD)
[12]. In particular, the LFD carries the maximum number
(seven) of the kinematic (or interaction-independent)
generators and thus less effort in dynamics is necessary
in order to get the QCD solutions that reflect the full
Poincaré symmetries. Moreover, the rational energy-
momentum dispersion relation of LFD, namely
p− ¼ ðp2⊥ þm2Þ=pþ, yields the sign correlation between
the light-front (LF) energy p−ð¼ p0 − p3Þ and the LF
longitudinal momentum pþð¼ p0 þ p3Þ and leads to the
suppression of quantum fluctuations of the vacuum, sweep-
ing the complicated vacuum fluctuations into the zero

modes in the limit of pþ → 0 [13–15]. This simplification
is a remarkable advantage in LFD and facilitates the
partonic interpretation of the amplitudes. Based on the
advantages of the LFD, the LFQM has been developed [16]
and subsequently applied for various meson phenomenol-
ogies such as the mass spectra of both heavy and light
mesons [17], the decay constants, DAs, form factors, and
generalized parton distributions [7,12,16–24].
Despite these successes in reproducing the general

features of the data, however, it has proved very difficult
to obtain direct connection between the LFQM and QCD.
To discuss the link between the chiral symmetry of QCD
and the numerical results of the LFQM, we recently
presented a self-consistent covariant description of vector
meson decay constants and chirality-even quark-antiquark
DAs up to twist 3 in LFQM [25]. Although the meson
decay amplitude described by a two-point function could
be regarded as one of the simplest possible physical
observables, it is interesting that this apparently simple
amplitude bears abundant fundamental information on
QCD vacuum dynamics and chiral symmetry. In particular,
we discussed the zero-mode issue in the LFQM prediction
of vector meson decay constants from the perspective of the
vacuum fluctuation consistent with the chiral symmetry of
QCD and extended the exactly solvable manifestly covar-
iant Bethe-Salpeter (BS) model calculation to the more
phenomenologically accessible realistic LFQM.
To discuss the nature of the LF zero mode in meson

decay amplitude, we may denote the total LF longitudinal
momentum of the meson, Pþ ¼ kþQ þ kþQ̄, where k

þ
Q and kþQ̄
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are the individual quark and antiquark LF longitudinal
momenta, respectively. Similarly, the total LF energy P− is
shared by the individual quark and antiquark LF energies
k−Q and k−Q̄, i.e., P− ¼ k−Q þ k−Q̄. For the LF energy
integration of the two-point function over k−Q or k−Q̄ to
compute the meson decay amplitude, one may use
Cauchy’s theorem for a contour integration and pick up
the LF energy pole, e.g., either ½k−Q�on (i.e., on-shell value of
k−Q) from the quark propagator or ½k−Q̄�on from the antiquark
propagator. However, it is crucial to note that the poles
move to infinity (or fly away in the complex plane) as the
LF longitudinal momentum, either kþQ or kþQ̄, goes to zero
[26]. Unless the contribution from the pole flown into
infinity vanishes, it must be kept in computing the physical
observable that must reflect the full Poincaré symmetries.
Since such a contribution, if it exists, appears either from
kþQ ¼ 0 and kþQ̄ ¼ Pþ or from kþQ̄ ¼ 0 and kþQ ¼ Pþ, we call
it the zero-mode contribution. In the case of the two-point
function for the computation of the meson decay constant,
the zero-mode contribution is thus locked into a single
point of the LF longitudinal momentum, i.e., either kþQ ¼ 0
where kþQ̄ ¼ Pþ or kþQ̄ ¼ 0 where kþQ ¼ Pþ. As one of the
constituents of the meson carries the entire momentum Pþ
of the meson in this case, the other constituent carries the
zero LF longitudinal momentum that can be regarded as the
zero-mode quantum fluctuation linked to the vacuum. This
link is due to a pair creation of particles with zero LF
longitudinal momenta from the vacuum and it is important
to capture the vacuum effect for the consistency with the
chiral symmetry properties of the strong interactions [27].
With this link, the zero-mode contribution in the meson
decay process can be considered effectively as the effect of
vacuum fluctuation consistent with the chiral symmetry of
the strong interactions. In this respect, the LFQM with
effective degrees of freedom represented by the constituent
quark and antiquark may be linked to the QCD since the
zero-mode link to the QCD vacuum may provide the view
of an effective zero-mode cloud around the quark and
antiquark inside the meson. Although the constituents are
dressed by the zero-mode cloud, they are still expected to
satisfy the chiral symmetry consistent with the QCD. Our
numerical results [25] were indeed consistent with this
expectation and effectively indicated that the constituent
quark and antiquark in the standard LFQM [7,16,23,24,
28–30] could be considered as the dressed constituents
including the zero-mode quantum fluctuations from the
QCD vacuum.
Since the constituent quark and antiquark used in the

LFQM have already absorbed the zero-mode cloud, the
zero-mode contribution in the LFQMmay not be as explicit
as in the manifestly covariant model calculation although it
effectively provides the consistency with the chiral sym-
metry. The standard light-front (SLF) approach of the
LFQM, with which the observables are directly computed
in three-dimensional LF momentum space, is not amenable

to determine the zero-mode contribution by itself and thus
it has been a common practice to utilize an exactly solvable
manifestly covariant BS model to check the existence (or
absence) of the zero mode as one can pin down the zero
mode exactly in the manifestly covariant BS model. Within
the covariant BS model, we indeed found the nonvanishing
zero modes in the vector meson decay amplitude and
identified the corresponding zero-mode operators that can
be applied to the LFQM. We also found the self-consistent
correspondence relations [see, e.g., Eq. (49) in [25]]
between the covariant BS model and the LFQM that allow
the substitution of the radial and spin-orbit wave functions
of the exactly solvable model by the more phenomeno-
logically accessible model wave functions that can be
provided by the LFQM analysis of meson masses [16].
What is remarkable in our finding [25] is that the non-
vanishing zero-mode contributions as well as the instanta-
neous ones to the vector meson decay amplitude that
appeared in the covariant BS model now vanish explicitly
when the phenomenological wave function such as the
Gaussian wave function in LFQM is used through the
aforementioned correspondence relation. In other words,
the decay constants and the quark DAs of vector mesons
can be obtained only from the on-mass-shell valence
contribution within the framework of the standard
LFQM [16,23,24,28–34] using the Gaussian radial wave
function and they still satisfy the chiral symmetry con-
sistent with the QCD.
One of the key ingredients for this finding is the isospin

symmetry, namely, the symmetric DAs for the equal quark
and antiquark bound state mesons (e.g., ρ meson). Under
the exchange of the LF longitudinal momentum fraction of
the quark and antiquark, x↔ð1 − xÞ, the DA of the meson
with the two equal-mass constituents must be symmetric,
ϕðxÞ ¼ ϕð1 − xÞ. We exploited this fundamental constraint
anticipated from the isospin symmetry to identify the
correct DAs in LFQM. The twist-2 and twist-3 DAs of
the ρ meson obtained only from the on-mass-shell valence
constituents in LFQM [25] not only satisfy this constraint
anticipated from the isospin symmetry but also reproduce
the correct asymptotic DAs in the chiral symmetry limit.
Knowing that the higher-twist DAs may come from the
contributions of the higher Fock states such as pair terms as
well as the transverse motion of constituents in the leading
twist components [4–6], we should further attest that our
LFQM formulation for the twist-3 DA is indeed simple
without involving zero modes and thus the connected
contributions to the current arising from the vacuum
disappear in our LFQM calculation, yet preserve all the
necessary constraints anticipated from the isospin sym-
metry and the chiral symmetry.
The purpose of this work is to extend our previous work

to analyze the decay amplitude related with twist-3 DAs of
a pseudoscalar meson within the LFQM and show that the
analysis of pseudoscalar mesons fortifies our previous
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conclusion drawn from the vector meson case [25]. That is,
the treacherous points such as the zero mode and the
instantaneous contributions present in the covariant BS
model disappear in the standard LFQM with the Gaussian
radial wave function but nevertheless satisfy the chiral
symmetry. The twist-3 DAs of a pseudoscalar meson
appear to play an important role in constraining our
LFQM to be consistent with the conclusion drawn from
our previous analysis of the vector meson decay constant.
The twist-2 DA of a pseudoscalar meson has been analyzed
in our previous work of LFQM [7]. Essentially, there are
two independent twist-3 two-particle DAs of a pseudosca-
lar meson, namely, ϕP

3;M and ϕσ
3;M [4–6,8–11], correspond-

ing to pseudoscalar and tensor channels of a meson (M),
respectively. In this work, we shall study ϕP

3;M together with
the twist-2 DA ϕA

2;M corresponding to the axial-vector
channel for the sake of completeness.
The ϕA

2;M and ϕP
3;M are defined in terms of the following

matrix elements of gauge invariant nonlocal operators at
light-like separation [4–6]:

h0jq̄ðzÞ½z;−z�γμγ5qð−zÞjMðPÞi

¼ ifMPμ

Z
1

0

dxeiζP·zϕA
2;MðxÞ; ð1Þ

and

h0jq̄ðzÞ½z;−z�iγ5qð−zÞjMðPÞi

¼ fMμM

Z
1

0

dxeiζP·zϕP
3;MðxÞ; ð2Þ

where z2 ¼ 0 and the path-ordered gauge link (Wilson line)
½z;−z� for the gluon fields between the points −z and z is
equal to unity in the light-cone gauge AðzÞ · z ¼ 0 that we
take throughout our calculation. P is the four momentum of
the meson (P2 ¼ m2

M) and the integration variable x
corresponds to the longitudinal momentum fraction carried
by the quark and ζ ¼ 2x − 1 for the short-hand notation.
The normalization parameter μM ¼ m2

M=ðmq þmq̄Þ in
Eq. (2) results from quark condensate. For the pion, μπ ¼
−2hq̄qi=f2π from the Gell-Mann-Oakes-Renner relation
[35]. The normalization of the two DAs Φ ¼
fϕA

2;M;ϕ
P
3;Mg is given by

Z
1

0

dxΦðxÞ ¼ 1: ð3Þ

In order to check the existence (or absence) of the zero
mode, we again utilize the same manifestly covariant model
used in the analysis of the vector meson decay constant [25]
and then substitute the vertex function with the more
phenomenologically accessible Gaussian radial wave func-
tion provided by our LFQM. We shall show that the
analysis of the decay constants and twist-2 and twist-3
two-particle DAs of pseudoscalar mesons confirms our

previous conclusion drawn for the vector meson analysis
[25]. Namely, the treacherous points such as the zero mode
and the instantaneous contributions that appeared in the
covariant BS model do not show up explicitly in the
standard LFQM with the Gaussian radial wave function
but nevertheless satisfy the chiral symmetry.
In addition, we show that our findings of the zero-mode

complication in two-point function are directly applicable
to the three-point function with the analysis of the pion
elastic form factor. The analyses of the pion form factor
using the plus component (Jþem) of the LF currents have
been done in many earlier works [36–39] and proved that
the pion form factor is immune to the zero-mode contri-
bution when the plus component of the currents is used.
Particularly, in our LFQM analysis of the pion form factor
[38,39], we have shown that the usual power-law behavior
of the pion form factor obtained in the perturbative QCD
analysis can also be attained by taking negligible quark
masses in our nonperturbative LFQM analysis, confirming
the anti–de Sitter space geometry/conformal field theory
(AdS/CFT) correspondence [40]. In this work, we analyze
the pion form factor using the perpendicular components
(J⊥em) of the currents. Within the covariant BS model, we
find that the form factor obtained in the qþ ¼ 0 frame with
J⊥em receives only the valence contribution including both
the on-mass-shell quark propagating part and the off-mass-
shell instantaneous part without involving a zero mode.
Applying this to the LFQM, we find that the nonvanishing
instantaneous contribution that appeared in the BS model
does not appear and just the on-mass-shell propagating part
contributes in the LFQM. This example of the three-point
function provides an evidence that the conclusion drawn in
the LFQM analysis of the two-point function is also
applicable to the three-point function.
The paper is organized as follows. In Sec. II A, we

discuss the decay amplitude of a pseudoscalar meson
described by the two-point function and the pion form
factor described by the three-point function in an exactly
solvable model based on the covariant BS model of
(3þ 1)-dimensional fermion field theory. We mainly per-
form our LF calculation for the decay amplitude corre-
sponding to the twist-3 DA ϕP

3;M and the pion form factor
using J⊥em and check the LF covariance of them within the
covariant BS model. Especially, we discuss how to identify
the zero-mode contribution and find the corresponding
zero-mode operator. In Sec. III, we present the standard
LFQM with the Gaussian wave function and discuss the
correspondence linking the manifestly covariant model to
the standard LFQM. The self-consistent covariant descrip-
tions of the meson decay constants as well as the twist-2
and twist-3 two-particle DAs of pseudoscalar mesons in the
standard LFQM are given in this section. In Sec. IV,
we present our numerical results for the explicit demon-
stration of our findings. Summary and discussion follow
in Sec. V.
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II. MANIFESTLY COVARIANT MODEL

A. Two-point function: decay amplitude

Defining the local matrix elements Mα ≡
h0jq̄ΓαqjMðPÞiðα ¼ A;PÞ for axial-vector (ΓA ¼ γμγ5)
and pseudoscalar (ΓP ¼ iγ5) channels of Eqs. (1)–(2),
we write the one-loop approximation (see Fig. 1) as a
momentum integral

Mα ¼ Nc

Z
d4k
ð2πÞ4

H0

NpNk
Sα; ð4Þ

where Nc denotes the number of colors. The denominators
Npð¼ p2 −m2

q þ iεÞ and Nkð¼ k2 −m2
q̄ þ iεÞ come from

the quark propagators of mass mq and mq̄ carrying the
internal four momenta p ¼ P − k and k, respectively. In
order to regularize the covariant loop, we use the usual
multipole ansatz [18,25,41,42] for the qq̄ bound-state
vertex function H0 ¼ H0ðp2; k2Þ of a meson:

H0ðp2; k2Þ ¼ g
Nn

Λ

; ð5Þ

where NΛ ¼ p2 − Λ2 þ iε, and g and Λ are constant
parameters. Although the vertex function H0 could be
symmetrized in the four momenta of the constituent quarks
for further study, we take a simplest possible regularization
in this work as a tool to analyze the zero-mode compli-
cation in the exactly solvable model. In the same vein,
although the power n for the multipole ansatz could be
n ≥ 2 to regularize the loop integral, we take the lowest
possible power n ¼ 2 since our qualitative results in terms
of the zero-mode issue do not depend on the value of n.
The trace term Sα in Eq. (4) is given by

Sα ¼ Tr½ΓαðpþmqÞγ5ð−kþmq̄Þ�: ð6Þ

We have already computed the matrix element MA of the
axial-vector channel in Appendix B of Ref. [25] and have
shown that MA (i.e., the decay constant of a pseudoscalar
meson) obtained from the plus component of the currents is
immune to the zero mode. Therefore, we shall discuss the
pseudoscalar channel and the associated twist-3 DA ϕP

3;M in

this work. After a little manipulation, we obtain the
manifestly covariant result for MP as follows:

Mcov
P ¼ Ncg

4π2

Z
1

0

dx
Z

1−x

0

dyð1 − x − yÞ

×

�
yð1 − yÞm2

M þmqmq̄

C2
cov

−
2

Ccov

�
; ð7Þ

where Ccov ¼ yð1 − yÞm2
M − xm2

q − ym2
q̄ − ð1 − x − yÞΛ2.

For the LF calculation parallel with the manifestly
covariant one, we separate the trace term SP in Eq. (6)
into the on-mass-shell propagating part ½SP�on and the off-
mass-shell instantaneous part ½SP�inst via q ¼ qon þ
1
2
γþðq− − q−onÞ as

SP ¼ ½SP�on þ ½SP �inst; ð8Þ

where ½SP �on ¼ 4ðpon · kon þmqmq̄Þ and ½SP �inst ¼
2ðpþΔ−

k þ kþΔ−
pÞ with Δ−

q ¼ q− − q−on. We note that the
metric convention a · b ¼ 1

2
ðaþb− þ a−bþÞ − a⊥ · b⊥ is

used in our analysis. Furthermore, we take the reference
frame where P⊥ ¼ 0, i.e., P ¼ ðPþ;M2=Pþ; 0Þ. In this
case, the LF energies of the on-mass-shell quark and
antiquark are given by p−

on ¼ ðk2⊥ þm2
qÞ=xPþ and

k−on ¼ ðk2⊥ þm2
q̄Þ=ð1 − xÞPþ, respectively, where x ¼

pþ=Pþ is the LF longitudinal momentum fraction of
the quark.
For the integration over k− in Eq. (4), one may close the

contour in the lower half of the complex k− plane and pick
up the residue at k− ¼ k−on in the region 0 < kþ < Pþ (or
0 < x < 1). We denote the valence contribution toMP that
is obtained by taking k− ¼ k−on in the region of 0 < x < 1 as
½MP �LFval that is given by

½MP�LFval ¼
Nc

16π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥Þ½SP�val; ð9Þ

where

χðx;k⊥Þ ¼
g

½xðm2
M −M2

0Þ�½xðm2
M −M2

ΛÞ�n
; ð10Þ

with n ¼ 2 and

M2
0ðΛÞ ¼

k2⊥ þm2
qðΛ2Þ

x
þ k2⊥ þm2

q̄

1 − x
: ð11Þ

Here, the trace term for the valence contribution, i.e.,
½SP�val ¼ ½SP �on þ 2kþΔ−

p , is given by

½SP�val ¼ 2½M2
0 − ðmq −mq̄Þ2 þ ð1 − xÞEE:B:�; ð12Þ

where the binding energy term EE:B: ¼ m2
M −M2

0 stems
from the instantaneous contribution. We find numerically
that ½MP�LFval in Eq. (9) is not identical to the manifestly

FIG. 1. Feynman diagram for the one-quark-loop evaluation of
the meson decay amplitude in the momentum space.
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covariant result MP
cov in Eq. (7). This indicates that the

decay amplitude MP receives the LF zero-mode contri-
bution. The LF zero-mode contribution toMP comes from
the singular p− (or equivalently 1=x) term in SP in the limit
of x → 0 when p− ¼ p−

on, i.e.,

lim
x→0

SPðp− ¼ p−
onÞ ¼ 2p−: ð13Þ

The necessary prescription to identify the zero-mode
operator corresponding to p− is analogous to that derived
in the previous analyses of weak transition form factor
calculations [17,18,21], except that there is no momentum
transfer q dependence. As extensively discussed in the
previous works [17,18,21,25], we now identify the zero-
mode operator ½SP�Z:M: by replacing p− with −Z2 in
Eq. (13), i.e.,

½SP �Z:M: ¼ 2ð−Z2Þ; ð14Þ

where Z2 ¼ xEE:B: þm2
q −m2

q̄ þ ð1 − 2xÞm2
M. This zero-

mode operator ½SP �Z:M: can be effectively included in the
valence region as follows:

½MP �LFfull¼
Nc

16π3

Z
1

0

dx
ð1−xÞ

Z
d2k⊥χðx;k⊥Þ½SP �full; ð15Þ

where ½SP �full ¼ ½SP�val þ ½SP �Z:M: and it is given by

½SP�full ¼ 4½xM2
0 þmqðmq̄ −mqÞ�: ð16Þ

It can be checked that Eq. (15) is identical to the manifestly
covariant result of Eq. (7).
Although the amplitude MA ¼ ifMPμ for the axial-

vector channel is proven to be immune to the zero mode
when the plus component (μ ¼ þ) of the currents is used
and its form is given in Ref. [25], we display it here again
for completeness in the form of a pseudoscalar meson
decay constant:

fLFM ¼ Nc

4π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥ÞA; ð17Þ

where A ¼ ð1 − xÞmq þ xmq̄.

B. Three-point function: pion
electromagnetic form factor

The electromagnetic form factor of a pion is defined by
the matrix elements of the current Jμem:

hP0jJμemjPi ¼ emðPþ P0ÞμFπðq2Þ; ð18Þ

where em is the charge of the meson and q2 ¼ ðP − P0Þ2 is
the square of the four-momentum transfer.
The covariant diagram shown in Fig. 2(a) to describe the

pion form factor is in general equivalent to the sum of the
LF valence diagram [Fig. 2(b)] and the nonvalence diagram
[Fig. 2(c)]. The matrix element J μ ≡ hP0jJμemjPi obtained
from the covariant diagram of Fig. 2(a) is given by

J μ ¼ iNc

Z
d4k
ð2πÞ4

H0
0H

00
0

Np1
NkNp2

Sμ; ð19Þ

where

Sμ ¼ Tr½γ5ðp1 þmÞγμðp2 þmÞγ5ð−kþmÞ� ð20Þ

with p1 ¼ P − k and p2 ¼ P0 − k. Here, we take mq ¼
mq̄ ¼ m for the pion. The vertex functions are given by
H0

0 ¼ H0
0ðp2

1; k
2Þ ¼ g=ðN0

ΛÞn and H00
0 ¼ H00

0ðp2
2; k

2Þ ¼
g=ðN00

ΛÞn with N0
ΛðN00

ΛÞ ¼ p2
1ðp2

2Þ − Λ2 þ iϵ. In this case,
we take the power n for the multipole ansatz to be simply 1,
since our qualitative results in conjunction with the
zero-mode issue do not depend on the value of n. The
rest of the denominator factor Np from the intermediate
quark propagator with momentum p ¼ ðp1; p2; kÞ is given
by Np ¼ p2 −m2 þ iϵ.
Using the usual Feynman parametrization, we obtain the

manifestly covariant result as follows:

(a) (b) (c)

FIG. 2 (color online). The covariant triangle diagram (a) corresponds to the sum of the LF valence diagram (b) and the nonvalence
diagram (c). The large white and black blobs at the meson-quark vertices in (b) and (c) represent the ordinary LF wave function and the
nonvalence wave function vertices, respectively.
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Fcov
π ðq2Þ ¼ Ncg2

8π2ðΛ2 −m2Þ2

×
Z

1

0

dx
Z

1−x

0

dy

�
½3ðxþ yÞ− 4� ln

�
CΛmCmΛ

CmmCΛΛ

�

þ½ð1− x− yÞ2ðxþ yÞm2
π þ xyð2− x− yÞq2

− ðxþ yÞm2þ 2m2�C
�
; ð21Þ

where C¼ð1=CΛΛ−1=CΛm−1=CmΛþ1=CmmÞ and Cab¼
ð1−x−yÞðxþyÞm2

πþxyq2−ðxa2þyb2Þ−ð1−x−yÞm2.
Since the LFD analysis has already shown [36,43] that

the pion form factor is immune to the zero-mode contri-
bution when the plus component of the currents is used, we
shall now explore the perpendicular components (μ ¼ ⊥)
of the currents to see if the treacherous points such as the
zero modes exist or not. In order to check the existence/
absence of the zero-mode contribution to the hadronic
matrix element given by Eq. (19), we first choose qþ > 0
frame and then take the qþ → 0 limit. In the qþ > 0 frame,
the covariant diagram Fig. 2(a) corresponds to the sum of
the LF valence diagram Fig. 2(b) defined in 0 < kþ < P0þ
region and the nonvalence diagram Fig. 2(c) defined in
P0þ < kþ < Pþ region. The large white and black blobs at
the meson-quark vertices in (b) and (c) represent the
ordinary LF wave function and the nonvalence wave
function vertices [36,44], respectively. Defining Δ ¼
qþ=Pþ and the longitudinal momentum fraction factor x ¼
pþ
1 =P

þ (1 − x ¼ kþ=Pþ) for the struck (spectator) quark,
we should note that the nonvalence region (i.e., 0 < x < Δ)
of integration shrinks to the end point x ¼ 0 in the qþ → 0
(i.e., Δ → 0) limit. The virtue of taking the qþ ¼ 0 frame is
to obtain the form factor by calculating only the valence
diagram (i.e., 0 < x < 1) because the nonvalence diagram
does not contribute if the integrand is free from the
singularity in p−

1 ∼ 1=x. However, if the integrand has a
singularity as x → 0, then one should also take into account
this nonvanishing contribution that we call the zero-mode
contribution.
In the qþ ¼ 0 frame with P⊥ ¼ 0, the photon momen-

tum is transverse to the direction of the incident pion with
the spacelike momentum transfer q2⊥ ≡Q2 ¼ −q2. In this
frame, one obtains the relations between the current matrix
elements and the pion form factor as follows:

FLF
π ðQ2Þ ¼ J þ

2Pþ ðfor μ ¼ þÞ;

FLF
π ðQ2Þ ¼ −

J ⊥ · q⊥
q2⊥

ðfor μ ¼ ⊥Þ: ð22Þ

The trace term in Eq. (20) can again be separated into on-
mass-shell propagating part and off-mass-shell instanta-
neous one as Sμ ¼ Sμon þ Sμinst, where

Sμon ¼ 4½pμ
1 onðp2 on · kon þm2Þ − kμonðp1 on · p2 on −m2Þ

þ pμ
2 onðp1 on · kon þm2Þ�; ð23Þ

and

Sμinst ¼ 2Δ−
p1
ðpμ

2 onk
þ
on − pþ

2 onk
μ
onÞ

þ 2Δ−
p2
ðpμ

1 onk
þ
on − pþ

1 onk
μ
onÞ

þ 2Δ−
k ðpμ

1 onp
þ
2 on þ pþ

1 onp
μ
2 onÞ: ð24Þ

Note that Eq. (24) is valid only for μ ¼ þ or ⊥.
In the valence region 0 < kþ < P0þ (or 0 < x < 1) of the

qþ → 0 limit, the pole k− ¼ k−on is located in the lower half
of the complex k− plane. Performing the LF energy k−

integration of Eq. (19), we obtain the valence contribution
to J μ as

½J μ�LFval ¼
Nc

16π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥Þχ0ðx;k0⊥ÞSμval;

ð25Þ

where Sμval ¼ Sμon þ SμinstðΔ−
k ¼ 0Þ and k0⊥ ¼ k⊥þ

ð1 − xÞq⊥. The LF vertex function χ of the initial state
is given by Eq. (10) but with n ¼ 1.1 The final state vertex
function χ0 is equal to χðx;k⊥ → k0⊥Þ.
From Eqs. (22)–(24), we get the LF valence contribu-

tions to the pion form factor

½Fπ�LFðþÞ
val ðQ2Þ

¼ Nc

8π3

Z
1

0

dx
ð1 − xÞ2

×
Z

d2k⊥χðx;k⊥Þχ0ðx;k0⊥Þðk⊥ · k0⊥ þm2Þ; ð26Þ

for μ ¼ þ, and

½Fπ�LFð⊥Þ
val ðQ2Þ

¼ Nc

8π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥Þχ0ðx;k0⊥Þ

×

�
ð1 − xÞm2

M þ xM2
0 þ

k⊥ · q⊥
q2⊥

ð2m2
M þ q2⊥Þ

�
; ð27Þ

for μ ¼ ⊥, respectively. We note that while the
valence contribution for the plus current comes solely from

the on-shell propagating part (i.e., ½Fπ�LFðþÞ
val ¼ ½Fπ�LFðþÞ

on ),
the valence contribution for the perpendicular currents
results not only from the on-shell propagating part but

1In this form factor analysis, it is sufficient to consider only the
case of a monopole form of the vertex function (n ¼ 1), since our
qualitative results do not depend on the value of n.
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also from the instantaneous part (i.e., ½Fπ�LFð⊥Þ
val ¼

½Fπ�LFð⊥Þ
on þ ½Fπ�LFð⊥Þ

inst ), where

½Fπ�LFð⊥Þ
on ðQ2Þ ¼ Nc

8π3

Z
1

0

dx
ð1 − xÞ

×
Z

d2k⊥χðx;k⊥Þχ0ðx;k0⊥Þ

×
ðk⊥ · k0⊥ þm2Þ

xð1 − xÞ
�
1þ 2

k⊥ · q⊥
q2⊥

�
;

ð28Þ
and

½Fπ�LFð⊥Þ
inst ðQ2Þ ¼ Nc

8π3

Z
1

0

dx
ð1 − xÞ

×
Z

d2k⊥χðx;k⊥Þχ0ðx;k0⊥Þ

×

�
k0⊥ · q⊥
q2⊥

ðm2
M −M2

0Þ

þ k⊥ · q⊥
q2⊥

ðm2
M −M02

0 Þ
�
: ð29Þ

We should note that while both ½Fπ�LFð⊥Þ
on and ½Fπ�LFð⊥Þ

inst are

infinite, ½Fπ�LFð⊥Þ
val is finite due to the cancellation of the

infinity. Furthermore, we find from our numerical compu-

tation that the three results ½Fπ�LFðþÞ
val in Eq. (26), ½Fπ�LFð⊥Þ

val in
Eq. (27), and the manifestly covariant result Fcov

π in Eq. (21)
are identical with each other. That is, in this exactly solvable
model, the pion form factor obtained from either the plus
component (Jþem) of the currents or the perpendicular
components (J⊥em) of the currents is immune to the zero-
mode contribution.

III. APPLICATION TO STANDARD LIGHT-FRONT
QUARK MODEL

In the standard LFQM [16,23,24,28–34], the wave
function of a ground state pseudoscalar meson
(JPC ¼ 0−þ) as a qq̄ bound state is given by

Ψλλ̄ðx;k⊥Þ ¼ ϕRðx;k⊥ÞRλλ̄ðx;k⊥Þ; ð30Þ
where ϕR is the radial wave function and the spin-orbit
wave function Rλλ̄ with the helicity λðλ̄Þ of a quark
(antiquark) is obtained by the interaction-independent
Melosh transformation [45] from the ordinary spin-orbit
wave function assigned by the quantum numbers JPC.
We use the Gaussian wave function for ϕR, which is

given by

ϕRðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffi∂kz
∂x

r
expð−~k2=2β2Þ; ð31Þ

where ~k2 ¼ k2⊥ þ k2z and β is the variational parameter
fixed by the analysis of meson mass spectra [16]. The
longitudinal component kz is defined by kz ¼
ðx − 1=2ÞM0 þ ðm2

q̄ −m2
qÞ=2M0, and the Jacobian of

the variable transformation fx;k⊥g → ~k ¼ ðk⊥; kzÞ is
given by

∂kz
∂x ¼ M0

4xð1 − xÞ
�
1 −

�
m2

q −m2
q̄

M2
0

�
2
�
: ð32Þ

The covariant form of the spin-orbit wave function Rλλ̄ is
given by

Rλλ̄ ¼
ūλðpqÞγ5vλ̄ðpq̄Þffiffiffi

2
p ½M2

0 − ðmq −mq̄Þ2�1=2
; ð33Þ

and it satisfies
P

λλ̄R
†
λλ̄
Rλλ̄ ¼ 1. Thus, the normalization of

our wave function is then given by

1 ¼
X
λλ̄

Z
dxd2k⊥
16π3

jΨλλ̄ðx;k⊥Þj2

¼
Z

dxd2k⊥
16π3

jϕRðx;k⊥Þj2: ð34Þ

In our previous analysis of the decay constant and the
twist-2 and twist-3 DAs of a vector meson [25], we have
shown that standard light-front (SLF) results of the LFQM
are obtained by the the replacement of the LF vertex
function χ in the BS model with the Gaussian wave
function ϕR as follows [see Eq. (49) in [25]]:

ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
1 − x

→
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p ; mM → M0; ð35Þ

where mM → M0 implies that the physical mass mM
included in the integrand of BS amplitude has to be
replaced with the invariant mass M0 since the SLF results
of the LFQM are obtained from the requirement of all
constituents being on their respective mass shell. The
correspondence in Eq. (35) is valid again in this analysis
of a pseudoscalar meson. For the final state LF vertex
function, one should replace k⊥ with k0⊥ in Eq. (35).
We first apply the correspondence given by Eq. (35) to

the zero-mode free observables fLFM [Eq. (17)] and

½Fπ�LFðþÞ
val ðQ2Þ [Eq. (26)]. Then we obtain the corresponding

SLF results fSLFM and FSLFðþÞðQ2Þ as follows:

fSLFM ¼
ffiffiffiffiffiffiffiffi
2Nc

p
8π3

Z
1

0

dx
Z

d2k⊥
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p A; ð36Þ

and
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FSLFðþÞ
π ðQ2Þ ¼

Z
1

0

dx
Z

d2k⊥
16π3

ϕRðx;k⊥Þϕ0
Rðx;k0⊥Þ

×
k⊥ · k0⊥ þm2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þm2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k02⊥ þm2
p ; ð37Þ

where ϕRðϕ0
RÞ is the initial (final) state radial wave

function. Equations (36)–(37) are exactly the same as those
previously obtained from the SLF approach, e.g., see
Refs. [7,16]. We should note that both Eqs. (36) and
(37) are the results obtained only from the on-mass-shell
quark propagators. From Eq. (36), we obtain the twist-2 DA
ϕA
2;MðxÞ of a pseudoscalar meson as follows:

ϕA
2;MðxÞ ¼

ffiffiffiffiffiffiffiffi
2Nc

p
fSLFM 8π3

Z
d2k⊥

ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p A: ð38Þ

We now apply the correspondence given by Eq. (35) to the
decay amplitude MPð¼ fMμMÞ for pseudoscalar channel
given by Eq. (15) to obtain the corresponding LFQM
amplitude:

½MP �SLFfull ¼
ffiffiffiffiffiffiffiffi
2Nc

p
2 · 16π3

Z
1

0

dx
Z

d2k⊥
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p ½SP �full;

ð39Þ

where ½SP �full ¼ 4½xM2
0 þmqðmq̄ −mqÞ�.

Interestingly enough, we also found that the result
½MP �SLFon obtained only from the on-mass-shell quark propa-
gator ½SP �on ¼ 2½M2

0 − ðmq −mq̄Þ2� is exactly the same as
the full result in Eq. (39). This equality ½MP�SLFfull ¼ ½MP�SLFon
can be easily seen from the fact that only the even term in SP
with respect to x survives in the SU(2) symmetry limit
(m ¼ mq ¼ mq̄) since the Gaussian wave function ϕR and
other prefactor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p
are even in x. That is, decom-

posing the trace term ½SP�full ¼ 4xM2
0 ¼ ½2þ 2ð2x − 1Þ�M2

0

in the SU(2) symmetry limit, one can find that the non-
vanishing contribution from ½SP�full is exactly the same as
½SP�on ¼ 2M2

0. Knowing that the matrix element MP is
related with the twist-3 DA ϕP

3;MðxÞ, the above finding
in the SU(2) symmetry limit plays the role of the constraint
in obtaining the correct ϕP

3;MðxÞ, i.e., only the solution
obtained from ½MP �SLFon gives the correct ϕP

3;MðxÞ in our
LFQM:

ϕP
3;MðxÞ ¼

ffiffiffiffiffiffiffiffi
2Nc

p
fSLFM μM · 16π3

×
Z

d2k⊥
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p ½M2
0 − ðmq −mq̄Þ2�:

ð40Þ
For the pion (m ¼ mq ¼ mq̄) case, we should note
μπ ¼ −2hq̄qi=f2π .

Applying the correspondence relation in Eq. (35) to the

pion form factors ½Fπ�LFð⊥Þ
val [Eq. (27)], ½Fπ�LFð⊥Þ

on [Eq. (28)],

and ½Fπ�LFð⊥Þ
inst [Eq. (29)] to obtain the corresponding form

factors ½Fπ�SLFð⊥Þ
val , ½Fπ�SLFð⊥Þ

on , and ½Fπ�SLFð⊥Þ
inst in our LFQM,

we find that ½Fπ�SLFð⊥Þ
inst ¼ 0 and ½Fπ�SLFð⊥Þ

on ¼ FSLFðþÞ
π . The

explicit form of ½Fπ�SLFð⊥Þ
on is given by2

½Fπ�SLFð⊥Þ
on ðQ2Þ ¼

Z
1

0

dx
x

Z
d2k⊥
16π3

ϕ1ðx;k⊥Þϕ2ðx;k0⊥Þ

×
ðk⊥ · k0⊥ þm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02⊥ þm2

p

×

�
1þ 2

k⊥ · q⊥
q2⊥

�
: ð41Þ

IV. NUMERICAL RESULTS

In our numerical calculations within the standard LFQM,
we use two sets of model parameters (i.e., constituent quark
masses mq and the Gaussian parameters βqq̄) for the linear
and HO confining potentials given in Table I, which was
obtained from the calculation of meson mass spectra using
the variational principle in our LFQM [7,16,24].
Our LFQM predictions for the decay constants of π

and K mesons, fSLFπ ¼ 130 ½131� MeV and fSLFK ¼
161 ½155� MeV obtained from the linear (HO) potential
parameters, are in good agreement with the experimental
data [46]; fExpπ ¼ ð130.41� 0.03� 0.20Þ MeV and
fExpK ¼ ð156.2� 0.3� 0.6� 0.3Þ MeV. We then obtain
the quark condensate hqq̄i, which enters the normalization
of twist-3 pion DA ϕP

3;πðxÞ given by Eq. (40), as
−ð285.8 MeVÞ3½−ð263.7 MeVÞ3� for the linear (HO)
potential parameters. Our LFQM results, especially the
one obtained from HO parameters, are quite comparable
with the commonly used phenomenological value hq̄qi ¼
−ð250 MeVÞ3.
Defining the LF wave function ψAðPÞ

2ð3Þ;πðx;k⊥Þ for the

twist-2 axial-vector (twist-3 pseudoscalar) channel as

ϕAðPÞ
2ð3Þ;MðxÞ ¼

Z
∞

0

d2k⊥ψ
AðPÞ
2ð3Þ;Mðx;k⊥Þ; ð42Þ

the nth transverse moment is obtained by

hkn⊥iAðPÞ
M ¼

Z
∞

0

d2k⊥
Z

1

0

dxψAðPÞ
2ð3Þ;Mðx;k⊥Þkn⊥: ð43Þ

The authors in Refs. [47,48] have shown that the second
transverse moment can be given in terms of the quark

2The equivalence between ½Fπ�SLFð⊥Þ
on and FSLFðþÞ

π can be even
checked analytically by changing the transverse momentum
variables into symmetric ones in the integrand as follows: k⊥ ¼
l⊥ − ð1 − xÞq⊥=2 and k0⊥ ¼ l⊥ þ ð1 − xÞq⊥=2.
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condensate hq̄qi and the mixed quark-gluon condensates
higq̄σ ·Gqi:

hk2⊥iAπ ¼ 5

36

higq̄σ · Gqi
hq̄qi ; hk2⊥iPπ ¼ 1

4

higq̄σ ·Gqi
hq̄qi ;

ð44Þ

where Ga
μν is a gluon field strength and σ · G ¼ σμνGμν.

Note that the formula for the axial-vector channel is an
approximate one since the soft pion theorems apply strictly
only for the pseudoscalar channel [8].
For the pion case, our results of the second transverse

moment for the axial-vector and the pseudoscalar
channels obtained from the linear (HO) parameters
are hk2⊥iAπ ¼ ð413 MeVÞ2½ð371 MeVÞ2� and hk2⊥iPπ ¼
ð553 MeVÞ2½480 MeVÞ2�, respectively. Especially, the
ratio hk2⊥iAπ =hk2⊥iPπ ¼ 0.558 obtained from the linear
parameters is in good agreement with the QCD sum-rule
(QCDSR) result, 5=9 [47], and the nonlocal chiral
model result, 0.54 ∼ 0.56 [8]. Using Eq. (44) for the
pseudoscalar channel, we also estimate the value of the
mixed condensate of dimension five as higq̄σ ·Gqi ¼
−ð491.1 MeVÞ5½−ð442.2 MeVÞ5� for the linear (HO)
parameters. Especially, the result obtained from the linear

FIG. 3 (color online). The three-dimensional plot (left panel) and the corresponding two-dimensional contour plot (right panel) for
ψP
3;πðx; yÞ (upper panel) and ψP

3;Kðx; yÞ (lower panel) obtained from the linear parameters. In the two-dimensional contour plot, the
darker the regions are, the smaller the wave functions are.

TABLE I. The constituent quark mass mq (in GeV) and the
Gaussian parameters βqq̄ (in GeV) for the linear and harmonic
oscillator (HO) confining potentials obtained from the variational
principle in our LFQM [7,16,24]. q ¼ u and d.

Model mq ms βqq̄ βqs̄

Linear 0.22 0.45 0.3659 0.3886
HO 0.25 0.48 0.3194 0.3419
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parameters is in an excellent agreement with the the result
obtained from the direct calculation in the instanton model
[49] that gives higq̄σ · Gqi ¼ −ð490 MeVÞ5. For the kaon
case, we obtain hk2⊥iAK ¼ ð457 MeVÞ2½412 MeVÞ2�,
hk2⊥iPK ¼ ð582 MeVÞ2½510 MeVÞ2� and hk2⊥iAK=hk2⊥iPK ¼
0.617 ½0.653� for the linear (HO) parameters.
From the point of view of QCD, the quark DAs of a

hadron depend on the scale μ that separates nonperturbative
and perturbative regimes. In our LFQM, we can associate μ
with the transverse integration cutoff via jk⊥j ≤ μ, which is
the usual way in which the normalization scale is defined
for the LF wave function (see, e.g., Ref. [1]). In order to
estimate this cutoff value, we made a three-dimensional
plot for the LF wave function ψP

3;πðKÞðx;k⊥Þ in the form of
ψP
3;πðKÞðx; yÞ by changing the variable k2⊥ ¼ y=ð1 − yÞ so

that y ranges from 0 to 1. Figure 3 shows the three-
dimensional plot (left panel) and the corresponding two-
dimensional contour plot (right panel) for ψP

3;πðx; yÞ (upper
panel) and ψP

3;Kðx; yÞ (lower panel) that we obtain with the
linear parameters listed in Table I. We note that we assign
the momentum fraction x for s-quark and (1 − x) for the
light uðdÞ-quark for the K meson case. In fact, we obtain
the twist-3 quark DAs by performing the transverse
integration up to infinity (or equivalently y up to 1) without
loss of accuracy due the presence of the Gaussian damping
factor. However, as one can see from the contour plots in
Fig. 3, only the range of 0 ≤ y ≤ 0.47 contributes to the
integral for both π andK meson cases. This implies that our
cutoff scale corresponds to y≃ 0.47 or equivalently μ≃
jk⊥j≃ 1 GeV for the calculation of the twist-3 π and K
meson DAs. Since the twist-2 quark DAs for π and K
mesons were given in our previous work [7], we do not
show them in this work again but note that the scale μ for
the twist-2 DA is slightly smaller than that for the twist-3

DA. Considering both twist-2 and twist-3 DAs of π and K
mesons, our numerical results show the range of scale μ
as 0.75 ≤ μ ≤ 1 GeV.
We show in Fig. 4 the twist-3 DAs ϕP

3;MðxÞ [see Eq. (40)]
for π (left panel) and K (right panel) mesons obtained from
the linear (solid line) and HO (dashed line) parameters. We
should note that our LFQM results ϕP

3;MðxÞ are free from
the explicit instantaneous as well as zero-mode contribu-
tions. The corresponding twist-2 DAs ϕA

2;M for ðπ; KÞ
mesons obtained from our LFQM can be found in [7].
We also compare our results with the the asymptotic DA
½ϕP

3;M�asðxÞ ¼ 1 (dotted line) [4] as well as the QCD sum-
rule (SR) prediction (dot-dashed line) [6], which were
obtained at the renormalization scale μ ¼ 1 GeV. For the
pion case, our results obtained from both model parameters
not only show the symmetric forms anticipated from the
isospin symmetry but also reproduce the exact asymptotic
result ½ϕP

3;π�asðxÞ ¼ 1 in the chiral symmetry (mq → 0)
limit. This exact asymptotic result ϕP

3;πðxÞ → ½ϕP
3;π�asðxÞ

in the chiral symmetry limit is consistent with the con-
clusion drawn from our previous analysis [25] of the twist-2
(ϕjj

2;ρðxÞ) and twist-3 (ϕ⊥
3;ρðxÞ) ρ meson DAs. Remarkably,

both DAs reproduce the exact asymptotic DAs in the chiral
symmetry limit. This example shows again that our LFQM
prediction satisfies the chiral symmetry consistent with the
QCD as one correctly implements the zero-mode link to the
QCD vacuum. It is also interesting to note that while our
results of ϕP

3;πðxÞ become zero at the end points of x unless
the asymptotic limit is taken, the QCD sum-rule result of
Ref. [6] does not vanish at the end points. The main reason
for the discrepancy between the two models is that the
QCD sum-rule results are based on the chiral symmetry
(m ¼ 0) limit but our results (unless asymptotic) are based
on the nonvanishing constituent quark model. In the

0.6
x

0

0.5

1

1.5

2

φ πp (x
)

Linear
HO
QCDSR
Asymptotic

0.60 0.2 0.4 0.8 1 0 0.2 0.4 0.8 1
x
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0.5

1

1.5

2

φ K
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)
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FIG. 4. The twist-3 DAs ϕP
3;MðxÞ for π (left panel) and K (right panel) mesons obtained from the linear (solid line) and HO (dashed

line) parameters compared with the QCD sum-rule result (dot-dashed line) [6] as well as the asymptotic one (dotted line) [4].
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asymptotic limit, our results exhibit also the nonvanishing
behavior at the end points of x. For the K meson case,
ϕP
3;KðxÞ obtained from both model parameters are asym-

metric due to the flavor SU(3) symmetry breaking effect
and the peak points located to the right of x ¼ 0.5 indicate
that the s-quark carries more longitudinal momentum
fraction than the light uðdÞ-quark.
The twist-2 and twist-3 quark DAs are usually expanded

in terms of the Gegenbauer polynomials C3=2
n and C1=2

n ,
respectively:

ϕA
2;M ¼ ½ϕA

2;M�asðxÞ
�
1þ

X∞
n¼1

aAn;MC
3=2
n ð2x − 1Þ

�
;

ϕP
3;M ¼ ½ϕP

3;M�asðxÞ
�
1þ

X∞
n¼1

aPn;MC
1=2
n ð2x − 1Þ

�
; ð45Þ

where ½ϕA
2;M�asðxÞ ¼ 6xð1 − xÞ and ½ϕP

3;M�asðxÞ ¼ 1. The

coefficients aAðPÞ
n;M are called the Gegenbauer moments and

can be obtained from [9]

aAn;MðxÞ ¼
4nþ 6

3n2 þ 9nþ 6

Z
1

0

dxC3=2
n ð2x − 1ÞϕA

2;MðxÞ;

aPn;MðxÞ ¼ ð2nþ 1Þ
Z

1

0

dxC1=2
n ð2x − 1ÞϕP

3;MðxÞ: ð46Þ

The Gegenbauer moments with n > 0 describe how much
the DAs deviate from the asymptotic one. In addition
to the Gegenbauer moments, we can also define the
expectation value of the longitudinal momentum, so-called
ξð¼ 2x − 1Þ-moments, as follows:

hξniAðPÞ
M ¼

Z
1

0

dxξnϕAðPÞ
2ð3Þ;MðxÞ: ð47Þ

In Table II, we list the calculated Gegenbauer moments
and ξ moments of twist-2 and twist-3 pion DAs obtained

from the linear and HO potential models at the aforemen-
tioned scale μ ∼ 1 GeV. Although the results of twist-2
pion DAwere listed in our previous work [7], we list them
here again by increasing the significant figures for com-
pleteness of this work. We also compare our results of
twist-3 DAs with other model estimates calculated at the
scale μ ¼ 1 GeV, e.g., QCD sum rules [5,6,10,11] and
the chiral quark model (χQM) [9]. As expected from the
isospin symmetry, all the odd Gegenbauer and ξ moments
vanish. It is interesting to note within our LFQM predic-
tions that aP2;π of the twist-3 DA are negative while the
second Gegenbauer moments aA2;π of the twist-2 DA are
positive, regardless of the linear or the HO model param-
eters. Compared to other models for the twist-3 case, our
results are quite different from those of QCD sum rules
[5,6,10,11] but consistent with the chiral quark model
predictions [9]. Again, the differences between our LFQM
and QCD sum rule may be attributed to different treatment
of constituent quark masses as we discussed about the
results shown in Fig. 4.
In Table III, we display the calculated Gegenbauer

moments and ξ moments of twist-2 and twist-3 K meson
DAs obtained from the linear and HO potential models and
compare them with other model predictions. For the kaon
case, the odd moments are nonzero due to the flavor SU(3)
symmetry breaking and the first moment aAðPÞ

1;K is propor-
tional to the difference between the longitudinal momenta
of the strange and nonstrange quarks in the two-particle
Fock component. We note within our LFQM predictions
that the SU(3) symmetry breaking effects are more sig-
nificant for the twist-3 DA than for the twist-2 DA [7]. Our
results for the twist-3 ϕP

3;K are overall in good agreement
with those of the χQM [9] except for the values of the first
moment aP1;K and hξ1iPK with an order-of-magnitude differ-
ence between the two models, which may be understand-
able because the degree of SU(3) symmetry breaking in
χQM [9] is rather small compared to our LFQM prediction.
The shape of ϕP

3;K obtained from χQM [9] is very close to

TABLE II. The Gegenbauer moments and ξ moments of twist-2 and twist-3 pion DAs obtained from the linear and HO potential
models compared with other model estimates.

Models Twists aAðPÞ
2;π aAðPÞ

4;π aAðPÞ
6;π hξ2iAðPÞ

π hξ4iAðPÞ
π hξ6iAðPÞ

π

HO ϕA
2;π 0.0514 −0.0340 −0.0261 0.2176 0.0939 0.0508

ϕP
3;π −0.5816 −0.4110 −0.1725 0.2558 0.1231 0.0723

Linear ϕA
2;π 0.1234 −0.0033 −0.0218 0.2423 0.1136 0.0658

ϕP
3;π −0.3979 −0.3739 −0.2500 0.2803 0.1450 0.0907

SR [5] ϕP
3;π 0.5158 0.2545 0.2162 … … …

SR [6] ϕP
3;π 0.4373 −0.0715 −0.1969 0.3865 0.2451 0.1788

SR [10] ϕP
3;π … … … 0.340 ∼ 0.359 0.164 ∼ 0211 …

SR [11] ϕP
3;π … … … 0.52� 0.03 0.44� 0.01 …

χQM [9] ϕP
3;π −0.4307 −0.5559 −0.1784 0.2759 0.1367 0.0816
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the symmetric and flat shape while the corresponding result
from our LFQM has a rather sizable asymmetric form.
In Fig. 5, we show our numerical results of the pion

electromagnetic form factor from FSLFðþÞ
π ¼ ½Fπ�SLFð⊥Þ

on

using the linear (solid line) and HO (dashed line) potential
parameters and compare with the available experimental
data [50–52] up to theQ2 ∼ 8 GeV2 region. In our previous
LFQM analysis of the pion form factor [38,39], we have

also shown that the usual power-law behavior of the pion
form factor obtained in the perturbative QCD analysis
can also be attained by taking negligible quark masses in
our nonperturbative LFQM, confirming the AdS/CFT
correspondence [40].

V. SUMMARY AND DISCUSSION

As the zero-mode contribution is locked into a single
point of the LF longitudinal momentum in the meson decay
process, one of the constituents of the meson carries the
entire momentum of the meson and it is important to
capture the effect from a pair creation of particles with zero
LF longitudinal momenta from the strongly interacting
vacuum. The LFQM with effective degrees of freedom
represented by the constituent quark and antiquark may
thus provide the view of effective zero-mode cloud around
the quark and antiquark inside the meson. Consequently,
the constituents dressed by the zero-mode cloud may be
expected to satisfy the chiral symmetry of QCD. Our results
of this work for pseudoscalar mesons and the previous
work for vector mesons were consistent with this expect-
ation and effectively indicated that the constituent quark
and antiquark in the standard LFQM could be considered as
the dressed constituents including the zero-mode quantum
fluctuations from the QCD vacuum.
In particular, we have discussed a wave function

dependence of the LF zero-mode contributions to the
twist-3 two-particle DA ϕP

3;M of a pseudoscalar meson
between the two models, i.e., the exactly solvable
manifestly covariant BS model and the more phenomeno-
logically accessible realistic LFQM using the standard LF

TABLE III. The Gegenbauer moments and ξ moments of twist-2 and twist-3 K meson DAs obtained from the linear and HO potential
models compared with other model estimates.

Models Twists aAðPÞ
1;K aAðPÞ

2;K aAðPÞ
3;K aAðPÞ

4;K aAðPÞ
5;K aAðPÞ

6;K

HO ϕA
2;K 0.1316 −0.0278 0.0381 −0.0335 −0.0112 −0.0122

ϕP
3;K 0.3187 −0.7800 −0.0647 −0.2923 −0.2223 −0.0396

Linear ϕA
2;K 0.0894 0.0275 0.0575 −0.0243 0.0069 −0.0142

ϕP
3;K 0.2662 −0.6104 0.0486 −0.3361 −0.1454 −0.1161

SR [5] ϕP
3;K … 0.2631 … −0.0522 … 0.1470

SR [6] ϕP
3;K 0.1837 0.2707 0.3953 −0.2469 0.0550 −0.2436

χQM [9] ϕP
3;K 0.0236 −0.6468 −0.0367 −0.3724 −0.0200 −0.0940

Models Twists hξ1iAðPÞ
K hξ2iAðPÞ

K hξ3iAðPÞ
K hξ4iAðPÞ

K hξ5iAðPÞ
K hξ6iAðPÞ

K

HO ϕA
2;K 0.0790 0.1905 0.0411 0.0759 0.0248 0.0389

ϕP
3;K 0.1062 0.2293 0.0600 0.1034 0.0389 0.0582

Linear ϕA
2;K 0.0536 0.2094 0.0339 0.0895 0.0231 0.0486

ϕP
3;K 0.0887 0.2519 0.0560 0.1217 0.0394 0.0725

SR [6] ϕP
3;K 0.0612 0.3676 0.0593 0.2236 0.0520 …

SR [11] ϕP
3;K −0.10� 0.03 0.43� 0.04 … … … …

χQM [9] ϕP
3;K 0.0079 0.2471 0.0026 0.1166 0.0008 …
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FIG. 5 (color online). Pion electromagnetic form factors ob-
tained from FSLFðþÞ

π ¼ ½Fπ�SLFð⊥Þ
on using the linear (solid line) and

HO (dashed line) potential models.

HO-MEOYNG CHOI AND CHUENG-RYONG JI PHYSICAL REVIEW D 91, 014018 (2015)

014018-12



(SLF) approach following our previous work [25]. As the
SLF approach within the LFQM by itself is not amenable to
determine the zero-mode contribution, we utilized the
covariant BS model to check the existence (or absence)
of the zero mode. Performing a LF calculation in the
covariant BS model using the multipole type qq̄ bound-
state vertex function, we found that the twist-3 ϕP

3;M
receives both the zero-mode and the instantaneous con-
tributions and identified the zero-mode operator corre-
sponding to the zero-mode contribution. We then linked
the covariant BS model to the standard LFQM following
the same correspondence relation Eq. (35) between the two
models that we found in the vector meson decay amplitude
[25] and substituted the LF vertex function in the covariant
BS model with the more phenomenologically accessible
Gaussian wave function provided by the LFQM analysis of
meson mass [16]. The remarkable finding is that the zero-
mode contribution as well as the instantaneous contribution
revealed in the covariant BS model become absent in the
LFQMwith the Gaussian wave function. Without engaging
any of those treacherous contributions, our LFQM result
of twist-3 DA ϕP

3;M not only satisfies the fundamental
constraint (i.e., symmetric form with respect to x) antici-
pated from the isospin symmetry but also provides the
consistency with the chiral symmetry (e.g., the correct
asymptotic form in the chiral symmetry limit) expected
from the QCD. This observation commensurates our
previous observation made in the analysis of vector meson
decay process [25].
We have also shown that our treatment of the treacherous

points in the two-point function is directly applicable to the
three-point function, analyzing the pion elastic form factor
FπðQ2Þ in the qþ ¼ 0 frame both with the plus component
(Jþem) and the perpendicular component (J⊥em) of the current.
This analysis portrayed that the instantaneous contribution
that appeared in the covariant BS model became absent in
the LFQM. It supports the conclusion drawn from the
analysis of the two-point function.
From the self-consistent covariant description of

the twist-3 ϕP
3;M together with the previously obtained

[7] twist-2 DA ϕA
2;M of a pseudoscalar meson in our

LFQM, we presented a good deal of numerical
results obtained from our LFQM. The quark condensate
obtained from the normalization condition of ϕP

3;π , i.e.,
hq̄qi ¼ −ð285.8 MeVÞ3½−ð263.7 MeVÞ3� for the linear
(HO) potential parameters comes out reasonable compared
to the commonly used phenomenological value
−ð250 MeVÞ3. The ratio of the second transverse moment
for the axial-vector and the pseudoscalar channels,
hk2⊥iAπ =hk2⊥iPπ ¼ 0.558 ½0.597� for the linear (HO) param-
eters, is in good agreement with the QCD sum-rule
result, 5=9 [47]. Of particular interest, the mixed quark-
gluon condensate of dimension five estimated from
the value of hk2⊥iPπ [see Eq. (44)], higq̄σ ·Gqi ¼
−ð491.1 MeVÞ5½−ð442.2 MeVÞ5� for the linear (HO)
parameters, is also in good agreement with the result
−ð490 MeVÞ5 of the direct calculation in the instanton
model [49]. Moreover, our numerical results of ϕP

3;π
not only show the symmetric forms anticipated from
the isospin symmetry but also reproduce the exact asymp-
totic result ½ϕP

3;π�asðxÞ ¼ 1 in the chiral symmetry (mq → 0)
limit. For the kaon case, the results of ϕP

3;K show asym-
metric form as expected from the flavor SU(3) sym-
metry breaking. Our results for the Gegenbauer moments
and ξ moments of twist-3 pion and kaon DAs are overall
in good agreement with the chiral quark model [9]
although they differ from those of QCD sum-rule estimates
[5,6,11].
For further analysis, it would be interesting to study this

process with other vertex functions such as the symmetric
product ansatz suggested in Eq. (38) of Ref. [53]. The
generalization of our findings to the three-point function
would also require the analysis of unequal quark and
antiquark mass cases.
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