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Double-parton scattering (DPS) has become very relevant as a background to interesting analyses
performed by the experiments at the LHC. It encodes knowledge of correlations between the proton
constituents not accessible in single-parton scattering. Within perturbative QCD DPS is described in terms
of partonic subprocesses and double-parton distributions (DPDs). There exists a large number of different
DPDs describing the different possible states of two partons inside a proton. They include correlations
between the two partons and interferences between the two hard subprocesses. Taking the probability
interpretation of the DPDs as a starting point, we derive limits on the interference DPDs and thereby
constrain the size of correlations between two partons inside an unpolarized proton.
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I. INTRODUCTION

Hadron collisions with two hard subprocesses—double-
parton scattering (DPS)—have become very relevant with
the realization that they constitute an important background
to many analyses at the LHC, such as Higgs boson coupling
measurements and new physics searches involving high-
multiplicity final states. The rapid growth in the density of
partons with energy leads to a rapid increase of DPS cross
sections, which intuitively increases as the parton density
to the power of four. The description of DPS has seen
important improvements over the last couple of years,
moving towards a reliable treatment within perturbative
QCD (see for example Refs. [1-5]). Several ingredients
in a proof of factorization have been established where the
two hard subprocesses are calculated perturbatively, while
the long-distance physics is captured in double-parton
distributions (DPDs) [6,7].

Model estimates for the LHC based on the assumption of
no correlations between the two hard subprocesses have
been calculated for a variety of different processes. Double
cc production and same-sign double W-boson production
are among the most promising for a clean separation of
DPS from single-parton scattering backgrounds [8—13].
The fraction of DPS events at the LHC in the W-boson plus
dijet final state has recently been measured by both ATLAS
and CMS [14,15].

DPS has a rich structure and embodies features and
challenges not present in single-parton scattering. These
arise from the correlations between the two partons inside a
proton and the presence of interference between the two
hard subprocesses. This includes interferences in the color,
flavor, fermion-number and spin quantum numbers of the
partons entering the two interactions. The origin of the
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interferences is simple: in single-parton scattering the
parton “leaving” a proton in the amplitude, has to have
the same quantum numbers as the parton “returning” in the
conjugate amplitude. In DPS it is only the sum of the
quantum numbers in the amplitude which have to be
matched in the conjugate amplitude.

These features are captured in a (perhaps dauntingly)
large number of DPDs. The DPDs have been examined in a
variety of different models, where correlations in general
have been found to be sizable [16-19]. The situation,
however, is not quite as complex as it might seem at first
sight, since in the canonical situations only a fraction of the
DPDs are likely to play a significant role. Through detailed
investigations an identification of and understanding for the
relevant correlations in different processes and kinematic
regions can be reached. DPS cross sections including
quantum-number correlations have been calculated for
double vector-boson production (for any combination of
W, Z or y) in the case of leptonic decay channels [6,20] and
double cc production [21]. Upper bounds on the polarized
DPDs have been derived and through studies of their
evolution the maximal degree of polarization of the two
partons inside the proton at higher scales has been set
[22,23]. The color correlations between two quarks within
a proton are suppressed at large scales by evolution, with
the physical interpretation being attributed to the transport
of color over a hadronic distance inside the proton [6,24].
This also affects the fermion-number interference between
quarks and antiquarks or quarks and gluons. Flavor
interference has so far been less studied.

In the present paper we derive upper bounds on the
DPDs describing color, flavor and fermion-number inter-
ferences, thus constraining the correlations between two
partons inside a proton, and their effect on cross sections.
The bounds are based on the probability interpretation of
the two parton densities, analogously to the Soffer bound
[25] for single-parton distributions.
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The structure of this paper is as follows. In Sec. Il we
review some of the basics of DPS relevant for our present
purposes and give the definition of matrix elements for
DPDs. In Sec. III we derive constraints on the interference
distributions in color, flavor and fermion-number for
double-parton distributions of quarks, antiquarks and
gluons. We highlight the most important features and
discuss our findings in Sec. IV.

II. DOUBLE-PARTON SCATTERING AND
DISTRIBUTIONS

The double-parton scattering cross section can schemati-
cally be expressed as

do
12:1 dx,»d)_cl-

1, . -
:Cmoz/d2yF(x1,x2,y)F(x1,x2,y)
DPS

(1)

where 6; represents hard subprocess i, C is a combinatorial
factor equal to 2 (1) if the partonic subprocesses are (not)
identical and F (F) labels the double-parton distribution of
the proton with momentum p (p). The DPDs depend on the
longitudinal momentum fractions of the two partons x; (X;)
and the distance between them y. Implicit in this expression
are the labels for the different flavors, colors, fermion
numbers and spins of the four partons. This structure is
significantly more complicated in DPS compared to the
case with only one hard interaction, because of the
possibility of interference between the two hard inter-
actions and correlations between the two partons inside
each proton.

The DPD for two partons in an unpolarized right-moving
proton are defined as [7]

Fo 0, (X1, X2,y) = 2p* (x1 p*) ™" (xpp™)
2n 2rx
X (p|O4q,(0,22)O4, (v, 21)|P), (2)

dy—ei(x]z]’+xzzg)p+

where n; = 1 if parton number i is a gluon and n; =0
otherwise. We wuse light-cone coordinates v+ =
(v° £ 2%)/v/2 and the transverse component v = (v', v?)
for any four-vector ». The operators for quarks read

_ 1 1
Oq[(y’zi) =dqi <y —EZ,)qui (y +§Zi>

El

7, =y"=0, ;=0
(3)

with projection I', = %y* for unpolarized quarks. The field
with argument y +1z; in O,(y,z;) is associated with a
quark in the amplitude of a double-scattering process and
the field with argument y —1z, with a quark in the
complex-conjugate amplitude. The operators for an
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antiquark pick up an extra minus sign from interchanging
the order of the fields. The operators for gluons are

s

i =y"=0,2,=0

4)

4 ! 1 1
Oy () =TI G** (y _EZ") o (y +§Zi>

with projection IT = 5" onto unpolarized gluons. We will
take the two partons to be unpolarized throughout this
paper, since the polarized distributions have already been
studied in Ref. [22]. We do not write out the Wilson lines
that make the operators gauge invariant.

In analogy to the collinear single-parton distributions
the DPDs can be interpreted as probability densities for
finding two partons inside an unpolarized proton, with
longitudinal momentum fractions x; and x, and trans-
verse separation y. As for single-parton densities, this
interpretation does not strictly hold in QCD where
subtractions from the ultraviolet region can in principle
invalidate the positivity, but it is nonetheless useful to
investigate the consequences of the probability interpre-
tation in order to guide the development of physically
intuitive models of the distributions. This is particularly
relevant in working at leading order of a, where the
connection between parton distributions and cross sec-
tions is most direct.

III. CONSTRAINTS ON THE INTERFERENCE
DISTRIBUTIONS

Since the probability density for finding two partons in a
general color or flavor state is positive semidefinite, we
have

E : .

Vi 1P (aa) Uiy 2 0 (5)
P!
17241742

with arbitrary complex coefficients v, ; normalized as
Soanlvanl> =1. 4 (4) labels the quantum numbers
(colors or flavors) of the two partons in the (conjugate)
amplitude. p represents the color or flavor density matrix
which is therefore positive semidefinite. This property has
already been used for the spin-density matrices associated
with transverse-momentum-dependent distributions [26],
generalized parton distributions [27] and double-parton
distributions [22]. The positive semidefiniteness of the
density matrix implies that the eigenvalues and principal
minors are positive semidefinite, which leads to bounds
on the elements of the matrix and thus on the DPDs.
We will next go through the different types of interferences
(i.e. color, flavor and fermion number) one by one and use
the positivity to constrain the correlations between two
partons inside an unpolarized proton.
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A. Quark-color interference

The color structure of the double-quark distributions in
Eq. (2) can be parametrized as [7]

— 1 1 2N 4 a 4a
Fjj’,kk’ = N_% Féjj’ékk’ + WSF?U’I‘HJ s (6)
where the unprimed indices j, k correspond to the quark in
the amplitude entering the first and second hard interaction,
while primed indices refer to the conjugate amplitude, as
in Fig. 1.

'F describes the distribution when the quark fields
taking part in the same hard interaction form a color
singlet, while 3F describes the color octet interference
contribution between the two hard interactions. The inter-
ference term couples the two quark fields in the same hard
interaction in a color SU(3) octet. The normalization of the
interference distribution is chosen such that the two
distributions enter with equal weight in the cross section
for the production of a color singlet. With this choice the
size of the two distributions directly indicates their
phenomenological importance. For quark-antiquark
(antiquark-quark) distributions the k& and k¥’ (j and j')
indices in Eq. (6) are interchanged. For DPDs with one
quark and one antiquark the color structure is different and
we will return to these distributions when discussing
fermion-number interference in Sec. III C.

Taking the three possible colors for the quarks r, g, b and
organizing the singlet and octet correlation distributions
into a color-density matrix where the columns (rows) are
given by the colors of the two quarks in the (conjugate)
amplitude we could use the property of Eq. (5) to set limits
on the color correlations. However, such a representation is
reducible and we consider instead the two irreducible
representations of two quarks in the product representation
33=3@6,ie.inan antitriplet and a sextet represen-
tation, diagonalizing the color-density matrix.

Using a recoupling, the color antitriplet and sextet
distributions can be expressed in terms of the color square
'F and correlation ®F distributions by using projection
operators [28] (6,6 & 6,18y ), where the minus (plus)
sign gives the antitriplet (sextet). The resulting relations
read

3 _ 1 <1 N.+1 ¢ )
Fo)=—|'F,, ————°%F,_ |,

EE AR/ T

(6) 1 <1 N.—1 g )

Fo) =—|'F,, + ————°F__ |, 7
qq N2 qq NZ-1 qq ()

where we have chosen the normalization with respect to the
'F ¢ distribution. We will throughout this paper use the
notation with a superscript following the distribution F()
in order to denote the distribution in which the two partons
in the amplitude couple to the SU(3) representation R. This
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FIG. 1 (color online). Color labels of the double-quark dis-
tributions. j (k) labels the color of the quark taking part in the first
(second) hard interaction in the amplitude. Primed indices refer to
the conjugate amplitude.

must not be confused with ®F, where the representation R
is formed by one field in the amplitude and one in the
conjugate amplitude. Up to overall normalization, equiv-
alent equations can be obtained by making use of unitary
SU(3) color recouping matrices [29,30]. The interpretation
of F ffq) and F' (q6q) as describing probabilities for finding two
quarks in definite color states gives the upper bounds on the
color interference DPDs

These bounds apply also when both quarks are replaced by
antiquarks. The bounds agree with the results found in
Ref. [6] when the difference in normalization of the
interference distribution (3F) is taken into account.

B. Flavor interference

Specifying the flavor structure of the DPDs in Eq. (2)
gives, for example, the flavor-squared distribution of an up
and a down quark

dzy dzy
F ,—=2pt [ 221222
ud P / 2r 2r

x dy~ ez tnz)pt (p|(al"ju) (C_qud) lp), (9)

while the corresponding flavor-interference distribution is
defined by

dzy dz;
Fl —opt [ 21722
ud p / 2r 2m

x dy=e/ (VTR (| (@ d) (@) p). (10)

Limiting ourselves to the first three quark flavors u, d and s
we construct the flavor-density matrix
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Fu 0 0 0 0 0 0 0 0
0O Fqa O FI, 0 0 0 0 0
O 0 Fu O O 0 F, 0 0
o FL, 0 Fu, 0 0 0 0 0
o 0 o0 0 F, 0 0 o0 o0 [,
o o O O O0 F, 0 FI, 0
o o F, 0 0 0 F, 0 0
o o o0 O o0 F., o F, 0
o 0 0O 0O O 0 0 0 F,
(11)

where the columns (rows) correspond to the flavors of
the two quarks in the (conjugate) amplitude, i.e. dd, du, ds,
ud, uu, us, sd, su and ss. Due to the positive semi-
definiteness of the matrix (5) the principal minors of the
two-dimensional subspaces gives

Fabea 2 Fﬁszéa’ (12)

while the positivity of the eigenvalues leads to the con-
straints on the flavor interference

Fap+ Foa e \[(Fup = Fpa)? + 4FL,F), > 0. (13)

For mixed quark-antiquark distributions there can be
flavor interference when the quark and antiquark are of the
same flavor (i.e. dd, uii or s5). The flavor-density matrix for
quark-antiquark distributions reads

F; 0 0 0 F<¢ 0o o o Fl
0O Fz 0 0 0O 0 0 0 0
0 0 Fs; 0O 0O 0 0 0 0
o 0 0 F; O 0 0 0 0
Fe e 00 0 F, 0 0 0 Fgl,
O 0 0 0 0 F; 0 0 0
o 0 0 0O 0 0 F; 0 0
o 0 0 0 0 0 0 F; 0
Flll 00 0 Fip 0 0 0 Fg
(14)

where F ,Il”a labels the distribution with ada in the amplitude
and bb in the conjugate amplitude. The principal minors of
the two-dimensional subspaces give the bounds on the
interference distributions,

FoaFyp > FiyF . (15)

The most stringent bounds are given by the eigenvalues,
which for the distributions where the quark and antiquark
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are of different flavors are simply the distributions (on the
diagonal in the density matrix) themselves (there is no
flavor interference for these distributions). For the distri-
butions with quark-antiquark of equal flavor the eigenval-
ues result in rather complicated expressions, and there is
little gain in giving them explicitly.

The bounds derived in this section are the first indication
of the allowed size of the flavor-interference DPDs and
therefore their effect in DPS cross sections.

C. Fermion-number interference

For distributions with one quark and one antiquark, there
can further be interferences in fermion number, i.e. between
quarks and antiquarks. These are always accompanied by
color interference as two quarks cannot couple to a color
singlet. Therefore, in order to set limits on DPDs with a
quark and an antiquark we consider the joint space of color
and fermion number.

The DPDs describing interference in fermion number
between quarks and antiquarks are defined by [7]

dZ_dZ_ — Ji(x1z7+x225
]qlf?z(xl,xz,y) = 2P+/2—;2—;dy elnzytnz)pt

_ (1 1+ 1
x (plg, 512 57’ q1 y_EZl

_ 1 1 1
X q> <—§Zz> E}’+‘]1 (y +§Z1> |p),
(16)

and the color structure can be decomposed as

1 2N,
I =~ <116Ak/6»/k + =811, > (17)
J's N% K'Y \/ﬁ Kk

As in the quark-quark case above we start by going to an
irreducible representation, this time in terms of a singlet
and an octet distribution 3 ® 3 =1 8. The quark-
antiquark color-density matrix reads

‘” o | (18)
0 Fy

The color singlet and octet distributions can be expressed in
terms of 'F and the interference distribution 8F as

m_ 1 Y
Fl) _ﬁ(ququ VN2 = 18F ;) 20,

O <1F S

99— N2 aq m

and their positivity leads to upper limits on the color
correlations between the quark and antiquark. The inequal-
ities hold true when interchanging ¢ and g. The relations
between I("), 1) and 'I, 81 are equal to Eq. (19) with the

8qu> >0  (19)
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F’s replaced by I’s, but as they are interference distribu-
tions they do not have to be positive. Considering next the
joint space of color and fermion number, we can extend the
two 2 x 2 matrices into a joint color-flavor number density
matrix where the columns (rows) correspond to the color
representations and fermion numbers of the first and second
parton in the (conjugate) amplitude, i.e. gg singlet, gg
octet, gg singlet, gg octet,

Fooo 1) o
0o F o i -
1o FUooo0
o 1% o FY
|
1qu+1FqZ1_8Ft7q+8Fqé

VN2 -1
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The eigenvalues of the matrix lead to the bounds

1 1 1 1 1 1
FO 4+ Fl) + \/(F5m> —FN a4l > o,

(8) (8) ®) (8)y2 (8)7(8)
Fqé/ +Féq + \/(th? —qu) +41qé1éq 2 0.

(21)

The combination of Eq. (19) and its analogue for fermion-
number interference distributions with the positive
semidefiniteness of the eigenvalues leads to combined
constraints on the fermion-number and color interference
distributions of a quark and an antiquark,

+ 'F 'F SFq?z_SFf?q ? 417
a9~ Yot = ) T e

2 8 8
'Fyy+'Fy+1\/N2 = 1(3F;, +3F ;)

817 8[ B
a9 9
N1 N1

/ 2 / /

The inequalities hold true when changing the ¢ — g and thus conclude our discussion of the DPDs with quarks and
antiquarks. We will now turn our attention to double-gluon and mixed gluon-quark distributions.

D. Double-gluon distributions

The double-gluon distributions have a more elaborate color structure due to the increased number of representations when
combining two color octets. Therefore, while discussing gluon distributions we for simplicity specify to N, = 3. Two color
octets can then be combined into 8 @ 8 =1 @ 8, @ 8, & 10 @ 10 @ 27, and we decompose the double-gluon DPD as

/ / 1 ! / \/g ! /. 3\/§ N N 1 kTR a /bb/ /hb/ 4 m/ bhl
[fad .bb :6_4 1 pgad gbb _TAFfuacfhbc +TSquacdbhc +%(10+10)F(Zlgs +t%l’ )+727Ft(27' . (23)
The projections onto the (anti)decouplet and 27-tuple reads
tlll(t)l}»f?_é?’ _ 5ab5a'b’ _ 5ab’5a’b _ %faa’cfbb’c == l'(dabcfa’b’c + fabcda’b’c)’
taa’.bb' _ 5ab5a’b’ 5ab’5a’b _ léaa’ébb’ _ gdaa’cdbb’c 24
7 = + 1 5 ) (24)

where the minus (plus) sign gives the 10 (10). The
distributions 'F, AF, SF, (10+10)F and 27F describe the
case when the two gluon fields in the DPD which participate
in the same hard interaction are coupled to a color singlet,
an antisymmetric octet, a symmetric octet, a decouplet or
antidecouplet and a 27-tuple. The decomposition in Eq. (23)

1s different from what was done in Ref. [ 7] in that it combines
the decouplet and antidecouplet into one distribution. The
decouplet and antidecouplet distributions are equal. As we

explicitly show in the Appendix, the equality F’ 4(}7(» = F!(J_lgo) is

demonstrated by decomposing F; e in  terms of
RF (t-channel) distributions as in Eq. (23) and projecting
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onto the F®) (s-channel) distributions. Reversing the role,
decomposing in the s-channel and projecting out the
t-channel leads to OF s = '°F,, and the number of inde-
pendent DPDs in Eq. (23) s reduced by one. The combination

of decouplet and antidecouplet has been discussed when
|
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projecting out color states of gluons in several other contexts;
see for example Refs. [31-35].

Coupling the color between the two gluons in the
amplitude (and in the conjugate amplitude), and using
the projection operators in Ref. [28], gives

1 1 0
F_S,g> _ o [ngg + 2\/§(ng9 _ AFgg> + 2\/5(10+10)Fgg + 3\/§27Fgg] >0,
8a 1
Fi) = 64[ Fy+V2(F, —AF,) —V3Y'F,,)] > 0,
o 1 [ 2 4 — 3vV3
F<g§) _ L 1ng —£(35Fgg _|_5AFyg) __(10+10)Fgg + \/—27Fgg >0,
64 | 5 5
(o+10) _ 1 [ 442 - V3
Fyg _a _ngg s SF +\/§(]0+]0)Fgg_?27Fgg ZO,
F(27) _ i -1F +2\/5 lAF +lSF _ 2 (10+ﬁ) + 27F >0, (25)
99 64 | 99 3 99 5 99 3\/5 ]5\/_

which describe the probability of finding two gluons inside
a proton in a definite color state (color singlet, symmetric or
antisymmetric octet, etc.) and their positivity leads to
upper bounds on the color interference double-gluon
distributions. The projections were performed using the
COLORMATH package [36] and a useful discussion on color
projection operators can be found in Ref. [31].

E. Mixed gluon-quark distributions

For the mixed gluon-quark distributions the color
decomposition reads [7]

1
NC(N3_1>

2N?
v e, } (26)

By coupling the quark and the gluon in the (conjugate)
amplitude we get the distributions of a gluon and a quark
in the 8 3 =3 @ 6 @ 15 representations

o 1 / A . /
Fag = [F(S““ 8,y — AFV2ifeer,

3 1] 1
Fyq Y _1ng +ﬁ(\/§Sng _3Ang)] 20,
6 1] 1
Fyq Y _1F.</q_ \/E(‘/gSng+Ang)] 20,
as)y 1 [ 1
Fo' =54 _1ng+¢_1_0(ng# fsAng)] >0, (27)

describing a quark and a gluon inside the proton in a color
triplet, sextet or 15-tuple. Their positivity constrains
the color interference distributions; however, just as for

|

quark-antiquark distributions we can also have fermion-
number interference, but now between a quark and a gluon.
The fermion-number interference describes when the gluon
and quark with momentum fractions x; and x,, respec-
tively, in the amplitude are interchanged in the conjugate
amplitude (i.e. in the conjugate amplitude the quark has the
momentum fraction x; and the gluon x,). This gives
interference distributions 1¢¢ with a color structure decom-
posed as in Eq. (26) and result in expressions for / g’;) with
R ={3,6,15} as in Eq. (27) with F — [ (with the differ-
ence being that they do not have to be positive). This gives
us the mixed-color, fermion-number density matrix where
the columns (rows) correspond to the color and fermion-
number states of the quark and gluon in the (conjugate)
amplitude

with eigenvalues

3 3 3 3 3),(3
P 1 i - P 2o

F 4+ F £\ J(F - FiS2 + 4119 > 0,

Filo 4 s i\/ (FOS — FUN2 4 af(91s) > 0 (29)
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By replacing the distributions according to Eq. (27) and its analogue for the fermion-number interference we obtain the
bounds on the interference distributions, limiting the strength of color and fermion-number correlations between the quark

and gluon inside the proton

IF.‘/fI + qu!J + (\/E(SF‘JII + SFq!J)

7
A
+4<11

1

1
V2

1
9q +\/—§(\/§S1M — 3Alg

lF _i
fu=73

1
ngq+1Fqg+—m

1
* { [ngq _1F49+\/E((SF94
+4<1

These constraints are also applicable when the quark is
replaced by an antiquark and thus complete our list of
interferences in DPS.

IV. CONCLUSIONS

The interpretation of double-parton distributions as
probabilities for finding two partons in an unpolarized
proton has been used to constrain the strength of correla-
tions between the two partons and the effect of interfer-
ences in double-parton scattering. Limits have been set on
the size of the color, flavor and fermion-number interfer-
ence DPDs involving quarks, antiquarks and gluons.
Combined with the bounds on the polarized DPDs [22]
they constrain all the quantum-number interference types in
double-parton scattering. The constraints are interesting in
that they make explicit the interdependence of the different
distributions; for example, Eq. (21) shows that an increased
fermion-number interference decreases the maximal size of
the difference between the quark-antiquark distributions
compared to those of an antiquark-quark (both in a color
singlet or octet state).

The limits can be useful in constructing models for the
DPDs and in examining the possible correlation effects
in DPS cross sections. The large number of different
DPDs makes it cumbersome to take all interferences into
account for phenomenological calculations, and unfeasible

(V5(°F,

- SFqg) + (Ang

SF,g) + V5(4F,,

1 1 1/2
+ \/—1—6(51% + \/gAng)> (11119 +\/—1—6(51qg + \/gAqu)> } > 0.

- 3(AFyq +Aqu))
1 A A .
Fyq_ qu"’__(\/g(SFyq_Squ)_?’( ng_ qu))]

q>>(qu+\f(fslqg—3’*l ))}1/220,
— = (V5(5F g +5F 1) + (AFyy +4F )

F)|

-
<‘1 - 7_(f51gq +41, )> ( I, - %(\ﬁslqg + Alqg)> }1/2 >0,

((SF!]‘] + SFqg) + \/g(Ang + AF‘].{]))

~4E)|

(30)

to extract all of them experimentally. The bounds provide a
starting point when one considers the observable effects of
the correlations and tries to determine which correlations
have to be taken into account in phenomenological studies.
For a particular process, the combination of the bounds
with the knowledge of the evolution of the DPDs, can
already lead to a large reduction of the relevant correlations
in the process and the number of DPDs which should be
included in the cross-section calculation.

The effect of evolution on the bounds should be further
investigated. Color interference and fermion-number inter-
ference for quarks and antiquarks are suppressed in
evolution to higher scales [6]. By combining the derived
constraints with the evolution of these distributions, upper
limits can be set on the scale at which color interference can
be of experimental relevance. An analogous suppression by
evolution is expected for color interference in the gluon and
mixed quark-gluon sectors, but the exact expressions
remain to be worked out. The evolution of the flavor
interference distributions has been less studied, but since
these distributions do not mix with the gluon distributions
they are expected to become less prominent in the small-x;,
large-Q region.

In deriving the bounds, we showed that the two
distributions for finding two gluons in a decouplet or
an antidecouplet are equal. They can therefore be com-
bined in the decomposition of the double-gluon color
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structure (23), reducing the number of independent
double-gluon distributions.
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APPENDIX: EQUIVALENCE OF DOUBLE
GLUON DECOUPLET AND ANTI-DECOUPLET
DISTRIBUTIONS

We can show that the gluon decouplet and antidecouplet
distributions are equal by decomposing the color structure
of the double-gluon distribution with separate '°F and '°F
as in Ref. [7]

/ / ] / / \/g / / 3\/§ ! / 2 ! /
Fad bt — |1 psad shb' _ V2 A prad'c pbb'c S Fgad’c gbb'c 10 frjaa .bb Al
! N TR =0 (A1)
2 TN ! / 4 ! /
+1WM“*+”W“ﬁ A2
m ( 10 ) m 27 ( )
The projections onto the F1% and F(19 distributions read
| 1 2 S V) V3
F(IO) :_tabVabFaa,bb’ = _ |IF \/: 0p 4 10y Sp Y22
40 10 oa | FH\sUFT TR =73 5
F(E) i tabVa’b’Faaﬂbb/ _ i |:1F 4 \/%(IOF + EF) _ 4\5/_2— SF— \/?527F:| , (A3)

T 4010 T 64

which shows that F(19 = F(19_ We can likewise decompose the color structure of F%¢**" in terms of F(19 and F(10) and

ad'.bb’

use 14427
10/10

combined into one 110 F as in Eq. (23).

to project out 1°F and 9F. The resulting expressions show that '°F = 10F. The two distributions can therefore be
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