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Within the framework of the effective Lagrangian approach, we perform a thorough analysis of the
J=ψ → Pγðγ�Þ, J=ψ → VP, V → Pγðγ�Þ, P → Vγðγ�Þ, and P → γγðγ�Þ processes, where V stands for
light vector resonances, P stands for light pseudoscalar mesons, and γ� subsequently decays into lepton
pairs. The processes with light pseudoscalar mesons η and η0 are paid special attention to and the two-
mixing-angle scheme is employed to describe their mixing. The four mixing parameters, both in singlet-
octet and quark-flavor bases, are updated in this work. We confirm that the J=ψ → ηðη0Þγð�Þ processes are
predominantly dominated by the J=ψ → ηcγ

� → ηðη0Þγð�Þ mechanism. Predictions for the J=ψ → Pμþμ−

are presented. A detailed discussion on the interplay between electromagnetic and strong transitions in the
J=ψ → VP decays is given.

DOI: 10.1103/PhysRevD.91.014010 PACS numbers: 12.39.-x, 11.30.Hv, 13.20.Gd, 13.25.Gv

I. INTRODUCTION

The vast decay modes of the J=ψ into light flavor
hadrons provide us with invaluable information on the
mechanisms of light hadron production from the cc̄
annihilation, and they are also ideal for the study of light
hadron dynamics, such as the SUð3Þ-flavor symmetry
breaking and Okubo-Zweig-Iizuka (OZI) rules. We focus
on two types of J=ψ decays in this work, i.e., J=ψ → PV
and J=ψ → Pγðγ�Þ, with V representing the light vector
resonances and P the light pseudoscalar mesons.
For the charmonium radiative decays J=ψ → Pγ, the

dominant underlying mechanism is the cc̄ annihilation into
two gluons plus a photon, as advocated in many previous
works [1–13]. While for the J=ψ → PV decays, both
electromagnetic (EM) and strong interactions will enter
and an important issue is the interplay between the two
parts, as has been extensively studied in the literature
[1–3,14–20]. All of the attempts to understand these
J=ψ → PV decays are based on a similar model with
slight variations. In this model, the dominant part of the
amplitude is assumed to proceed through the cc̄ annihila-
tion into light hadrons via three gluons, which is the so-
called single-OZI-suppressed diagram. Later on, doubly
OZI suppressed diagrams are also introduced, where an
additional gluon is exchanged between the vector and
pseudoscalar mesons. For the EM interaction pieces, there
are also two different kinds of diagrams, the singly
disconnected one (one photon exchange) and doubly

disconnected ones. We refer to Ref. [1] for a detailed
discussion on the different mechanisms. Based on these
arguments, the previous research work, such as that in
Refs. [1–3,14–20], move the discussion through directly
writing down the amplitudes by introducing some phe-
nomenological couplings for different processes. The
SUð3Þ symmetry breaking effects are also introduced at
the amplitude level.
In this work, we do not follow the previous routine to

further scrutinize and refine different terms in the ampli-
tudes; instead, we start from the very beginning by
constructing the relevant effective Lagrangians and then
use them to calculate the amplitudes. One of the advantages
starting from the effective Lagrangian approach is that it
allows us to make a systematic study of different processes
by simultaneously taking into account different mecha-
nisms in a consistent and transparent way. This approach
is especially useful for incorporating the OZI rule and
SUð3Þ-flavor-breaking effects.
The only theoretical framework that is generally

accepted to account for the successful OZI rule in various
hadronic processes is the large NC QCD [21]. It has been
demonstrated in Ref. [22] that one can build a simple
relation between the number of flavor traces in effective
field theory and the NC counting rule, though some care
should be paid attention to special cases due to the subtlety
of using matrix relations among the traces of products [22].
Generally speaking, to introduce one additional trace to an
operator in the effective Lagrangian will make this operator
one more order suppressed by 1=NC, i.e., one more order of
OZI suppression. Therefore, it is convenient and easy to
systematically include the OZI suppressed effects in the
effective Lagrangian approach. Another important benefit
to work involving the effective Lagrangian framework for
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the processes of J=ψ decaying into light hadrons is to
properly incorporate the SUð3Þ-flavor symmetry breaking
effects. In the chiral limit, QCD exhibits the strict SUð3ÞL ×
SUð3ÞR → SUð3ÞV spontaneous-symmetry-breaking pat-
tern, leading to eight massless pseudo-Nambu-Goldstone
bosons (pNGBs) which obey an exact SUð3Þ symmetry.
This exact SUð3Þ-flavor symmetry has to be broken in order
to be consistent with the small but nonvanishing masses of
π, K, η. The strong SUð3Þ-flavor symmetry breaking in
QCD is implemented through the introduction of explicit
nonvanishing quark masses. This feature of QCD is
elegantly embedded in chiral perturbation theory (χPT)
[22] through the chiral building block operators χ�, which
we will explain in detail later. Apparently the chiral power
counting is by no means applied to the pNGBs in J=ψ
decays since the momenta of pNGBs are far beyond the
validity region allowed by χPT. Nevertheless evenwe do not
have the chiral power counting, other ingredients from
chiral effective field theory can still be useful for us to
construct the relevant effective Lagrangian for J=ψ decays
into light hadrons, such as the well-established chiral
building blocks incorporating the light pNGBs and the
systematic way to consider the 1=NC or OZI suppressed and
SUð3Þ symmetry breaking effects.
In addition to the light pNGBs, we also need to include

the dynamical fields of light vector resonances. Guided by
chiral symmetry and large NC expansion, resonance chiral
theory (RχT) [23] provides us with a reliable theoretical
framework to study the interaction between the light flavor
resonances and pNGBs in the intermediate energy region,
and it has been successfully applied in many phenomeno-
logical processes [24–32]. The building blocks involving
resonance states fromRχT [23] will also be employed in our
present work to construct the relevant effective Lagrangian
describing the interactions between light hadrons and the
J=ψ . These Lagrangians offer an efficient and systematic
framework to analyze the processes of J=ψ → Pγ,
J=ψ → VP, and J=ψ → Plþl−, with the leptons l ¼ e; μ.
From the experimental point of view, the first measure-

ments of J=ψ → Pγ� → Peþe− (P ¼ π0; η; η0) were per-
formed by the BESIII Collaboration very recently [33]
and updated world average results for J=ψ → PV and Pγ
are available [34] as well. These new measurements and
updated experimental results will definitely be useful to pin
down the unknown couplings in our theoretical model and
hence to reveal the underlying mechanisms of J=ψ decays
into light hadrons. For J=ψ → ηeþe− and J=ψ → η0eþe−,
the vector-dominant-model (VMD) predictions of the decay
rates are consistent with the experimental data. As there are
around 2.5 standard deviations between the theoretical
prediction and the measurement for the J=ψ → π0eþe−
process, this deserves further study [13].
Another important issue we will address in this article

involves the properties of η and η0 mesons. The composition
of η and η0 mesons has long been a subject of theoretical

discussions [3,35–37] and is of current interest, with many
new measurements using high statistics and high precision
[38–40]. In Ref. [41], the two-mixing-angle description has
been proposed to settle the η-η0 mixing, going beyond
the conventional one-mixing-angle description [37]. The
robustness of the two-mixing-angle description scheme
has been confirmed in various analyses [2,8,9,15,30,42–47],
and we have provided a minireview on the η-η0 mixing in
Ref. [30]. In this article, we extend the previous work
of Ref. [30] by including the J=ψ decays: J=ψ → Pγ,
J=ψ→VP, J=ψ→Peþe−, the form factors of J=ψ→η0γ�,
inadditionto theprocesseswithonly light flavorhadrons,such
asP→Vγ,V→Pγ,P→γγ,P→γlþl−,V→Plþl−, as well as
the form factors of η → γγ�, η0 → γγ�, ϕ → ηγ�.
This paper is organized as follows. In Sec. II, we

introduce the theoretical framework and elaborate on the
calculations for the transition amplitudes of J=ψ → Pγ�
and J=ψ → VP. In Sec. III, we present the fit results and
discuss the interplay between different mechanisms in J=ψ
decays. A summary and conclusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The relevant Lagrangian of J=ψ hadronic decays

We will simultaneously study the J=ψ decaying into
light hadrons and the light meson radiative decays.
Therefore two different types of effective Lagrangians,
i.e., the ones involving interactions between J=ψ and light
hadrons and those including only interactions between light
hadrons themselves, need to be constructed. The latter have
been discussed in detail in Ref. [30] and we introduce them
below simply for completeness.
For the interaction operators between J=ψ and light

hadrons, we construct the effective Lagrangian by taking
the basic building blocks involving light hadron states from
χPT [22] and RχT [23]. A subtlety about the description of
vector resonances in RχT should be pointed out. The vector
resonances are described in the antisymmetry tensor
representation [22,23], not in the conventional Proca field
formalism. The reason behind this is that with the vector
resonances in the antisymmetric tensor representation, one
can collect, upon integrating out the heavy resonance states,
the bulk of low energy constants in χPT without including
the additional local counterterms [48]. Therefore we will
use the antisymmetric tensor formalism to describe the light
vector resonances, as we did in Ref. [30]. For the J=ψ ,
however, we will simply use the Proca field formalism in
order to reduce the number of free couplings.
In order to set up the notations, we introduce the effective

Lagrangian involving only light hadrons first. In the large
NC limit, the UAð1Þ anomaly from QCD is suppressed so
that the singlet η0 meson becomes the ninth pNGB and
can systematically be incorporated into the Uð3Þ chiral
Lagrangian [49–51]. We use the exponential realization for
Uð3ÞL ×Uð3ÞR=Uð3ÞV coset coordinates
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~U ¼ ~u2 ¼ ei
ffiffi
2

p
Φ

F ; ð1Þ

where the pNGB octet plus singlet are given by

Φ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 K0

K− K̄0 − 2ffiffi
6

p η8 þ 1ffiffi
3

p η0

1
CCCA: ð2Þ

The basic building blocks involving the pNGBs and
external source fields read

~uμ ¼ i ~u†Dμ
~U ~u† ¼ if ~u†ð∂μ − irμÞ ~u − ~uð∂μ − ~ulμÞ ~u†g;

~χ� ¼ ~u†χ ~u† � ~uχ† ~u; ~fμν� ¼ ~uFμν
L ~u† � ~u†Fμν

R u; ð3Þ

where χ ¼ 2B0ðsþ ipÞ incorporates the pseudoscalar (p)
and scalar (s) external sources. Fμν

L and Fμν
R are the field-

strength tensors for the left and right external sources,
respectively. All of the building blocks X ¼ ~uμ; ~χ�; ~f

μν
� in

Eq. (3) then transform under the chiral group transforma-
tions as

X → hXh†; h ∈ Uð3ÞV: ð4Þ
Notice that we have introduced the tildes to the objects
involving the pNGB nonet in order to distinguish those
with an octet from SUð3Þ χPT. In the following construc-
tion of an effective Lagrangian with light resonances and
J=ψ , the pNGB fields will enter only through the three
types of building blocks presented in Eq. (3).
The Uð3Þ χPT Lagrangian to lowest order, is

Lð2Þ
χ ¼ F2

4
h ~uμ ~uμ þ ~χþi þ

F2

3
M2

0ln
2 det ~u; ð5Þ

where the last term stands for the QCD UAð1Þ anomaly
effect, leading to a nonvanishing mass for the η0 field even
in the chiral limit. The parameter F denotes the value of the
pion decay constant Fπ ¼ 92.2 MeV in the chiral limit and
B0 in Eq. (3) is related to the quark condensate through
h0∣ψψ̄ ∣0i ¼ −F2B0½1þOðmqÞ�, with mq being the light
quark mass. The explicit chiral symmetry breaking is
realized in χPT by assigning the vacuum expectation values
of the scalar sources to be s ¼ Diagfmu;md;msg.
Throughout, we take mu ¼ md and use the leading order
relations 2muB0 ¼ m2

π and ðmu þmsÞB0 ¼ m2
K [22,52].

The physical η and η0 states are from the mixing between
η8 and η0. Following a general discussion in Uð3Þ χPT, the
η-η0 mixing should be formulated in the two-mixing-angle
framework, instead of the conventional one-mixing-angle
scheme [41,53]. In the octet and singlet basis, the η-η0
mixing is parametrized by [41,53]

�
η

η0

�
¼ 1

F

�
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

��
η8

η0

�
; ð6Þ

where F8 and F0 denote the weak decay constants of the
axial octet and singlet currents, respectively. By taking
F8 ¼ F0 ¼ F and θ0 ¼ θ8 in Eq. (6), the conventional one-
mixing-angle scheme is recovered.
Analogously, one can choose the quark-flavor basis to

parametrize the η-η0 mixing as
�

η

η0

�
¼ 1

F

�
Fq cosϕq −Fs sinϕs

Fq sinϕq Fs cosϕs

��
ηq

ηs

�
; ð7Þ

with ηq ¼ ðη8 þ
ffiffiffi
2

p
η0Þ=

ffiffiffi
3

p
and ηs ¼ ðη0 −

ffiffiffi
2

p
η8Þ=

ffiffiffi
3

p
. In

this case the ηq and ηs states are generated by the axial

vector currents with the quark flavors qq̄ ¼ ðuūþ dd̄Þ= ffiffiffi
2

p
and ss̄, respectively. Obviously the two mixing matrices
from different bases in Eqs. (6) and (7) are related to each
other through an orthogonal transformation. So they are
equivalent to describing the η-η0 mixing. If only the leading
order of NC chiral operators with quark mass corrections
are considered, the SUð3Þ breaking by quark masses will
affect the ηq and ηs differently in the quark-flavor basis, and
the angles ϕq and ϕs will be equal. This is the characteristic
of the Feldmann-Kroll-Stech formalism [2]. If general
operators are included in the discussion, the quark-flavor
basis will lose these features. Nevertheless, it seems that the
phenomenological analyses support the fact that the values
of ϕq and ϕs are indeed very close to each other [2,9,37]. In
the following phenomenological discussions, we will
explore both mixing scenarios in the singlet-octet and
quark-flavor bases.
Next we closely follow RχT [23] to include the vector

resonances. The ground multiplet of vector resonances was
explicitly incorporated in the antisymmetric tensor repre-
sentation in RχT. The kinetic term of the vector resonance
Lagrangian reads [23]

LkinðVÞ ¼ −
1

2

�
∇λVλμ∇νVνμ −

M2
V

2
VμνVμν

�
; ð8Þ

where the ground vector nonet matrix is given by
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Vμν ¼

0
BBB@

1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω0 ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω0 K�0

K�− K�0 − 2ffiffi
6

p ω8 þ 1ffiffi
3

p ω0

1
CCCA

μν

; ð9Þ

and the covariant derivative and the chiral connection are
defined as

∇μV ¼ ∂μV þ ½ ~Γμ; V�;
~Γμ ¼

1

2
f ~uþð∂μ − irμÞ ~uþ ~uð∂μ − ilμÞ ~uþg: ð10Þ

The transformation laws of the resonance multiplet and its
covariant derivative under chiral group transformations are
the same as the building blocks in Eq. (3):

V→ hVh†; ∇μV→ hð∇μVÞh†; h∈Uð3ÞV: ð11Þ

The masses of the resonances in the ground multiplet are
degenerate in Eq. (8) and their mass splitting is governed by
a single resonance operator at leading order of 1=NC [54],

−
1

2
eVmhVμνVμνχþi: ð12Þ

It has been demonstrated that the single operator in the
previous equation can well explain the mass splittings of
the ground vector resonances in Eq. (9) and can also
perfectly describe the quark mass dependences of the
ρð770Þ mass from lattice simulations [55,56]. Therefore
it is justifiable for us to simply use the physical masses for
the vector resonances in the phenomenological discussions.
The physical states of ωð782Þ and ϕð1020Þ result from

the ideal mixing of ω0 and ω8:

ω0 ¼
ffiffiffi
2

3

r
ω −

ffiffiffi
1

3

r
ϕ; ω8 ¼

ffiffiffi
2

3

r
ϕþ

ffiffiffi
1

3

r
ω: ð13Þ

The transitions between the vector resonances and the
photon field are described by one single operator in the
minimal version of RχT [23]:

L2ðVÞ ¼
FV

2
ffiffiffi
2

p hVμν
~fμνþ i: ð14Þ

Now we construct the effective Lagrangian describing
J=ψ radiative decays and J=ψ decaying to light hadrons.
We use the Proca vector field to describe the J=ψ , mainly
due to the consideration of reducing the number of
coupling vertices. We first consider the strong interaction
vertices for J=ψ decaying to a light vector and a pNGB.
Three terms are introduced:

LψVP ¼ Mψh1εμνρσψμh ~uνVρσi

þ 1

Mψ
h2εμνρσψμhf ~uν; Vρσg~χþi

þMψh3εμνρσψμh ~uνihVρσi; ð15Þ

where the first term can be related to the leading three-
gluon-annihilation (singly OZI disconnected) diagram
proposed in Refs. [1,3,14–16,18–20], the second term
stands for the strong SUð3Þ symmetry breaking term
caused by the quark masses, and the last one corresponds
to the doubly OZI suppressed diagram. We have introduced
the Mψ factors in Eq. (15) so that the couplings hi¼1;2;3 are
dimensionless.
For the interaction vertices with J=ψ , one pNGB and one

photon field, we have two operators,

LψPγ ¼ g1εμνρσψμh ~uν ~fρσþ i þ 1

M2
ψ
g2εμνρσψμhf ~uν; ~fρσþ g~χþi;

ð16Þ

where the second term generates the SUð3Þ-flavor sym-
metry breaking caused by the quark masses for the J=ψPγ
vertices, with P ¼ π; η; η0.
The transition between the J=ψ and the photon field is

described by

Lψ
2 ¼ −1

2
ffiffiffi
2

p fψ
Mψ

hψ̂μν
~fμνþ i; ð17Þ

with ψ̂μν ¼ ∂μψ
ν − ∂νψ

μ. The coupling strength fψ can be
determined from the decay width of J=ψ → eþe−:

fψ ¼
�
27MψΓψ→eþe−

32πα2

�1
2

; ð18Þ

where the masses of electron and positron have been
neglected, and α ¼ e2=4π stands for the fine structure
constant.
The J=ψ → VP decay processes can be categorized into

two classes: (i) isospin conserved channels, such as
J=ψ → ρπ, ωηð0Þ, ϕηð0Þ, K�K̄, which include both strong
and EM transitions; (ii) isospin violated channels, such as
J=ψ → ρηð0Þ, ωπ0, of which the leading contribution is the
EM transition. In Fig. 1, we show the four types of
diagrams that contribute to the J=ψ → VP decays, where
Fig. 1(a) represents the strong interactions from the
Lagrangian in Eq. (15) and the remaining diagrams,
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Figs. 1(b)–1(d), depict the EM interactions. The solid
square denotes the mixing between ηc and ηðη0Þ, which
will be addressed in the following section. The open circle
in Fig. 1(d) stands for the radiative transition amplitudes of
the pNGBs and light vector resonances, which have been
the focus in our previous work in Ref. [30]. We will take
these amplitudes directly from the former reference. For the
sake of completeness, we simply show the effective
Lagrangians that are relevant to the radiative transition
amplitudes of the pNGBs and light vector resonances
below. We refer to Ref. [30] for details about the con-
structions of these Lagrangians. All of the Lagrangians are
constructed in the framework of RχT. In our scheme the

VPγ� transition receives two types of contributions: the
contact diagram and the resonance-exchange one, as shown
in Fig. 2. The chiral effective Lagrangians with antisym-
metric tensor formalism for the light vector resonances that
are pertinent to these kinds of processes are first written
down in Ref. [57] and then completed in a more general
setting in Ref. [58]. The focus of the previous two
references is the SUð3Þ case with the light pseudoscalar
octet. We generalize the relevant discussions to the Uð3Þ
case in Ref. [30] so that we can study the processes
involving η and η0 states. The Uð3Þ operators with one
vector resonance, one external source, and one pNGB are
given by

LVJP ¼ ~c1
MV

εμνρσhfVμν; ~fραþ g∇α ~uσi þ
~c2
MV

εμνρσhfVμα; ~fρσþ g∇α ~uνi þ
i~c3
MV

εμνρσhfVμν; ~fρσþ g~χ−i

þ i~c4
MV

εμνρσhVμν½ ~fρσ− ; ~χþ�i þ
~c5
MV

εμνρσhf∇αVμν; ~fραþ g ~uσi þ ~c6
MV

εμνρσhf∇αVμα; ~fρσþ g ~uνi

þ ~c7
MV

εμνρσhf∇σVμν; ~fραþ g ~uαi − i~c8MV

ffiffiffi
2

3

r
εμνρσhVμν ~fρσþ i lnðdet ~uÞ; ð19Þ

which are responsible for the contact diagram in Fig. 2. For the resonance-exchange diagram, the responsible effective
Lagrangian reads

LVVP ¼ ~d1εμνρσhfVμν; Vραg∇α ~uσi þ i ~d2εμνρσhfVμν; Vρσg~χ−i þ ~d3εμνρσhf∇αVμν; Vραg ~uσi

þ ~d4εμνρσhf∇σVμν; Vραg ~uαi − i ~d5M2
V

ffiffiffi
2

3

r
εμνρσhVμνVρσi lnðdet ~uÞ: ð20Þ

(a) (b) (c) (d)

FIG. 1. Feynman diagrams for the processes J=ψ → VP. The meaning of the symbols appearing in these diagrams is explained in
detail in the text.

γ ∗

P

V
=

γ ∗

V

P
(a)

+
V

V

γ ∗

P
(b)

FIG. 2. Diagrams relevant to the V → Pγ� processes: (a) direct type and (b) indirect type.
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To impose the high energy constraints to the couplings
can greatly reduce the number of free parameters in RχT
[26,29,48]. This procedure also renders the amplitudes
calculated in RχT consistent with the behavior dictated by
QCD. We will follow this procedure in this work as well.
Through matching the leading operator product expansion
of the VVP Green function with the result evaluated within
RχT and requiring the vector form factor to vanish in the
high energy limit, we obtain the high energy constraints on
resonance couplings [30]

4~c3 þ ~c1 ¼ 0;

~c1 − ~c2 þ ~c5 ¼ 0;

~c5 − ~c6 ¼
NC

64π2
MVffiffiffi
2

p
FV

;

~d1 þ 8~d2 − ~d3 ¼
F2

8F2
V
;

~d3 ¼ −
NC

64π2
M2

V

F2
V

~c8 ¼ −
ffiffiffi
2

p
M2

0ffiffiffi
3

p
M2

V

~c1: ð21Þ

B. The transition amplitudes of J=ψ → Pγ�

In accord with the covariant Lorentz structure,
the general amplitude for the radiative decay J=ψðqÞ →
Pðq − kÞγ�ðkÞ takes the form

iMψ→Pγ� ¼ ieεμνρσϵ
μ
ψϵνγ�q

ρkσGψ→Pγ�ðsÞ; ð22Þ

where q and k stand for the four-momenta of J=ψ and γ�,
respectively; s ¼ k2; ϵψ and ϵγ� are the polarization vectors;
and e is the electric charge of a positron. The relevant
Feynman diagrams to the radiative decay J=ψ → Pγ� are
displayed in Fig. 3. Using the previously introduced
Lagrangian in Sec. II A, it is straightforward to calculate
the contributions from Figs. 3(a) and 3(b) toGψ→Pγ� ðsÞ. For
Fig. 3(c), however, we need to provide extra terms.
Based on the QCD axial anomaly and the partially

conserved axial current hypothesis, the mixing angle of the
ηðη0Þ − ηc was evaluated in Ref. [7], and it was found that

the mechanism in Fig. 3(c) dominates the J=ψ → ηðη0Þγ
decays. The contribution from this diagram to the J=ψ →
ηðη0Þγ amplitude can generally be written as

iMmixing
ψ→ηðη0Þγ� ¼ ieεμνρσϵ

μ
ψϵνγ�q

ρkσλPηcgψηcγðsÞeiδP ; ð23Þ

where the mixing strengths are obtained as ληηc ¼
−4.6 × 10−3, λη0ηc ¼ −1.2 × 10−2 in Ref. [7]. δP, with
P ¼ η; η0, stands for the relative phases between Fig. 3(c)
and others, which are free parameters in this work andwill be
fitted later. The coupling strength gψηcγðsÞ is defined as

iMψ→ηcγ
� ¼ ieεμνρσϵ

μ
ψϵνγ�q

ρkσgψηcγðsÞ; ð24Þ

and we can easily obtain

jgψηcγð0Þj ¼
�

24M3
ψΓψ→ηcγ

αðM2
ψ −m2

ηcÞ3
�1

2

: ð25Þ

Since we focus on the J=ψ → ηcγ
� → ηclþl− process, the

interval of the energy squared s is limited to a small region
compared with the scale M2

ψ . This justifies our use of the
spacelike form factor derived in Ref. [59],

gψηcγðsÞ ¼ gψηcγð0Þe
s

16β2 ; ð26Þ

for the s ∼ 0 timelike region, due to the continuity condition
of the form factor at s ¼ 0. In order not to interrupt the present
discussion, the lengthy expressions of Gψ→Pγ�ðsÞ calculated
from Fig. 3 are relegated to Appendix A.
In our convention, the decay widths of J=ψ → Pγ are

Γðψ → PγÞ ¼ 1

3
α

�
M2

ψ −M2
P

2Mψ

�
3

jGψ→Pγ�ð0Þj2; ð27Þ

and the decay widths of J=ψ → Pγ� → Plþl− are

Γψ→Plþl− ¼
Z ðMψ−mPÞ2

4m2
l

α2ð2m2
l þ sÞ

72M3
ψπs3

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

l Þ
q

½λðs;Mψ ; mPÞ�3jGψ→Pγ� ðsÞj2ds;
ð28Þ

γ ∗

P (π 0, η, η )

J/ψ

(a)

q
k

+
J/ψ

(b)

V

P (π 0, η, η )

γ ∗

+
J/ψ η c

γ ∗

P (η, η )

(c)

FIG. 3. Feynman diagrams for the processes J=ψ → Pγ�. We refer to Fig. 1 for the meaning of the symbols in these diagrams.
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where the leptons l ¼ e; μ, the pNGBs P ¼ η; η0, and

λðs;Mψ ; mPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðMψ −mPÞ2�½s − ðMψ þmPÞ2�

q
:

ð29Þ

C. Transition amplitudes of the J=ψ → VP processes

The general amplitude for the decay J=ψðqÞ →
VðkÞPðq − kÞ, in accord with the Lorentz structure, can
be written as

iMψ→VP ¼ iεμνρσϵ
μ
ψϵνVq

ρkσGψ→VP; ð30Þ
and the relevant Feynman diagrams are displayed in Fig. 1.
Figure 1(a) represents the strong interaction part, which can
be evaluated with the Lagrangian in Eq. (15). The remain-
ing diagrams receive EM contributions, which can be
evaluated with the Lagrangians in Eqs. (14), (16), (17),
(19), and (20) and the amplitude in Eq. (23).
In Fig. 1(d), we need the amplitudes of

VðkÞPðq − kÞγ�ðqÞ, which are depicted in Fig. 2 and
can be written as

iMVPγ� ¼ −ieεμνρσϵ
μ
Vϵ

ν
γ�q

ρkσFVPγ� ðs ¼ q2Þ: ð31Þ

The form factors FVPγ�ðsÞ are calculated within the
framework of RχT in Ref. [30] and we give the results
in Appendix B simply for completeness. In this convention,
the contribution from Fig. 1(d) to Gψ→VP is found to

be 8
ffiffi
2

p
πα

3

fψ
Mψ

FVPγ� ðs ¼ M2
ψÞ.

The full expressions of Gψ→VP from Fig. 1 are relegated
to Appendix C. The decay widths of J=ψ → VP are given
by

Γðψ → VPÞ ¼ 1

96πM3
ψ
f½M2

ψ − ðMV −mPÞ2�

× ½M2
ψ − ðMV þmPÞ2�g3

2jGψ→VPj2: ð32Þ

III. PHENOMENOLOGY DISCUSSION

The experimental data that we consider in this work
include the decay widths of J=ψ → Pγ and J=ψ → VP
[34], with P ¼ π; K; η; η0 and V ¼ ρ; K�;ω;ϕ, and the
recently measured Dalitz decay widths of J=ψ → Peþe−

and the form factor jFψη0 ðsÞj2 ¼
��� Gψ→η0γ� ðsÞ
Gψ→η0γ� ð0Þ

���2 [33].1 We also

take into account all of the radiative decay processes
considered in our previous paper with only light hadron
states [30]: P → Vγ, V → Pγ, P → γγ, P → γlþl−,
V → Plþl−, as well as the form factors of η → γγ�,
η0 → γγ�, ϕ → ηγ�. Below we will make a global fit by
taking the two types of data together, i.e., those with the
J=ψ and those without the J=ψ .
For the resonance operators ci and dj in Eqs. (19) and

(20), we impose the high energy constraints presented in
Eq. (21) in such a way that it reduces six combinations of
unknown parameters and that it is quite helpful to stabilize
the fit. In addition, it makes the asymptotic behaviors of the
relevant amplitudes consistent with QCD in the large NC
and chiral limits. The ~c4 term in Eq. (19), which contributes
exclusively to the vertex K��K�γ, is the focus of Ref. [31],
and ~c4 ¼ −0.0023 is determined there. In Ref. [30], a very
strong linear correlation between ~d2 and ~d5 is observed:
~d5 ¼ 4.4~d2 − 0.06. We will take this value of ~c4 and use the
linear correlation between ~d2 and ~d5 in our current study,
and we point out that if the values of ~c4, ~d2, and ~d5 are
fitted, the results turn out to be very close to these
constraints. For β in Eq. (26), we will take the value β ¼
580� 19 MeV [60]. Our fitting quality is not sensitive to
the value of β if β is above 500MeV. The reason behind this
is that for the J=ψ → ηðη0Þlþl− decays the dominant
contributions come from the region with small values of
s, due to the kinematic factors in Eq. (28). In addition, the
experiment data for the J=ψ → η0γ� form factors have large
errors, as shown in Fig. 4.
Before stepping into the detail of the fits, we point out

that with the theoretical setups in Sec. II there are always
large discrepancies between our theoretical output and the
experimental measurement for the isospin violated channel
J=ψ → ωπ0. Similarly large discrepancies have also been

FIG. 4 (color online). The form factors of J=ψ → η0γ�. The red
solid line corresponds to the result with the central values of the
parameters in Table I and the shaded areas stand for the error
bands. The experimental data are taken from [33].

1In Ref. [33], the peaking backgrounds arising from
J=ψ → PV → Peþe−, with V ¼ ρ0;ω;ϕ, are subtracted. We
acknowledge Xin-Kun Chu for his patient explanations on this
issue. In accord with the experimental measurements, we do not
consider the contribution from Fig. 3(b) when fitting the data
from Ref. [33]. To be consistent, the theoretical predictions for
the decay widths of J=ψ → Pμþμ− given in Table IVare obtained
by excluding Fig. 3(b).
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found between the conventional VMD approach and the
experimental data of ω → π0γ� form factors [61,62], and
one possible solution is to include more excited resonances
[31,63]. Therefore in order to reasonably describe the
J=ψ → ωπ0 decay, we simply introduce another excited
vector resonance ρ0 in this channel. To be more specific, we
introduce the term r1MωDρ0 ðsÞ to the form factor Fωπγ� ðsÞ

in Eq. (31) and the definition of the propagator Dρ0 ðsÞ is
given in Eq. (A4). The parameter r1 will be fitted. The mass
and width of ρ0 will be fixed at Mρ0 ¼ 1600 MeV and
Γρ0 ¼ 500 MeV, respectively. We point out that a sizable
variation of Mρ0 and Γρ0 barely affects the fitting results.
With all of the previous setups in mind, we are ready to

present our fit results. The final values for the fitted
parameters are given in Table I. For the various decay
widths, we summarize the experimental data and the results
from our theoretical outputs in Table II for the J=ψ decay
processes and in Table III for the light hadron decays. The
resulting plots for the form factors of J=ψη0γ�, ηγγ�, η0γγ�,
and ϕηγ�, together with the corresponding experimental
data, are given in Figs. 4, 5, 6 and 7, respectively. The error
bands shown in the plots and the errors of the physical
quantities in the following tables correspond to the stat-
istical uncertainties at one standard deviation [64]:
nσ ¼ ðχ2 − χ20Þ=

ffiffiffiffiffiffiffi
2χ20

p
, with χ20 being the minimum χ2

obtained in the fit and nσ the number of standard deviations.
Some remarks for the fitting results are in order. We

comment on them one by one, as follows.
(1) The η-η0 mixing parameters. In theUð3Þ χPT, F8 can

be fixed through the ratio of FK=Fπ at the next-to-
next-to-leading order within the triple expansion
scheme, i.e., a simultaneous expansion on the
momentum, quark mass, and 1=NC. This approach
leads to the prediction F8 ¼ 1.34Fπ [53]. While for
F0, according to the results from our previous work
with only light hadrons [30], its error bar is much
larger than that of F8. After including the J=ψ data,
we find that the error bar of F0 is now compatible
with the one for F8, indicating the sensitivity of this
parameter in J=ψ decays. F0 was determined in the

TABLE I. The parameters result from the fit. For comparison,
we provide the results of Ref. [30] which are obtained by fitting
only to the light hadron radiative decay processes.

Fit Fit in Ref. [30]

F8 ð1.45� 0.04ÞFπ ð1.37� 0.07ÞFπ

F0 ð1.28� 0.06ÞFπ ð1.19� 0.18ÞFπ

θ8 ð−26.7� 1.8Þ° ð−21.1� 6.0Þ°
θ0 ð−11.0� 1.0Þ° ð−2.5� 8.2Þ°
FV 134.9� 3.2 136.6� 3.5
~c3 0.0029� 0.0006 0.0109� 0.0161
~d2 0.081� 0.006 0.086� 0.085
h1 ð−2.36� 0.13Þ × 10−5 � � �
h2 ð−4.73� 1.26Þ × 10−5 � � �
h3 ð3.85� 0.45Þ × 10−6 � � �
g1 ð−2.92� 0.17Þ × 10−5 � � �
g2 ð5.93� 1.04Þ × 10−4 � � �
r1 0.44� 0.10 � � �
δη ð39� 44Þ° � � �
δη0 ð115� 13Þ° � � �
χ2

d:o:f
96.0

106−15 ¼ 1.06 64.0
70−8 ¼ 1.03

Fq ð1.15� 0.04ÞFπ � � �
Fs ð1.56� 0.06ÞFπ � � �
ϕq ð34.5� 1.8Þ° � � �
ϕs ð36.0� 1.4Þ° � � �

TABLE II. Experimental and theoretical values of the branching fractions (×10−3) of various processes:
J=ψ → VP, J=ψ → Pγ, and J=ψ → Peþe−. The experimental data are taken from [33,34]. The error bands of
the theoretical outputs are calculated by using the parameter configurations in Table I.

Experiment Fit

ψ → ρ0π0 5.3� 0.7 5.6� 0.7
ψ → ρπ 16.9� 1.5 16.4� 1.9
ψ → ρ0η 0.193� 0.023 0.202� 0.047
ψ → ρ0η0 0.105� 0.018 0.110� 0.035
ψ → ωπ0 0.45� 0.05 0.45� 0.12
ψ → ωη 1.74� 0.20 1.74� 0.25
ψ → ωη0 0.182� 0.021 0.184� 0.040
ψ → ϕη 0.75� 0.08 0.82� 0.11
ψ → ϕη0 0.40� 0.07 0.38� 0.13
ψ → K�þK− þ c:c: 5.12� 0.30 4.79� 0.51
ψ → K�0K̄0 þ c:c: 4.39� 0.31 4.43� 0.38
ψ → π0γ 0.0349� 0.0032 0.0303� 0.0086
ψ → ηγ 1.104� 0.034 1.101� 0.079
ψ → η0γ 5.16� 0.15 5.22� 0.15
ψ → π0eþe− ð0.0756� 0.0141Þ × 10−2 ð0.1191� 0.0138Þ × 10−2

ψ → ηeþe− ð1.16� 0.09Þ × 10−2 ð1.16� 0.08Þ × 10−2

ψ → η0eþe− ð5.81� 0.35Þ × 10−2 ð5.76� 0.16Þ × 10−2
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process P → γγ at next-to-leading order by ignoring
the chiral symmetry breaking operators in
Refs. [41,42], which led to F0 ¼ 1.25Fπ. As one
can see from the numbers in Table I, our result for F8

is slightly larger than the χPT prediction, and our F0

agrees with the χPT prediction. About the mixing
angles, our present determinations for θ8 and θ0 are
somewhat more negative than those in the literature;

see Table 1 of Ref. [37]. Compared to our previous
determinations in Ref. [30] with only light hadron
data, the present values for the two angles also
become more negative; see the last two columns in
Table I. This tells us that the J=ψ data prefer
somewhat more negative mixing angles. Never-
theless, when taking into account the errors of these
two parameters shown in Table I, the results of θ8
and θ0 in this analysis are still comparable with
previous studies. It is clear that the present error
bands of θ0 and θ8 are much smaller than the values
in Ref. [30], which highlights the relevance of the
J=ψ data in the determination of the η-η0 mixing
parameters.
For the mixing parameters in the quark-flavor

basis defined in Eq. (7), the theoretical prediction for
the difference between the angles ϕq and ϕs should
be very small since their difference is caused by the
OZI-rule violating terms. In this work, we further
confirm this prediction, and the difference between
ϕq and ϕs is indeed found to be tiny. Our results,
ϕq ¼ ð34.5� 1.8Þ° and ϕs ¼ ð36.0� 1.4Þ°, are in
qualitative agreement with the earlier studies in
Refs. [3,37], which give the result as around 40°.
Our analysis prefers slightly smaller magnitudes of
ϕq and ϕs.

(2) The ~c3 and ~d2 parameters were determined with
huge error bars in our previous study without the
J=ψ data [30]. We see that the present results are
compatible with those in [30], but have smaller error
bars now. The magnitude of ~c3 is of order 10−3 now,
which is consistent with the magnitudes of ~c4 and ~c6
determined in Ref. [31].

FIG. 5 (color online). The form factors of η → γ�γ. The red
solid line corresponds to the result with the central values of the
parameters in Table I and the shaded areas stand for the error
bands. The references of different experimental data are solid
squares [65,66], open squares [67], open circles [68], solid
triangles [69], and open triangles [70]. The framed figure is
the close-up of the plot in the region of s > 0.

FIG. 6 (color online). The form factors of η0 → γ�γ. The red
solid line corresponds to the result with the central values of the
parameters in Table I, and the shaded areas stand for the error
bands. The references of different experimental data are solid
squares [65,66], open squares [67], open triangles [70], and solid
circles [71].

TABLE III. Experimental and theoretical values of the decay
widths of various processes: P → Vγ, V → Pγ, P → γγ,
P → γlþl−, V → Plþl−. The experimental data are taken from
[34]. All of the values are given in units of KeV. The error bands
of the theoretical outputs are calculated by using the parameter
configurations in Table I.

Experiment Fit

Γω→πγ 757� 28 750� 33
Γρ0→π0γ 89.6� 12.6 78.0� 3.4
ΓK�0→K0γ 116� 12 116� 5
Γω→ηγ 3.91� 0.38 5.16� 0.41
Γρ0→ηγ 44.8� 3.5 42.6� 3.5
Γϕ→ηγ 55.6� 1.6 55.4� 3.7
Γϕ→η0γ 0.265� 0.012 0.265� 0.027
Γη0→ωγ 6.2� 1.1 6.2� 0.4
Γη→γγ 0.510� 0.026 0.463� 0.038
Γη0→γγ 4.30� 0.15 4.13� 0.26
Γη→γe−eþ ð8.8� 1.6Þ × 10−3 ð7.7� 0.6Þ × 10−3

Γη→γμ−μþ ð0.40� 0.08Þ × 10−3 ð0.36� 0.03Þ × 10−3

Γη0→γμ−μþ ð2.1� 0.7Þ × 10−2 ð1.6� 0.1Þ × 10−2

Γω→πe−eþ 6.54� 0.83 6.81� 0.30
Γω→πμ−μþ 0.82� 0.21 0.67� 0.03
Γϕ→ηe−eþ 0.490� 0.048 0.464� 0.031
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(3) The J=ψ → Plþl− process. In Ref. [13], the form
factor of J=ψ → Pγ� is parametrized by denoting
the simple pole approximation in the VMD frame-
work as

FψPðsÞ≡ Gψ→Pγ� ðsÞ
Gψ→Pγ� ð0Þ

¼ 1

1 − s=Λ2
; ð33Þ

with Λ chosen to be the mass of ψ 0. We plot the
integrand of Eq. (28), namely, the differential decay
widths for J=ψ → Plþl− in Fig. 8, from which it is
not difficult to observe that the J=ψ → Plþl− decay
width is dominated by the small s region, due purely

to the kinematic factors. Therefore the s=Λ2 term in
Eq. (33) cannot give a large effect. This also explains

that different values of β in the form factor e
s

16β2 in
Eq. (26) make little difference. Thus for the J=ψ →
Plþl− decay rate, the overwhelmingly dominant
part is from the structure independent factor
FψPðsÞ ¼ 1, and any model-dependent hadronic
corrections to FψPðsÞ ¼ 1 will only slightly affect
the total decay rate.
At first glance, the theoretical model we propose

to study the J=ψ → Plþl− decay, which is sche-
matically depicted in Fig. 3, is clearly different from
the VMD model in Eq. (33) since we do not
explicitly include the effects of ψ 0 in Fig. 3. Never-
theless, as discussed before, what matters to the
decay rate of J=ψ → Plþl− is the very low energy
region of the integrand in Eq. (28), where the
propagator of the ψ 0 from the VMD approach in
Eq. (33) reduces to a constant. Essentially, Figs. 3(a)
and 3(c) give constant terms in the low energy
region. Figure 3(b) has to be subtracted in order to be
consistent with the experimental setup, as the con-
tributions from the light vector resonances have been
removed in the final results from experimental
analyses [33]. Therefore we can conclude that our
model in Fig. 3 is qualitatively similar as the
commonly used VMD model in Eq. (33) when
we focus on the J=ψ → Plþl− decay width. The
theoretical outputs and the experimental data of
the J=ψ → Plþl− processes are summarized in
Table IV.
Both our theoretical outputs and the VMD

predictions for the J=ψ → ηðη0Þeþe− processes
agree with the data, as shown in Table IV. For the

FIG. 8. The differential decay widths of J=ψ → Plþl− processes, where the solid line is for J=ψ → π0lþl−, the dashed line for
J=ψ → ηlþl−, and the dotted line for J=ψ → η0lþl−. The left panel is for the lepton pair eþe− and the right panel for the lepton pair μþμ−.

FIG. 7 (color online). The form factors of ϕ → ηγ� [68]. The
red solid line corresponds to the result with the central values
of the parameters in Table I, and the shaded areas stand for the
error bands.
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J=ψ → π0eþe− process, however, none of the re-
sults from the two approaches are compatible with
the experimental data. Notice that for the experi-
mental analyses of the J=ψ → Peþe− decays in
Ref. [33], the peaking backgrounds from the inter-
mediate processes like J=ψ → ρ0P, ωPand ϕP, with
ρ0, ω and ϕ decaying into eþe−, have been sub-
tracted. From the world average results in Ref. [34],
we know the branching ratios BJ=ψ→ρ0π0 ¼ ð5.6�
0.7Þ × 10−3 and Bρ0→eþe− ¼ ð4.72� 0.05Þ × 10−5,
so that BJ=ψ→ρ0π0×Bρ0→eþe− ¼ð2.64� 0.36Þ×10−7,
which is about a third of the branching ratio
BJ=ψ→πeþe− given in Ref. [33]. This rough estimate
tells us that the contributions from the intermediate
processes with light hadrons can be important and
that this conclusion is in accord with the dispersive
analyses in Ref. [72]. Our simple estimate also
confirms the findings in Refs. [12,73], where the
dominance of J=ψ → π0ρ0 → π0γ in the J=ψ → π0γ
decay is evident. In our theoretical scheme, we
find large destructive interference between the in-
termediate ρ0’s contribution and other contributions
in the J=ψ → π0γ and J=ψ → π0lþl− processes, so
that neglecting the intermediate ρ0’s contribution
leads to a larger value of the branching ratio of
J=ψ → π0eþe−.
Therefore we urge our experimental colleagues to

take more serious analyses of the light vector
contributions in the J=ψ → π0eþe− decays in order
to clarify its decay mechanism. We find that the
contributions from the intermediate light vectors are
tiny in the J=ψ → ηðη0Þγ and J=ψ → ηðη0Þlþl−
processes.
In addition, we provide the predictions for the

J=ψ → Pμþμ− decays in Table IV together with the

results from Ref. [13]. We hope our results can
provide our experimental colleagues with some
references for future measurements in these
channels.

(4) ηðη0Þ-ηc mixing. For the J=ψ → ηðη0Þγð�Þ processes,
if we do not include the mechanism raised in Ref. [7],
i.e., Fig. 3(c), there is no way for us to simulta-
neously describe the J=ψ → ηðη0Þγð�Þ processes
together with other types of data. Therefore we
confirm the importance of the ηðη0Þ-ηc mixing in
J=ψ → ηðη0Þγð�Þ, as advocated in Refs. [7,12]. In
Table V, we quantitatively show the contributions
from Fig. 3(c) to the total decay widths of J=ψ →
ηðη0Þγ and J=ψ → ηðη0Þeþe−.

(5) The roles of the EM and strong transitions in the
J=ψ → VP decays. In order to discuss the interplay
between roles of the EM and strong interactions in
the J=ψ → VP processes, we show the modulus of
the form factorsGVP defined in Eq. (30) in Table VI.
On the left side of this table, we show the contri-
butions from strong interactions to the isospin
conserved channels and on the right side we show
the EM contributions to the isospin violated chan-
nels. It is clear that the strong interactions play
dominant roles in the isospin conserved decay
channels and that the EM interactions dominate
the isospin violated channels. Furthermore, for the
isospin conserved cases we have explicitly checked
that there are no significant contributions from the
EM transitions, with the exception of the J=ψ → ϕη0
channel. We find that there is a large destructive
interference between the strong and EM interactions
in this process. Generally speaking, our findings in
J=ψ → VP decays are consistent with a general
expectation and our numbers are in qualitative
agreement with those in Ref. [18].

TABLE V. Branching ratios (×10−3) for J=ψ → ηðη0Þγ and J=ψ → ηðη0Þeþe− caused by the ηðη0Þ-ηc mixing.

Exp. data ηc mixing in this work ηc mixing in Ref. [12]

ψ → ηγ 1.104� 0.034 0.823 0.61
ψ → η0γ 5.16� 0.15 4.56 3.5
ψ → ηeþe− ð1.16� 0.09Þ × 10−2 0.95 × 10−2 � � �
ψ → η0eþe− ð5.81� 0.35Þ × 10−2 5.07 × 10−2 � � �

TABLE IV. Branching ratios (×10−5) for J=ψ → Plþl−, where P ¼ π0; η; η0, and l ¼ e; μ.

Exp. data This work VMD prediction [13]

ψ → π0eþe− 0.0756� 0.0141 0.1191� 0.0138 0.0389þ0.0037
−0.0033

ψ → ηeþe− 1.16� 0.09 1.16� 0.08 1.21� 0.04
ψ → η0eþe− 5.81� 0.35 5.76� 0.16 5.66� 0.16
ψ → π0μþμ− � � � 0.0280� 0.0032 0.0101þ0.0010

−0.0009
ψ → ημþμ− � � � 0.32� 0.02 0.30� 0.01
ψ → η0μþμ− � � � 1.46� 0.04 1.31� 0.04

UNIFIED STUDY OF J=ψ → PV, Pγð�Þ … PHYSICAL REVIEW D 91, 014010 (2015)

014010-11



IV. CONCLUSIONS

We use the effective Lagrangian approach to simulta-
neously study the decays of J=ψ → VP, J=ψ → Pγ,
J=ψ → Plþl− together with the light meson radiative
processes, such as VPγð�Þ, Pγγð�Þ. We take the building
blocks involving external sources, light pseudoscalar mes-
ons and vector resonances from the chiral effective field
theory to construct the effective Lagrangian for the J=ψ
decays. The SUð3Þ-flavor symmetry breaking effects and
the OZI rules are systematically and concisely implemented
in this approach. For the processes with only light hadrons,
we closely follow our previous work in Ref. [30] and
use the resonance chiral theory to build the relevant
Lagrangians. The two-mixing-angle scheme from the gen-
eral discussion in Uð3Þ chiral perturbation theory is
employed to describe the η-η0 mixing in various processes
involving η or η0. Making comparisons with our previous
results by taking only the light hadron data in the analyses,
we update the values for the mixing parameters by
including the relevant J=ψ decays in this work. It turns
out that the present determination prefers more negative
values for the two mixing angles θ0 and θ8 from the octet-
singlet basis, or smaller values for the ϕq and ϕs from the
quark-flavor basis. Since we make a global fit for the J=ψ
and the light hadron data in this work, smaller error bars
result for some of the couplings in Table I, especially for ~c3
and θ0. This clearly indicates the relevance of the J=ψ data
for the determinations of the couplings involving only light
hadrons and the η-η0 mixing parameters.
In short summary, we have found a proper theoretical

framework that can be used to systematically and success-
fully describe the J=ψ → VP, Pγð�Þ and the light meson
radiative decays. Another interesting and relevant subject
along this research line is to take ψð2SÞ → VP and
ψð2SÞ → Pγ into account, so that the famous ρπ puzzle
in charmonium decays can be addressed. Nevertheless, a
straightforward generalization of the decay mechanisms
from J=ψ to ψð2SÞ might be problematic, as was recently
discussed in Ref. [74]. Moreover, because of the fact that
the low statistics for the ψð2SÞ data can not be compared to
the precise ones of the J=ψ and light hadrons, it is not so

clear whether it is justified to make a global fit by including
the ψð2SÞ data as the ones considered in this work.
Therefore we think it is worthy starting an independent
project to study the ψð2SÞ decays, which is under prepa-
ration, to specifically address the long-standing ρπ puzzle.
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APPENDIX A: THE FORM
FACTORS OF J=ψ → Pγ�

For later convenience, we define several ai factors as
follows:

a1 ¼
F

cosðθ0 − θ8Þ
�

1ffiffiffi
6

p cos θ0
F8

−
1ffiffiffi
3

p sin θ8
F0

�
;

a2 ¼
F

cosðθ0 − θ8Þ
�

1ffiffiffi
6

p sin θ0
F8

þ 1ffiffiffi
3

p cos θ8
F0

�
;

a3 ¼
F

cosðθ0 − θ8Þ
�
−

2ffiffiffi
6

p cos θ0
F8

−
1ffiffiffi
3

p sin θ8
F0

�
;

a4 ¼
F

cosðθ0 − θ8Þ
�
−

2ffiffiffi
6

p sin θ0
F8

þ 1ffiffiffi
3

p cos θ8
F0

�
:

The explicit expressions for the form factors of the
J=ψ → Pγ� defined in Eq. (22) are given below:

TABLE VI. The modulus of form factor jGψ→VPj in units of 10−6 MeV−1 contributed by the strong transitions to the isospin conserved
channels, and by the EM transitions to the isospin violated channels. The error bands from this table are calculated by using the same
parameter configurations as Table I.

Isospin conserved cases Exp. data Strong interaction Isospin violated cases Exp. data EM interaction

jGψ→ρ0π0 j 2.541� 0.154 2.933� 0.144 jGψ→ρ0ηj 0.498� 0.029 0.510� 0.056
jGψ→ρπ j 4.415� 0.192 5.080� 0.250 jGψ→ρ0η0 j 0.418� 0.034 0.429� 0.063
jGψ→ωηj 1.499� 0.084 1.628� 0.097 jGψ→ωπ0 j 0.722� 0.039 0.722� 0.091
jGψ→ωη0 j 0.552� 0.031 0.659� 0.059
jGψ→ϕηj 1.069� 0.056 1.346� 0.066
jGψ→ϕη0 j 0.910� 0.076 1.178� 0.126
jGψ→K�þK− j 1.860� 0.054 2.473� 0.089
jGψ→K�0K̄0 j 1.726� 0.060 2.468� 0.082
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Gψ→π0γ� ðsÞ ¼ −
4g1
Fπ

−
16g2
FπM2

ψ
m2

π þ 2
ffiffiffi
2

p
h1Mψ

FV

Fπ
DρðsÞ þ 8

ffiffiffi
2

p
h2

m2
π

Mψ

FV

Fπ
DρðsÞ; ðA1Þ

Gψ→ηγ� ðsÞ ¼ −
4

ffiffiffi
2

p
g1

3F
ða1 − a3Þ −

16
ffiffiffi
2

p
g2

3FM2
ψ
½a1m2

π − a3ð2m2
K −m2

πÞ� þ
4

3
Mψ

FV

F

��
h1 þ 4h2

m2
π

M2
ψ
þ 2h3

�
a1

þ h3a3

	
DωðsÞ −

4

3
Mψ
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F


�
h1 þ 4h2

1

M2
ψ
ð2m2

K −m2
πÞ þ h3

	
a3 þ 2h3a1

�
DϕðsÞ

þ ληηcgψηcγðsÞeiδη ; ðA2Þ

Gψ→η0γ� ðsÞ ¼ −
4

ffiffiffi
2

p
g1

3F
ða2 − a4Þ −

16
ffiffiffi
2

p
g2

3FM2
ψ
½a2m2

π − a4ð2m2
K −m2

πÞ� þ
4

3
Mψ
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��
h1 þ 4h2

m2
π

M2
ψ
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4
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Mψ
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1
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ψ
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K −m2
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a4 þ 2h3a2

�
DϕðsÞ

þ λη0ηcgψηcγðsÞeiδη0 ; ðA3Þ
where the definition of DRðsÞ is

DRðsÞ ¼
1

M2
R − s − iMRΓRðsÞ

: ðA4Þ

For the narrow-width resonances ω and ϕ, we use the constant widths in the numerical discussion. For the ρ resonance, the
energy dependent width is given by [30]

ΓρðsÞ ¼
sMV

96πF2

�
σ3πθðs − 4m2

πÞ þ
1

2
σ3Kθðs − 4m2

KÞ
	
; ðA5Þ

where σP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

P=s
p

and θðsÞ is the step function.

APPENDIX B: THE FORM FACTORS OF VPγ�

The various form factors FVPγ� ðsÞ from different processes have already been given in Ref. [30] and we show them below
for the sake of completeness:

Fρπγ� ðsÞ ¼ −
2

ffiffiffi
2

p

3FπMVMρ
½ð~c1 þ ~c2 þ 8~c3 − ~c5Þm2

π þ ð~c2 þ ~c5 − ~c1 − 2~c6ÞM2
ρ þ ð~c1 − ~c2 þ ~c5Þs�

þ 4FV

3FπMρ
DωðsÞ½ð ~d1 þ 8~d2 − ~d3Þm2
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ρ þ sÞ�; ðB1Þ

Fρηγ� ðsÞ ¼ −
4
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ρð~c2 − ~c1 þ ~c5 − 2~c6Þ þm2
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π

þ ð~c1 − ~c2 þ ~c5Þs
	
þ 4

ffiffiffi
2

p
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MρF
DρðsÞa1½ ~d3ðM2

ρ −m2
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−
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cos ðθ0 − θ8ÞF0
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−
4

ffiffiffi
2

p
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~d5DρðsÞ
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Fρη0γ� ðsÞ ¼ −
4
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�
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þ 4
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2

p
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MρF
DρðsÞa2½ ~d3ðM2

ρ −m2
η0 þ sÞ þ ~d1m2

η0 þ 8~d2m2
π�

−
cos θ8

cos ðθ0 − θ8ÞF0

�
4
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2

p
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V
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Fωπγ� ðsÞ ¼ −
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p
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APPENDIX C: THE FORM FACTORS OF J=ψ → VP

The explicit expressions for the form factors of the J=ψ → VP defined in Eq. (30) are given below:
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ffiffiffi
2

p

FπMρ
h1Mψ þ 8

ffiffiffi
2

p

FπMρ
h2m2

π
1

Mψ
þ 32πα

FπMρ
FVg1 þ

128πα

FπMρ
FVg2

m2
π

M2
ψ
þ 8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fρπγ�ðM2
ψÞ; ðC1Þ

Gψ→ρþπ− ¼ 2
ffiffiffi
2

p

FπMρ
h1Mψ þ 8

ffiffiffi
2

p

FπMρ
h2m2

π
1

Mψ
þ 8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fρπγ� ðM2
ψ Þ; ðC2Þ

Gψ→ρ0η ¼
32

ffiffiffi
2

p
πα

3FMρ
FVg1ða1 − a3Þ þ

128
ffiffiffi
2

p
πα

3FMρM2
ψ
FVg2½a1m2

π − a3ð2m2
K −m2

πÞ�

− 8πα
FV

Mρ
ληηcgψηcγðM2

ρÞeiδη þ
8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fρηγ� ðM2
ψ Þ; ðC3Þ

Gψ→ρ0η0 ¼
32

ffiffiffi
2

p
πα

3FMρ
FVg1ða2 − a4Þ þ

128
ffiffiffi
2

p
πα

3FMρM2
ψ
FVg2½a2m2

π − a4ð2m2
K −m2

πÞ�

− 8πα
FV

Mρ
λη0ηcgψηcγðM2

ρÞeiδη0 þ
8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fρη0γ� ðM2
ψÞ; ðC4Þ

Gψ→ωπ0 ¼
32πα

3FπMω
FVg1 þ

128πα

3FπMω
FVg2

m2
π

M2
ψ
þ 8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fωπγ� ðM2
ψ Þ; ðC5Þ

Gψ→ωη ¼
4

FMω
a1h1Mψ þ 16

FMω
a1h2m2

π
1

Mψ
þ 4

FMω
ð2a1 þ a3Þh3Mψ þ 32

ffiffiffi
2

p
πα

9FMω
FVg1ða1 − a3Þ

þ 128
ffiffiffi
2

p
πα

9FMωM2
ψ
FVg2½a1m2

π − a3ð2m2
K −m2

πÞ� −
8

3
πα

FV

Mω
ληηcgψηcγðM2

ωÞeiδη þ
8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fωηγ� ðM2
ψÞ; ðC6Þ

Gψ→ωη0 ¼
4

FMω
a2h1Mψ þ 16

FMω
a2h2m2

π
1

Mψ
þ 4

FMω
ð2a2 þ a4Þh3Mψ þ 32

ffiffiffi
2

p
πα

9FMω
FVg1ða2 − a4Þ

þ 128
ffiffiffi
2

p
πα

9FMωM2
ψ
FVg2½a2m2

π − a4ð2m2
K −m2

πÞ� −
8

3
πα

FV

Mω
λη0ηcgψηcγðM2

ωÞeiδη0 þ
8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fωη0γ� ðM2
ψ Þ; ðC7Þ

Gψ→ϕη ¼ −
2

ffiffiffi
2

p

FMϕ
a3h1Mψ −

8
ffiffiffi
2

p

FMϕ
a3h2ð2m2

K −m2
πÞ

1

Mψ
−

2
ffiffiffi
2

p

FMϕ
ð2a1 þ a3Þh3Mψ

þ 64πα

9FMϕ
FVg1ða1 − a3Þ þ

256πα

9FMϕM2
ψ
FVg2½a1m2

π − a3ð2m2
K −m2

πÞ�

−
8

ffiffiffi
2

p

3Mϕ
παFVληηcgψηcγðM2

ϕÞeiδη þ
8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fϕηγ� ðM2
ψÞ; ðC8Þ

Gψ→ϕη0 ¼ −
2

ffiffiffi
2

p

FMϕ
a4h1Mψ −

8
ffiffiffi
2

p

FMϕ
a4h2ð2m2

K −m2
πÞ

1

Mψ
−

2
ffiffiffi
2

p

FMϕ
ð2a2 þ a4Þh3Mψ

þ 64πα

9FMϕ
FVg1ða2 − a4Þ þ

256πα

9FMϕM2
ψ
FVg2½a2m2

π − a4ð2m2
K −m2

πÞ�

−
8

ffiffiffi
2

p

3Mϕ
παFVλη0ηcgψηcγðM2

ϕÞeiδη0 þ
8

ffiffiffi
2

p
πα

3

fψ
Mψ

Fϕη0γ�ðM2
ψ Þ; ðC9Þ

UNIFIED STUDY OF J=ψ → PV, Pγð�Þ … PHYSICAL REVIEW D 91, 014010 (2015)

014010-15
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