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We discuss generalizations of the Brodsky–Lepage–Mackenzie optimization procedure for renormal-
ization group invariant quantities. In this respect, we discuss in detail the features and construction of the
fβg-expansion presentation instead of the standard perturbative series with regard to the Adler D function
and Bjorken polarized sum rules obtained in the order of Oðα4sÞ. Based on the fβg expansion, we analyze
different schemes of optimization, including the corrected principle of maximal conformality, numerically
illustrating their results. We suggest our scheme for the series optimization and apply it to both the above
quantities.
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I. INTRODUCTION

The problem of scale-scheme dependence ambiguities in
the renormalization-group (RG) calculations [1] remains
important. In the past few years, a new extension of the
Brodsky–Lepage–Mackenzie (BLM) scale-fixing approach
[2], called the principle of maximal conformality (PMC),
was started [3] and formulated in more detail in Refs. [4–7]
with a variety of applications to phenomenologically
oriented studies.
Here, we show that the PMC approach is closely related

to the sequential BLM (seBLM) method, originally pro-
posed in Ref. [8] for the analysis of the next-to-next-to-
leading-order (NNLO) QCD prediction for quantities like
the eþe−-annihilation R ratio. This method was based
on the RG-inspired presentation of the fβg expansion for
perturbative series, the one later used for other purposes in
Refs. [9,10]. The seBLM was constructed as a generali-
zation of the works devoted to the extension of the BLM
MS-type scale-fixing prescription to the level of NNLO
QCD corrections [11,12] and beyond [13–16].
In this paper, we will use the fβg-expansion presentation

and the seBLM method to study the eþe−-annihilation R
ratio, the related Adler functionDEM of the electromagnetic
quark currents, and the Bjorken sum rule SBjp of the
polarized lepton-nucleon deep-inelastic scattering (DIS).
We will clarify the concrete theoretical shortcomings of the
PMC QCD studies performed in a number of works on
the subject, in particular, in Refs. [4–7], and will present the
results for the corrected PMC approach.
Certain problems of the misuse of the PMC approach to

the Adler function were already emphasized in Ref. [17]

but not recognized in the recently published work [7]. We
will clarify these theoretical problems in more detail and
consider the existing modification of the NNLO PMC
analysis, based on application of the seBLMmethod, which
allows one to reproduce the original next-to-leading-order
(NLO) BLM expression from the considerations performed
in Ref. [7] and already discussed in Ref. [17]. Note that the
necessity of introducing modifications to the analysis of
Ref. [7] starts to manifest itself from the level of taking into
account the second-order perturbative corrections to the R
ratio evaluated analytically in Ref. [18] in the minimal
subtractions (MS) scheme proposed in Ref. [19]. This result
was also obtained numerically in Ref. [20] and confirmed
analytically in Ref. [21] by using the MS scheme of
Ref. [22]. At the level of the third-order corrections to
DEM, analytically calculated in the MS scheme [23,24] and
confirmed in the independent work [25], there appear
additional differences between the results of the PMC
and the seBLM methods.
We present several arguments in favor of theoretical

and phenomenological applications of the form of the
β-expanded expressions for the RG invariant (RGI) quan-
tities proposed in Ref. [8] and applied in Ref. [9].1 In this
respect, let us mention the QCD generalization (in the MS
scheme) of the Crewther relation [27] based on the fβg
expansion [9]. Using the results of these relations, we
obtain in a self-consistent way the NNLO fβg expansion
for SBjpðQ2Þ in QCD with n~g numbers of gluinos, which
can be checked by direct analytical calculations.
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1Note that the fβg-expansion representation is related in part to
the expansion of the perturbative terms, considered in Ref. [26],
in the RGI Green functions through the powers of the first
coefficient of the β function.
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The article is organized as follows. In Sec. II, we
define single-scale RG invariant quantities for the eþe−
annihilation to hadrons and for the DIS inclusive processes,
which will be studied in this work. The existing theoretical
relations between perturbative expressions for these
characteristics are also summarized. In Sec. III, the fβg
expansion of the RGI quantities, proposed in Ref. [8] and
applied in Refs. [9,10], is revisited and discussed in detail.
Using the results of Ref. [8] and the “multiple power
β-function” QCD expression [9] for the MS-scheme
generalization of the Crewther relation [27], we provide
the arguments that this expansion is unique. The details
of constructing the fβg expansions for the Adler DEM

function and for the SBjp sum rule are described at the
level of the Oða3sÞ corrections, where as ¼ αs=ð4πÞ. In
Sec. IVA, we consider the relations between certain terms
of the fβg expansion for DEM and SBjp, which will be
obtained from the Crewther relation of Ref. [27] and its
QCD generalization of Ref. [9], and present the concrete
fβg-expanded contributions to the DEM function, R ratio,
and the SBjp sum rule.
Using our definition of the fβg-expansion representation,

we correct the values of the PMC coefficients and the scales
in the related powers of the PMC perturbative expressions
for the Adler function DEM and Reþe− ratio, presented in
Refs. [4–7], and discuss their correspondence to the results
obtained in Refs. [8,9,17]. The discussion of the results of
the BLM, seBLM, and PMC procedures together with the
numerical estimates of the corresponding perturbation theory
(PT) coefficients and the couplings at new normalization
scales are presented in Sec. V. It is demonstrated that, in spite
of its theoretical prominence following from the conformal
symmetry relations, even the corrected PMC procedure does
not improve the convergence of perturbative series for the R
ratio and for the SBjp sum rule. The methods of further
optimizations of these series, which are based on the fβg
expansion, are elaborated on in Sec. VI. The technical results
are presented in the Appendixes.

II. DEFINITIONS OF THE BASIC QUANTITIES

Consider first the Adler function DEMðQ2Þ, which is
expressed through the two-point correlator of the electro-
magnetic vector currents jEMμ ¼ P

iqiψ̄ iγμψ i taken at
Euclidean −q2 ¼ Q2. Here, qi stands for the electric charge
of the quark field ψ i. DEMðQ2Þ consists of the sum of its
nonsinglet (NS) and singlet (S) parts

DEM
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i
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where

DNSðQ2=μ2; asðμ2ÞÞ ¼ 1þ
X
l≥1

dNSl ðQ2=μ2Þalsðμ2Þ;

ð2:1bÞ

DSðQ2=μ2; asðμ2ÞÞ ¼
dabcdabc

dR

X
l≥3

dSl ðQ2=μ2Þalsðμ2Þ:

ð2:1cÞ

Here, dR is the dimension of the Lie algebra related to
the SUðNcÞ group (in the fundamental representation
dR ¼ Nc), and dabc ¼ 2Trðfλa=2; λb=2g; λc=2Þ is the sym-
metric tensor. Both the NS and S contributions to the Adler
function are the RGI quantities calculable in the Euclidean
domain. After applying the RG equation, they can be
represented as

DNSðQ2=μ2; asðμ2ÞÞ ⟶
μ2¼Q2

DNSðasðQ2ÞÞ
¼ 1þ

X
l≥1

dNSl alsðQ2Þ ð2:2aÞ

DSðQ2=μ2; asðμ2ÞÞ ⟶
μ2¼Q2

DSðasðQ2ÞÞ

¼ dabcdabc

dR

X
l≥3

dSl a
l
sðQ2Þ: ð2:2bÞ

Because of the cancellation of the logarithms lnkðQ2=μ2Þ
with k ≥ lþ 1 in the terms dai ðQ2=μ2Þ (the superscript
a defines the contributions to the NS and S parts of the
DEM-function), the coefficients of dal ≡ dal ð1Þ are the
numbers in the MS-like schemes.
Let us emphasize that in this work we use the perturba-

tive expansion parameter asðμ2Þ normalized as asðμ2Þ≡
αsðμ2Þ=4π. It obeys the RG equation with the consistently
normalized SUðNcÞ-group β function

μ2
d
dμ2

asðμÞ ¼ βðasÞ ¼ −a2s
X
i≥0

βiais; ð2:3Þ

where β0 ¼ ð11=3CA − ð4=3ÞTRnfÞ, while other coeffi-
cients βi are presented in Appendix A.
The quantity related to the observable total cross section of

the eþe → hadrons processReþe−ðsÞ¼σðeþe−→hadronsÞ=
σðeþe−→μþμ−Þ is measured in the Minkowski region
(s > 0); this can be obtained from the DEM function as
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Reþe−ðsÞ≡ Rðs; μ2 ¼ sÞ ¼ 1

2πi

Z
−sþiε

−s−iε

DEMðσ=μ2; asðμ2ÞÞ
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����
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rSnansðsÞ: ð2:4Þ

The coefficients ram for the a part (a ¼ NS or S) of Reþe− are
associated with the coefficients dal of theD

a function by the
triangular matrix Ta of the relation ram ¼ Ta

mld
a
l , which will

be discussed in Sec. IV C and Table I.
The next observable RGI quantity we will be interested

in is the Bjorken polarized sum rule SBjp. It is defined by
the integral over the difference of the spin-dependent
structure functions of the polarized lepton-proton and
lepton-neutron deep-inelastic scattering as

SBjpðQ2Þ ¼
Z

1

0

½glp1 ðx;Q2Þ − gln1 ðx;Q2Þ�dx

¼ gA
6
CBjpðQ2=μ2; asðμ2ÞÞ; ð2:5Þ

where gA is the nucleon axial charge as measured in the
neutron β decay and CBjpðasÞ is the coefficient function
calculable within perturbation theory and not damped by
the inverse powers of Q2, i.e., the leading-twist term.
The application of the operator-product expansion (OPE)

method in the MS-like scheme [28] and the knowledge on
the perturbative structure of the MS-scheme QCD gener-
alization of the quark-parton model Crewther relation [27]
gained from articles in Refs. [29–35] indicate the existence
of the previously undiscussed singlet contribution to
CBjpðasÞ [36]. Using the results of this work, we define
the overall perturbative expression for CBjp as

CBjpðQ2=μ2; asðμ2ÞÞ ¼ CBjp
NS ðQ2=μ2; asðμ2ÞÞ

þ
�X

i

qi

�
CBjp
S ðQ2=μ2; asðμ2ÞÞ;

ð2:6Þ

where the NS and S coefficient functions can be written
down as

CBjp
NS ðQ2=μ2; asðμ2ÞÞ ¼ 1þ

X
l≥1

cNSl ðQ2=μ2Þalsðμ2Þ ð2:7Þ

CBjp
S ðQ2=μ2; asðμ2ÞÞ ¼

dabcdabc

dR

X
l≥3

cSl ðQ2=μ2Þalsðμ2Þ

ð2:8Þ

and have the following RG-improved form:

CBjp
NS ðQ2=μ2; asðμ2ÞÞ ⟶

μ2¼Q2

CBjp
NS ðasðQ2ÞÞ

¼ 1þ
X
l≥1

cNSl alsðQ2Þ; ð2:9aÞ

CBjp
S ðQ2=μ2; asðμ2ÞÞ ⟶

μ2¼Q2

CBjp
S ðasðQ2ÞÞ

¼ dabcdabc

dR

X
l≥3

cSl a
lþ1
s ðQ2Þ; ð2:9bÞ

CBjpðasðQ2ÞÞ ¼ CBjp
NS ðasðQ2ÞÞ þ CBjp

S ðasðQ2ÞÞ: ð2:9cÞ

The analytical expressions for the NLO and NNLO
corrections to Eq. (2.9a) in the MS scheme were evaluated
in Refs. [37] and [38], respectively, while the correspond-
ing next-to-next-to-next-to-leading-order (N3LO) Oða4sÞ
correction was calculated in Ref. [33] (its direct analytical
form was also presented in Ref. [9]). The symbolic
expression for the coefficient cS4 of the Oða4sÞ correction
to the singlet contributionCBjp

S ðasÞ of the Bjorken polarized
sum rule was fixed in Ref. [36] from the MS-scheme
generalization of the Crewther relation, which will be
presented below.
Let us also consider the Gross–Llewellyn -Smith (GLS)

sum rule of the deep-inelastic neutrino-nucleon scattering.
Its leading-twist perturbative QCD expression can be
defined as

SGLSðQ2Þ ¼ 1

2

Z
1

0

½Fνp
3 ðx;Q2Þ þ Fνn

3 ðx;Q2Þ�dx

¼ 3CGLSðQ2=μ2; asðμ2ÞÞ; ð2:10Þ
where F3ðx;Q2Þ is the structure functions of the deep-
inelastic neutrino-nucleon scattering process. The coeffi-
cient function on the rhs of Eq. (2.10) also contains both NS
and S contributions, namely,

CGLSðQ2=μ2; asðμ2ÞÞ ¼ CNS
GLSðQ2=μ2; asðμ2ÞÞ

þ CS
GLSðQ2=μ2; asðμ2ÞÞ: ð2:11Þ

As a consequence of the chiral invariance, which can be
restored in the dimensional regularization [39] by means of
additional finite renormalizations (for their evaluation in
high-loop orders, see, e.g., Refs. [37,38,40,41]), the NS
contributions to the leading-twist coefficient function of
SGLSðQ2Þ coincide with a similar NS perturbative contribu-
tion SBjpðQ2Þ, namely,
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CNS
GLSðQ2=μ2; asðμ2ÞÞ≡ CBjp

NS ðQ2=μ2; asðμ2ÞÞ
¼ 1þ

X
l≥1

cNSl ðQ2=μ2Þalsðμ2Þ

⟶
μ2¼Q2

CBjp
NS ðasðQ2ÞÞ

¼ 1þ
X
l≥1

cNSl alsðQ2Þ: ð2:12Þ

The fulfilment of this identity was explicitly demonstrated
in the existing analytical NLO and NNLO calculations in
Refs. [37,38] and used as the input in the process of
determination of the analytical expression for the Oða4sÞ
corrections to SGLSðQ2Þ [34].
The second (singlet-type) contribution to the coefficient

function of Eq. (2.11) has the form

CS
GLSðQ2=μ2; asðμ2ÞÞ ¼ nf

dabcdabc

dR

X
l≥3

c̄lðQ2=μ2Þalsðμ2Þ

⟶
μ2¼Q2

CS
GLSðasðQ2ÞÞ

¼ nf
dabcdabc

dR

X
l≥3

c̄l alsðQ2Þ; ð2:13Þ

where c̄3 and c̄4 were evaluated analytically in Refs. [38]
and [34], respectively.
The application of the OPE approach to the three-

point functions of axial-vector-vector currents (see
Refs. [30–32,35,36]) leads to the following MS-scheme
QCD generalization of the Crewther relation (CR) between
the different coefficient functions of the annihilation and
deep-inelastic scattering processes introduced above,

CBjpðasÞDNSðasÞ≡ CGLSðasÞ½DNSðasÞ þ nfDSðasÞ�
ð2:14aÞ

¼ 1þ βðasÞ
as

· PðasÞ; ð2:14bÞ

where 1 was derived in Ref. [27] using the conformal
symmetry, βðasÞ is the RG β function, as ¼ asðQ2Þ, and
the polynomial P is

PðasÞ ¼ asK1 þ a2sK2 þ a3sK3 þOða4sÞ: ð2:15Þ

It contains the coefficients K1 and K2, obtained in
Ref. [29], while the analytical expression for the coefficient
K3 ¼ KNS

3 þ KS
3 is the sum of the NS and S terms, which

are given in Refs. [33] and [34], respectively. Note that
Eq. (2.14a) was first published in Ref. [35] without taking
into account singlet-type contributions to CBjp. Their more

careful analysis of Ref. [36] fixes the β0-dependent
analytical expression of the Oða4sÞ contribution to CBjp

S .2

The result of Ref. [36] and the general Eq. (2.14a) is not
yet confirmed by direct analytical calculations. In our
further studies we will use the product of their NS parts
and the related to this product results of the expansion in
Eq. (2.14b), reformulated in Ref. [9].

III. GENERAL β-EXPANSION STRUCTURE
OF OBSERVABLES

A. Formulation of the approach

To clarify the main ideas of the fβg-expansion repre-
sentation proposed in Ref. [8] for the perturbative coef-
ficients of the RGI quantities, let us consider the NS part
of the Adler function. Its expression can be rewritten as
DNS ¼ 1þ dNS1 ·

P
n≥1dla

l
s, where dNS1 ¼ 3CF is the

overall normalization factor. Within the fβg-expansion
approach, the coefficients dn, originally fixed in the MS
scheme, are expressed as

d1 ¼ d1½0� ¼ 1; ð3:1aÞ

d2 ¼ β0d2½1� þ d2½0�; ð3:1bÞ

d3 ¼ β20d3½2� þ β1d3½0; 1� þ β0d3½1� þ d3½0�; ð3:1cÞ

d4 ¼ β30d4½3� þ β1β0d4½1; 1� þ β2d4½0; 0; 1�
þ β20d4½2� þ β1d4½0; 1� þ β0d4½1�

d4½0�; ð3:1dÞ

..

.

dN ¼ βN−1
0 dN ½N − 1� þ � � � þ dN ½0�; ð3:1eÞ

where the first argument of the expansion elements
dn½n0; n1;…� indicates its multiplication to the n0th power
of the first coefficient β0 of the RG β function, namely, to
the βn00 term. The second argument n1 determines the power
of the second multiplication factor, namely, βn11 , and
so on. The elements dn½0�≡ dn½0; 0;…; 0� define “refined”
βi-independent corrections with powers ni ¼ 0 of all their
βnii multipliers. These elements coincide with expressions
for the coefficients dn in the imaginary situation of the
nullified QCD β function in all orders of perturbation
theory. This case corresponds to the effective restoration of
the conformal symmetry limit of the bare SUðNcÞmodel in
the case in which all normalizations are not considered.
This limit, extensively discussed in Ref. [17], will be
considered here as a technical trick. The origins of other

2In QED the validity of Eq. (2.14a) follows from the consid-
erations of Ref. [42].
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elements in expansions in (3.1a)–(3.1e) were considered
in Ref. [8].
The first elements di½i − 1� of the expansions of

Eqs. (3.1b)–(3.1e) arise from the diagrams with a maxi-
mum number of the “fermion one-loop bubble” insertions
and applications of the naive non-Abelization (NNA)
approximation [43]). In the case of the DNS function, they
can be obtained from the result in Ref. [29], which follow
from renormalon-type calculations in Refs. [44,45].
It should be stressed that the terms β0d3½1� in Eq. (3.1c)

and β1d4½0; 1�, β0d4½1� in Eq. (3.1d) were not taken into
account in the variant of the fβg-expansion method used in
Refs. [4–6]. The omitting of these terms leads to the results,
which should be corrected by including these terms in the
self-consistent variant of the PMC analysis.
In high order of perturbation theory, one should

also consider a similar expression of the singlet part

DS ¼ dS3 ·
P

j≥3d̄ja
ðjÞ
s with the normalization factor dS3 ¼

11=3 − 8ζ3 evaluated first in the QED work [46] and the
related normalizations of the defined coefficients in
Eq. (2.13), namely, d̄j ¼ dSj =d

S
3 . The fβg-expanded coef-

ficients of this RGI quantity are expressed as

d̄3 ¼ d̄3½0� ¼ 1 ð3:2aÞ

d̄4 ¼ β0d̄4½1� þ d̄4½0�; ð3:2bÞ

..

.

d̄jþ2 ¼ βj−10 d̄jþ2½j − 1� þ � � � þ d̄jþ2½0�: ð3:2cÞ

The same ordering in the β-function coefficients can
be applied to the coefficientscn for theNScoefficient function
of the deep-inelastic sum rules CNS of Eq. (2.12) and to the
singlet contribution CS to the GLS sum rule [see Eq. (2.13)].
Moreover, it is possible to show that the elements
of the corresponding fβg expansions dn½n0;n1;…� and
cn½n0; n1;…� are closely related [9]. We will return to
a more detailed discussion of this property a bit later.
The above fβg expansion can be interpreted as a

“matrix” representation for the RGI quantities: For the
quantity DNS expanded up to an order of N, DNS ¼P

N
n¼1 a

n
s
P

i≥0D
NS
ni B

ðiÞ, which is related to the traditional
“vector” representation, DNS ¼ P

N
n¼1 a

n
sdn with dn ¼P

iD
NS
ni B

ðiÞ. Here, BðiÞ are the elements that express the
structure of fβg-expanded perturbative coefficients and are
convolved with the matrix elements DNS

ni ¼ dn½…�. In the
case of consideration of the refined βi-independent correc-
tions, dn½0�≡Dn0 and Bð0Þ ¼ 1. The similar matrix rep-
resentation can be written down for the singlet partDS with
the fβg-expanded coefficient defined in Eqs. (3.2a)–(3.2c).
Note that the matrix representation contains new

dynamical information about the RGI quantities, which
is not contained in the vector one. Thus, Eqs. (3.1b) and

(3.2b) can be considered as the initial points to apply the
standard BLM procedure. The generalization of the BLM
procedure to higher orders can be constructed using the fβg
expansions of higher-order coefficients of Eqs. (3.1c)–
(3.1e) [8]. However, starting with the NNLO, the explicit
solution of this problem is nontrivial.

B. Explicit determination of the structures
of the fβg-expanded series for DNS

Let us start the discussion of application of the
fβg-expansion procedure in the NLO. Imagine that we
deal with the perturbative quenched QCD (pqQCD)
approximation for the DNS function in the NLO. It is
described by the contributions of the three-loop photon
vacuum polarization diagrams with closed external loop,
formed by a quark-antiquark pair and connected by internal
gluon propagators, which do not contain any internal
quark-loop insertions. In this theoretical approximation,
the coefficient d2 takes the following form:

d2 → dpqQCD2 ¼ −
CF

2
þ
�
123

2
− 44ζ3

�
CA

3
with

β0 ¼
11

3
CA: ð3:3Þ

In this case, it is unclear how to perform the standard
BLM scale-fixing prescription in the NLO approximation.
Indeed, it is not clear what is the expression for the d2½1�
coefficient of the β0 term of Eq. (3.1b) in the expression for
dpqQCD2 . To obtain explicitly the elements of the expansion
(3.1b) and extract the β0 term in (3.3), one should take into
account the quark-antiquark one-loop insertion in internal
gluon lines of the three-loop approximation for the had-
ronic vacuum polarization function. This is equivalent to
taking into account in the pqQCD model of the interacting
with gluons of internal quark loops with nf number of
active quarks. The corresponding parameter nf can be
considered as a mark of the charge renormalization by the
quark-antiquark pairs. It enters into both d2 and β0
expressions and allows one to extract unambiguously the
expression for d2 proportional to the β0 term in the MS
scheme. Indeed, fixing TR ¼ TF ¼ 1

2
, we obtain

d2 ¼ −
CF

2
þ
�
11 · 11þ 2

2
− 44ζ3

�
CA

3

−
�
11

2
− 4ζ3

�
2

3
nf with

β0 ¼
11

3
CA −

2

3
nf : ð3:4Þ

To get the appropriate expression of the coefficient d2, one
should take into account the one-loop renormalization of
charge. As a result, we immediately obtain from Eq. (3.4)
the expression for the coefficient of Eq. (3.1b),
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d2 ¼
CA

3
−
CF

2
þ
�
11

2
− 4ζ3

��
11

3
CA −

2

3
nf

�
; ð3:5aÞ

where

d2½0� ¼
CA

3
−
CF

2
; d2½1� ¼

11

2
− 4ζ3: ð3:5bÞ

This decomposition corresponds to the case of the standard
BLM consideration in the MS scheme [2]. Note that for
nf ¼ 0 this decomposition remains valid for the case of
pqQCD (QCD at nf ¼ 0) and leads to Eq. (3.5b).
Any additional modifications of QCD, say, by means of

introducing into considerations n~g multiplets of a strong
interacting gluino [the element of the minimal supersym-
metric standard model (MSSM) model], will change in
the NLO expression for the considered RGI quantity the
content of the β0 coefficient in the expression for d2,
calculated in the MS scheme, but not the refined element
and the coefficients at β0 of Eq. (3.3). Using the result β0 for
the β function with the n~g multiplet of the strong interacting
gluino [see Eq. (A1a)] and the DNS function in the same
model [presented in Eq. (A5b)], the same result (3.5b) for
decomposition can unambiguously be obtained using the
additional to nf marks in Eq. (3.5a), namely, the number of
strong-interacting gluinos n~g. Indeed, combining the result

d2 ¼
CA

3
−
CF

2
þ
�
11

2
− 4ζ3

��
11

3
CA −

2

3
nf

�

− ð11 − 8ζ3Þn~g
CA

3
; ð3:6aÞ

with

β0ðnf ; n~gÞ ¼
11

3
CA −

2

3
ðnf þ n~gCAÞ; ð3:6bÞ

we get the expressions for d2½0� and d2½1�, which are
identical to the ones presented in Eq. (3.5b). Note that
these results can be obtained from Eqs. (3.6a) and (3.6b)

with gluino degrees of freedom only (n~g ≠ 0, nf ¼ 0) or
only with the quark ones (nf ≠ 0, n~g ¼ 0) or with taking
into account both of them. The reason of this unambiguity
is that the interaction of any new particle accumulated
here in the charge renormalization is determined by the
universal gauge group SUðNcÞ.
All these possibilities give us a simple tool to restore the

β0 term in the NLO following the BLM precription [2].
Thus, in the NLO, we may switch off the gluino degrees of
freedom. However, to get the fβg expansion of the NNLO
term in the form of Eq. (3.1c), we cannot use the quark
degrees of freedom only. Indeed, in this case, we face a
problem similar to that which arises in the process of fβg
decomposition of the pqQCD expression for dpqQCD2 in
Eq. (3.3) discussed above.
The fβg-expanded form for the d3 term was obtained in

Ref. [8] by means of a careful consideration of the
analytical Oða3sÞ MS-scheme expression for the Adler
function DNSðas; nf ; n~gÞ with the n~g QCD interacting
MSSM gluino multiplets obtained in Refs. [25] and
presented in Eqs. (A5b),(A5c)3 together with the corre-
sponding two-loop β function, βðnf ;n~gÞ; see Eqs. (A1a)
and (A1b).
Let us consider this procedure in more detail. The element

d3½2�, which is proportional to the maximum power β20 in
(3.1c), can be fixed in a straightforward way, using the
results in Ref. [29]. Then, one should separate the contri-
butions of β1 d3½0; 1� and of β0 d3½1� to the d3 term. They
both are linear in the number of quark flavors nf , and
therefore, they could not be disentangled directly. Their
separation is possible if one takes into account additional
degrees of freedom, e.g., the gluino contributions mentioned
above for both the quantities (the additional mark appears),
namely, for theDNS function from Eqs. (A5a)–(A5c) and for
the first two coefficients of the β function from Eqs. (A1a)
and (A1b). In this way, using two equations, one can
get the explicit form for the functions nf ¼ nfðβ0; β1Þ
and n~g ¼ n~gðβ0; β1Þ. Finally, substituting these functions
in D ¼ Dðas; nfðβ0; β1Þ; n~gðβ0; β1ÞÞ, its fβg-expanded
expression was obtained in Ref. [8],

DNSðas; nf; n~gÞ ¼ 1þ asð3CFÞ þ a2sð3CFÞ ·
�
CA

3
−
CF

2
þ
�
11

2
− 4ζ3

�
β0ðnf; n~gÞ

�

þ a3sð3CFÞ ·
��

302

9
−
76

3
ζ3

�
β20ðnf; n~gÞ þ

�
101

12
− 8ζ3

�
β1ðnf; n~gÞ

þ
�
CA

�
3

4
þ 80

3
ζ3 −

40

3
ζ5

�
− CFð18þ 52ζ3 − 80ζ5Þ

�
β0ðnf; n~gÞ

þ
�
523

36
− 72ζ3

�
C2
A þ 71

3
CACF −

23

2
C2
F

�
; ð3:7aÞ

3The NNLO analytical result for the gluino contribution evaluated in Ref. [25] was confirmed in Ref. [47].
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with [see Eqs. (A1b)]

β1ðnf; n~gÞ ¼
34

3
C2
A −

20

3
CA

�
TRnf þ

n~gCA

2

�

− 4

�
TRnfCF þ

n~gCA

2
CA

�
: ð3:7bÞ

Note that, in order to write down the Oða4sÞ coefficient of
DNS, analytically evaluated in the MS scheme in Ref. [33]
for the case of SUðNcÞ in a similar fβg-expanded form of
Eq. (3.1d), it is necessary to perform additional calcula-
tions, which generalize this result to the case of SUðNcÞ
with n~g multiplets of gluinos. Then, one should combine
this possible (but not yet existing) generalization with the
already available analytical expression for the β2ðnf; n~gÞ
coefficient from Eq. (A1c) of the β function in this model,
analytically obtained in the MS scheme in Ref. [48].

C. Does fβg expansion have any ambiguities?

It is instructive to discuss here an attempt [5,7] to obtain
the elements dn½…� in a different way. This is based on the
expression for D, rewritten in Ref. [49] for the usability of
current five-loop computation in the form

DEMðasÞ ¼ 12π2
�
γEMph ðasÞ − βðasÞ

d
das

ΠEMðasÞ
�
: ð3:8Þ

Here, ΠEMðasÞ ¼ ΠEMðL; asÞ≡ dR=ð4πÞ2
P

i≥0Πiais is the
polarization function of electromagnetic currents at
L≡ lnðQ2=μ2Þ ¼ 0, and γEMph ≡ 1=ð4πÞ2Pj≥0γja

j
s is the

anomalous dimension of the photon field. In our notation,
Eq. (3.8) leads to the expansion for DNS,

DNSðasÞ ¼ 1þ 3CFas þ ð12γ2 þ 3β0Π1Þa2s
þ ð48γ3 þ 3β1Π1 þ 24β0Π2Þa3s þ � � � ; ð3:9Þ

where the ingredients of the expansion, γi, Πj, were
calculated in Ref. [49] up to i ¼ 4, j ¼ 3, and we take
corresponding NS projection in the rhs of Eq. (3.8). The
renormalization of the charge certainly contributes to the
three-loop anomalous dimension γ2. Therefore, it contains
a β0 term also (one can make sure from the inspection of the
explicit formula for γ2 in Eq. (3.12) in Ref. [49] and even in
Eq. (10) in Ref. [20]). Taking into account the explicit form
of γ2 and Π1 in (3.9), one can recalculate the well-known
decomposition for DNS in order Oða2sÞ,

DNSðasÞ ¼ 1þ 3CF · as

þ 3CF · ðβ0d2½1� þ d2½0�Þa2s þOða3sÞ; ð3:10Þ

in full accordance with the result in Ref. [2] and Eq. (3.1b)
(for the related discussions, see Ref. [17] as well).

Unfortunately the authors of Ref. [7] claim, basing on a
formal correspondence, that the coefficient of β0 is only the
term Π1=CF in Eq. (3.9) (with the above notation at d1
normalized by unity), while the “conformal term” is
4γ2=CF (see Eqs. (48a–48b) in Ref. [2]), which in reality
is not true. The comparison of these terms

d2½1� ¼
11

2
− 4ζ3 ≈ 0.69177

⇔Π1=CF ¼ 55

12
− 4ζ3 ≈ −0.22489; ð3:11Þ

d2½0�¼d2½0�¼
CA

3
−
CF

2
⇔4γ2=CF¼

11

12
β0−

CF

2
ð3:12Þ

shows that they differ even in sign in (3.11) (compare
Π1=CF with d2½1�). The considerations of Ref. [7] lead to a
shift of the BLM scale Q2

BLM in the opposite direction,
Q2

BLM ≥ Q2, in comparison with the standard value
Q2

BLM ¼ exp ð−d2½1�ÞQ2 ≈Q2=2 [see the discussion after
Eq. (5.3g) in Sec. V]. Moreover, we demonstrate in
Eq. (3.12) that γ2 is not conformal and depends on β0.

IV. PARTIAL β-EXPANSION ELEMENTS
FOR D;C, AND R

We extend here our knowledge about the β-expansion
elements on the NS part of the Bjorken CBjp basing on CR
Eq. (2.14b) for DNS and CBjp

NS .

A. What constraints Crewther relation gives

In the case the β function has identically zero coefficients
βi ¼ 0 for i ≥ 0, the generalized CR (2.14b) returns to its
initial form [27]

DNS
0 · CBjp

0 ¼ 1; ð4:1Þ

where the expansions for the functions DNS
0 and CBjp

0 ,
analogous to the ones of Eqs. (3.1b)–(3.1e), contain the
coefficients of genuine content only, namely, dnðcnÞ≡
dn½0�ðcn½0�Þ. Equation (4.1) provides an evident relation
between the genuine elements in any loops, namely,

cNSn ½0� þ dNSn ½0� þ
Xn−1
l¼1

dNSl ½0�cNSn−l½0� ¼ 0; ð4:2Þ

where dNSn ½0� ¼ dNS1 · dn½0� and cNSn ½0� ¼ cNS1 · cn½0� in
virtue of the normalization condition. From Eq. (4.2) at
n ¼ 1 immediately follows that cNS1 ¼ −dNS1 . The relation
(4.2) can be used to obtain the unknown genuine parts of
the four-loop term cNS3 ½0�, through the four-loop results
already known from the analysis in Ref. [8]:
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cNS3 ½0� ¼ −dNS3 ½0� þ 2dNS1 dNS2 ½0� − ðdNS1 Þ3; ð4:3aÞ

or; in the other normalized terms;

c3½0� ¼ d3½0� − 2dNS1 d2½0� þ ðdNS1 Þ2: ð4:3bÞ

It is useful to relate the unknown elements cNS4 ½0�, dNS4 ½0� in
a five-loop calculation with the known elements of the four-
loop results, viz.,

cNS4 ½0� þ dNS4 ½0� ¼ 2dNS1 dNS3 ½0� − 3ðdNS1 Þ2dNS2 ½0�
þ ðdNS2 ½0�Þ2 þ ðdNS1 Þ4: ð4:4Þ

Let us consider now the generalized CR in Eq. (2.14b),
which includes the terms proportional to the conformal
anomaly, βðasÞ=as, appearing due to violation of the
conformal symmetry in the renormalized SUðNcÞ inter-
action (in the MS scheme). As it was shown in Ref. [9],
this relation can be rewritten in the multiple power
representation

DNS · CBjp
NS ¼ 1þ βðasÞ

as
· PðasÞ

¼ 1þ βðasÞ
as

·
X
n≥1

�
βðasÞ
as

�
n−1

PnðasÞ; ð4:5Þ

where PnðasÞ are the polynomials in as that can be
expressed only in terms of the elements dk½…�, ck½…�.
In this sense, Pn do not depend on the β function,
all the charge renormalizations being accumulated by
ðβðasÞ=asÞn. We present the first two polynomials with
factorized coefficients −cNS1 ¼ dNS1 ¼ 3CF:

P1ðasÞ ¼ −asdNS1 fd2½1� − c2½1� þ as½d3½1� − c3½1�
−dNS1 ðd2½1� þ c2½1�Þ� ð4:6aÞ

þ a2s ½d4½1� − c4½1� − dNS1 ðd3½1� þ c3½1�
þd2½0�c2½1� þ d2½1�c2½0�Þ�g; ð4:6bÞ

P2ðasÞ ¼ asdNS1 fd3½2� − c3½2� þ as½d4½1� − c4½2�
þ dNS1 ðc3½2� þ d3½2�Þ�g; ð4:6cÞ

which were obtained and verified in N3LO in Refs. [9,10]
in another normalization. The construction of the β term on
the rhs of (4.5) also creates constraints for combinations of
the β-expansion elements. A few chains of these constraints
were obtained in Ref. [9]. Further, we shall use the relation

d2½1� − c2½1� ¼ d3½0; 1� − c3½0; 1� ¼ � � �
¼ dn½0; 0;…; 1|fflfflfflfflffl{zfflfflfflfflffl}

n−1

� − cn½0; 0;…; 1|fflfflfflfflffl{zfflfflfflfflffl}
n−1

�

¼
�
7

2
− 4ζ3

�
; ð4:7Þ

which corresponds to Eq. (30) in Ref. [9].
If the terms c3½1�, d3½1� and c4½2�, d4½2� are missed in the

fβg expansion of DNS and CBjp
NS , as in the variant of the

expansion in Refs. [4–7], the structure of the generalized
CR in Eqs. (4.6a)–(4.6c) is corrupted. That structure
certainly contradicts the explicit results of analytical
calculations of DNSðasÞ and CBjp

NS ðasÞ, preformed in the
NNLO in Refs. [23–25] and in N3LO in Ref. [33].

B. Nonsinglet parts of D and CBjp

Following the approach discussed in Sec. III and taking
into account a certain definition of the β-function coef-
ficients in Eq. (2.3), we can obtain the β expansion for
D–and C–functions. For the Adler function DNS, it reads

dNS1 ¼ 3CF; d1 ¼ 1; ð4:8aÞ

d2½1� ¼
11

2
− 4ζ3; d2½0� ¼

CA

3
−
CF

2
¼ 1

3
; ð4:8bÞ

d3½2� ¼
302

9
−
76

3
ζ3 ≈ 3.10345;

d3½0; 1� ¼
101

12
− 8ζ3 ≈ −1.19979; ð4:8cÞ

d3½1� ¼ CA

�
3

4
þ 80

3
ζ3 −

40

3
ζ5

�
− CFð18þ 52ζ3 − 80ζ5Þ

≈ 55.7005; ð4:8dÞ

d3½0� ¼
�
523

36
− 72ζ3

�
C2
A þ 71

3
CACF −

23

2
C2
F

≈ −573.9607; ð4:8eÞ

which differs from the ones presented in Ref. [9] (see its
“natural form” in Appendix B), by the normalization factor
only. It looks more convenient for a certain BLM task
(the presentation corresponds to one in Ref. [8]) due to
setting of the first PT coefficient, d1ðc1Þ, equal to 1. Let us
emphasize that gluinos are used here as a pure technical
device to reconstruct the β-function expansion of the
perturbative coefficients.
In this connection, we mention the relation d3½0; 1� ¼

dn½0;…; 1� ¼ d2½1� proposed in Ref. [5] and based on a
“special degeneracy of the coefficients” suggested there
(see Eq. (6) in Ref. [5]) in an analogy with the perturbative
series rearrangement, di → d0i under the change of the
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coupling renormalization scale, aðμ2Þ → a0ðμ02Þ [see the
discussions in Sec. VA below]. This rearrangement has an
outside reason with respect to di and “does not know”
about the intrinsic structure of the initial coefficient di
under consideration. This relation is artificial, and for this
reason, it is not supported by the direct calculations. The
explicit result of this rearrangement is presented in
Eq. (5.3a) and below; it is the initial step for any BLM
optimization procedure that will be discussed in Sec. V in
detail.
Let us compare now Eqs. (4.8c)–(4.8e) with the results

presented in Ref. [7] and based on the interpretation of the
term ð48γ3 þ 3β1Π1 þ 24β0Π2Þa3s in the presentation of
(3.9). The first and the third terms of the sum form the term
proportional to β20,

48γ3 þ 24β0Π2⟶β20

�
302

9
−
76

3
ζ3 ¼ d3½2�

�
; ð4:9Þ

that can be unambiguously obtained by extracting the n2f
terms in γ3 and the β0 term in Π2; see the corresponding
explicit expressions in Refs. [49]. The second term there,
β1Π1, certainly contributes to the value of the element
d3½0; 1�. There are other terms, proportional to β1, in both
the γ3 and β0Π2 terms that also contribute to d3½0; 1�.
However, these required terms cannot be separated unam-
biguously from those terms that are proportional to β0.
The final explicit expressions given in Ref. [49] are not
sufficient for this separation, as it was already discussed in
Sec. III B.
Let us consider the β expansion of the Bjorken coef-

ficient function CBjp
NS of the DIS sum rules. Based on CR

(4.2) for n ¼ 2 and n ¼ 3 and the already fixed d2½0� and
d3½0�-terms, we get expression (4.3b) for the c2½0� and c3½0�
elements ofCBjp

NS , namely, c3½0�¼d3½0�−2dNS1 d2½0�þðdNS1 Þ2;
see the explicit expression in (4.10e). The knowledge of
c3½0� allow us to fix all other elements c3½…� of the PT
coefficient c3 without involving additional degrees of
freedom [9]. It is instructive to consider this in detail.
Indeed, the terms c3½0� as well as the coefficient c3½2� of the
β20 (maximum power of nf) can be found independently.
Therefore, the Casimir structure of the rest of c3,
c3 − c3½0� − β20c3½2�, contains five basis elements (we
factor out cNS1 ¼ −3CF):

c3 − c3½0� − β20c3½2�∶
�

C2
F; C

2
A; CACF; TRnfCF; TRnfCA

β1; β0

This Casimir structure of the rest should be equated
to the β expansion of the one [see decomposition
(3.1c)], c3½0; 1� · β1 þ ðx · CF þ y · CAÞ · β0. It contains
three unknown coefficients c3½0; 1�; x; y.
The C2

F terms in the explicit result for c3 [38] [see
Eq. (A7c)] and in the expression for c3½0� in Eq. (4.10e)

coincide with one another; therefore, the term 1
2
C2
F is

canceled in the rest. This confirms the fact that its β
expansion does not contain C2

F. So, we have four con-
straints (not five) for the three coefficients c3½0; 1�; x; y.
This overdetermined system is nevertheless a system of
simultaneous equations; the fact provides us with an
independent confirmation of this β expansion. The
explicit form of the elements was first obtained in
Ref. [9]; below, we present them at the same normalization
as Eqs. (4.8c)–(4.8e) [cf. (4.8e) with (4.10e)]:

cNS1 ¼ −3CF; c1 ¼ 1; ð4:10aÞ

c2½1� ¼ 2; c2½0� ¼
�
1

3
CA −

7

2
CF

�
¼ −

11

3
¼ −3.6ð6Þ;

ð4:10bÞ

c3½2� ¼
115

18
¼ 6.38ð8Þ;

c3½0; 1� ¼
�
59

12
− 4ζ3

�
≈ 0.10844; ð4:10cÞ

c3½1� ¼ −
�
166

9
−
16

3
ζ3

�
CF −

�
215

36
− 32ζ3 þ

40

3
ζ5

�
CA

≈ 39.9591; ð4:10dÞ

c3½0� ¼
�
523

36
− 72ζ3

�
C2
A þ 65

3
CFCA þ C2

F

2
≈ −560.627:

ð4:10eÞ

The same results can be obtained if one fixes first the
element c3½0; 1� ¼ d3½0; 1� − d2½1� þ c2½1� from relation
(4.7); the latter originates from another source—the sym-
metry-breaking term proportional to βðasÞ in the general-
ized CR. Therefore, the results (4.10b)–(4.10c) are in
mutual agreement with both the terms on the rhs of CR
and can be obtained independently from each of them.
These elements of decomposition in (4.10) allow one

to make a new prediction for the light gluino contri-
bution to CBjp

NS . Indeed, the effects of charge renorm-
alization are manifesting themselves through the
elements of c½…�—the coefficients of the β-function
products [named Bi in the matrix representation dis-
cussed in Sec. III A after Eq. (3.2c)]. They are formed
following gauge interactions. The effect of various
degrees of freedom, namely a gluino, which reveals
itself only in intrinsic loops, changes the content of the
β coefficients βi with the corresponding mark, namely,
n~g. Therefore, to obtain CBjp → CBjpðas; nf; n~gÞ with the
light MSSM gluino, one should replace the β coeffi-
cients βi → βiðnf; n~gÞ and compose them with the
elements from Eq. (4.10a)–(4.10e),
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CBjp
NS ðas; nf; n~gÞ ¼ 1þ asð−3CFÞ ð4:11aÞ

þ a2sð−3CFÞ ·
�
1

3
CA −

7

2
CF þ 2β0ðnf; n~gÞ

�
ð4:11bÞ

þ a3sð−3CFÞ ·
�
115

18
β20ðnf; n~gÞ þ

�
59

12
− 4ζ3

�
β1ðnf; n~gÞ

−
��

215

36
− 32ζ3 þ

40

3
ζ5

�
CA þ

�
166

9
−
16

3
ζ3

�
CF

�
β0ðnf; n~gÞþ

�
523

36
− 72ζ3

�
C2
A þ 65

3
CFCA þ C2

F

2

�
:

ð4:11cÞ

This logic can be reverted: the values of c3½0�; c3½0; 1�
and then the CR can be checked from the direct calculation
of CBjp

NS ðas; nf; n~gÞ with the MSSM massless gluino.

C. Singlet parts and the R ratio

Here, we present the singlet part of the Adler function,
d4, that can be obtained based on the result for c4 of C

Bjp
S

and CR [34],

dS4 ¼ β0ðnfÞ · dS4½1� þ dS4½0�; ð4:12Þ

dS4½0� ¼
�
−
13

64
ζ3 −

5

32
ζ5 þ

205

1536

�
CA

þ
�
−
1

4
ζ3 þ

5

8
ζ5 −

13

64

�
CF; ð4:13Þ

dS4½1� ¼ −
13

32
ζ3 −

1

8
ζ23 þ

5

16
ζ5 þ

149

576
; ð4:14Þ

cS4 ¼ cS4½0� þ β0ðnfÞ · cS4½1�; ð4:15Þ

cS4½0� ¼
�
13

64
ζ3 þ

5

32
ζ5 −

205

1536

�
CA

þ
�
1

16
ζ3 −

5

8
ζ5 þ

37

128

�
CF; ð4:16Þ

cS4½1� ¼ −
119

1152
þ 67

288
ζð3Þ þ 1

8
ζð3Þ2 − 35

144
ζð5Þ: ð4:17Þ

The integral transform D → Reþe− ,

Reþe−ðsÞ≡ Rðs; μ2 ¼ sÞ

¼ 1

2πi

Z
−sþiε

−s−iε

DEMðσ=μ2; asðμ2ÞÞ
σ

dσ

����
μ2¼s

¼
�X

i

q2i

�
dR

�
1þ

X
m≥1

rNSm ams ðsÞ
�

þ
�X

i
qi

�
2 dabcdabc

dR

X
n≥3

rSnans ðsÞ; ð4:18Þ

can be realized as a linear relation by means of the matrix T,
rj ¼ Tjidi, or for the vector representation R ¼ TD ¼P

ajsTjidi. The triangular matrix T of the relation can
be obtained at any fixed order of perturbative theory [50].
The elements of this matrix below the units on the diagonal
contain so-called kinematic “π2 terms” multiplied by the β-
function coefficients4; see an example of Tji in Table_I.
Taking into account that the β structure of the normalized
coefficients ri ¼ rNSi =rNS1 is like that for the coefficients di,
Eqs. (3.1a)–(3.1d), one can rewrite the results from the
matrix in Table I,

TABLE I. The Table exemplifies the structure of a few first coefficients rm of the conventional expansion of the R ratio. Every
coefficient rm contains a number of dkðk ≤ mÞ terms in its expansion, which are shown in the corresponding row. Here rm ¼ Tmkdk
(summation in k ¼ 1;…; m is assumed), where Tmk are the table entries. The proportional to the powers of ðπβ0Þ2 analytical
continuation effects are marked by gray, other ones are marked by bold font.

d1 d2 d3 d4 d5 d6

r1 1
r2 0 1
r3 − ðπβ0Þ2

3
0 1

r4 0 − 5π2

6 β0β1 − ðπβ0Þ2
3

3 0 1

r5
a ðπβ0Þ4

5
− π2

2 β
2
1−π2β0β2 0 − 7π2

3 β0β1 − ðπβ0Þ2
3

6 0 1

r6 0 − 77π4

60 β30β1 − 7π2

6 β1β2 − 4π2

3 β0β3 − ðπβ0Þ4
5

5 − 4π2

3 β21 − 8π2

3 β0β2 0 − 9π2

2 β0β1 − ðπβ0Þ2
3

10 0 1
aThis expression for r5 was presented first in Ref. [51].

4These terms can be obtained for any order of perturbative
theory (constrained mainly by the value of RAM) with a
Mathematica routine constructed by V. L. Khandramai and S.
V. Mikhailov.
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r0¼d0; rNS1 ¼dNS1 ; r1¼1; r2¼d2; ð4:19aÞ

r3½2� ¼ d3½2� −
π2

3
; rS3 ½2� ¼ dS3 ½2�; ð4:19bÞ

r4½3� ¼ d4½3�−π2d2½1�;
r4½2� ¼ d4½2�−π2d2½0�;

r4½1; 1� ¼ d4½1; 1� −
5

6
π2; ð4:19cÞ

r5½4� ¼ d5½4�þ
π4

5
−2π2d3½2�;

r5½0;2� ¼ d5½0;2�−
π2

2
;

r5½2;1� ¼ d5½2;1�−π2
�
7

3
d2½1�þd3½0;1�

�
;

r5½1;0;1� ¼ d5½1;0;1�−π2; r5½1;1� ¼ d5½1;1�−
7

3
π2d2½0�;

r5½3� ¼ d5½3�−2π2d3½1�; r5½2� ¼ d5½2�−2π2d3½0�;
ð4:19dÞ

while the other elements in ri coincide with ones in di
(i ≤ 5). A similar matrix TS

nl that relates the coefficients r
S
n

and dSl can be constructed as well. However, in this work,
we will not consider the π2-dependent effects of analytical
continuation, which in the singlet case appear first at the
Oða5sÞ level. Further, we shall use Eqs. (4.19a)–(4.19c) to
construct PT-optimized series for R.

V. BLM AND PMC PROCEDURES
AND THE RESULTS

A. General basis

The reexpansion of the running coupling āðtÞ ¼ aðΔ; a0Þ
and its powers in terms of t − t0 ¼ Δ ¼ ln ðμ2=μ02Þ and new

coupling a0 reads

āðtÞ ¼ aðΔ; a0Þ ¼ a0 − βða0ÞΔ
1!

þ βða0Þ∂a0βða0Þ
Δ2

2!

þ βða0Þ∂a0 ðβða0Þ∂a0βða0ÞÞ
Δ3

3!
þ � � �

¼ exp ð−ΔβðāÞ∂ āÞā∣ā¼a0 ; ð5:1Þ

which is the way to write the corresponding RG solution for
aðtÞ through the operator exp ð−ΔβðaÞ∂aÞ½…�∣a¼a0 Þ (see
Ref. [8] and refs therein). The shift of the logarithmic scale
Δ in its turn can be expanded in perturbative series in
powers of a0β0,

t0 ≡ t − Δ;

Δ≡ Δða0Þ ¼ Δ0 þ a0β0Δ1 þ ða0β0Þ2Δ2 þ � � � ; ð5:2Þ
where the argument of the new coupling a0 depends on
t0 ¼ t − Δ. It is sufficient to take this renormalization scale
for the a0 argument, which corresponds to the solution on
the previous step, rather than to solve the exact equation
aðt − Δða0ÞÞ ¼ a0. Reexpansion a in terms of a0 leads to
rearrangement of the series of perturbative expansion for
the RGI quantity DaðCBjpÞ, aidi → a0id0i, where the rhs are
expressed in a rather long but evident formula. In the square
brackets below, we write them explicitly:

a1 · d1 → a01 · ½d01 ¼ 1�;
a2 · d2 → a02 · ½d02 ¼ β0d2½1� þ d2½0� − β0Δ0�; ð5:3aÞ

a3 · d3 → a03 · ½d03 ¼ β20ðd3½2� − 2d2½1�Δ0 þ Δ2
0Þ

þ β1ðd3½0; 1� − Δ0Þþ ð5:3bÞ

β0ðd3½1� − 2d2½0�Δ0Þ þ d3½0� − β20Δ1�; ð5:3cÞ

a4 · d4 → a04 ·
�
d04 ¼ β30ðd4½3� − 3d3½2�Δ0 þ 3d2½1�Δ2

0 − Δ3
0 − 2ðΔ0 − d2½1�ÞΔ1Þ

þ β1β0

�
d4½1; 1� − ð3d3½0; 1� þ 2d2½1�ÞΔ0 þ

5

2
Δ2

0 − Δ1

�
þ β2ðd4½0; 0; 1� − Δ0Þþ ð5:3dÞ

β20ðd4½2� − 3d3½1�Δ0 þ 3d2½0�Δ2
0 − 2d2½0�Δ1Þ

þ β1ðd4½0; 1� − 2d2½0�Δ0Þþ ð5:3eÞ

β0ðd4½1� − 3d3½0�Δ0Þ þ d4½0� − β30Δ2

�
; ð5:3fÞ

……

an · dn → a0n · ½d0n ¼ βn−10 dn½n − 1� þ…�: ð5:3gÞ

The standard BLM fixes the scale Δ0 by the requirement
Δ0 ¼ d2½1�, accumulating one-loop renormalization of
charge just in this new scale [2], at the same time the
coefficient d2 → d2½0�—its “conformal part.” Numerically,

Δ0 ¼ d2½1� ¼
11

2
− 4ζ3 ¼ 0.69177…≈ lnð2Þ ¼ 0.69314…;

ð5:4Þ

therefore, Q2
BLM ¼ expð−Δ0ÞQ2 ≈Q2=2.
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High-order generalization of BLM can be realized in
different ways requiring consequently certain equations for
the partial shifts fΔig. The system of Eqs. (5.3a)–(5.3g) for
d0i is the basis to construct different BLM generalizations. It
is instructive to consider these coefficients fd0ig after the
first BLM step; taking Δ0 ¼ d2½1�, one obtains

d02 ¼ d2½0�; ð5:5aÞ

d03 ¼ β20ðd3½2� − d2½1�2Þ þ β1ðd3½0; 1� − d2½1�Þ
þ β0ðd3½1� − 2d2½0�d2½1�Þ þ d3½0� − β20Δ1; ð5:5bÞ

d04 ¼ β30ðd4½3� − 3d3½2�d2½1� þ 2d2½1�3Þ
þ β2ðd4½0; 0; 1� − d2½1�Þ
× β1β0ðd4½1; 1� − 3d3½0; 1�d2½1� þ d2½1�2=2 − Δ1Þþ

ð5:5cÞ

β20ðd4½2� − 3d3½1�d2½1� þ 3d2½0�d2½1�2 − 2d2½0�Δ1Þþ
ð5:5dÞ

β1ðd4½0; 1� − 2d2½0�d2½1�Þþ ð5:5eÞ

β0ðd4½1� − 3d3½0�d2½1�Þ þ d4½0� − β30Δ2; ð5:5fÞ

……

d0n ¼ βn−10 dn½n − 1� þ… ð5:5gÞ

The detailed analysis of the d0i structure was made in
Ref. [8] in Sec. 5. Here, we mention a common property of
this transform—to obtain the rearrangement of the coef-
ficient at an order nþ 1, dnþ1 → d0nþ1, one should know
its β structure up to the previous order n. For the partial case
of relation dnþ1½n� ¼ ðd2½1�Þn, the βn0 terms are canceled
(underlined terms) in all the orders even due to the first
BLM step. Correspondingly, the special conditions
di½0;…; 1� ¼ d2½1� will remove the next terms with the
leading coefficient βi−2 in every order; see the double
underlined terms in Eqs. (5.5b) and (5.5c). The latter
conditions were proposed in Ref. [5] [see the discussion
in Sec. IV B here after Eq. (4.8e)], though both of the above
hypotheses are far from the results of the direct calculations
at Oða3sÞ in (4.8); really

d3½2� − d2½1�2 ≈ 3.1035 − 0.4785;

d3½0; 1� − d2½1� ≈ 1.1998 − 0.6918: ð5:6Þ

Even more, in QCD, the elements dnþ1½n� grow as n! due to
renormalon contributions [29], and the role of these terms
becomes more and more important. To construct the next
steps of the PToptimization withΔ1;Δ2;…, one should get

more detailed knowledge or provide a hypothesis about the
different contributions in d0n.

B. seBLM and PMC procedures

One of the hypotheses mentioned above is based on the
empirical relation between the QCD β-function coeffi-
cients βi, βi ∼ βiþ1

0 . This can be easily verified for
perturbative quenched QCD (nf ¼ 0) numerically, and
this works in the range of nf ¼ 0 ÷ 5 of quark flavors for
the all known β coefficients; compare the expressions in
Eqs. (A1a)–(A1c),

βi ∼ βiþ1
0 ; ci ¼ βi=β

iþ1
0 ¼ Oð1Þ: ð5:7Þ

This relation allows one to set a hierarchy of contribu-
tions in order of the “large value of β0” [β0 ¼ 11ð9Þ at
nf ¼ 0ð3Þ] [8]. Of course, relation (5.7) should be broken
at some large enough order of expansion i0 in virtue of
expected Lipatov-like asymptotics for the β function
βi ∼ ði!Þβiþ1

0 . Therefore, this hierarchy has a restricted
field of application that describes the term “practical
approach” in the title of Ref. [8].
For this hierarchy, the most important terms are in the

powers of β0 contributions leading of an order ðβ0asÞn=β0,
which are underlined below in Eqs. (5.8a)–(5.8h). For
illustration, we shall use theRNSðsÞ ratio, taking into account
the result (5.5) for D and relations in Eq. (4.19b)–(4.19d):

r02 ¼ d2½0�; ð5:8aÞ

r03 ¼ β20ðd3½2� − d2½1�2−π2=3Þ þ β1ðd3½0; 1� − d2½1�Þ
ð5:8bÞ

þ β0ðd3½1� − 2d2½0�d2½1�Þ − β20Δ1 þ d3½0�; ð5:8cÞ

r04¼β30ðd4½3�−3d3½2�d2½1�þ2d2½1�3−π2d2½1�Þ
þβ2ðd4½0;0;1�−d2½1�Þ
×β1β0ðd4½1;1�−3d3½0;1�d2½1�þd2½1�2=2−5=6π2−Δ1Þþ

ð5:8dÞ

β20ðd4½2�−3d3½1�d2½1�þ3d2½0�d2½1�2−π2d2½0�−2d2½0�Δ1Þþ

ð5:8eÞ

β1ðd4½0; 1� − 2d2½0�d2½1�Þþ ð5:8fÞ

β0ðd4½1� − 3d3½0�d2½1�Þ − β30Δ2 þ d4½0�; ð5:8gÞ

r0n ¼ βn−10 dn½n − 1� þ…þ… ð5:8hÞ

The less important terms are suppressed by β−10 in every
order. These are the terms ðβ0asÞn=β20. They are double
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underlined in (5.8c), (5.8e), (5.8f), and so on. Following the
hierarchy, one fixes the values of Δ1;Δ2;…, consequently
nullifying at first the most important (single-underlined) β
terms in every order.After that, the procedure repeatswith the
less important terms (double underlined) in all orders, etc.
This procedure was called seBLM, and its result was
presented in detail in Sec. 6 of Ref. [8] [see Eqs. (6.7) and
(6.8) there]. The discussed hierarchy can also be used for
generalization of the NNA approximation; see Appendix C
in Ref. [50].
The above invented hierarchy ignores a possible differ-

ence of values of the elements dn½…�, tacitly suggesting
that they are of the same order of magnitude. Of course, one

can abandon the suggestion of the hierarchy and can
remove all the β terms in one mold consequently order
by order. This approach leads to other values of Δi ¼ Δ̄i,

Δ̄0 ¼ d2½1�; ð5:9aÞ

Δ̄1 ¼
1

β20
½β20ðd3½2� − d22½1� − π2=3Þ þ β1ðd3½0; 1�

−d2½1�Þ þ β0ðd3½1� − 2d2½1�d2½0�Þ� ð5:9bÞ

Δ̄2 ¼
1

β30

�
β30ðd4½3� − 3d2½1�d3½2� þ 2ðd2½1�Þ3−π2d2½1�Þ þ β2ðd4½0; 0; 1� − d2½1�Þ

þ β0β1

�
d4½1; 1� − 3d3½0; 1�d2½1� þ

3

2
ðd2½1�Þ2 − d3½2� − π2=2

�
þ β21=β0ðd2½1� − d3½0; 1�Þþβ1ð…Þ þ…

�
; ð5:9cÞ

which differ by the underlined “suppressed in the 1=β0”
terms from the previous ones in Ref. [8]. The complete
form for Δ2 looks cumbersome, and it is outlined in
Appendix C. The procedure like this was called PMC later
on [3], though for both the cases, seBLM and corrected
PMC, the final PT series has the same conformal terms
dn½0� as the coefficients of new expansion. The new
normalization scale s0 follows from Eq. (5.2), taking into
account certain expressions for Δi in Eqs. (5.9a)–(5.9c),

Reþe−ðsÞ ¼
�X

i

q2i

�
· dARNS þ

�X
i
qi

�
2

· dARS

RNSðsÞ ¼ 1þ 3CFfaðs0Þ þ d2½0� · a2ðs0Þ
þd3½0� · a3ðs0Þ þ d4½0� · a4ðs0Þ þ…g ð5:10aÞ

lnðs=s0Þ ¼ Δ̄0 þ a0β0Δ̄1 þ ða0β0Þ2Δ̄2 þ…: ð5:10bÞ

The formulae of Eqs. (5.9a)–(5.9c) and Eqs. (5.10a),
(5.10b) are the main results of these subsections.

C. Numerical estimates, discussion
of PMC/seBLM results

Here we apply the results of the described above
procedure for the numerical estimates of the expansion
coefficients for a few processes starting with the nonsinglet
part RNS of the Reþe−ðsÞ ratio. The corresponding singlet
part RS can be optimized independently; moreover, it is not
very important numerically. For the sake of illustration, we
put the value nf ¼ 3 for all estimates below. At the very
beginning, we have the following numerical structure of ri:

r2 ¼ β0 · 0.69þ
1

3
≈ 6.56; ð5:11aÞ

r3 ¼ −β20 · 0.186− β1 · 1.2þ β0 · 55.70− 573.96≈−164.5

ð5:11bÞ

−15.1 − 76.8þ 501.3 − 573.96; r4 ≈ −6840.29:

ð5:11cÞ

At the first BLM setting Δ̄0 ≈ 0.69, asðsÞ → a0s ¼
asðse−0.692 ≈ s=2Þ, we obtain for the coefficients r02; r

0
3—

Eqs. (5.12a) and (5.12b)—the explicit result of the BLM
procedure. The value of the second coefficient r02 dimin-
ishes by an order of magnitude, while r03 becomes mod-
erately larger, compare (5.11b) with (5.12b),(5.13a),

r02 ¼
1

3
; ð5:12aÞ

r03 ¼ −β20 · 0.665 − β1 · 1.892þ β0 · 55.24 − 573.96

≈ −251.7; ð5:12bÞ

−53.86 − 121.0þ 497.1 − 573.96 r04 ≈ −8559.89:

ð5:12cÞ

At the second step (PMC), we obtain Δ̄1 ≈ 3.98 following
Eqs. (5.9b) and (5.2),

r003 ≈ −573.96; Δ̄1 ≈ 3.98; ð5:13aÞ
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r004 ≈ −11066.1; ð5:13bÞ

a0s → a00s ¼ asðs · e−0.692−3.98β0a0sðsÞÞ; ð5:13cÞ

while r003 ¼ d3½0� following the main aim of PMC; see
Eq. (5.10a). Because of the strong suppression of the nor-
malization scale by a factor of exp ½−0.692 − 3.98β0a0sðsÞ�,
the applicability of PT is shifted to the region of very large s;
simultaneously, the coefficient r003 increases three times
[cf. (5.11b)]. So this procedure makes the convergence of
PTworse.
Within the same framework, we obtain for the coefficient

of the Bjorken function CBjp
NS :

c2 ¼ β0 · 2 −
11

3
¼ 14.3ð3Þ; ð5:14aÞ

c3 ¼ β20 · 6.39þ β1 · 0.1084þ β0 · 39.95 − 560.63

≈ 323.44; ð5:14bÞ

517.5þ 6.9401þ 359.63 − 560.63;

c4 ≈ 11247.97: ð5:14cÞ

At the first BLM step, we do not obtain a significant profit
in the first coefficient c2 → c02, as it was in the previous
case of r02. But the next-order coefficient c3 ≈ 352.05
in (5.14b) diminished by two orders of magnitude, c3 →
c03 ≈ 3.444 at asðQ2Þ → a0s ¼ asðQ2e−2 ≈Q2 · 0.135Þ,

c02 ¼ −
11

3
; ð5:15aÞ

c03 ¼ β20 · 2.389 − β1 · 1.892þ β0 · 54.63 − 560.63 ≈ 3.444;

ð5:15bÞ

193.5 − 121.06þ 491.63 − 560.63;

c04 ≈ 6361.0: ð5:15cÞ

It is interesting that the far fourth coefficient c4 (5.14c)
reduces twice, c4 → c04 (5.15c). At the second step (PMC),
Δ̄1 ≈ 7.32, and a0s → a00s ¼ asðQ2 · exp ½−2 − 7.32β0
a0ðQ2Þ�Þ; so the region of applicability of PT is shifted
far from the scale of a few GeV2. While the value of jc003j
goes up to the previous order of magnitude, compare
(5.15b) to (5.16),

c002 ¼ −
11

3
; c003 ≈ −560.63: ð5:16Þ

It is instructive to compare this result with one from
seBLM (Sec. V B), where we remove the first two terms in
(5.15b), converting them into the normalization scale and

holding the last two terms in c003 . For this prescription, we
obtain Δ1 ≈ 1.25,

a0s → a00s ¼ asðQ2 exp ½−2 − 1.25β0a0ðQ2Þ�Þ and

c003 ≈ −69;

that looks moderate but is not optimal yet in the sense of
series convergence.
Both aforementioned examples demonstrate better con-

vergence at the first BLM step but fail for the optimization
of PT at the second PMC step. The reason is the different
sign of the terms of rnðcnÞ; see the discussion in Secs. 6 and
7 in Ref. [8]. It is clear that one should not remove and
absorb all the β terms for the PT optimization but leave a
part of them for complete cancellation with the dn½0� term.
We shall treat the circumstances in this way in the next
section.

VI. OPTIMIZATION OF THE GENERALIZED
BLM PROCEDURE

Indeed, it is not mandatory to absorb all the β terms as a
whole into the new scale Δ1ðΔiÞ following BLM/PMC but
to take instead only those parts of it that are appropriate for
optimization (nullification) of the current-order coefficient
r3ðriþ2Þ. At the same time, one should care for the size of
the Δi–PT coefficients for the shift of scale Δ in (5.2)—not
to violate just this expansion.
Let us consider the optimization of RNS at the second

BLM step, starting with the first step expressions in
Eqs. (5.12a)–(5.12c) and using the general results in
(5.8c), (5.8e), and (5.8d). This expression for r003 can be
rewritten as

r003 ¼ r03 − β20Δ1

¼ r3 − β20d2½1�2 − β1d2½1� − β02d2½0�d2½1� − β20Δ1:

ð6:1Þ
The optimization requirement, e.g., r003 ¼ 0, leads to the
expressions for Δ1 and r004:

r003 ¼ 0 ⇒ Δ1 ¼ r03=β
2
0

¼ r3=β20 − d2½1�2 − β1=β20d2½1� − 1=β02d2½0�d2½1�;
ð6:2aÞ

r004 ¼ r04 − r03ðβ1=β0 þ 2d2½0�Þ: ð6:2bÞ

Numerical calculation at nf ¼ 4 gives the estimates for the
values of the quantities in Eqs. (6.2a) and (6.2b),

r003 ¼ 0; Δ1 ≈ −3.7; ð6:3aÞ

r004 ≈ −4740.52; ð6:3bÞ
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a0s → a00s ¼ asðs · e−0.692þ3.7β0a0sðsÞÞ: ð6:3cÞ

One may conclude that the PT expansion

RNS ¼ 1

þ 3CF

�
a00s þ

1

3
· ða00s Þ2 þ 0 · ða00s Þ3 þ r004 · ða00s Þ4 þ…

�

ð6:4Þ

significantly improves:
(i) r03 ¼ 0, while the value of r004 in (6.5e) is less than in

(5.11c) and (5.12c) and reduces twice in comparison
with the PMC estimate in (5.13b) (taken for nf ¼ 4).

(ii) The domain of applicability of the approach extends
to a wider region due to the opposite sign at Δ1,
compared to the one for PMC in (5.13a). This makes
the NLO “shift” Δ less, which tends numerically
to 0 at the boundary of applicability, Δ ¼ d2½1�þ
Δ1β0a0sðsÞ ≈ −0.692þ 3.7β0a0sðsÞ.

Indeed, following the usual PT condition jd2½1�j ≳
jΔ1β0a0sðsÞj or Δ≲ 0, we get for the boundary s≳
10 GeV2, as it is illustrated in Fig. 1 (left). The factor
exp ½−Δ�, entering in the argument of a00s in Eq. (6.3c), see
the solid (red) upper line in Fig. 1 (left), satisfies the
conditions 1≳ exp½−0.692þ 3.7β0a0sðsÞ� > 1=2, and this
factor slowly decreases with s from the value 1. It looks
tempting to get and use the exact solution for the coupling
a⋆s , following from Eq. (5.2),

a⋆s ðsÞ ¼ asðs exp½−Δ0 − Δ1β0a⋆s ðsÞ�Þ;

rather than its iteration a00s ðsÞ. It is easy to obtain the useful
inequality a0sðsÞ > a⋆s ðsÞ > a00s ðsÞ; moreover, the numerical
calculation gives that the difference between a⋆s and a00s

becomes noticeable below s ¼ 1 GeV2 for this optimized
quantity and for the next one discussed below.
Similar optimization can be performed for CBjp

NS ðQ2Þ
(nf ¼ 4). We apply the general combined equations,
analogous to the ones of Eqs. (5.3a)–(5.3d). In these
CBjp
NS -oriented expressions we fix the conditions c002 ¼ 0

and c003 ¼ 0. This leads to the following equations:

c02 ¼ 0; Δ0 ¼ c2=β0 ≈ 1.56; ; ð6:5aÞ

as → a0s ¼ asðQ2 · e−1.56Þ ð6:5bÞ

c002 ¼ c02 ¼ 0; ð6:5cÞ

c003 ¼ 0; Δ1 ≈ −0.396; ð6:5dÞ

c004 ≈ 4184.64; ð6:5eÞ

a0s → a00s ¼ asðQ2 · e−1.56þ0.396β0a0sðQ2ÞÞ: ð6:5fÞ

The new “optimized scale” behavior of factor exp ½−Δ�
is illustrated in Fig. 1 (right) by a solid (red) line, while
the broken (blue) line there corresponds to the condition
c02 ¼ 0;Δ0 ¼ c2=β0 that is not the BLM one. This trans-
formation significantly improves the perturbative series
for CBjp

NS ,

CBjp
NS ðQ2Þ ¼ 1 − 3CFfa00s þ 0 · ða00s Þ2 þ 0 · ða00s Þ3

þ c004 · ða00s Þ4 þ…g; ð6:6Þ

in comparison with Eqs. (5.14a)–(5.14c), (5.15a)–(5.15c),
and (5.16). We conclude that for both of the considered
quantities the PT series are improved, and the corresponding
Eqs. (6.3c) and (6.4) and Eqs. (6.5f) and (6.6) consist of the
main results of this section. We did not perform the next step

FIG. 1 (color online). Factors exp ½−Δ� at coupling scale: (Left) for RNSðsÞ. Solid (red) upper line—the NLO factor
exp ½−0.692þ 3.7β0a0sðsÞ�; long dashed (blue) line—the leading-order BLM one exp½−0.692�. (Right) for CBjp

NS ðQ2Þ. Solid (red)
upper line—the NLO factor exp ½−1.56þ 0.396β0a0sðQ2Þ�, long dashed (blue) line—the LO exp½−1.56�.
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of optimization with the coefficients r004; c
00
4 because in this

case we lost control under accuracy.
It is clear that Eqs. (6.5) and (6.4) and Eqs. (6.5a)–(6.5f)

and (6.6) are not unique optimal solutions because different
efficiency functions may be called “optimal.” Therefore,
one can satisfy one’s own efficiency function with the
coefficients fcig based on the combined Eqs. (5.3a)–(5.3f)
in the plane ðΔ0;Δ1Þ or space ðΔ0;Δ1;Δ2;…Þ of fitting
free parameters Δj.

VII. CONCLUSION

We have considered the general structure of the pertur-
bation expansion of renormalization group invariant quan-
tities in MS schemes to clarify the effects of charge
renormalization and the conformal symmetry breakdown.
Following the line started in Ref. [8], we arrived at the
matrix representation for this expansion, named the fβg
expansion [9], instead of the standard perturbation series.
We discussed in great detail the unambiguity of this
representation for the Adler DNS function (or related
Reþe− ratio) and for the Bjorken polarized sum rule SBjp

(with the coefficient function CBjp
NS ) for DIS in order Oðα3sÞ.

The expansion for SBjp was obtained by using different
parts of the Crewther relation [9] for DNS and the
coefficient function CBjp

NS . Others attempts of this presen-
tation [3–6] were discussed, too. We provided a new
prediction for CBjp

NS ðas; nf; n~gÞ with the MSSM massless
gluino n~g in orderOðα3sÞ in Eqs. (4.11a)–(4.11c), Sec. IV B,
as a byproduct of our consideration.
Based on the fβg expansion, we constructed renormal-

ization group transformation for the perturbation series of
the considered quantities, Eqs. (5.3a)–(5.3f) in Sec. V. The
initial expansion was split into two parts: a new series for

the expansion coefficients and for the shift of the normali-
zation scale of the coupling αs. The contributions from each
order can be balanced between these two series. Different
procedures of the PT optimization, including PMC [4,5]
and seBLM [8], were discussed and illustrated by numeri-
cal estimates. We conclude that the corrected PMC does not
provide better PT series convergence and suggest our own
scheme of the series optimization in order Oðα4sÞ; the
working formulas for RNS of the Reþe− ratio and CBjp

NS were
presented in Sec. VI.
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APPENDIX A: EXPLICIT FORMULAS
FOR βðnf ;n~gÞ AND Dðnf ;n~gÞ

The required β-function coefficients with the MSSM
light gluinos [48] calculated in the MS scheme are

β0ðnf; n~gÞ ¼
11

3
CA −

4

3

�
TRnf þ

n~gCA

2

�
; ðA1aÞ

β1ðnf; n~gÞ ¼
34

3
C2
A −

20

3
CA

�
TRnf þ

n~gCA

2

�
− 4

�
TRnfCF þ

n~gCA

2
CA

�
; ðA1bÞ

β2ðnf; n~gÞ ¼
2857

54
C3
A − nfTR

�
1415

27
C2
A þ 205

9
CACF − 2C2

F

�
þ ðnfTRÞ2

�
44

9
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27
CA

�

−
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27
n~gCAðC2

AÞ þ n~gCAnfTR

�
22

9
CACF þ 224

27
C2
A

�
þ ðn~gCAÞ2

145

54
CA: ðA1cÞ

The β3 coefficient, which includes the MSSM light gluinos, is not yet known, so we present it here in the standard [52,53]
simplest form:
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β3ðnfÞ ¼ C4
A

�
150653

486
−
44

9
ζ3

�
þ C3

ATRnf

�
−
39143

81
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3
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�
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2
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2
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For the SUcðNÞ color group with fundamental fermions, the invariants read

TR ¼ 1

2
; CF ¼ N2 − 1

2N
; CA ¼ N; dabcdabc ¼ ðN2 − 4ÞNA

N
; NA ¼ 2CFCA ≡ N2 − 1: ðA3Þ

dabcdF dabcdA

NA
¼ NðN2 þ 6Þ

48
;

dabcdA dabcdA

NA
¼ N2ðN2 þ 36Þ

24
;

dabcdF dabcdF

NA
¼ N4 − 6N2 þ 18

96N2
: ðA4Þ

TheDNS function evaluated in Ref. [25] in the same model in the case in which the masses of gluions are neglected5 reads

DNSðas; nf; n~gÞ ¼ 1þ as · ð3CFÞ ðA5aÞ

þ a2s

�
−
3

2
C2
F þ 2CF

�
123

2
− 44ζ3 − ð11 − 8ζ3Þn~g

�
CA

2
− 2CFð11 − 8ζ3ÞnfTR

�
ðA5bÞ

þ a3s

�
−
69

2
C3
F − C2

FCA½127þ 572ζ3 − 880ζ5 − ð36þ 104ζ3 − 160ζ5Þn~g�

þCFC2
A

�
90445

54
−
10948

9
ζ3 −

440

3
ζ5 −

�
33767

54
−
4016

9
ζ3 −

80

3
ζ5

�
n~g

þ
�
1208

27
−
304

9
ζ3

�
n2~g

�
− nfTRC2

F½29 − 304ζ3 þ 320ζ5�

−nfTRCFCA

�
31040

27
−
7168

9
ζ3 −

160

3
ζ5 −

�
4832

27
−
1216

9
ζ3

�
n~g

�

þ3CF

�
302

9
−
76

3
ζ3

��
4

3
TRnf

�
2
�

¼ ðA5cÞ

¼ 1þ asð3CFÞ þ a2sð3CFÞ ·
�
CA

3
−
CF

2
þ
�
11

2
− 4ζ3

�
β0ðnf; n~gÞ

�

þ a3sð3CFÞ ·
��

302

9
−
76

3
ζ3

�
β20ðnf; n~gÞ þ

�
101

12
− 8ζ3

�
β1ðnf; n~gÞ

þ
�
CA

�
3

4
þ 80

3
ζ3 −

40

3
ζ5

�
− CFð18þ 52ζ3 − 80ζ5Þ

�
β0ðnf; n~gÞ ðA6aÞ

þ
�
523

36
− 72ζ3

�
C2
A þ 71

3
CACF −

23

2
C2
F

�
: ðA6bÞ

5In the numerical case, this expression from Ref. [25] coincides with the result of the related numerical calculation of Ref. [54].
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The Bjorken coefficient function CBjp
NS of the DIS sum rules calculated first in Ref. [38] is

CBjp
NS ðas; nfÞ ¼ 1þ asð−3CFÞ ðA7aÞ
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The prediction for CBjp obtained in Sec. IV B of this article under the same conditions as Eq. (A5a)–(A5c) reads

CBjp
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APPENDIX B: NATURAL FORMS FOR β EXPANSION OF DNS AND CNS

Here, we present for completeness the results of (4.8a)–(4.8e) and (4.10a)–(4.10e) in their natural form, changing only
the normalization factors [9], which correspond to the coupling αs

π with β0 ¼ 1
4
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APPENDIX C: EXPLICIT FORMULAS FOR Δi

The explicit expressions for the elements of the proper scales Δ1 and Δ2 are given by

Δ0 ¼ d2½1�; ðC1Þ

Δ1 ¼ d3½2� − d22½1� − π2=3þ β1
β20

ðd3½0; 1� − d2½1�Þ þ
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