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We present estimates of single spin asymmetry in the electroproduction of J=ψ taking into account the
transverse momentum-dependent (TMD) evolution of the gluon Sivers function. We estimate single spin
asymmetry for JLab, HERMES, COMPASS and eRHIC energies using the color evaporation model of J=ψ .
We have calculated the asymmetry using recent parameters extracted by Echevarria et al. using the Collins-
Soper-Sterman approach to TMD evolution. These recent TMD evolution fits are based on the evolution
kernel in which the perturbative part is resummed up to next-to-leading logarithmic accuracy. We have also
estimated the asymmetry by using parameters which had been obtained by a fit by Anselmino et al., using
both an exact numerical and an approximate analytical solution of the TMD evolution equations. We find
that the variation among the different estimates obtained using TMD evolution is much smaller than between
these on one hand and the estimates obtained using DGLAP evolution on the other. Even though the use of
TMD evolution causes an overall reduction in asymmetries compared to the ones obtained without it, they
remain sizable. Overall, upon use of TMD evolution, predictions for asymmetries stabilize.
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I. INTRODUCTION

There has been a lot of work done lately on the
phenomenology of TMDs (transverse momentum-
dependent parton distribution functions (PDFs), fragmen-
tation functions, etc.), their measurement and Q2 evolution
[1,2]. TMDs give details of the intrinsic transverse
momenta of partons, providing an understanding of the
three-dimensional structure of nucleons. Their Q2 evolu-
tion has nonperturbative contributions as opposed to the
evolution of collinear distributions, which is completely
perturbative. A knowledge of the TMDs can be obtained by
using the single spin asymmetries (SSAs) observed in
scattering experiments involving a single transversely
polarized hadron [3–5]. These include Drell-Yan scattering
and semi-inclusive deep inelastic scattering (SIDIS).
One of the ways to analyse these SSAs is based on a
transverse momentum-dependent factorization scheme.
Such a scheme was first provided by Collins and Soper
[6,7], which has, since then, been used to study the above
processes. In TMD factorization, the transverse momenta
of the partons are not integrated over, as they are in the
standard collinear factorization schemes of QCD.
One of the most important SSAs is the Sivers asymmetry.

It is due to a TMD called the Sivers function, which gives
the probability of finding an unpolarized parton inside a
transversely polarized nucleon. Many fits of the Sivers

function are available which are extracted from exper-
imental data of SIDIS from the HERMES, COMPASS and
JLAB experiments [8,9]. The most recent fit, which we use
in this paper, is by Echevarria et al. [10] who have fitted the
Sivers function in the Torino parametrization, one of the
two commonly used parametrizations of the Siver function,
the other being the Bochum parametrization [2]. We have
exclusively used the Torino parametrization in this as well
as our previous works on the subject. Echevarria et al. have
performed a global fit to all the experimental data on SIDIS
from HERMES [11], COMPASS [12,13] and JLAB [14]
experiments. They have used the Sivers function fits so
obtained to make predictions for the Sivers asymmetry in
Drell-Yan and Wþ and W− boson production. These
predictions agree well with data, giving a χ2=d:o:f ≈ 1.3.
Previous fits given by Anselmino et al. [15] had extracted
the Sivers function in SIDIS data from the HERMES [11]
and COMPASS [16] experiments alone. The earliest fits of
the Sivers function had assumed that the transverse
momentum behavior factorized from the collinear distri-
butions and did not evolve. This may be a reasonable
approximation to make for low Q2 processes but is not
valid for high Q2 processes as was the case for
COMPASS data.
Both fits by Echevarria et al. and Anselmino et al., used

here, incorporate the evolution of the transverse momentum
dependence. The Echavarria et al. fits differ from the
Anselmino et al. fits in two aspects: First, they use a
certain prescription for the initial scale of the evolution
kernel explained in Ref. [10] in order to simplify the
evolution equations, and second, their kernel is consistently
resummed to next-to-leading-logarithmic (NLL) accuracy.
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In the present work, we make predictions for Sivers
asymmetry in low virtuality electroproduction of J=ψ ,
using the latest fits by Echevarria et al. [10]. The present
work deals with the gluon Sivers asymmetry in the
leptoproduction of charmonium.
The leptoproduction of heavy flavors (open and closed)

in general, and of charmonium, in particular, is a direct
probe of the gluon content of the proton. At leading order,
this involves a gluon and a photon fusing to form a cc̄ pair.
It was first studied in this context in Ref. [17]. In our earlier
work, we had extended the idea to the case of the gluon
Sivers function [18,19]. We had made predictions for Sivers
asymmetry in the process eþ p↑ → eþ J=ψ þ X, first
using DGLAP evolved TMDs [18] and later PDFs and the
Sivers function taking evolution of the transverse momen-
tum distribution into account [19]. In this paper, we would
like to assess the dependence of asymmetries on the
different aspects of the implementation of the QCD
evolution of TMDs. The estimates in Ref. [19] were based
on a formalism given by Anselmino et al. where they had
used an analytical solution of an approximate form of the
TMD evolution equation [15]. In the current work, we use
the exact treatment of TMD evolution. Second, we also use
a new parametrization of the Sivers function obtained from
fits performed with a NLL resummed evolution kernel [10].
We give revised estimates of the Sivers asymmetry in
charmonium leptoproduction.
It must be mentioned here that there is no direct

experimental information available on the gluon Sivers
function. Boer and Vogelsang [20] proposed an ansatz for
the gluon Sivers function, and it was parametrized in terms
of quark Sivers function parameters which in turn are
extracted by fitting the observed asymmetries in SIDIS.
They also used this ansatz to make predictions for asym-
metry in dijet production at relativistic heavy ion collider
(RHIC). We have used their model to get our estimates in
this and the earlier work on charmonium [18,19]. We thus
estimate the size of the asymmetry under two plausible
parametrizations of the gluon Sivers function in this model.
The present work helps establish the stability of predictions
under TMD evolution and demonstrate the dependencies of
the asymmetries on the gluon Sivers function. These
asymmetries probe directly the gluon Sivers function as
opposed to, say, jet production, which receives contribu-
tions from both the quark induced and gluon induced
processes. Therefore, study of these quarkonium asymme-
tries will help in determining the gluon Sivers function, just
as corresponding data on heavy flavor production did for
unpolarized densities.
We will present the asymmetries, in different kinematic

variables, at different values of beam energies. Our results
show how their energy dependence does in fact reflect the
xg dependence of the gluon Sivers function. Thus, we see
that the study of quarkonium asymmetries can indeed be of
help in mapping the gluon Sivers function.

In this work, the color evaporation model (CEM) is used
to get the cross section for the production of J=ψ . The
details of the color evaporation model can be found in
Refs. [21,22]. In Sec. II, a brief summary of the con-
struction of the Sivers asymmetry observables is given.
Section III deals with the evolution of the TMDs. In
Sec. IV, we give the form of the TMDs with the evolution
kernel resummed at NLL. Section V gives the details of the
fits that we have used. This is followed by a summary and
analysis of the results in Sec. VI.

II. SINGLE SPIN ASYMMETRY IN J=ψ
PRODUCTION: FORMALISM

In the CEM, the leading-order (LO) cross section for
production of J=ψ is proportional to the rate of cc̄
production integrated over the invariant mass squared of
the cc̄ pair ranging from 4m2

c to 4m2
D where mD is the open

charm production threshold [23],

σep→eþJ=ψþX

¼
Z

4m2
D

4m2
c

dM2
cc̄

Z
dxγ dxg fγ=eðxγÞfg=pðxgÞ

dσ̂γg→cc̄

dM2
cc̄

:

ð1Þ

Here, fg=pðxgÞ is the gluon PDF, and fγ=eðxγÞ is the well-
known Weiszacker–Williams function [24,25].
The SSA in the scattering of electrons off a transversely

polarized proton target arises due to transverse momenta of
the partons, so we use a generalized expression that takes
into account the transverse momentum behavior of the
Weizsacker–Williams function and the gluon PDF [18],

dσeþp↑→eþJ=ψþX

dM2
¼

Z
dxγ dxg d2k⊥γd2k⊥gfg=p↑ðxg; k⊥gÞ

× fγ=eðxγ; k⊥γÞ
dσ̂γg→cc̄

dM2
; ð2Þ

where M2 ≡M2
cc̄. The difference between dσ↑ and dσ↓ is

the integral over allowed phase space of the gluon Sivers
function, ΔNfg=p↑ðxg; k⊥gÞ, weighted with fγ=eðxγ; k⊥γÞ
and the partonic cross section

dσ↑ − dσ↓ ¼
Z

dxγ dxg d2k⊥γd2k⊥gΔNfg=p↑ðxg; k⊥gÞ

× fγ=eðxγ; k⊥γÞdσ̂γg→cc̄: ð3Þ

The numerator and denominator of the asymmetry are
given by [18]
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d4σ↑

dydM2d2qT
−

d4σ↓

dydM2d2qT

¼ 1

s

Z
d2k⊥γd2k⊥gΔNfg=p↑ðxg; k⊥gÞfγ=eðxγ; k⊥γÞ

× δ2ðk⊥γ þ k⊥g − qTÞσ̂γg→cc̄
0 ðM2Þ ð4Þ

and

d4σ↑

dydM2d2qT
þ d4σ↓

dydM2d2qT

¼ 2

s

Z
d2k⊥γd2k⊥gfg=pðxg; k⊥gÞfγ=eðxγ; k⊥γÞ

× δ2ðk⊥γ þ k⊥g − qTÞσ̂γg→cc̄
0 ðM2Þ; ð5Þ

where

xg;γ ¼
Mffiffiffi
s

p e�y; ð6Þ

with the partonic cross section given by [17]

σ̂0
γg→cc̄ðM2Þ ¼ 1

2
e2c

4πααs
M2

��
1þ v −

1

2
v2
�

× ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − v
p

1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p − ð1þ vÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p �
: ð7Þ

Here, v ¼ 4m2
c

M2 and M2 ≡ ŝ. We integrate Eqs. (4) and (5)

over M2, to obtain the difference and sum of d3σ↑

dyd2qT
and

d3σ↓

dyd2qT
for J=ψ production.

The sum and difference of the differential cross sections
with respect to y is then

dσ↑

dy
−
dσ↓

dy
¼

Z
dϕqT

Z
qT dqT

Z
4m2

D

4m2
c

dM2

Z
d2k⊥g

× ΔNfg=p↑ðxg; k⊥gÞfγ=eðxγ; qT − k⊥gÞ
× σ̂0ðM2Þ sinðϕqT − ϕSÞ ð8Þ

and

dσ↑

dy
þ dσ↓

dy
¼ 2

Z
dϕqT

Z
qT dqT

Z
4m2

D

4m2
c

dM2

×
Z

d2k⊥gfg=pðxg; k⊥gÞ

× fγ=eðxγ; qT − k⊥gÞσ̂0ðM2Þ; ð9Þ

and the sum and difference of the differential cross sections
with respect to qT is

dσ↑

dqT
−
dσ↓

dqT
¼
Z

dϕqT

Z
qT dy

Z
4m2

D

4m2
c

dM2

×
Z

d2k⊥gΔNfg=p↑ðxg;k⊥gÞ

×fγ=eðxγ;qT −k⊥gÞσ̂0ðM2ÞsinðϕqT −ϕSÞ ð10Þ

and

dσ↑

dqT
þ dσ↓

dqT
¼ 2

Z
dϕqT

Z
qT dy

Z
4m2

D

4m2
c

dM2

×
Z

d2k⊥gfg=pðxg; k⊥gÞ

× fγ=eðxγ; qT − k⊥gÞσ̂0ðM2Þ: ð11Þ

The weighted Sivers asymmetry is defined as [26]

A
sinðϕqT

−ϕSÞ
N ¼

R
dϕqT ½dσ↑ − dσ↓� sinðϕqT − ϕSÞR

dϕqT ½dσ↑ þ dσ↓� ; ð12Þ

where dσ↑ is the differential cross section in the qT or y
variable, and ϕqT and ϕS are the azimuthal angles of the
J=ψ and proton spin, respectively. For the asymmetry with
respect to y, we use Eqs. (8) and (9) in Eq. (12). For
calculating the asymmetry with respect to qT , we use
Eqs. (10) and (11).
The transverse momentum dependence of the

Weiszacker–Williams function is taken to be Gaussian:

fγ=eðxγ; k⊥γÞ ¼ fγ=eðxγÞ
1

πhk2⊥γi
e−k

2⊥γ=hk2⊥γi: ð13Þ

The Sivers function and the transverse momentum-
dependent form of the PDF are given in Sec. IV.

III. Q2 EVOLUTION OF TMD

In this section, we present a brief outline of the energy
evolution of transverse momentum-dependent functions as
given in Ref. [10]. A general transverse momentum-
dependent distribution Fðx; k⊥;QÞ can be expressed in a
two-dimensional coordinate space (called b space) by a
fourier transform as

Fðx; b;QÞ ¼
Z

d2k⊥e−ik⊥:bFðx; k⊥;QÞ: ð14Þ

We will work with the b-space TMDs as the energy
evolution is more naturally described in b-space. It is
given by

Fðx;b;QfÞ¼Fðx;b;QiÞRpertðQf;Qi;b�ÞRNPðQf;Qi;bÞ;
ð15Þ
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where Rpert is the perturbative part of the evolution kernel,
RNP is the nonperturbative part of the kernel and
b� ¼ b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=bmaxÞ2

p
.

The perturbative part is given by

RðQf;Qi; bÞ ¼ exp

�
−
Z

Qf

Qi

dμ
μ

�
A ln

Q2
f

μ2
þ B

��

×

�
Q2

f

Q2
i

�−Dðb;QiÞ
; ð16Þ

where A ¼ Γcusp and B ¼ γV , with dD
d ln μ ¼ Γcusp. The

anomalous dimensions Γcusp and γV are known up to
three-loop level [27].
The nonperturbative exponential part, called the

Sudakov factor, is fixed by fits to data. It contains a
Q-dependent factor universal to all TMDs and another
factor which gives the Gaussian width in b space of the
particular TMD:

RNP ¼ exp

�
−b2

�
gTMD
1 þ g2

2
ln
Qf

Qi

��
: ð17Þ

The b� ¼ b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=bmaxÞ2

p
prescription used in

Eq. (15) is used to stitch together the perturbative part
(which is valid at small b) and nonperturbative part (which
is valid at large b). When b ≪ bmax, b� ≈ b, whereas at
higher values of b, b� ≈ bmax. As shown in Ref. [10], for
consistency up to NLL, expanding the TMD Fðx; b;QÞ at
the initial scale in terms of its corresponding collinear
function and keeping only the LO term, which is just the
collinear PDF, we finally get

fq=Hðx; b;QfÞ

¼ fq=Hðx;QiÞ exp
�
−
Z

Qf

Qi

dμ
μ

�
A ln

Q2

μ2
þ B

��

×

�
Q2

f

Q2
i

�−Dðb�;QiÞ
exp

�
−b2

�
gpdf1 þ g2

2
ln
Qf

Qi

��
: ð18Þ

The Collins-Soper-Sterman (CSS) evolution of the
Sivers function is discussed in Ref. [2]. It has been shown
that the derivative of the Sivers function in b space,

f0⊥1Tðx; b; μÞ≡ ∂f⊥1Tðx; b; μÞ
∂b ; ð19Þ

satisfies the same evolution equation as the unpolarized
TMD PDF. Therefore, the evolution equation is given by

f0⊥g
1T ðx; b;QfÞ

¼ f0⊥g
1T ðx; b;QiÞ exp

�
−
Z

Qf

Qi

dμ
μ

�
A ln

Q2

μ2
þ B

��

×

�
Q2

f

Q2
i

�−Dðb�;QiÞ
exp

�
−b2

�
gsivers1 þ g2

2
ln
Qf

Qi

��
:

ð20Þ

Now the azimuth-dependent part of the Sivers function
(in b-space) is [2]

f⊥qðαÞ
1T ðx; bÞ ¼ 1

Mp

Z
d2k⊥e−ik⊥:bkαTf

⊥q
1T ðx; k2⊥Þ: ð21Þ

Expanding this in b, we get

f⊥qðαÞ
1T ðx; bÞ ¼ 1

Mp

Z
d2k⊥½1 − ikβ⊥bβ þ � � ��kα⊥f⊥q

1T ðx; k2⊥Þ

¼ −
ibα

2Mp

Z
d2k⊥jk⊥j2f⊥q

1T ðx; k2⊥Þ þ � � �

¼ ibα

2
Tq;Fðx; xÞ þ � � � ð22Þ

Here, Tq;F is the twist-3 Qiu–Sterman quark-gluon
correlation function. It is the first kT moment of the quark
Sivers function [28,29]. This equation was obtained in
Ref. [30].
Now using the relation between the azimuthal part of

the Sivers function and the derivative of the Sivers function,
we have [2]

f0⊥1Tðx; bÞ ¼ −i
Mpb

bα
f⊥qðαÞ
1T ðx; bÞ

≃Mpb

2
Tq;Fðx; xÞ: ð23Þ

Therefore, for the Sivers function, we finally get [10]

f0⊥g
1T ðx; b;QfÞ ¼

Mpb

2
Tg;Fðx; x;QiÞ

× exp

�
−
Z

Qf

Qi

dμ
μ

�
A ln

Q2

μ2
þ B

��

×

�
Q2

f

Q2
i

�−Dðb�;QiÞ

× exp

�
−b2

�
gSivers1 þ g2

2
ln
Qf

Qi

��
: ð24Þ

IV. CSS EVOLUTION AT NLL

A and B in Eqs. (18) and (24) are Γcusp and γV ,
respectively, and can be expanded perturbatively. As
mentioned earlier, the expansion coefficients are known
up to three-loop level. The D term can also be expanded
perturbatively as D ¼ P∞

n¼1 D
ðnÞðαs=nÞn. The expansion
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coefficients with the appropriate gluon anomalous dimen-
sions at NLL are [10]

Að1Þ ¼ CA ð25Þ

Að2Þ ¼ 1

2
CF

�
CA

�
67

18
−
π2

6

�
−
5

9
CANf

�
ð26Þ

Bð1Þ ¼ −
1

2

�
11

3
CA −

2

3
Nf

�
ð27Þ

Dð1Þ ¼ CA

2
ln
Q2

i b
�2

c2
: ð28Þ

Choosing the initial scale Qi ¼ c=b�, the D term
vanishes at NLL. The expressions for the TMDs therefore
become

fg=pðx; b;QÞ ¼ fg=pðx; c=b�Þ exp
�
−
Z

Q

c=b�

dμ
μ

�
A ln

Q2

μ2
þ B

��
exp

�
−b2

�
gpdf1 þ g2

2
ln
Qb�

c

��
ð29Þ

f0⊥g
1T ðx; b;QÞ ¼ Mpb

2
Tg;Fðx; x; c=b�Þ exp

�
−
Z

Q

c=b�

dμ
μ

�
A ln

Q2

μ2
þ B

��
exp

�
−b2

�
gSivers1 þ g2

2
ln
Qb�

c

��
: ð30Þ

This is related to the Sivers function given in
Eq. (3) by

ΔNfg=p↑ðxg; k⊥g; QÞ ¼ −2
k⊥g

Mp
f⊥g
1T ðxg; k⊥g;QÞ cosϕk⊥ ;

ð31Þ

where f⊥g
1T ðxg; k⊥g;QÞ and similarly fðx; k⊥g; QÞ can be

obtained from f0⊥g
1T ðxg; b;QÞ and fðx; b;QÞ by doing a

Fourier transform as shown in Ref. [15]:

fg=pðxg; k⊥g;QÞ ¼ 1

2π

Z
∞

0

db bJ0ðk⊥gbÞfg=pðxg; b;QÞ
ð32Þ

f⊥g
1T ðxg;k⊥g;QÞ¼−

1

2πk⊥g

Z
∞

0

dbbJ1ðk⊥gbÞf0⊥g
1T ðxg;b;QÞ:

ð33Þ

The expression for the numerator of the y asymmetry is
given by

dσ↑

dy
−
dσ↓

dy
¼
Z

dϕqT

Z
qT dqT

Z
4m2

D

4m2
c

dM2

Z
d2k⊥g

×
1

πMp
cosϕk⊥

Z
∞

0

dbbJ1ðk⊥gbÞf0⊥g
1T ðxg;b;QÞ

×fγ=eðxγ;qT − k⊥gÞσ̂0ðM2ÞsinðϕqT −ϕSÞ;
ð34Þ

where the b-space Sivers function, f0⊥g
1T ðxg; b;QÞ, is given

by Eq. (30).

V. NUMERICAL ESTIMATES

We adopt the formalism of Ref. [10] and assume that the
Qiu–Sterman function is proportional to the unpolarized
collinear PDFs [10,31],

Tq;Fðx; x; QÞ ¼ N qðxÞfq=Pðx;QÞ; ð35Þ

where for N qðxÞ, as in our previous work, we use the
Torino parametrization:

N fðxÞ ¼ Nfxafð1 − xÞbf ðaf þ bfÞðafþbfÞ

afafbfbf
: ð36Þ

Here af; bf; Nf are free parameters obtained by fitting to
data. Echevarria et al. have obtained these parameters
by a global fit of Sivers asymmetry in SIDIS using
data on kaons, pions and charged hadrons from JLab,
HERMES and COMPASS. These parameters are known
for u and d quarks, but there is no information available on
Ng, ag and bg for gluons. In our work, we have used
two parametrizations first proposed by Boer and
Vogelsang [20]:

ðaÞ N gðxÞ ¼ ðN uðxÞ þN dðxÞÞ=2
ðbÞ N gðxÞ ¼ N dðxÞ: ð37Þ

In the first choice, it is assumed that the gluon Sivers
function is the average of the up and down quark Sivers
functions. The second choice is based on the fact that the
gluon PDF is similar to the down quark PDF. Since these
choices are essentially based on certain heuristic argu-
ments, we explore the dependence of the asymmetry on
these choices by comparing the estimates obtained
with both.
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The latest fits performed in Ref. [10] give the following
values for the parameters of the quark Sivers function
and the widths of the TMDs. This set was fitted at
Q0 ¼

ffiffiffiffiffiffiffi
2.4

p
GeV. We call this set TMD-e2,

Nu ¼ 0.106; au ¼ 1.051; bu ¼ 4.857;

Nd ¼ −0.163; ad ¼ 1.552; bd ¼ 4.857;

bmax ¼ 1.5 GeV−1; hk2s⊥i ¼ 0.282 GeV2;

hk2⊥i ¼ 0.38 GeV2; g2 ¼ 0.16 GeV2: ð38Þ

These fits are used with the evolution formulation given
above, in which the perturbative part is resummed up to
NLL accuracy. Next, we include another set of parameters
which we use to estimate the asymmetry, using the
formulation provided in Ref. [15]. These parameters,
extracted at Q0 ¼ 1.0 GeV, are for the exact solution of
TMD evolution equations. We call this set TMD-e1,

Nu ¼ 0.77; au ¼ 0.68; bu ¼ 3.1;

Nd ¼ −1.00; ad ¼ 1.11; bd ¼ 3.1;

bmax ¼ 0.5 GeV−1; M2
1 ¼ 0.40 GeV2;

hk2⊥i ¼ 0.25 GeV2; g2 ¼ 0.68 GeV2: ð39Þ

The asymmetries obtained with both parametrizations
above are also compared with the results of Ref. [19]
which is our previous paper where we have used an
analytical solution of approximated TMD evolution equa-
tions. This analytical solution was obtained under the
approximation that the perturbative part of the evolution
kernel is independent of bT [15]. It should be noted that the
parameter set for the analytical form is different from the
one in Eq. (39). We call this TMD-a set in Figs. 2–11 and
give the parameters below for completeness:

Nu ¼ 0.75; au ¼ :82; bu ¼ 4.0;

Nd ¼ −1.00; ad ¼ 1.36; bd ¼ 4.0;

bmax ¼ 0.5 GeV−1; M2
1 ¼ 0:34 GeV2;

hk2⊥i ¼ 0.25 GeV2; g2 ¼ 0.68 GeV2: ð40Þ

In all these cases, hk2⊥i is given for quarks. We use the
same value for gluons. It should be noted that in the case of
TMD-e1 and TMD-a fits the appropriate Sivers function
given in Ref. [15] was used.
For the asymmetry estimated using TMD-e2,

MSTW2008LO gluon distribution was used. In the other
cases, GRV98LO gluon distribution was used. These were
the respective densities used by the authors of the different
fits. The TMDs were evaluated at Q2 ¼ ŝ, which varies
from 4m2

c to 4m2
D. Here mc is the charm quark mass, taken

to be 1.275 GeV, and mD ¼ 1.863 is the “open-charm”
threshold, i.e., the D-meson mass.
The center-of-mass energies at which the asymmetry has

been estimated are as follows:
ffiffiffi
s

p ¼ 4.7 GeV (JLAB),
7.2 GeV (HERMES), 17.33 GeV (COMPASS), 31.6 GeV
(eRHIC-1) and 158.1 GeV (eRHIC-2).
We would like to point out that in our previous work we

had calculated the kernel using the quark anomalous
dimensions instead of gluon anomalous dimensions.
However, as the kernel, which is independent of bT (in
the analytical approximation) canceled between the numer-
ator and the denominator of the asymmetry, this did not
affect the result. In all the exact calculations here, however,
we have used gluon anomalous dimensions while calculat-
ing the kernel, as one should. For completeness, in Fig. 1(a)
we show a plot comparing the gluon Sivers function
obtained using the quark anomalous dimensions and gluon
anomalous dimensions. We note here that even in the case
where we do not neglect the bT dependence of the kernel
the difference in the asymmetries obtained using a gluon
kernel and a quark kernel are very small. This is because the
kernel, which is in convolution with other factors, is present
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both in the numerator and the denominator of the asym-
metry and cancels out to a high degree.
In Fig. 1(b), we show the gluon Sivers function obtained

using the fits TMD-e1 and TMD-e2. The Sivers function is
plotted against k⊥ at Q ¼ 3.0 GeV. The plot clearly shows
that the peak of the Sivers function in the TMD-e1 fit
occurs at a higher value of kT than in the TMD-e2 fit. This
has implications for the qT distribution of the Sivers
asymmetry.
Next, we show the Sivers asymmetries obtained at JLab,

HERMES, COMPASS , eRHIC-1 and eRHIC-2 energies

for both parametrizations (a) and (b) of the Sivers function
shown in Eq. (37). The asymmetry as a function of y was
obtained by integrating Eq. (12) over qT (from 0 to 1 GeV).
We call this the “y asymmetry.” The asymmetry as a
function of qT was obtained by integrating Eq. (12) over the
kinematically allowed ranges of y. These were −0.25 ≤
y ≤ 0.25 for JLab, −0.6 ≤ y ≤ 0.6 for HERMES, −1.5 ≤
y ≤ 1.5 for COMPASS, −2.1 ≤ y ≤ 2.1 for eRHIC-1 and
−3.7 ≤ y ≤ 3.7 for eRHIC-2. We call this the “qT asym-
metry”. It should be noted that the rapidity, y, given here is
in the c.m. frame of the colliding electron and proton.
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Figures 2–6 show the asymmetries as a function of y and
qT with increasing c.m. energies from JLab (4.7 GeV) to
e-RHIC (158.1 GeV). We do this for all three TMD evolved
fits as well as the DGLAP fit with parametrization (a) of the
gluon Sivers function as given in Eq. (37). Figures 7–11
show the same but for parametrization (b) of the gluon
Sivers function.
Now we discuss the results in detail. We are broadly

concerned with two things: The behavior of the predictions
under different treatments of transverse momentum-
dependent evolution and the dependence of the predictions
on the center-of-mass energy

ffiffiffi
s

p
.

First we look at the behavior under different treatments
of evolution. Figures 2–6 show the y and qT asymmetry

estimates for JLAB, HERMES, COMPASS and eRHIC-2
energies obtained using parametrization (a) of the gluon
Sivers function. Figures 7–11 show estimates obtained with
parametrization (b). We can see that the asymmetries given
by the TMD-a and TMD-e1 fits are similar. This was to be
expected as both use the same kernel (except for the
approximation on the bT dependence) and were fitted to
the same data. This shows that the approximation made in
obtaining the analytical solution in Ref. [15] is a good one.
The y asymmetries given by the TMD-e2 fits are also
similar in size to the asymmetries given by TMD-a and
TMD-e1 for parametrization (b) of the gluon Sivers
function. However, they are slightly larger in case of
parametrization (a). We would like to remind the reader
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here that the perturbative part of the kernel used with the
TMD-e2 fit has been resummed at NLL [10]. The asym-
metries obtained using all three TMD evolved fits are much
smaller than those obtained using DGLAP evolution, but
among themselves, they are similar in size. That is, the
predictions are stable over different treatments of TMD
evolution. This is the main result of our analysis.
As was the case with the y asymmetries, the three TMD

evolved predictions of the qT asymmetry are much smaller
than the DGLAP prediction but similar among themselves.
In general, the qT asymmetries for different choices of
evolution vary more among each other when compared to
the y asymmetries, but again the asymmetries obtained
using TMD-a and TMD-e1 are similar. The magnitude of

the qT asymmetries increases monotonically with qT in the
range considered (0 ≤ qT ≤ 0.75 GeV). For parametriza-
tion (a) of the gluon Sivers function, they even become
negative for eRHIC-2 energies, as can be seen in Fig. 6.
This change of sign occurs only for parametrization (a) for
which the x-dependent normalization N g is an average of
N u and N d. The change of sign takes place for values of y
which correspond to xg values [in Eq. (6)] where the gluon
Sivers function changes sign. In parametrization (a), we
have taken gluon Sivers function to be proportional to the
average of the up quark and down quark N q. Hence, the
sign of Sivers function, and therefore Sivers asymmetry,
depends on the relative magnitude of N u and N d as these
two have opposite sign. The up quark contribution
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dominates for most of the xg values, but for small values of
xg, the down quark Sivers function dominates, leading to
the change of sign observed herein.
Theminordifferences thatweobserve in thebehavior of the

qT asymmetries with different TMD fits can be understood in
terms of the differences in the kT behavior of the Sivers
functions obtained with different fits. Figure 1(b) shows the
Sivers functions obtained using theTMD-e1 andTMD-e2 fits
forQ ¼ 3.0 GeV and x ¼ 0.1. Since the transverse momen-
tum behavior of the partons is directly reflected in the
transverse momenta of the produced J=ψ pairs, the kT
behavior of the Sivers function influences the qT asymmetry.
We note that there is a substantial difference in the

magnitude of the asymmetries between the two

parametrizations of the gluon Sivers function. The peak
asymmetry in the y distribution obtained using TMD-e2 fit
varies between 1.3% for parametrization (a) of the Sivers
function and 6.1% for parametrization (b) for all energies
except JLab. This is because the kinematics at the c.m.
energy of 4.7 GeV allows contributions only from a region
where the Sivers function is small. One can see from Eq. (6)
that only contributions in the region xg ≥ 0.42 are allowed,
causing only the tail end of the gluon Sivers function to
affect the process.
Now we look at the dependence of the asymmetry

estimates on the center-of-mass energy
ffiffiffi
s

p
. Figure 12

shows the estimates obtained using TMD-e2 set and
parametrization (a) of the gluon Sivers function, for all
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energies. The y and qT asymmetries for all considered
values of

ffiffiffi
s

p
for the TMD-e2 fit are shown in Fig. 12. In the

y asymmetry, we note that the peak shifts to higher values
of y with increasing

ffiffiffi
s

p
. This shift in position of the peak

can be understood through the kinematic relation between y
and gluon momentum fraction xg and the dependence of the
gluon Sivers function on xg. It is clear from Eqs. (34)
and (6) that the y dependence of the asymmetry would
reflect the xg dependence of gluon Sivers function. Putting
numbers in Eq. (6), we can see that for all c.m. energies
above JLab, the different values of rapidities at which the
peak occurs (in the left panel of Fig. 12), correspond to a
fixed value of xg ≈ 0.3. Since a range of invariant masses of
the cc̄ pair contribute to the quarkonium production, this

value of xg which contributes most to the asymmetry can
differ from the xg value where the gluon Sivers function
itself peaks. Nonetheless, it is clear that the study of such
scaling features at different c.m. energies can indeed shed
light on the xg dependence of the gluon Sivers function,
about which not much direct experimental information is
available. It is to be noted further that in the case of JLab
energy, however, the kinematics prevent the gluon Sivers
function being probed near xg ≈ 0.3, and the peak is also
not seen.
Apart from JLab, the asymmetry predictions in the qT

distribution become smaller with increasing
ffiffiffi
s

p
. As pointed

out earlier, in the case of eRHIC energies and param-
etrization (a), the asymmetries even become negative.
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s

p ¼ 31.6 GeV), asymmetry as a function of y (left panel) and qT (right panel) for
parametrization (b). The integration ranges are ð0 ≤ qT ≤ 1Þ GeV and ð−2.1 ≤ y ≤ 2.1Þ. The convention for the color and line styles is
the same as in Fig. 2.
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The asymmetry at JLAB energy does not conform to this
trend. Again, as with the y distribution, this is due to the
constraint on the gluon momentum fraction xg.
We note that the qT asymmetries given here are for the

full allowed kinematic ranges of y. We have not considered
the acceptances of different experiments. It would be
interesting to see how the predictions are affected when
the details of the experiments are considered.

VI. SUMMARY AND CONCLUSION

The single spin asymmetry in the low virtuality electro-
production of J=ψ has been estimated with respect to its
transverse momentum and its rapidity using a NLL-
resummed TMD evolution formulation. The results for
JLAB, COMPASS, HERMES, and eRHIC energies are
presented at the end. It is observed that the estimates
obtained are much smaller than those obtained earlier using
DGLAP evolution with a nonevolving Gaussian form for
the unpolarized PDF and the Sivers function. The asym-
metries calculated here are also similar in size to those
obtained using an earlier fit (TMD-e1) to the SIDIS data
wherein the TMD evolution formalism does not include the
NLL resummation. We further observe that in the case of

TMD-e1 fits the difference between these asymmetries and
those reported by us earlier, calculated using fits to SIDIS
data based on an approximate, analytical form of the TMD
evolution equation, is small. To summarize, therefore, the
asymmetries obtained using the TMD evolution are con-
sistently much smaller than those without it, and further use
of the TMD evolved Sivers function stabilizes the pre-
dictions for the size of the asymmetries. Overall the
asymmetries remain sizable.
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increasing c.m. energy. The solid red line corresponds to the asymmetry at JLABð ffiffiffi

s
p ¼ 4.7Þ energy, the dashed green line corresponds

to HERMESð ffiffiffi
s

p ¼ 7.2Þ energy, the dotted blue line corresponds to COMPASSð ffiffiffi
s

p ¼ 17.33Þ energy, the dashed pink line corresponds
to eRHIC-1ð ffiffiffi

s
p ¼ 31.6Þ energy, and the dashed-dotted black line corresponds to eRHIC-2ð ffiffiffi

s
p ¼ 158.1Þ energy.
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