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Short-pulse effects are investigated for the nonlinear Breit-Wheeler process, i.e. the production of an
electron-positron pair induced by a gamma photon inside an intense plane-wave laser pulse. To obtain the
total pair-creation probability we verify (to leading-order) the cutting rule for the polarization operator in
the realm of strong-field QED by an explicit calculation. Using a double-integral representation for the
leading-order contribution to the polarization operator, compact expressions for the total pair-creation
probability inside an arbitrary plane-wave background field are derived. Correspondingly, the photon wave
function including leading-order radiative corrections in the laser field is obtained via the Schwinger-
Dyson equation in the quasistatic approximation. Moreover, the influence of the carrier-envelope phase and
of the laser pulse shape on the total pair-creation probability in a linearly polarized laser pulse is
investigated, and the validity of the (local) constant-crossed field approximation analyzed. It is shown that
with presently available technology pair-creation probabilities of the order of ten percent could be reached
for a single gamma photon.
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I. INTRODUCTION

In vacuum the decay of a single photon into a real
electron-positron pair is forbidden by energy-momentum
conservation, even if the energy ℏωγ of the photon exceeds
the threshold 2mc2 (m denotes the electron mass). At least
one additional interaction is needed to catalyze the
process, e.g. a second photon (Breit-Wheeler process
[1]) or the Coulomb field of a nucleus (Bethe-Heitler pair
creation [2,3]).
Inside a strong electromagnetic background field the

situation changes, as the field can provide four-momentum
to the reaction. If a constant electric field reaches the critical
field strength Ecr ¼ m2c3=ðℏjejÞ ¼ 1.3 × 1016 V=cm of
QED, even the spontaneous creation of electron-positron
pairs from the vacuum becomes possible (e < 0 denotes the
electron charge) [4–7]. Experimentally, spontaneous pair
creation could be observed if an intense x-ray laser is
focused to its diffraction limit [8,9].
However, present and near-future laser facilities will not

reach the critical field strength (1024–1025 W=cm2 is the
envisaged intensity for optical lasers [10–12] and the
critical field corresponds to an intensity of Icr ¼ ϵ0cE2

cr ¼
4.6 × 1029 W=cm2). Nevertheless, electron-positron pairs
could be produced if the process is stimulated by a highly
energetic particle. For example, in the E-144 experiment at
SLAC electron-positron pair creation has been observed
during the collision of an electron beam with a relativis-
tically intense optical laser via the trident process [13–16].

In this paper we consider the nonlinear Breit-Wheeler
process shown in Fig. 1, i.e. pair creation by a single (on
shell) gamma photon inside a strong (optical) laser pulse
with electric field amplitude E0 and central angular
frequency ω. By absorbing multiple low-energy laser
photons, the decay of the photon into an electron-positron
pair, which is forbidden in vacuum, becomes feasible. For
monochromatic laser fields this process has been consid-
ered in detail (see e.g. [17–22]). In the strong-field regime
ξ ≫ 1, where in general many photons can be efficiently
absorbed from the laser field, the probability depends
nontrivially only on the quantum-nonlinearity parameter
χ and is exponentially suppressed for χ ≪ 1. Here, ξ ¼
jejE0=ðmωcÞ is a gauge and Lorentz invariant measure of
the laser intensity [23] and χ ¼ ð2ℏωγ=mc2ÞðE0=EcrÞ for
the head-on collision between a gamma photon with energy
ℏωγ and the laser pulse. As existing optical petawatt laser
systems reach already ξ ∼ 100 [24] and GeV photons are

FIG. 1. Leading-order Feynman diagram for the creation of an
electron-positron pair by a single photon inside a plane-wave
background field. The fermions are denoted by double lines,
representing the Volkov states (solutions of the Dirac equation,
which take the plane-wave background field into account exactly)
[31]. The four-vectors indicate the four-momenta of the particles;
they are described in Sec. II A.
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available using Compton backscattering [25–30], the
regime χ ≳ 1 could be entered with available technology.
Due to the experimental progress concerning laser

development during the last years, the nonlinear Breit-
Wheeler process has been recently investigated by several
authors [32–49] (see also the reviews [7,50]). To achieve
the strong-field strengths needed to observe the nonlinear
Breit-Wheeler process, future experiments will probably
use short laser pulses. However, the calculation of the total
pair-creation probability is challenging if the phase-
space integrals are calculated numerically for an arbitrary
plane-wave field [41].
In the present paper we circumvent these difficulties by

applying the optical theorem to the polarization operator
(see Fig. 2) [51–56]. The optical theorem, which relates the
total probability for particle production processes to the
imaginary part of corresponding loop diagrams, reflects
the unitarity of the S-matrix. As probability is conserved,
the total pair-creation probability must be related to the
imaginary part of the forward-scattering amplitude for
photons (i.e. the polarization operator) [22,57]. However,
it is instructive to verify this by an explicit calculation,
which leads to the so-called “cutting” or “Cutkosky rules”
(for QED in vacuum this derivation was first given
in [58,59]).
By applying the cutting rule to the polarization operator

we derive a double-integral representation for the total pair-
creation probability inside a plane-wave laser pulse (for
pair creation in combined laser and Coulomb fields the
same method was used in [60,61], see also [51,54]). The
analysis holds for an arbitrarily shaped plane-wave back-
ground field, in particular we focus on the description of
experiments with short (optical) laser pulses. Similar
methods for calculating analytically the final-state momen-
tum integrals have recently also been applied in [54,62].
Starting from this compact representation of the total

pair-creation probability we investigate various parameter
regimes numerically. It is well known that for ξ ≫ 1 the
total pair-creation probability can be obtained by averaging
over the corresponding result in a constant-crossed field
[7,22]. By comparing with the exact expression we show
that already for ξ≳ 1 this (local) constant-crossed field

approximation may be applied. However, the importance of
CEP effects is underestimated for ξ≲ 1 (in this regime the
formation region for the pair-production process becomes
large, which is not included in the constant-crossed field
limit). Furthermore, the influence of the pulse shape, length
and CEP on the total pair-creation probability is studied in
the regime ξ ≫ 1.
If the total pair-production probability becomes of order

unity, the straightforward evaluation of the diagram shown
in Fig. 1 is not sufficient. In this regime one must take into
account that the exact photon wave function decays
exponentially if pair creation is possible. This exponential
decay is naturally obtained by solving the Schwinger-
Dyson equation for the exact photon wave function [6,63].
We show that already for available laser parameters and
photon energies this effect plays an important role (see
also [54]).
The paper is organized as follows. The optical theorem is

discussed in Sec. II (see also the Appendices A and B).
In Sec. III the exponential decay of the exact photon
wave function is derived. In Sec. IV the optical theorem is
used to obtain a double-integral representation for the total
pair-creation probability. Finally, numerical results are
presented in Sec. V. Further details are given in the
Appendices, in particular the double-integral representation
for the polarization operator is discussed in Appendix D
(for other double-integral representations see [52,54]).
From now on we use natural units ℏ ¼ c ¼ 1 and

Heaviside-Lorentz units for charge [α ¼ e2=ð4πÞ ≈ 1=
137 denotes the fine-structure constant]; the notation agrees
with [53].

II. OPTICAL THEOREM

A. Pair creation with background fields

The leading-order Feynman diagram for the creation of
an electron and a positron with four-momenta pμ and p0μ,
respectively, by a photon with four-momentum qμ is shown
in Fig. 1. In vacuum this process is forbidden, as four-
momentum conservation pμ þ p0μ ¼ qμ cannot be fulfilled
if all three particles are on shell (i.e. p2 ¼ p02 ¼ m2,
q2 ¼ 0). However, inside a plane-wave laser field addi-
tional laser photons with average four-momentum kμ can be
absorbed [see Eq. (A13)]

pμ þ p0μ ¼ qμ þ nkμ ð1Þ

and the process of stimulated pair creation by an incoming
photon is feasible (as a non-monochromatic plane-wave
laser pulse consists of photons with different four-
momenta, n must not be an integer in general).
As shown in Appendix A, the total pair-creation prob-

ability is given by [see Eq. (A18)]

FIG. 2. Leading-order contribution to the polarization operator
for a photon in a plane-wave background field. The double lines
denote the dressed (Volkov) propagator, which takes the classical
background field into account exactly. The imaginary part of this
diagram is related to the total pair-creation probability via the
optical theorem [indicated by the dashed line, see Eq. (B18)].
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W ¼
Z

d3q0

ð2πÞ32ϵq0
jηðq0Þj2Wðq0Þ; ð2aÞ

where

WðqÞ ¼
X
spin

Z
d3pd3p0

ð2πÞ62ϵp2ϵp0
1

2q−
jMðp; p0; qÞj2

× ð2πÞ3δð−;⊥Þðpþ p0 − qÞ ð2bÞ

and ηðq0Þ describes the (normalized) momentum distribu-
tion of the photon wave packet [see Eq. (A1) and Eq. (A3)
for details]. We point out that the interpretation of W
changes if it becomes of order unity, see Sec. III.
The reduced matrix element reads (to leading order, see

Fig. 1)

Mðp; p0;qÞ ¼ ϵμūpGμðp; q;−p0Þvp0 ð3Þ

where ϵμ denotes the polarization four-vector of the
incoming photon, up and vp0 the Dirac spinors of the
electron and the positron, respectively and Gμ the non-
singular part of the dressed vertex [see Eqs. (A13), (A15)
and (A19)].
Thus, W is the average of WðqÞ over the momentum

distribution of the incoming photon wave packet.
Assuming that the matrix element is sufficiently smooth
and that the wave packet is peaked around q0μ ¼ qμ, we
obtain W ≈WðqÞ [see Eq. (A3)]. We point out that the
average over the momentum distribution of the incoming
gamma photon may hide substructures in the spectrum,
especially if the energy spread of the incoming gamma
photon (∼MeV) is much larger than the energy of the
colliding laser photons (∼eV).

B. Cutting rule

We obtain the differential pair-creation probability by
inserting the pair-creation matrix element given in Eq. (3)
into Eq. (2). To determine the total pair-creation proba-
bility, the phase-space integrals must be evaluated, which is
numerically rather demanding [41]. If one is only interested
in the total pair-creation probability (and not in its differ-
ential structure), these integrals can be taken analytically by
applying cutting rules to the polarization operator, as shown
in Appendix B (for the application of cutting rules see also
[51,54,57,60,61,64] and [62] for an alternative method to
solve the final momentum integrals analytically).
Finally, we obtain the following relation between the

total nonlinear Breit-Wheeler pair-creation probability W
[see Eq. (2)] and the imaginary part of the photon forward-
scattering amplitude [see Eq. (B18) and also [51,60,61]]

WðqÞ ¼ 1

kq
ℑ½ϵμϵ�νΠμνðq; qÞ� ð4Þ

(q2 ¼ 0, kq > 0).

C. Generalization

The optical theorem given in Eq. (4) holds for the
decay of a real photon into a lepton pair. We will now
generalize this result to the case where the pair-creation
process represents only a part of a more complicated
Feynman diagram. The most prominent example is the
trident process shown in Fig. 3 [14–16]. After squaring
the matrix element and summing over the final spin
states, one has to consider the expression [see Eqs. (B1)
and (B17)]

Mμνðq1; q2Þ ¼
Z

d3pd3p0

ð2πÞ62ϵp2ϵp0
trðpþmÞΓμðp; q1;−p0Þ

× ðp0 −mÞΓ̄νðp; q2;−p0Þ ð5Þ

(p2 ¼ p02 ¼ m2), which is in general not simply contracted
with ϵμϵ�ν and q

μ
1 ≠ qμ2. Nevertheless, it can be related to the

polarization operator by considering the following linear
combinations:

Mμν
ð�Þðq1; q2Þ ¼

1

2
½Mμνðq1; q2Þ �Mνμðq2; q1Þ�; ð6Þ

where Mμν
ðþÞðq1; q2Þ is purely real and Mμν

ð−Þðq1; q2Þ purely
imaginary, as ½Mμνðq1; q2Þ�� ¼ Mνμðq2; q1Þ [compare with
Eq. (B11)]. After similar manipulations as in Appendix B
we obtain

Mμν
ðþÞðq1; q2Þ ¼ ℑ½Pμνðq1; q2Þ þ Pνμðq2; q1Þ�;

Mμν
ð−Þðq1; q2Þ ¼ −iℜ½Pμνðq1; q2Þ − Pνμðq2; q1Þ� ð7Þ

for q−i > 0 (which is necessary if the electron and the
positron are real, i.e. for p−; p0− > 0).

FIG. 3. Leading-order Feynman diagram for the creation of an
electron-positron pair by an electron or a positron inside a
background field (trident process). The intermediate photon is
in general not on shell (time axis from right to left).
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III. EXACT PHOTON WAVE FUNCTION

It is shown in Sec. V that the quantityWðqÞ [see Eq. (2)]
may become larger than unity for next-generation laser
parameters. Correspondingly, in this regime the common
interpretation of WðqÞ as pair-production probability must
be modified. The reason for this at first sight unphysical
result is the fact that we neglected the exponential decay of
the photon (and of the electron) wave function during the
evaluation of the Feynman diagram shown in Fig. 1. As the
photon is unstable in the external field, the phase of its
exact wave function must contain an imaginary part to
ensure a unitary time evolution. In the realm of quantum
field theory unitarity leads to the optical theorem [see
Eq. (4)] and the decay of the wave function is obtained
naturally from radiative corrections to the exact external
photon line [6,63]. As we will show now, the decay of the
exact photon wave function must be taken into account
self-consistently for the calculation of the pair-creation
probability if WðqÞ ≳ 1 (see [54] for an equivalent
approach).
In vacuum the wave function of an incoming (outgoing)

photon with four-momentum qμ is given by [63,65]

Φinμ
q;jðxÞ ¼ ϵμj e

−iqx; Φ�outμ
q;j ðxÞ ¼ ϵ�μj eiqx ð8Þ

(j ¼ 1; 2 labels the polarization state). However, inside a
background field radiative corrections affect also the
external lines (even after renormalization [66]) and
the exact wave function obeys the Schwinger-Dyson
equation [6,63]

−∂2Φinμ
q ðxÞ ¼

Z
d4yPμνðx; yÞΦin

qνðyÞ;

−∂2Φ�outμ
q ðxÞ ¼

Z
d4yΦ�out

qν ðyÞPνμðy; xÞ; ð9Þ

where Pμνðx; yÞ denotes the polarization operator in posi-
tion space. It is related to the polarization operator in
momentum space (see Appendix D) via

Pμνðx; yÞ ¼
Z

d4q1d4q2
ð2πÞ8 e−iq2xPμνð−q2;−q1Þeiq1y;

Pμνðq1; q2Þ ¼
Z

d4xd4ye−iq1yPμνðy; xÞeiq2x ð10Þ

[note that we use for Pμνðx; yÞ ¼ Pνμðy; xÞ the Schwinger
notation (particle propagation from y to x) [6], while in
Pμνðq1; q2Þ ¼ Pνμð−q2;−q1Þ the incoming momentum is
denoted by q1]. As the vacuum part does not change the
photon wave function (after renormalization is carried out),
we will consider only the field-dependent part of the
polarization operator in the following.
We point out that now even for a plane-wave field the

states for incoming and outgoing particles are not

equivalent anymore, as the quantum loop enters differently
into the equations (the corresponding Schwinger-Dirac
equation for an electron is discussed in [67]).
To solve the Schwinger-Dyson equations [see Eq. (9)]

we use the ansatz Φinμ
q;jðxÞ ¼ expð−iqxÞEinμ

q;jðkxÞ (incoming

photon) and Φ�outμ
q;j ðxÞ ¼ E�outμ

q;j ðkxÞ expðiqxÞ (outgoing

photon) and the boundary conditions Einμ
q;jð−∞Þ → ϵμj

and E�outμ
q;j ðþ∞Þ → ϵ�μj (with a suitable choice for the

constant polarization four-vectors ϵμj ). We note that the
quantum numbers are left unchanged, as they denote
the asymptotic momenta (i.e. q2 ¼ 0). However, we
obtain Q2

j ≠ 0, where the effective four-momentum Qμ
j

is defined as the derivative of the total wave-function phase
[54], i.e. for in states

Qμ
j ¼ −∂μSq;jðxÞ; Φinμ

q;jðxÞ ∼ exp½iSq;jðxÞ� ð11Þ

(Qμ
j ¼ qμ to leading order).
From Eq. (9) we obtain now the following integro-

differential equations

i2kqE0inμ
q;j ðϕÞ ¼

Z
dϕ0Pμν

q ðϕ;ϕ0ÞEin
q;jνðϕ0Þ;

−i2kqE0�outμ
q;j ðϕÞ ¼

Z
dϕ0E�out

q;jνðϕ0Þ ~Pνμ
q ðϕ0;ϕÞ; ð12Þ

where we defined the quantities

Pμν
q ðkx; kyÞ ¼

Z
dyþdy⊥eiqðx−yÞPμνðx; yÞ;

~Pνμ
q ðky; kxÞ ¼

Z
dyþdy⊥eiqðy−xÞPνμðy; xÞ ð13Þ

(we use the same notation for light-cone coordinates as
in [53]).
From now on we focus on the in states and assume that

the background field is strong (ξ ≫ 1), i.e. we use the
leading-order quasistatic approximation for the polarization
operator [53]. To determine the leading-order corrections in
αχ2=3 ≪ 1 [22], we can apply a perturbative approach [6]
(i.e. assume that Qμ

j ¼ qμ to leading order) and obtain the
following differential equation:

i2kqE0inμ
q;j ðϕÞ ¼ −

�
p1ðϕÞΛμ

1Λ
ν
1 þ p2ðϕÞΛμ

2Λ
ν
2

þ p3ðϕÞ
qμqν

m2

�
Ein
q;jνðϕÞ; ð14Þ

where [53]
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p1ðϕÞ ¼ α
m2

3π

Z þ1

−1
dvðw − 1Þ f

0ð~xÞ
~x

;

p2ðϕÞ ¼ α
m2

3π

Z þ1

−1
dvðwþ 2Þ f

0ð~xÞ
~x

;

p3ðϕÞ ¼ −α
m2

π

Z þ1

−1
dv

f1ð~xÞ
w

ð15Þ

[1w ¼ 1
4
ð1 − v2Þ, ~x ¼ ½w=jχðϕÞj�2=3, χðϕÞ ¼ χψ 0ðϕÞ and the

Ritus functions are defined in Eq. (30)]. As the incoming
photon is initially transversely polarized (i.e. in the plane
spanned by Λμ

j, j ¼ 1; 2), the term proportional to p3ðϕÞ
can be ignored.
Finally, we obtain for the exact incoming photon wave

function the solutions

Φinμ
q;jðxÞ ¼ Λμ

j exp

�
−iqx − i

1

2kq

Z
kx

−∞
dϕ0pjðϕ0Þ

�
ð16Þ

(j ¼ 1; 2, valid for ξ ≫ 1 and as long as αχ2=3 ≪ 1 [22], the
same calculation can also be applied for the outgoing
photon wave function). From Eq. (16) we conclude that the
effective photon four-momentum is given by [see Eq. (11)]

Qμ
j ðϕÞ ¼ qμ þ kμ

1

2kq
pjðϕÞ ð17Þ

and the well-known expression for the square of the photon
mass Q2

j is recovered [68–71] (for other discussions of
refractive indices and birefringence see e.g. [51,54,72–75]
and the reviews [7,76]).
Due to the imaginary part of the polarization operator the

photon wave function decays exponentially (as expected
for an unstable particle). During the calculation of the pair-
creation probability (see Appendix A) the exponential
decay of the wave function must be considered as soon
as WðqÞ [see Eq. (2)] becomes of order one.
The total probability that a photon with polarization four-

vector ϵμj ¼ Λμ
j does not decay inside the laser pulse is

obtained by evaluating the square of the exact wave
function at kx → ∞, it is given by (see also [77])

Ws
q;j ¼ exp

�
1

kq

Z þ∞

−∞
dϕ0ℑ½pjðϕ0Þ�

�
: ð18Þ

As the imaginary part of the polarization operator is related
to the pair-creation diagram (without radiative corrections)
via the optical theorem [see Eq. (4)]

WjðqÞ ¼
1

kq
ℑ½ΛjμΛjνΠμνðq; qÞ�; ð19Þ

the survival probability can be expressed as

Ws
q;j ¼ exp½−WjðqÞ� ≈ 1 −WjðqÞ ð20Þ

[the last relation holds only if WjðqÞ is much smaller than
unity]. Thus, WjðqÞ must be interpreted as the decay
exponent for the photon wave function if it becomes large
[nevertheless, we call WjðqÞ the probability for pair
creation in the following].

IV. PAIR-CREATION PROBABILITY

In order to obtain a compact expression for the total
nonlinear Breit-Wheeler pair-creation probability WðqÞ
[see Eq. (2)], we apply the optical theorem [see Eq. (4)]
to the double-integral representation for the field-dependent
part of the polarization operator given in Eq. (D14). For a
single on-shell photon with four-momentum qμ and polari-
zation four-vector ϵμ, colliding with a plane-wave laser
pulse described by the field tensor [see Eq. (A9)]

FμνðϕÞ ¼ fμν1 ψ 0
1ðϕÞ þ fμν2 ψ 0

2ðϕÞ ð21Þ

the result is given by

WðqÞ ¼ −
1

kq
α

2π

Z
∞

0

dϱ
ϱ

Z þ∞

−∞
dy−ℑϵμϵ�ν½P12Λ

μ
1Λ

ν
2

þ P21Λ
μ
2Λ

ν
1 þ P11Λ

μ
1Λ

ν
1 þ P22Λ

μ
2Λ

ν
2�; ð22Þ

where

Λμ
1 ¼

fμν1 qν
kq

ffiffiffiffiffiffiffiffi
−a21

p ; Λμ
2 ¼

fμν2 qν
kq

ffiffiffiffiffiffiffiffi
−a22

p ;

Qμ
1 ¼

kμq21 − qμ1kq
kq

; Qμ
2 ¼

kμq22 − qμ2kq
kq

; ð23Þ

and the coefficients [see Eq. (D15)] are evaluated at
q1 ¼ q2 ¼ q, q2 ¼ 0 (PQ does not contribute for
qϵ ¼ q2 ¼ 0, which can be seen from the definition of
the four-vectors Qμ

i ).
The dependence of the pair-creation probability on the

external field is determined by the classical intensity
parameters ξi and the quantum-nonlinearity parameters χi

ξi ¼
jej
m

ffiffiffiffiffiffiffiffi
−a2i

q
; χi ¼

jej
ffiffiffiffiffiffiffiffiffiffi
qf2i q

p
m3

¼ ηξi; ð24Þ

where η ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðkqÞ2

p
=m2. Note that in the general case of

elliptic polarization ξ and χ given in the Introduction
represent the characteristic scale of ξi and χi, respectively
(see [53] for details).

A. Linear polarization

We consider now the special case of a linearly polarized
background field [ξ¼ξ1, ξ2¼0; ψ1ðϕÞ¼ψðϕÞ, ψ2ðϕÞ¼0;
Fμν ¼ ψ 0ðϕÞfμν, fμν ¼ kμaν − kνaμ, P12 ¼ P21 ¼ 0].
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It is then useful to introduce the following two polarization
four-vectors [see Eq. (23)]:

ϵμ‖ ¼ Λμ
1; ϵμ⊥ ¼ Λμ

2: ð25Þ

They are real, obey ϵ2‖ ¼ ϵ2⊥ ¼ −1, ϵ‖ϵ⊥ ¼ 0 and represent
the direction of the electric and the magnetic field of the
laser, respectively (in the frame where the incoming photon
and the laser pulse collide head-on).
Accordingly, we obtain for the total pair-creation prob-

ability in a linearly polarized laser pulse by an on-shell
photon with polarization four-vector ϵμ‖ and ϵμ⊥ [see
Eq. (22)]

W‖ðqÞ ¼ −α
m2

kq
1

2π

Z þ∞

−∞
dy−

Z
∞

0

dϱ
ϱ
ℑ ~P11;

W⊥ðqÞ ¼ −α
m2

kq
1

2π

Z þ∞

−∞
dy−

Z
∞

0

dϱ
ϱ
ℑ ~P22; ð26Þ

where [see Eq. (D15)]

~P11 ¼ −
i
ϱ

kq
m2

½W2ðx1Þe−i4x1 −W2ðx0Þe−i4x0 �

þ ξ2
�
1

2
VW0ðx1Þ þ 2XW1ðx1Þ

�
e−i4x1 ;

~P22 ¼ −
i
ϱ

kq
m2

½W2ðx1Þe−i4x1 −W2ðx0Þe−i4x0 �

þ ξ2
1

2
VW0ðx1Þe−i4x1 ð27Þ

[V ¼ V1, X ¼ X11, see Eq. (D19); x0 and x1 are defined in
Eq. (D17) and WlðxÞ in Eq. (D4)].

B. Strong fields

As the integrals in Eq. (26) are oscillatory, it is useful
to derive non-oscillatory representations for important
limits. In this section we consider a strong (ξ ≫ 1),
linearly polarized background field. In this case the
field-dependent contribution to the polarization operator
can be written as [53]

iPμνðq1; q2Þ − iPμν
F¼0ðq1; q2Þ

¼ ið2πÞ3δð−;⊥Þðq1 − q2Þ
Z þ∞

−∞
dz−eiðq

þ
2
−qþ

1
Þz−

×

�
π01

ðfqÞμðfqÞν
ðfqÞ2 þ π02

ðf�qÞμðf�qÞν
ðf�qÞ2 −

π03
q1q2

Gμν

�
;

ð28Þ

where f�μν ¼ 1
2
εμνρσfρσ and

π01 ¼ α
m2

3π

Z þ1

−1
dvðw − 1Þ

�jχðkzÞj
w

�
2=3

f0ðρÞ;

π02 ¼ α
m2

3π

Z þ1

−1
dvðwþ 2Þ

�jχðkzÞj
w

�
2=3

f0ðρÞ;

π03 ¼ −α
q1q2
π

Z þ1

−1
dv

f1ðρÞ
w

ð29Þ

with 1
w ¼ 1

4
ð1 − v2Þ, ρ ¼ ½ w

jχðkzÞj�2=3ð1 − q1q2
m2

1
wÞ, χðkzÞ ¼

χψ 0ðkzÞ and Gμν ¼ qμ2q
ν
1 − q1q2gμν. Furthermore, the

Ritus functions are defined by [22,53,68]

fðxÞ ¼ i
Z

∞

0

dt exp½−iðtxþ t3=3Þ� ¼ πGiðxÞ þ iπAiðxÞ;
ð30aÞ

f1ðxÞ ¼
Z

∞

0

dt
t
exp ð−itxÞ½expð−it3=3Þ − 1�; ð30bÞ

where Ai and Gi are the Airy and Scorer function,
respectively [78]. Note that in Ritus’ work the normaliza-
tion of the Airy function is different and also changes [see
[22], Appendix C and [18], Eq. (B5)]. In Eq. (29) the
integration variable can be changed using

Z þ1

−1
dv ¼ 2

Z
1

0

dv ¼
Z

∞

4

dw
4

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw − 4Þp ð31Þ

(valid for integrands which are even functions of v).
The expression given in Eq. (28) was obtained by

applying suitable approximations to the triple-integral
representation given in Eq. (92) of [53]. It is tempting to
apply the same approximations now to the double-integral
representation in Eq. (D14). However, the functions Wi
change over the formation region (W0 even has a loga-
rithmic singularity at the origin), which means that this is
not possible.
To determine the pair-creation probabilities we apply the

optical theorem given in Eq. (4) to Eq. (28) and note the
identities [see Eq. (23)]

Λμ
1Λ

ν
1 ¼ −

ðfqÞμðfqÞν
ðfqÞ2 ;Λμ

2Λ
ν
2 ¼ −

ðf�qÞμðf�qÞν
ðf�qÞ2 : ð32Þ

Finally, we obtain for the total probability that a single on-
shell photon with four-momentum qμ and polarization four-
vector ϵμ‖ or ϵμ⊥ creates an electron-positron pair inside a
strong (ξ ≫ 1, χ < ξ), linearly polarized laser pulse with
field tensor FμνðkxÞ ¼ fμνψ 0ðϕÞ the following expressions:

W‖ðqÞ ¼ −α
m2

kq

Z þ∞

−∞
dϕ

Z þ1

−1
dv

ðw − 1Þ
3

Ai0ð~xÞ
~x

;

W⊥ðqÞ ¼ −α
m2

kq

Z þ∞

−∞
dϕ

Z þ1

−1
dv

ðwþ 2Þ
3

Ai0ð~xÞ
~x

; ð33Þ
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where 1
w ¼ 1

4
ð1 − v2Þ, ~x ¼ ½w=jχðϕÞj�2=3 and χðϕÞ ¼

χψ 0ðϕÞ (due to qϵ ¼ q2 ¼ 0 the coefficient π03 does not
contribute). We point out that Eq. (33) holds for an arbitrary
shape of the plane-wave background field (χ should be such
that αχ2=3 ≪ 1, otherwise perturbation theory with respect
to the radiation field is expected to break down [7,22]). As
the formation region is small for ξ ≫ 1, the total pair-
creation probability given in Eq. (33) consists essentially of
the probability to create a pair inside a constant-crossed
field [see [68], Eq. (64) and [22], Chap. 5, Eq. (60); see
also [79]], integrated over the pulse shape [χðϕÞ represents
the instantaneous value of the quantum-nonlinearity
parameter] [22].
For comparison with the literature we consider now the

monochromatic limit of Eq. (33), i.e. ψ 0ðϕÞ ¼ sinðϕÞ and a
counterpropagating photon. As the wave is periodic, we can
split the integral in ϕ and consider only a single half-cycle
(i.e. ϕ ∈ ½0; π�). As the photon is counterpropagating, it
passes this half-cycle in the time T=4, where the laser
period is given by T ¼ 2π=ω. Correspondingly, the rate for
pair creation by a single photon inside a strong (ξ ≫ 1),
linearly polarized, monochromatic plane wave is given by

W‖ðqÞ ¼ −α
m2

q0
1

π

Z
π

0

dϕ
Z þ1

−1
dv

ðw − 1Þ
3

Ai0ðxmÞ
xm

;

W⊥ðqÞ ¼ −α
m2

q0
1

π

Z
π

0

dϕ
Z þ1

−1
dv

ðwþ 2Þ
3

Ai0ðxmÞ
xm

; ð34Þ

where now xm ¼ ½w=jχmðϕÞj�2=3, χmðϕÞ ¼ χ sinðϕÞ
[1w ¼ 1

4
ð1 − v2Þ]. Equation (34) coincides with the result

obtained in [22] [Chap. 3, Eq. (35) and Chap. 5, Eq. (60)]. It
is also in agreement with the results obtained in [51].

C. Small quantum parameter

For χ ≪ 1 the pair-creation probability is exponentially
suppressed. This becomes obvious from the asymptotic
expansion of the Airy function [78]

Ai0ðxÞ ∼ −
x1=4e−

2
3
x3=2

2
ffiffiffi
π

p : ð35Þ

In this regime we can approximately evaluate the integrals
in Eq. (33), resulting in a compact expression for the pair-
creation probability. As the pair-creation probability is
exponential suppressed, only the region around the peak
of the field strength contributes to the integral in ϕ.
Furthermore, using Eq. (31), we see that the integral in
w is formed around w ¼ 4. Correspondingly, we can use

Z
∞

4

dw
1ffiffiffiffiffiffiffiffiffiffiffi
w − 4

p e−xw ¼ e−4x
ffiffiffi
π

x

r
ð36Þ

(assuming x > 0) to evaluate the integral in w approxi-
mately. Assuming that jψ 0ðϕÞj ≈ jsinðϕÞj close to a field

peak, the contribution from this peak can be approximately
taken into account using

Z
π

0

dϕe−x=sinðϕÞ ≈
Z þ∞

−∞
dϕe−xð1þϕ2=2Þ ¼ e−x

ffiffiffiffiffiffi
2π

x

r
ð37Þ

(assuming x > 0; for different peak shapes this relation
must be modified accordingly). Combining everything, the
pair-creation probability within a single peak of a linearly
polarized, plane-wave laser field is in the regime ξ ≫ 1,
χ ≪ 1 given by

W‖ðqÞ ¼ α
m2

kq
3

ffiffiffi
π

p
8

�
χ

2

�
3=2

e−8=ð3χÞ; ð38Þ

W⊥ðqÞ ¼ 2W‖ðqÞ. From Eq. (38) the pair-creation rate
inside monochromatic fields can be obtained similar as
above [see Eq. (34)]. To this end we consider again
a photon counterpropagating with a monochromatic wave.
A counterpropagating photon passes four field maxima
during the time of one laser period T ¼ 2π=ω.
Correspondingly, the pair-creation rate for a single photon
is given by (linear polarization, ξ ≫ 1, χ ≪ 1)

W‖ðqÞ ¼ α
m2

q0
3

8
ffiffiffi
π

p
�
χ

2

�
3=2

e−8=ð3χÞ; ð39Þ

W⊥ðqÞ ¼ 2W‖ðqÞ. The result agrees with [22], Chap. 3,
Eq. (33) (see also [17]).

V. NUMERICAL RESULTS

For the numerical calculations we considered a linearly
polarized laser pulse with one of the following pulse shapes
[see Fig. 4 and Eq. (A9)]:

FIG. 4. In the numerical calculations we considered either a
laser pulse with sin2 (solid line) or with sin4-envelope (dotted
line), plotted here for N ¼ 5 cycles and a CEP of ϕ0 ¼ −π=2 [see
Eq. (40)]. As the sin4 pulse falls off faster at the edges, it must
have a higher peak strength in comparison with a sin2 envelope in
order to describe a pulse with the same total energy.
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ψ 0ðϕÞ ¼ sin2½ϕ=ð2NÞ� sinðϕþ ϕ0Þ;
~ψ 0ðϕÞ ¼ Rsin4½ϕ=ð2NÞ� sinðϕþ ϕ0Þ ð40Þ

for ϕ ∈ ½0; 2πN� and zero otherwise [if not specified
explicitly, we use ψ 0ðϕÞ]. Here N characterizes the number
of cycles in the pulse and ϕ0 the carrier-envelope phase
(CEP, see Fig. 5). The scaling parameter R is chosen such
that

Z
2πN

0

dϕ½ψ 0ðϕÞ�2 ¼
Z

2πN

0

dϕ½ ~ψ 0ðϕÞ�2; ð41Þ

as in most experiments the total energy in the pulse is fixed
and only the pulse shape itself may change (see Fig. 4). As
long as N is an integer and N ≥ 2 for ψ 0 and N ≥ 3 for ~ψ 0,
the above shape functions describe a laser pulse without dc
component, i.e.

Z
2πN

0

dϕψ 0ðϕÞ ¼
Z

2πN

0

dϕ ~ψ 0ðϕÞ ¼ 0 ð42Þ

and the energy in the pulse is independent of the CEP.
Beside the pulse shape parametrized by N and ϕ0 we

have to chose the classical intensity parameter ξ and the
quantum-nonlinearity parameter χ ¼ ηξ [η ¼

ffiffiffiffiffiffiffiffiffiffiffi
ðkqÞ2

p
=m2,

see Eq. (24)]. For a laser pulse with central angular
frequency ω and peak field amplitude E0 we obtain
ξ ¼ jejE0=ðmωÞ. The quantum-nonlinearity parameter is
given by χ ¼ 2ðωγ=mÞðE0=EcrÞ if the photon and the laser
pulse collide head-on (ωγ denotes the energy of the
incoming photon).
As the pair-creation probability is exponentially sup-

pressed for χ ≪ 1 [see Eq. (38)], we are mainly interested
in the nonlinear quantum regime where χ ≳ 1. Existing
optical petawatt laser systems reach already ξ ∼ 100 [24]
and photon energies ∼1 GeV are obtainable via Compton

backscattering either at conventional facilities like SPring-8
[30] or by using laser wakefield accelerators [25–29].
Hence, it is possible to reach the regime χ ≳ 1 with
presently available technology.
In the following we will not consider the influence of the

incoming photon wave packet and set W ¼ WðqÞ, see
Eq. (A18). For ξ ≫ 1 the total pair-creation probability
can be calculated using Eq. (33) without further numerical
difficulties, as the integrals are non-oscillatory. To verify the
validity of Eq. (33), we have compared it with the general
expression given in Eq. (26) (the oscillatory integrals have
been evaluated numerically as explained in Appendix F).
The result is shown in Fig. 6. Already for ξ≲ 10 both
equations are in good agreement. However, for ξ ∼ 1
the constant-crossed field approximation fails to predict
the CEP dependence of the probability (see Fig. 7). As the

FIG. 5. Laser pulse with sin2-envelope [see Eq. (40)] for
different carrier-envelope phases [ϕ0 ¼ 0 (solid line) and ϕ0 ¼
−π=2 (dotted line), N ¼ 3 cycles]. Depending on the CEP we
obtain either one strong peak or two peaks with slightly less
strength. In the regime where pair creation is exponentially
suppressed the first situation is favorable.

FIG. 6. Total pair-creation probability for a single photon inside
a linearly polarized laser pulse (ϕ0 ¼ 0, N ¼ 5, χ ¼ 1). The full
numerical calculation [black dots, see Eq. (26)] is compared with
the constant-crossed field approximation [valid for ξ ≫ 1, dotted
line, see Eq. (33)].

FIG. 7 (color online). Comparison between the full numerical
calculation of the pair-creation probability [solid lines, see
Eq. (26)] and the constant-crossed field approximation [valid
for ξ ≫ 1, dotted lines, see Eq. (33)] for different values of ξ (1.0,
1.25, 1.5, 1.75 and 2.0, lower to upper curve, N ¼ 5, χ ¼ 1).
Besides underestimating the probability, the strong-field approxi-
mation fails to reproduce the correct CEP dependence. This is
expected, as the formation region is large for ξ ∼ 1 and nonlocal
properties of the pulse play an important role.
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formation region scales as 1=ξ, the global structure of the
pulse within the formation region itself [which is not
included in the constant-crossed field approximation, see
Eq. (33)] becomes important at ξ ∼ 1.
From now on we consider the experimentally interesting

regime ξ ≫ 1 and use Eq. (33) to determine the total pair-
creation probability. Furthermore, we compare the two
different pulse shapes given in Eq. (40) (solid lines are
calculated using the sin2-envelope, dotted lines using the
sin4-envelope). In general, the results do not depend
strongly on the pulse shape. However, in the regime where
pair creation is exponentially suppressed (χ ≪ 1), the
sin4-envelope is favorable, as it implies a higher peak field
strength (see Fig. 4).
In Fig. 8 we plot the total pair-creation probability as a

function of the parameters ξ and χ. For ξ≳ 1 it scales linear

in ξ due to the phase-space prefactor m2=kq [see Eq. (33)]
and only the dependence on χ is nontrivial [22]. Around
χ ∼ 1 we leave the region of exponentially suppression
[see Eq. (38)] and the pair-creation probability becomes
sizable [22].
As explained in Sec. III, the quantities W‖;⊥ only

represent the total pair-creation probability as long as they
are much smaller than unity. In general, one has to consider
the total probability for the decay of a photon with a given
polarization [see Eq. (20)]

Wd
‖;⊥ ¼ 1 −Ws

‖;⊥ ¼ 1 − exp½−W‖;⊥� ≈W‖;⊥: ð43Þ

In Fig. 9 we have compared both quantities to show when
this difference becomes relevant. We point out that the
decay of the photon is necessarily accompanied by the
creation of at least one electron-positron pair.
The dependence of the total pair-creation probability on

the pulse length N is shown in Fig. 10. As expected, the

FIG. 8 (color online). Dependence of the pair-creation proba-
bility on ξ and χ (ϕ0 ¼ 0, N ¼ 5). For ξ ≳ 1 the pair-creation
probability increases linearly with ξ (we plotted the values
ξ ¼ 10, 20, 50, 100 and 200, lower to upper curve). In the
regime χ ≪ 1 pair creation is exponentially suppressed [pulse
shape ψ 0ðϕÞ (solid lines) and ~ψ 0ðϕÞ (dotted lines), see Eq. (40)].

FIG. 9 (color online). Comparison between the photon-decay
probability Wd

‖ (solid lines) and the pair-creation probability W‖
obtained from the leading-order Feynman diagram shown in
Fig. 1, i.e. without including radiative corrections (dashed lines).
As long as the probability is small, both quantities agree.
However, for W‖ ∼ 1 it is important to note that W‖ represents
the decay exponent of Wd

‖ [see Eq. (20), the parameters are as in
Fig. 8, the pulse shape is given by ψ 0ðϕÞ].

FIG. 10 (color online). The scaling of the pair-creation prob-
ability is roughly linear in the pulse length (we plotted N ¼ 3, 5,
7, 9 and 11, lower to upper curve; ϕ0 ¼ 0, ξ ¼ 10) [pulse shape
ψ 0ðϕÞ (solid lines) and ~ψ 0ðϕÞ (dotted lines), see Eq. (40)].

FIG. 11. Total photon-decay probability during the head-on
collision between a gamma photon with energy ωγ and a linearly
polarized laser pulse with the following parameters: ϕ0 ¼ 0,
N ¼ 5, ω ¼ 1.55 eV, ξ ¼ 100 [pulse shape ψ 0ðϕÞ (solid lines)
and ~ψ 0ðϕÞ (dotted lines), see Eq. (40)]. For parallel polarization
(Wd

‖) the probabilities are smaller than for orthogonal polarization

(Wd⊥).
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scaling in the pulse length is roughly linear in the
regime χ ∼ 1.
In Fig. 11 we have plotted the parameter regime

accessible by combining a petawatt laser system
(ξ ¼ 100) with a GeV photon source. Accordingly, it is
possible to obtain a large pair-creation yield even with a
limited number of highly energetic photons. As expected
from Eq. (38), the pair-creation probability for perpen-
dicular polarization (W⊥) is roughly twice as large as for
parallel polarization (W‖). Correspondingly, W‖ can be
considered as a lower bound (which is the reason why we
mainly focused on this polarization).
Due to the fact that the pair-creation probability is

exponentially suppressed for χ ≪ 1, it depends very
sensitively on the maximum field strength in this regime
and large CEP effects can be expected. To investigate them,
we introduce the CEP-averaged pair-creation probability

hW‖;⊥i ¼
1

2π

Z
2π

0

dϕ0W‖;⊥ðϕ0Þ ð44aÞ

and the relative deviation

ΔW‖;⊥ðϕ0Þ ¼
W‖;⊥ðϕ0Þ − hW‖;⊥i

hW‖;⊥i
: ð44bÞ

They are plotted in Fig. 12 and Fig. 13, respectively, for a
short pulse (N ¼ 3) of moderate intensity (ξ ¼ 10). For
χ ≈ 0.2 the relative CEP effect is of the order of 10%, but
many photons are needed to produce a sufficient amount of
electron-positron pairs. In the regime where pair creation is
likely (χ ∼ 1), the CEP effect for the total pair-creation
probability is very small (we point out that this prediction
could be changed by higher-order corrections).

VI. CONCLUSION

In the present paper we have verified (to leading order)
the cutting rule for the polarization operator in general
plane-wave background fields by an explicit calculation
[see Eq. (B18) and also [22,57]]. Furthermore, we derived a
double-integral representation for the leading-order con-
tribution to the polarization operator [see Eq. (D14) and
also [51,54,80]]. By combining both results we obtained a
compact double-integral representation for the total photon-
decay probability within an arbitrarily shaped plane-wave
laser pulse and for an arbitrary wave function of the
incoming photon [see Eqs. (A18), (22) and (26)]. For a
relativistically intense background field the result simplifies
and one obtains the well-known average of the probability
in a constant-crossed field over the laser pulse shape [see
Eq. (33) and also [22]]. Our numerical calculations show
that already for ξ≲ 10 it is sufficient to apply this so-called
(local) constant-crossed field approximation (see Fig. 6).
However, it underestimates the dependence of the proba-
bility on the CEP if the formation region becomes large, i.e.
for ξ ∼ 1 (see Fig. 7). In this regime the pair-production
probability shows an oscillatory behavior with respect to
the CEP and the oscillation period depends on ξ. Similarly,

FIG. 12. The total pair-creation probability as a function of the
quantum-nonlinearity parameter χ averaged over the CEP phase
[see Eq. (44), ξ ¼ 10 and N ¼ 3]. The solid and the dotted line
correspond to the pulse shape ψ 0ðϕÞ and ~ψ 0ðϕÞ, respectively
[see Eq. (40)].

(a) (b)

FIG. 13 (color online). The relative pair-creation probability [see Eq. (44)] as a function of the quantum-nonlinearity parameter χ and
the CEP ϕ0 (ξ ¼ 10 and N ¼ 3, for the CEP-averaged probability see Fig. 12). We used the pulse shape ψ 0ðϕÞ for the left and ~ψ 0ðϕÞ for
the right plot [see Eq. (40)]. The dependence on the CEP is quite pronounced for χ ≪ 1, where, however, the total probability is strongly
suppressed (the intermediate color levels are located at 10−1=2 ≈ 0.32, 101=2 ≈ 3.2 and 103=2 ≈ 32).
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the CEP and other parameters of the pulse shape become
important in the tunneling regime (see Fig. 8 and Fig. 13).
Moreover, we have highlighted that the exponential decay
of the photon wave function [see Eq. (16)] must be taken
into account if the total pair-creation probability becomes
of order unity [see Eq. (20) and Fig. 9]. This is important
for future experimental studies, as already with available
laser technology (ξ ∼ 100) a total pair-creation probability
of the order of ten percent could be reached for a single
GeV gamma photon (see Fig. 11).
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APPENDIX A: BREIT-WHEELER
PAIR CREATION

To calculate the pair-creation probability, we describe the
incoming photon by a wave packet

jΦ; ηi ¼
Z

d3q0

ð2πÞ32ϵq0
ηðq0ÞjΦq0 i; ðA1Þ

where ϵq0 ¼
ffiffiffiffiffiffi
q02

p
. This has the advantage, as shown in

[65,83,84], of avoiding the appearance of squared delta
functions and ambiguities in interpreting volume factors. In
Eq. (A1) we suppose that all components of the wave
packet have the same polarization (the polarization indices
are suppressed) and are on shell, i.e. q02 ¼ 0. Furthermore,
jΦq0 i denotes a momentum eigenstate of the photon field
with relativistic normalization

hΦqjΦq0 i ¼ 2ϵqð2πÞ3δ3ðq − q0Þ: ðA2Þ

The wave-packet state describes a single particle
[hΦ; ηjΦ; ηi ¼ 1] if the envelope function obeys the covar-
iant normalization condition

Z
d3q0

ð2πÞ32ϵq0
jηðq0Þj2 ¼ 1 ðA3Þ

(this is assumed in the following).
The probability that a single photon decays into an

electron-positron pair inside a plane-wave background field
is now given by

W ¼
X
σ;σ0

Z
d3pd3p0

ð2πÞ62ϵp2ϵp0
jhΦp;σ;p0;σ0 jSjΦ; ηij2; ðA4Þ

where jΦp;σ;p0;σ0 i describes an electron and a positron with
momenta pμ ¼ ðϵp; pÞ and p0μ ¼ ðϵp0 ; p0Þ, respectively

(σ,σ0 ∈ ½1; 2� label the different spin states, ϵp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, ϵp0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02

p
). Equation (A4) holds if

the one-particle momentum eigenstates for the electron
and the positron are relativistically normalized [see
Eq. (A2)] [85],

hΦp;σjΦp0;σ0 i ¼ 2ϵpð2πÞ3δ3ðp − p0Þδσσ0 ; ðA5Þ

as the identity operator (in the one-particle subspace) is
then given by

1 ¼
X
σ¼1;2

Z
d3p

ð2πÞ32ϵp
jΦp;σihΦp;σj: ðA6Þ

In the following we drop the spin labels and write jΦp;p0 i ¼
jΦp;σ;p0;σ0 i for simplicity. Note that W is a probability (not a
rate), as the duration of the process is naturally limited if the
background field has only a finite extend.
Using Eq. (A1) we rewrite the squared matrix element in

Eq. (A4) as

jhΦp;p0 jSjΦ; ηij2 ¼
Z

d3q1d3q2
ð2πÞ62ϵq12ϵq2

ηðq1Þη�ðq2Þ

×Mðp; p0; q1Þ½Mðp; p0; q2Þ��; ðA7Þ

where

iMðp; p0; qÞ ¼ hΦp;p0 jSjΦqi ðA8Þ

[for simplicity we often suppress some of the labels,
i.e. Mðp; σ; p0; σ0; qÞ ¼ Mðp; p0; qÞ ¼ MðqÞ].
From now on we consider only plane-wave external

fields (we use the same notation as in [53], see also
[7,22,57,72,76,80,86–88] for more details). In a plane-
wave field the field tensor,

FμνðϕÞ ¼ fμν1 ψ 0
1ðϕÞ þ fμν2 ψ 0

2ðϕÞ; ðA9Þ

depends only on the laser phase ϕ ¼ kx, where fμνi ¼
kμaνi − kνaμi (kμ characterizes the four-momentum of the
background-field photons and the prime denotes the
derivative with respect to the argument). This implies that
the dressed vertex

Γρðp; q;−p0Þ ¼ −ie
Z

d4xe−iqxĒp;xγ
ρE−p0;x; ðA10Þ

Ep;x ¼
�
1þ ekAðkxÞ

2kp

�
eiSpðxÞ;

Ēp;x ¼
�
1þ eAðkxÞk

2kp

�
e−iSpðxÞ; ðA11Þ

with
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SpðxÞ ¼ −px −
Z

kx

−∞
dϕ0

�
epAðϕ0Þ

kp
−
e2A2ðϕ0Þ
2kp

�
ðA12Þ

(see Sec. II.D of [53] for more details) contains three
momentum-conserving delta functions

Γμðp0; q; pÞ ¼ ð2πÞ3δð−;⊥Þðp0 − q − pÞGμðp0; q; pÞ:
ðA13Þ

Here we introduced light-cone coordinates [80,89,90]

v− ¼ vk; vþ ¼ vk̄; vI ¼ ve1; vII ¼ ve2
ðA14Þ

(vμ is an arbitrary four-vector, I and II are also summarized
as ⊥), where we require that the four-vectors kμ, k̄μ, eμ1 and
eμ2 form a light-cone basis [see Appendix C and Eq. (32) of
[53] for more details).
Thus, the S-matrix contains three overall momentum-

conserving delta functions [see Eq. (A13)] and it is useful
to define the reduced matrix element M by

iMðp; p0; qÞ ¼ ð2πÞ3δð−;⊥Þðpþ p0 − qÞiMðp; p0; qÞ:
ðA15Þ

To exploit the light-cone delta functions, we note the
following relation between on-shell momentum integrals:

Z
d3p
ð2πÞ3

1

2ϵp
fðpÞ ¼

Z
d4p
ð2πÞ3 δðp

2 −m2Þθðp0ÞfðpÞ

¼
Z

dp−dp⊥
ð2πÞ3

θðp−Þ
2p− fðpÞ: ðA16Þ

Here m is the particle mass (p2 ¼ m2), i.e. p0 ¼ ϵp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
in the first line and pþ ¼ ðp⊥p⊥ þm2Þ=ð2p−Þ

in the last line. We note that p0 ¼ ϵp corresponds to p− > 0

and p0 ¼ −ϵp to p− < 0 (p− ¼ 0 is only reached in the
limit ϵp → ∞).
Hence, we can rewrite Eq. (A7) as follows:

jhΦp;p0 jSjΦ; ηij2

¼
Z

dq−1 dq
⊥
1

ð2πÞ3
θðq−1 Þ
2q−1

jηðq1Þj2

×
1

2q−1
jMðp; p0; q1Þj2ð2πÞ3δð−;⊥Þðpþ p0 − q1Þ:

ðA17Þ

Finally, the total probability for pair creation is given by
[see Eq. (A4)]

W ¼
Z

d3q0

ð2πÞ32ϵq0
jηðq0Þj2Wðq0Þ; ðA18aÞ

where

WðqÞ ¼
X
spin

Z
d3pd3p0

ð2πÞ62ϵp2ϵp0
1

2q−
jMðp; p0; qÞj2

× ð2πÞ3δð−;⊥Þðpþ p0 − qÞ: ðA18bÞ

Using the Feynman rules for QED with plane-wave
background fields (see [53] for details), we obtain the
following matrix element for the diagram in Fig. 1:

Mðp; σ; p0; σ0; qÞ ¼ ϵμūp;σΓμðp; q;−p0Þvp0;σ0 ; ðA19Þ

where ϵμ is the polarization four-vector of the incoming
photon (ϵq ¼ 0, ϵμϵ�μ ¼ −1). The four-spinors of the
electron (up;σ) and the positron (vp0;σ0) obey [63,65]

ðp −mÞup;σ ¼ 0; ðp0 þmÞvp0;σ0 ¼ 0: ðA20Þ

We point out that the matrix element in Eq. (A19)
represents only the leading-order contribution to the pair-
creation process. Furthermore, WðqÞ can only be inter-
preted as the probability for pair production as long as it is
small. In general, it represents the decay exponent of the
exact photon wave function (see Sec. III for more details).

APPENDIX B: CUTTING RULES FOR THE
POLARIZATION OPERATOR

In this Appendix we will explicitly derive the optical
theorem for pair creation (to leading order) in the pre-
sence of a plane-wave background field (see also
[51,54,57,60,61,64] and e.g. [58,59,65,91] for the corre-
sponding proof in vacuum QED). To this end we consider
the squared matrix element [see Eq. (A19)], which appears
in Eq. (A7)

Mðp; σ; p0; σ0;q1Þ½Mðp; σ; p0; σ0;q2Þ��
¼ ϵμϵ

�
νtrρup;σΓμðp; q1;−p0Þρvp0;σ0 Γ̄

νðp; q2;−p0Þ ðB1Þ

[see Eq. (B8) for the bar notation used]. Here we have
introduced the density matrices

ρup;σ ¼ up;σūp;σ; ρvp0;σ0 ¼ vp0;σ0 v̄p0;σ0 : ðB2Þ

To obtain the total pair-creation probability we have to sum/
integrate over final spins and momenta [see Eq. (A4)]

X
spin

Z
d3pd3p0

ð2πÞ62ϵp2ϵp0
Mðq1Þ½Mðq2Þ��: ðB3Þ

The sum over different spin states yields [63,65]
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X
σ¼1;2

ρup;σ ¼ pþm;
X
σ0¼1;2

ρvp0;σ0 ¼ p0 −m: ðB4Þ

Thus, we see that Eq. (B3) resembles the leading-order
contribution to the polarization operator (see Fig. 2 and
Appendix D)

iPμνðq1;q2Þ¼
Z

d4p1d4p2

ð2πÞ8
tr½� ���μν

ðp2
1−m2þ i0Þðp2

2−m2þ i0Þ ;

ðB5Þ

where

tr½� � ��μν ¼ trΓμðp2; q1; p1Þðp1 þmÞ
× Γνðp1;−q2; p2Þðp2 þmÞ: ðB6Þ

To match the two expressions even further, we introduce
two more integrations in p0 and p00 in Eq. (B3) together
with appropriate delta and step functions to bring the
momenta on shell [see Eq. (A16)]. After applying the
identity

Γ̄ρðp0; q; pÞ ¼ −Γρðp;−q; p0Þ; ðB7Þ

which follows from

1̄ ¼ 1; γ5 ¼ −γ5; γμ ¼ γμ;

ðiγμγ5Þ ¼ −iγμγ5; ðiσμνÞ ¼ iσμν; ðB8Þ

using the cyclic property of the trace and the change of
variables pμ → pμ

2, p
0μ → −pμ

1 we obtain

X
spin

Z
d3pd3p0

ð2πÞ62ϵp2ϵp0
Mðq1Þ½Mðq2Þ��

¼
Z

d4p1d4p2

ð2πÞ6 δðp2
1 −m2Þδðp2

2 −m2Þθð−p0
1Þθðp0

2Þ

× ϵμϵ
�
νtr½� � ��μν: ðB9Þ

To prove the optical theorem we have to relate the
imaginary part of the forward photon scattering amplitude
to the total pair-creation probability. Therefore, we extract
the nonsingular part of the polarization operator by defining

Pμνðq1; q2Þ ¼ ð2πÞ3δð−;⊥Þðq1 − q2ÞΠμνðq1; q2Þ ðB10Þ

and consider ℑ½ϵμϵ�νΠμνðq; qÞ�. We point out that the
contracted trace ϵμϵ

�
νtr½� � ��μν [see Eq. (B6)] is purely real

if evaluated at qμ1 ¼ qμ2 ¼ qμ (strictly speaking, after the
singular part is factorized out). This can be deduced from

ðtr½� � ��μνÞ� ¼ tr½� � ��νμðq1↔q2Þ ðB11Þ

[note that ðtrMÞ� ¼ trM† ¼ trM̄]. Using the Sokhotski-
Plemelj identity [91,92]

1

p2 −m2 þ i0
¼ P

1

p2 −m2
− iπδðp2 −m2Þ; ðB12Þ

we obtain the symbolic relation [see Eq. (B5)]

ℑ½ϵμϵ�νΠμνðq; qÞ� ¼ −ℜ½ϵμϵ�νiΠμνðq; qÞ� ∼ π2δδ − P P:

ðB13Þ

It is shown in Appendix C that the two principle value
integrals are related to the on-shell contribution.
Symbolically, the result can be written as

P P ¼ signðp−
1 Þsignðp−

2 Þπ2δδ; ðB14Þ

implying

ℑ½ϵμϵ�νΠμνðq; qÞ� ∼ ½1 − signðp−
1 Þsignðp−

2 Þ�π2δδ: ðB15Þ

On the other hand, the momentum-conserving delta
function δð−Þðp2 − q1 − p1Þ contained in the vertices in
Eq. (B9) ensures that only the region p−

2 − p−
1 > 0 con-

tributes to the integral (assuming q−i > 0, i.e. we exclude
the trivial case of a photon which is copropagating with the
laser). Thus, in Eq. (B9) we can apply the replacement

2θð−p0
1Þθðp0

2Þ⟷½1 − signðp−
1 Þsignðp−

2 Þ�: ðB16Þ

Finally, we obtain

2ℑ½ϵμϵ�νΠμνðq; qÞ�

¼ ϵμϵ
�
ν

Z
d3pd3p0

ð2πÞ62ϵp2ϵp0
× ð2πÞ3δð−;⊥Þðpþ p0 − qÞtrðpþmÞGμðp; q;−p0Þ
× ðp0 −mÞḠνðp; q;−p0Þ ðB17Þ

(for q− > 0), where Gμ denotes the nonsingular part of the
dressed vertex [see Eq. (A13)]. By combining everything,
we obtain the following relation between the total nonlinear
Breit-Wheeler pair-creation probability W and the imagi-
nary part of the photon forward-scattering amplitude (see
also [51,60,61]):

WðqÞ ¼ 1

kq
ℑ½ϵμϵ�νΠμνðq; qÞ� ðB18aÞ

(q2 ¼ 0) and [see Eq. (A18)]

W ¼
Z

d3q0

ð2πÞ32ϵq0
jηðq0Þj2Wðq0Þ ðB18bÞ
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[W ≈WðqÞ if the wave packet of the incoming photon is
sharply peaked around q0μ ¼ qμ, see Eq. (A3)].

APPENDIX C: POLE STRUCTURE OF THE
VOLKOV PROPAGATOR

To prove Eq. (B14) we have to investigate the pole
structure of the Volkov propagator

iGðx; yÞ ¼ i
Z

d4p
ð2πÞ4 Ep;x

pþm
p2 −m2 þ i0

Ēp;y; ðC1Þ

which describes the propagation of a fermion from y to x
(and correspondingly the propagation of an antifermion
from x to y), taking the plane-wave background field into
account exactly. This is most conveniently carried out in
light-cone coordinates, where the integral in dpþ has a
simple structure [68], as the phase of the propagator
depends on pþ only via [see Eq. (A12)]

exp ½−ipþðx− − y−Þ� ðC2Þ

(A− ¼ k− ¼ 0). For p− ≠ 0 we can evaluate the integral in
pþ using the residue theorem [93].
In general, the point p− ¼ 0 (which corresponds to the

so-called light-cone zero mode) must be treated with care
(for more details about light-cone quantization and the
light-cone zero mode see e.g. [89,94,95]). As long as no
singularities [e.g. a delta function δðp−Þ] are encountered, a
single point can always be excluded from the integration
range. In the absence of external fields such a delta function
appears in QED only in diagrams without external legs and
for all other diagrams the light-cone zero mode can be
ignored (see Sec. II.C in [96]). Like in vacuum QED, the
light-cone zero mode does not contribute to the leading-
order diagram for the polarization operator in a plane-wave
background field if the incoming photon is on shell and
does not propagate collinearly with the laser field. This can
be seen explicitly from the final expression of the field-
dependent part of the polarization operator given in [53]
[see Eqs. (92)–(97) there]. In fact, the integrand of the
polarization operator vanishes at the points τ ¼ 0 and
v ¼ �1, corresponding to vanishing values of at least
one of the proper-time variables t and s. Thus, the delta
function used to take the p−-integral [Eq. (55) in [53]]
implies that p− ≠ 0 as long as kq ¼ q− ≠ 0. In conclusion,
for the discussion of the optical theorem we can ignore
subtleties arising from the light-cone zero mode and
assume that p− ≠ 0 in the following.
To take the integral in pþ we have to close the contour in

the lower complex plane if x− − y− > 0 and in the upper
complex plane if x− − y− < 0. The pole of

1

p2 −m2 þ i0
¼ 1

2pþp− − p⊥p⊥ −m2 þ i0
ðC3Þ

is located at

pþ ¼ p⊥p⊥ þm2 − i0
2p− ; ðC4Þ

i.e. in the lower complex plane for p− > 0 and in the upper
complex plane for p− < 0, in agreement with the Feynman
boundary condition.
Following [91], we have to consider also the retarded and

advanced propagators, defined by the pole prescriptions

1

p2 −m2 þ signðp−Þi0 ;
1

p2 −m2 − signðp−Þi0 ;

ðC5Þ

respectively. The pole of the former is always located in the
lower, the pole of the latter always in the upper complex
plane. Correspondingly, the propagators vanish for x− <
y− and x− > y−, respectively.
The polarization operator diagram [see Eq. (B5)] con-

tains both Gðx; yÞ and Gðy; xÞ or in other words the phase
factor contains

exp ½−ipþ
1 ðx− − y−Þ� exp ½ipþ

2 ðx− − y−Þ�: ðC6Þ

Correspondingly, the contour integrals in pþ
1 and pþ

2 must
be closed differently. If both propagators of the polarization
operator are either replaced by advanced or by retarded
propagators, such that for x− − y−≷0 one propagator is
always zero, the contribution of the total diagram vanishes.
Using the relation [see Eq. (B12)]

1

p2 −m2 � signðp−Þi0
¼ P

1

p2 −m2
∓isignðp−Þπδðp2 −m2Þ; ðC7Þ

we can now prove the identity [see Eq. (B14)]

P P ¼ signðp−
1 Þsignðp−

2 Þπ2δδ ðC8Þ

for ℑ½ϵμϵ�νΠμνðq; qÞ�.

APPENDIX D: POLARIZATION OPERATOR

For plane-wave background fields the polarization oper-
ator was first considered in [51,52] [see Eq. (B5), Fig. 2 and
also [53–56] for a recent discussion]. Starting from Eq. (92)
in [53] [there the notation iPμνðq1; q2Þ ¼ Tμνðq1; q2Þ is
used], a double-integral representation for the polarization
operator can be derived (for other double-integral repre-
sentations see [52,54]). To this end we apply the change of
variables from τ ¼ μw ¼ ϱw=kq to ϱ ¼ μkq [μ ¼
1
4
τð1 − v2Þ, 1

w ¼ 1
4
ð1 − v2Þ] and from v to w
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Z þ1

−1
dv

Z
∞

0

dτ
τ

Z þ∞

−∞
dz−

¼
Z

∞

4

dw
4

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw − 4Þp

Z
σ∞

0

dϱ
ϱ

Z þ∞

−∞
dz−; ðD1Þ

where σ ¼ signðkqÞ [we assume that the integrand is an
even function of v, see Eq. (31)]. As in [53] we simply write
qμ if qμ1 and qμ2 can be used interchangeably due to the
momentum-conserving delta functions.
The new variables have a clear physical meaning, as the

phases of the creation and the annihilation vertex are given
by kx ¼ kz − ϱ and ky ¼ kzþ ϱ, respectively, and the
variable w is related to the momenta pμ and p0μ of the
created electron and positron, respectively, by w ¼
ðkqÞ2=ðkpkp0Þ [the momenta pμ and p0μ here differ from
those denoted by the same symbols in [53], see Eq. (B5)].
In terms of the new variables the phases [see Eq. (93) and

Eq. (95) in [53]] can be written as

Φ ¼ ðqþ2 − qþ1 Þz− þ ϱðq1q2=kqÞ − wðm2=kqÞϱ;
Φ1 ¼ ðqþ2 − qþ1 Þz− þ ϱðq1q2=kqÞ − wðm2=kqÞDðϱ; kzÞ;

ðD2Þ

where Φ1 ¼ Φþ τβ and we defined [see Eq. (96) in [53]]

Dðϱ; kzÞ ¼ ϱ

�
1þ

X
i¼1;2

ξ2i ðJi − I2i Þ
�
;

Ii ¼
1

2ϱ

Z
kzþϱ

kz−ϱ
dϕψ iðϕÞ;

Ji ¼
1

2ϱ

Z
kzþϱ

kz−ϱ
dϕψ2

i ðϕÞ: ðD3Þ

Thus, after the change of variables given in Eq. (D1), the
phases have a very simple dependence on w and the integral
in w can be calculated analytically.
To this end we define the functions WlðxÞ (l ¼ 0; 1; 2,

x ≥ 0, see Fig. 14)

Z
∞

4

dw
4

wl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw − 4Þp e−iwx ¼ e−i4xWlðxÞ; ðD4Þ

which are non-oscillatory and scale asymptotically as

WlðxÞ ∼ −
2

ffiffiffi
π

p
i

4l
eiπ=4

1ffiffiffi
x

p ðD5Þ

[note that W0ðxÞ has a logarithmic singularity at x ¼ 0].
Using the following integral representation for the Hankel
function [97]

Hð2Þ
ν ðzÞ ¼ i

2

π
eνπi=2

Z
∞

0

dte−iz cosh t coshðνtÞ ðD6Þ

(valid for −1 < ℜν < 1, z > 0), we finally obtain

W0ðxÞ ¼ ð−2πiÞei2xHð2Þ
0 ð2xÞ;

W1ðxÞ ¼ ð−2πxÞei2x½Hð2Þ
0 ð2xÞ þ iHð2Þ

1 ð2xÞ�;
W2ðxÞ ¼

πx
3
ei2x½4ixHð2Þ

0 ð2xÞ − ð4xþ iÞHð2Þ
1 ð2xÞ�: ðD7Þ

The representation for the polarization operator given in
[53] [see Eq. (92) there] depends on the external momenta
via the scalar q1q2. However, for real incoming or outgoing
photons it is more convenient to use a representation which
depends only on q21 or q

2
2. To obtain such a representation,

we use the three momentum-conserving delta functions and
write

qμ2 ¼ qμ1 þ nkμ;

n ¼ qþ2 − qþ1 ;

q1q2 ¼ q21 þ nkq ¼ q22 − nkq; ðD8Þ

where n denotes the amount of four-momentum kμ

exchanged with the background field (n > 0 corresponds
to absorption, n < 0 to emission, n is in general not an
integer). Thus, the integral in z− represents a Fourier
transform that determines the probability amplitude to
absorb nkμ four-momentum from the background field.
Correspondingly, the phases [see Eq. (D2)] can now be
rewritten using

ðqþ2 − qþ1 Þz− þ ϱ
q1q2
kq

¼ nkzþ ϱ
q1q2
kq

¼ nkyþ ϱ
q21
kq

¼ nkxþ ϱ
q22
kq

: ðD9Þ

Thus, by changing the integration variable from z− to either
x− (real outgoing photon) or y− (real incoming photon) the
phase of the polarization operator simplifies in these cases.

FIG. 14. The function W0 (solid line) has a logarithmic
singularity at the origin; W1 (dashed line) and W2 (dotted line)
are regular. For large values they behave as ∼x−1=2.
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Depending on this choice one of the following representa-
tions is convenient [see Eq. (D3)]:

Ii ¼
Z

1

0

dλψ iðky − 2ϱλÞ ¼
Z

1

0

dλψ iðkxþ 2ϱλÞ;

Ji ¼
Z

1

0

dλψ2
i ðky − 2ϱλÞ ¼

Z
1

0

dλψ2
i ðkxþ 2ϱλÞ: ðD10Þ

Similarly, we can rewrite the preexponent using the
following identity:

nkq
2

Z þ∞

−∞
dz−eiΦðeiτβ − 1Þ

¼ ð−iÞ kq
2

Z þ∞

−∞
dz−ðeiτβ − 1Þ ∂

∂z− e
iΦ

¼ 2m2
τ

4μ

Z þ∞

−∞
dz−eiΦeiτβ

X
i¼1;2

ξ2i ðYi − ZiÞ; ðD11Þ

where

Yi ¼ ½Ii − ψ iðkyÞ�½ψ iðkxÞ − ψ iðkyÞ�: ðD12Þ

To prove Eq. (D11) we used integration by parts and

∂Iiðϱ; kzÞ
∂z− ¼ −

1

2ϱ
½ψ iðkz − ϱÞ − ψ iðkzþ ϱÞ�;

∂Jiðϱ; kzÞ
∂z− ¼ −

1

2ϱ
½ψ2

i ðkz − ϱÞ − ψ2
i ðkzþ ϱÞ�: ðD13Þ

Furthermore, it is useful to define Vi ¼ 2Zi − Yi.
By applying the above relations to the symmetric

representation given in Eq. (92) of [53], we immediately
obtain the representation given in Eq. (109) of [53], which
is equivalent to the one in [51]. Moreover, using Eq. (D4)
we obtain for the field-dependent part of the polarization
operator inside a plane-wave background field the follow-
ing double-integral representation:

iPμνðq1; q2Þ − iPμν
F¼0ðq1; q2Þ

¼ −ið2πÞ3δð−;⊥Þðq1 − q2Þ

×
α

2π

Z
σ∞

0

dϱ
ϱ

Z þ∞

−∞
dy−½P12Λ

μ
1Λ

ν
2 þ P21Λ

μ
2Λ

ν
1

þ P11Λ
μ
1Λ

ν
1 þ P22Λ

μ
2Λ

ν
2 þ PQQ

μ
1Q

ν
2�; ðD14Þ

σ ¼ signðkqÞ, where the coefficients are now given by

P12 ¼
m2ξ1ξ2

2
fW0ðx1ÞX12

þ ½4W1ðx1Þ −W0ðx1Þ�X21gei ~Φ1 ;

P21 ¼
m2ξ1ξ2

2
fW0ðx1ÞX21

þ ½4W1ðx1Þ −W0ðx1Þ�X12gei ~Φ1 ;

P11 ¼ −m2

�
i
ϱ

kq
m2

W2ðx1Þ þ
q21
2m2

W1ðx1Þ
�
ei ~Φ1

þm2

�
i
ϱ

kq
m2

W2ðx0Þ þ
q21
2m2

W1ðx0Þ
�
ei ~Φ0

þm2

�
1

2
ðξ21V1 þ ξ22V2ÞW0ðx1Þ

þ 2ξ21X11W1ðx1Þ
�
ei ~Φ1 ;

P22 ¼ −m2

�
i
ϱ

kq
m2

W2ðx1Þ þ
q21
2m2

W1ðx1Þ
�
ei ~Φ1

þm2

�
i
ϱ

kq
m2

W2ðx0Þ þ
q21
2m2

W1ðx0Þ
�
ei ~Φ0

þm2

�
1

2
ðξ21V1 þ ξ22V2ÞW0ðx1Þ

þ 2ξ22X22W1ðx1Þ
�
ei ~Φ1 ;

PQ ¼ −2½W2ðx1Þei ~Φ1 −W2ðx0Þei ~Φ0 � ðD15Þ

with the phases [see Eq. (D2)]

~Φ0 ¼ ðqþ2 − qþ1 Þy− þ ϱðq21=kqÞ − 4x0;

~Φ1 ¼ ðqþ2 − qþ1 Þy− þ ϱðq21=kqÞ − 4x1: ðD16Þ

Here we have introduced

x0 ¼ ðm2=kqÞϱ; x1 ¼ ðm2=kqÞDðϱ; kyÞ; ðD17Þ

where [see Eq. (D3) and Eq. (D10)]

Dðϱ; kyÞ ¼ ϱ

�
1þ

X
i¼1;2

ξ2i ðJi − I2i Þ
�
;

Ii ¼
Z

1

0

dλψ iðky − 2ϱλÞ;

Ji ¼
Z

1

0

dλψ2
i ðky − 2ϱλÞ: ðD18Þ

Furthermore, [see Eq. (97) in [53]]
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Xij ¼ ½Ii − ψ iðkyÞ�½Ij − ψ jðky − 2ϱÞ�;
Vi ¼ ½Ii − ψ iðky − 2ϱÞ�½ψ iðkyÞ − ψ iðky − 2ϱÞ�: ðD19Þ

Having taken the w-integral analytically, we are left with
the integrals in y− and ϱ. To evaluate these integrals, the
precise shape of the background field has to be known. It is
therefore reasonable to use numerical methods (see
Appendix F).

APPENDIX E: DRESSED MASS

It is well known that inside a linearly polarized, mono-
chromatic field the square of the dressed electron (positron)
mass is given by [22]

m2� ¼ m2ð1þ ξ2=2Þ; ðE1Þ

which corresponds to the square of the average (classical)
electron four-momentum. This definition of the dressed
mass may be generalized to an arbitrary plane-wave field
by noting that the classical four-momentum of an electron
(charge e and mass m) is given by [7,98]

PμðϕÞ ¼ Pμ
0 þ

eFμ
νðϕ;ϕ0ÞPν

0

kP0

þ e2F2μ
νðϕ;ϕ0ÞPν

0

2ðkP0Þ2
; ðE2Þ

where Pμ
0 ¼ Pμðϕ0Þ and [see Eq. (A9)]

Fμνðϕ;ϕ0Þ ¼
Z

ϕ

ϕ0

dϕ0Fμνðϕ0Þ ¼
X
i¼1;2

fμνi ½ψ iðϕÞ − ψ iðϕ0Þ�

ðE3Þ

[we also use the notation FμνðϕÞ ¼ Fμνðϕ;−∞Þ, see [53]].
For an electron which propagates from ϕ0 to ϕwe define

the dressed momentum by [63]

Qμðϕ;ϕ0Þ ¼
1

ðϕ − ϕ0Þ
Z

ϕ

ϕ0

dϕ0Pμðϕ0Þ: ðE4Þ

Correspondingly, the square of the dress mass is in general
given by [80]

m2�ðky; kxÞ ¼ Q2ðky; kxÞ ¼ m2

�
1þ

X
i¼1;2

ξ2i ðJi − I2i Þ
�
;

ðE5Þ

where Ii and Ji are defined in Eq. (D3). As it depends only
on e2, the positron has the same dressed mass. For
ψ1ðϕÞ ¼ sinðϕÞ, ψ2 ¼ 0, kx ¼ 0, ky ¼ 2π we obtain the
above monochromatic result.
Thus, the nonlinear phase of the polarization operator

[see Eq. (D2)] can be interpreted in terms of the mass
dressing in the laser field [52,54].

APPENDIX F: NUMERICAL CALCULATION OF
OSCILLATORY INTEGRALS

The double-integral representation for the polarization
operator given in Eq. (D14) contains oscillatory integrals in
the variables ϱ and y−. The integral in y− can be calculated
using the fast fourier transform (FFT) [99,100]. The
integral in ϱ, however, is more complicated. While the
phase ~Φ0 oscillates regularly, the phase ~Φ1 is nonlinear [due
to the appearance of the field-dependent function Dðϱ; kyÞ,
see Eq. (D16)]. However, the derivative

∂Dðϱ; kyÞ
∂ϱ ¼ 1þ

X
i¼1;2

ξ2i ½ψ iðky − 2ϱÞ − Iiðϱ; kyÞ�2 ðF1Þ

is always positive (this has also been observed in [54]) and
therefore the change of variables u ¼ DðϱÞ can be applied
to obtain an regularly oscillating integral [101]
Z

∞

0

dϱ
ϱ
gðϱÞe−i4ðm2=kqÞDðϱÞ ¼

Z
∞

0

du
D0ðϱÞ

gðϱÞ
ϱ

e−i4ðm2=kqÞu;

ðF2Þ
where the inverse function ϱ ¼ D−1ðuÞ is calculated
numerically [due to D0ðϱÞ > 0 the map is one-to-one].
Having applied this change of variables, we obtain an
ordinary Fourier integral, which can be evaluated with
standard methods.
Fourier integrals (with finite limits) can be calculated

very fast using Chebyshev series expansions [102–104]. To
this end we write

Z
b

a
dxeiωxgðxÞ ¼ δeiωc

Z þ1

−1
dteiΩtfðtÞ; ðF3Þ

where we used the change of variables xðtÞ ¼ cþ δt with
c ¼ ðaþ bÞ=2, δ ¼ ðb − aÞ=2 and defined fðtÞ ¼ g½xðtÞ�,
Ω ¼ δω. If the function fðtÞ is slowly varying, its expan-
sion into a Chebyshev series is rapidly converging [78,105]

fðtÞ ¼
X0∞

n¼0

cnTnðtÞ; TnðtÞ ¼ cosðnθÞ; t ¼ cos θ;

ðF4Þ

where

cn ¼
2

π

Z þ1

−1
dt

TnðtÞfðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p ¼ 2

π

Z
π

0

dθ cosðnθÞfðcos θÞ

ðF5Þ

(the prime at the sum symbol indicates that the first
coefficient in the sum is halved). The Chebyshev series
coefficients can be calculated using FFT. The absolute error
due to the truncation of the Chebyshev series can be
estimated from the last series coefficients [105].
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Having computed the series coefficients, the Chebyshev
moments

CnðzÞ ¼
Z þ1

−1
dtT2nðtÞeizt; SnðzÞ ¼ i

Z þ1

−1
dtT2nþ1ðtÞeizt

ðF6Þ

must be calculated in order to evaluate the integral in
Eq. (F3). To this end we note that they obey the following
three-term recurrence relations [103]:

z2ðn − 1Þð2n − 1ÞCnþ1ðzÞ
− ðnþ 1Þðn − 1Þ½4z2 − 8ð2nþ 1Þð2n − 1Þ�CnðzÞ
þ z2ðnþ 1Þð2nþ 1ÞCn−1ðzÞ

¼ −16ðn − 1Þðnþ 1Þ cosðzÞ þ 12z sinðzÞ; ðF7aÞ

z2ð2n − 1ÞnSnþ1ðzÞ
− ð2nþ 3Þð2n − 1Þ½z2 − 8nðnþ 1Þ�SnðzÞ
þ z2ð2nþ 3Þðnþ 1ÞSn−1ðzÞ

¼ 4ð2n − 1Þð2nþ 3Þ sinðzÞ þ 12z cosðzÞ: ðF7bÞ

For certain parameters (e.g. for very large frequencies) the
Chebyshevmoments can be calculated by applying the above
relations in the forward direction (e.g. Sn can be calculated by
starting from S0 and S1). However, this procedure is in
general numerically unstable and Olver’s algorithm must be
used [106,107]. By calculatingCn and Sn independently, we
can estimate the numerical error of the calculated Chebyshev
moments by evaluating the relation [103]

SnðzÞ ¼
sin z

2ðnþ 1Þn −
z
4n

CnðzÞ þ
z

4ðnþ 1ÞCnþ1ðzÞ:

ðF8Þ
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