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The electromagnetic properties of neutrinos, which are either trivial or negligible in the context of the
Standard Model, can probe new physics and have significant implications in astrophysics and cosmology.
The current best direct limits on the neutrino millicharges and magnetic moments are both derived from
data taken with germanium detectors with low thresholds at keV levels. In this paper, we discuss in detail a
robust, ab initiomethod: the multiconfiguration relativistic random-phase approximation, that enables us to
reliably understand the germanium detector response at the sub-keV level, where atomic many-body
physics matters. By using existing data with sub-keV thresholds, limits on the reactor antineutrino’s
millicharge, magnetic moment, and charge radius squared are derived. The projected sensitivities for next-
generation experiments are also given and discussed.
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I. INTRODUCTION

Investigations of neutrino properties continue to be
an accretive field of emerging interests to both theoretical
and experimental physicists. Their nonzero masses, as
suggested by neutrino oscillation experiments with various
sources, already hint at the necessity of extending the
Standard Model (SM) to accommodate massive neutrinos.
It is no wonder that their properties such as absolute
masses, mass hierarchy, Dirac or Majorana nature, and
precise mixing parameters are among the most actively
pursued topics in neutrino physics for their great discovery
potential.
Another interesting venue to look for surprises in

neutrinos is their nontrivial electromagnetic (EM) proper-
ties (see, e.g., [1] for recent reviews). In the SM, neutrinos
are strictly neutral. Their tiny charge radii squared, mag-
netic dipole moments, anapole moments (require parity
violation in addition), and electric dipole moments (require
both parity and time-reversal violation in addition) arise
only in forms of radiative corrections (in some cases, finite
mass terms and flavor mixing matrix have to be included).
Going beyond the SM, there are numerous conjectures
of larger neutrino EM moments, including neutrinos being
millicharged. The present best upper limits on some of
these moments, either set directly by experiments or

inferred indirectly from observational evidences combined
with theoretical arguments, are orders of magnitude larger
than the SM predictions (see [2] and references therein for
the current status). As a result, this leaves space for new
physics. Also, the additional EM interactions with the
copious amount of neutrinos in the Universe will have
significant implications for astrophysics and cosmology.
It was recently identified [3,4] that the unexplored

interaction channel of neutrino-induced atomic ionization:

νþ A → νþ A− þ e−

is an interesting avenue to study possible neutrino electro-
magnetic effects and has the potential of producing
surprises. The germanium atom (Ge) is selected for the
studies, since there are matured Ge detector techniques with
low (at the atomic transition range of keV) threshold and
good resolution to resolve possible spectra structures and
peaks and end points, which are essential to provide
smoking-gun positive signatures. Existing data from the
TEXONO and GEMMA experiments with reactor neutri-
nos already provide bounds on neutrino magnetic moments
[5–8], neutrino charge radius [9], and millicharges [10,11].
New generations of Ge detectors capable of measuring
events as low as 100 eV are expected to further expand the
sensitivities [12–15].
To interpret experimental data and put limits on these

moments, an important theoretical input, the differential
cross section formulas for neutrino scattering in detectors,
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is necessary (see, e.g., Ref. [16] for a recent review of the
neutrino-atom collision theory). While the conventional
approach of treating the atomic electrons as free particles is
considered a good approximation at high energies, at the
sub-keV regime, which is similar to atomic scales, proper
treatments of many-electron dynamics in atomic ionization
must be incorporated for a better understanding of detector
responses at low energies.
Motivated by this goal, we recently applied ab initio

calculations in the framework of the multiconfiguration
relativistic random-phase approximation (MCRRPA)
theory to study the atomic ionization of germanium by
neutrino scattering. Partial results were reported in
Refs. [17] and [4], which dealt with the neutrino magnetic
moment and millicharge, respectively.
In this article, we present our approach in detail,

elaborate, in particular, the benchmark calculations that
serve as a concrete basis on which the method and
uncertainty estimate can be justified, and consider all
neutrino electromagnetic observables that can be probed
by atomic ionization. Comparisons with previous works
[3,18–24] are given so that differences in various
approaches and the applicability of various approximation
schemes at the sub-keV regime can be clearly examined.
The organization of this paper is as follows. In Sec. II, we

give the general formulation of atomic ionization by
neutrinos and mention two widely used approximation
schemes: free-electron approximation and equivalent pho-
ton approximation in Secs. II A and II B, respectively.
Our approach to atomic many-body problems, the multi-
configuration relativistic random-phase approximation, is
outlined in Sec. III A. The procedure to obtain scattering
amplitudes is explained in Sec. III B, and applications of
the method to the structure and photoionization of germa-
nium atoms are described in Secs. III C and III D, respec-
tively. In Sec. IVA, we present and discuss our results for
germanium ionization by neutrino scattering and compare
with existing works. Limits on neutrino electromagnetic
moments are derived in Sec. IV B by using realistic reactor
antineutrino spectra and data. As there have been proposals
of using neutrinos from tritium β decay to study neutrino
magnetic moment [21,25,26], our calculation for this case
is presented in Sec. IV C. The summary is in Sec. V.

II. FORMULATION OF ATOMIC IONIZATION
BY NEUTRINOS

Consider the ionization of an atom A by scattering a
neutrino νl (l denoting the flavor eigenstate) off atomic
bound electrons

νl þ A → νl þ Aþ þ e−: ð1Þ
For l ¼ μ; τ, the process proceeds only through neutral
weak interaction (in the t channel), while for l ¼ e, the
charged weak interaction (in the s channel) also

contributes. By using a Feirz reordering, the general
low-energy weak scattering amplitude can be compactly
gathered in one formula:

MðwÞ ¼ GFffiffiffi
2

p jðwÞμ ðcVJ μ − cAJ
μ
5Þ; ð2Þ

where GF is the Fermi constant. The neutrino weak current

jðwÞμ ¼ ν̄ðk2; s2Þγμð1 − γ5Þνðk1; s1Þ ð3Þ

takes on the usual Dirac bilinear form with k1 ¼ ðω1; ~k1Þ
and k2 ¼ ðω2; ~k2Þ being the 4-momenta and s1 and s2 being
the helicity states of the neutrino before and after scattering,
respectively. The energy and 3-momentum transfer by the
neutrinos are defined as

qμ ¼ ðT; ~qÞ ¼ ðω1 − ω2; ~k1 − ~k2Þ: ð4Þ

The atomic (axial-)vector current J μ
ð5Þ,

J μ
ð5Þ ≡ hΨfjĴ μ

ð5Þð−~qÞjΨii

¼
Z

d3xei~q·~xhΨfj ˆ̄ψeð~xÞγμðγ5Þψ̂eð~xÞjΨii; ð5Þ

is the matrix element of a one-electron (axial-)vector
current operator Ĵ μ

ð5Þð−~qÞ (in momentum space) evaluated

with many-body atomic initial and final states jΨii and
jΨfi. The vector and axial-vector coupling constants are

cV ¼ −
1

2
þ 2sin2θw þ δl;e; cA ¼ −

1

2
þ δl;e; ð6Þ

where θw is the Weinberg angle. The extra Kronecker delta
is added to account for the additional s-channel scattering
for νe.
Now suppose a neutrino has nonzero EM moments; in

the most general case, the associated EM current can be
expressed as

jðγÞμ ¼ ν̄ðk2; s2Þ½F1ðq2Þγμ − iðF2ðq2Þ þ iFEðq2Þγ5Þσμνqν
þ FAðq2Þðq2γμ − qqμÞγ5�νðk1; s1Þ; ð7Þ

where q2 ≡ qμqμ. The four terms F1ðq2Þ, F2ðq2Þ, FAðq2Þ,
and FEðq2Þ are referred as the charge, anomalous magnetic,
anapole, and electric dipole form factors, respectively. Up

to the order of q2 in jðγÞμ , we define the electric charge,
charge radius squared, magnetic dipole moment, anapole
moment, and electric dipole moment of a neutrino by
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qν ¼ F1ð0Þ;

hr 2νi ¼ 6
d
dq2

F1ðq2Þ
���
q2→0

;

κν ¼ F2ð0Þ;
aν ¼ FAð0Þ;
dν ¼ FEð0Þ; ð8Þ

respectively, and they are all measured in the fundamental
charge units e. Note that the existence of aν violates parity
conservation, and dν violates both parity and time-reversal
conservation. Also, in the StandardModel, the values of both
hr 2νi andaν arising from electroweak radiative corrections are
not gauge-independent quantities; only after the full radiative
corrections being considered can the gauge-independent,
physical observables be found [27]. While there are attempts
to define thesemoments in gauge-independentmanners, they
are still controversial. Here we do not concern ourselves
further with such subtleties but just practically assume these
exotic moments, whose definitions are consistent with
current conservation as obviously seen in Eq. (7), exist
and study their contributions in scattering processes.
Any nonzero EM moments of a neutrino therefore

generate additional contributions to the atomic ionization
process; they are given by the associated EM scattering
amplitude1

MðγÞ ¼ 4πα

q2
jðγÞμ J μ: ð9Þ

Before presenting the complete scattering formula, we
discuss a few kinematical considerations that help to reduce
the full result to a simpler form.
First, as neutrinos are much lighter than all the energy

scales relevant to the atomic ionization processes of con-
cern, an ultrarelativistic limit mν → 0 is considered a good
approximation. In such cases, the chirality and helicity
states of a neutrino are the same, so scattering amplitudes of
neutrino-helicity-flipping interactions with κν and dν do not
interfere with ones of neutrino-helicity-conserving inter-
actions. On the other hand, since weak interactions and
those with qν, hr 2νi, and aν all preserve helicity, there are
interference terms between the weak and EM amplitudes.
Their magnitudes are important when constraints of qν,
hr 2νi, and aν are to be extracted from experimental data.
Second, the interaction with hr 2νi apparently takes a

four-Fermi contact form (evidenced by the 1=q2 photon
propagator being canceled by the q2 factor in the associated
current), and so does the interaction with aν [27]. As a
result, the combined EM scattering amplitude

Mðhr 2νiþaνÞ ¼ 4πα

�
ν̄γμ

�
1

6
hr 2νi þ aνγ5

�
ν

�
J μ ð10Þ

looks similar to MðwÞ, except with no coupling to the
atomic axial-vector current J μ

5.
Third, by the identities

ν̄LγμνL ¼ −ν̄Lγμγ5νL; ν̄RσμννL ¼ −ν̄Rσμνγ5νL; ð11Þ

one deduces that hγ2νi and aν cannot be distinguished in
ultrarelativistic neutrino scattering and should effectively
appear as one moment, the effective charge radius squared:

hr 2νiðeffÞ ¼ hr 2νi − 6aν: ð12Þ
The same argument applies to κν and dν that they appear as
one effective anomalous magnetic moment:

κðeffÞν ¼ κν − idν: ð13Þ
Starting from the total scattering amplitude,

MðwÞ þMðγÞ, and following the standard procedure, the
single differential cross section with respect to neutrino
energy deposit T for an inclusive process with an unpo-
larized target is obtained. When there is only weak
scattering, the result is

dσðwÞ

dT
¼ G2

F

π
ðEν − TÞ2

Z
d cos θ cos2

θ

2

×

(
RðwÞ
00 −

T
j~qjR

ðwÞ
03þ30 þ

T2

j~qj2 R
ðwÞ
33

þ
�
tan2

θ

2
−

q2

2j~qj2
�
RðwÞ
11þ22

þ tan
θ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2

θ

2
−

q2

j~qj2

s
RðwÞ
12þ21

)
; ð14Þ

where θ is the neutrino scattering angle and Eν is the
incident neutrino energy. The atomic weak response
functions

RðwÞ
μν ¼ 1

2Ji þ 1

X
MJi

X
f

hΨfjcVĴ μ − cAĴ 5μjΨii

× hΨfjcVĴ ν − cAĴ 5νjΨii�δðT þ Ei − EfÞ ð15Þ

involve a sum of the final scattering states jΨfi and a spin
average of the initial states jΨii ¼ jJi;MJi ;…i, and the
Dirac delta function imposes energy conservation. The
Greek indices μ; ν take values 0, 1, 2, 3, and, without loss of
generality, the direction of ~q is taken to be the quantization
axis with μ ¼ 3.
The contributions from the helicity-conserving (h.c.)

interactions with qν and hr 2νiðeffÞ, as they interfere with

1We note that a nonzero qν also induces extra neutral weak
interactions which modify Eq. (2) at the order of qνsin2θw and
therefore can be safely ignored.
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the weak scattering, can be compactly included by the
following substitution:

dσðwÞ

dT
→

dσðh:c:Þ

dT
; with

cV → cV þ 2
ffiffiffi
2

p
π

α

GF

�
1

q2
q2
ν þ

1

6
hr 2νiðeffÞ

�
: ð16Þ

It should be pointed out that the inclusion of qν is only
formal, as it goes with a kinematics-dependent term 1=q2

that differentiates its contribution from the other contact
interactions.
As will be explicitly shown later, the contribution from

qν with the current upper limit ≲10−12 derived from direct
measurements dominates over the weak scattering. When
the qν-weak interference terms are much less important, it
is convenient to isolate the pure Coulomb (Coul) scattering
part

dσðCoulÞ

dT
¼ q2

νð2πα2Þ
�
1 − T

Eν

�R
d cos θ

�
ð2Eν−TÞ2−j~qj2

j~qj4 RðγÞ
00

−
�
q2 þ 4EνðEν − TÞ

2j~qj2q2 þ 1

q2

�
RðγÞ
11þ22

	
; ð17Þ

which is proportional to q2
ν. In such cases, we apply the

approximated form

dσðh:c:Þ

dT

����
largeqν

≈
dσðh:c:Þ

dT

����
cV→cVþ

ffiffi
2

p
πα

3GF
hr 2νiðeffÞ

þ dσðCoulÞ

dT
:

ð18Þ

On the other hand, the contribution from the helicity-
violating (h.v.) interaction with κðeffÞν has no interference
with the helicity-conserving part so that

dσ
dT

¼ dσðh:c:Þ

dT
þ dσðh:v:Þ

dT
; ð19Þ

with

dσðh:v:Þ

dT
¼ ðκ2ν þ d2

νÞð2πα2Þ
�
1 −

T
Eν

�

×
Z

d cos θ

�
−
ð2Eν − TÞ2q2

j~qj4 RðγÞ
00

þ q2 þ 4EνðEν − TÞ
2j~qj2 RðγÞ

11þ22

	
: ð20Þ

Note that the EM response functions appearing in Eqs. (17)
and (20) are related to the weak response functions by
setting cV ¼ 1 and cA ¼ 0 in Eq. (15):

RðwÞ
μν jcV¼1;cA¼0 → RðγÞ

μν ; ð21Þ

as EM interactions couple only to vector currents (which

result in RðγÞ
12þ21 ¼ 0). Because of vector current conserva-

tion, the longitudinal part of a spatial current density
(μ ¼ 3) is related to the charge density (μ ¼ 0).

Therefore, the response functions RðγÞ
03þ30 and RðγÞ

33 are

subsumed in RðγÞ
00 .

A couple of important remarks on kinematics in dσ
dT are

due here: (i) For fixed Eν and T, the square of 4-momentum
transfer q2 in the ultrarelativistic limit is determined by the
neutrino scattering angle θ:

q2 ¼ −4E2
νsin2

�
θ

2

�
−m2

ν
T2

E2
ν
: ð22Þ

It will not vanish even at the forward angle θ ¼ 0 as long as
the neutrino is not massless mν ≠ 0. (This is important for
scattering with qν.) (ii) By 4-momentum conservation, the
integration variable cos θ is constrained by

min

�
1;max

�
−1;

E2
ν þ ðEν − TÞ2 − 2MAðT − BÞ

2EνðEν − TÞ
�	

≤ cos θ ≤ 1; ð23Þ

whereMA is the atomic mass and B is the binding energy of
the ejected electron.
To evaluate dσ

dT, the most challenging task is the calcu-
lation of all relevant atomic response functions, Eqs. (15)
and (21). Before discussing our ab initio approach in the
next section, we review a couple of simple approximation
schemes that work in certain kinematic regimes and by
which tedious many-body calculations can be spared.

A. Free-electron approximation

In the case of high-energy scattering when the electron
binding energy is comparatively negligible, a conceptually
straightforward approach is to use a neutrino-free-electron
scattering formula dσð0Þ

dT . The number of atomic electrons that
can be freed depends on the neutrino energy deposition T.
By introducing a step function θðT − BiÞ to judge whether
the ith electron, with binding energy Bi, can contribute to
the scattering process, one obtains the conventional scatter-
ing formula based on the free-electron approximation
(FEA):

dσ
dT

����
FEA

¼
XZ
i¼1

θðT − BiÞ
dσð0Þ

dT

����
q2¼−2meT

: ð24Þ

Despite the FEA enjoying a lot of success in many
situations, its applicability is not always self-evident, in
particular, when issues like relevant energy scales and
kinematics of concern arise. For example, as it was shown
explicitly in Ref. [31] for hydrogenlike atoms: (i) The
borderline incident neutrino energy above which the FEA
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can apply is the binding momentum ∼ Zmeα, instead of the
binding energy ∼ Z2meα

2. (ii) Because the FEA has only a
specific q2 ¼ −2meT contrary to an allowed range pre-
scribed by Eqs. (22) and (23) for the realistic case, it fails to
be valid for scattering of relativistic muon and nonrelativ-
istic weakly interacting massive particle. Therefore, to
reduce the potential errors caused by this conventional
practice, particularly for detector responses at low energies,
is an important theoretical task.

B. Equivalent photon approximation

In typical EM scattering with ultrarelativistic charged
particles, the equivalent photon approximation (EPA) is
well founded [28–30]. Such processes mostly happen with
peripheral scattering angles, i.e., q2 → 0; it is thus obvious
from Eq. (17) that the contribution from the transverse

response function RðγÞ
11þ22 dominates and the longitudinal

part RðγÞ
00 can be ignored. As the “on-shell” transverse

response function is directly linked to the total cross section
of photoabsorption

σðγÞabsðTÞ ¼
2π2α

T
RðγÞ
11þ22ðq2 ¼ 0Þ; ð25Þ

the EPA further approximates RðγÞ
11þ22ðq2Þ ≈ RðγÞ

11þ22ð0Þ, so
that the Coulomb differential cross section for qν,

dσðCoulÞ

dT

����
EPA

¼ −q2
ν

�
α

π

��
1 −

T
Eν

�
σðγÞabsðTÞ

×
Z

d cos θ

�
q2 þ 4EνðEν − TÞ

2j~qj2q2 þ 1

q2

�
;

ð26Þ

can be directly determined by experiment.
By applying a similar procedure to EM scattering with κν

and dν,

dσðh:v:Þ

dT

����
EPA

¼ ðκ2ν þ d2
νÞ
�
α

π

��
1 −

T
Eν

�
σðγÞabsðTÞ

×
Z

d cos θ

�
q2 þ 4EνðEν − TÞ

2j~qj2
�
; ð27Þ

the cross section formula differs noticeably from the
previous case by the missing 1=q2 enhancement in the
real photon limit. For more discussions about why there
should not be atomic-enhanced sensitivities to neutrino
magnetic moments at low energies, contrary to what was
claimed in Ref. [3] [which is based on a slightly different
twist of Eq. (27)], we refer readers to Refs. [22,31] for
details.

III. AB INITIO DESCRIPTION OF GERMANIUM

To go beyond the simple approximation schemes
mentioned in the last section and evaluate the cross section
formulas more reliably at low energies, the structure and
ionization of detector atoms have to be considered on a
more elaborate basis. In this section, we first introduce
our approach to the atomic many-body problems: the
MCRRPA theory. In the following subsections, we present
our results for the structure and photoionization of germa-
nium atoms, respectively, and benchmark the quality of
MCRRPA as a reliable approach to describe the responses
of germanium detectors.

A. The MCRRPA theory

The relativistic random-phase approximation (RRPA)
has been applied, with remarkable successes, to photo-
excitation and photoionization of closed-shell atoms and
ions of high nuclear charge, such as heavy noble gas atoms,
where the ground state is well isolated from the excited
states. For other closed-shell systems, such as alkaline-
earth atoms, which have low-lying excited states, such
applications have been less successful, owing to the
importance of two-electron excitations which are omitted
in the RRPA. The MCRRPA theory is a generalization
RRPA by using a multiconfiguration wave function as the
reference state which is suitable for treating photoexcitation
and photoionization of closed-shell and certain open-
shell systems of high nuclear charge. The great success
it achieved in various atomic radiative processes can be
found in Ref. [32]. A detailed formulation of the MCRRPA
has been given in a previous paper [33], and we summarize
the essential features here.
One way to derive the MCRRPA equations is through

linearizing the time-dependent multiconfiguration Hartree-
Fock equations.2 For an N-electron atomic system, the
time-dependent relativistic Hamiltonian is given by

HðtÞ ¼ H0 þ VðtÞ; ð28Þ
where the unperturbed Hamiltonian

H0 ¼
XN
i¼1

hð~riÞ þ
XN
i<j

e2

rij
ð29Þ

contains the sum of single-electron Dirac Hamiltonians

hð~rÞ ¼ c~α · ~pþ βc2 −
Z
r

ð30Þ

and the Coulomb repulsion between two-electron pairs
(the latter summation), and the time-dependent external
perturbation

2An alternative derivation from an equation-of-motion point of
view is given in Ref. [34].
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VðtÞ ¼
XN
i¼1

vþð~riÞe−iωt þ
XN
i¼1

v−ð~riÞeþiωt ð31Þ

takes a harmonic form and induces transitions between
atomic states. Note that atomic units are employed through-
out this paper.
Let ΦðtÞ be the time-dependent solution of the wave

equation

i
∂ΦðtÞ
∂t ¼ HðtÞΦðtÞ; ð32Þ

our point of departure to obtaining ΦðtÞ is through the
Frenkel variational principle [35,36]


δΦðtÞ
����
�
i
∂
∂t −HðtÞ

�����ΦðtÞ
�

¼ 0: ð33Þ

[Note that this time-dependent variational form differs from
the familiar, time-independent Ritz form, which yields a
minimum to an energy functional, because the functional
hΦðtÞji ∂

∂t −HðtÞjΦðtÞi is not bound, in general. For more
details, see Ref. [36].] Without loss of generality, it is
convenient to factor out from ΦðtÞ the phase due to the time
evolution of the stationary state of H0:

ΦðtÞ ¼ e−iEtΨðtÞ; ð34Þ

with E denoting the energy eigenvalue of H0. As a result,
the time-dependent variational principle is recast as


δΨðtÞ
����
�
Eþ i

∂
∂t −HðtÞ

�����ΨðtÞ
�

¼ 0: ð35Þ

For an atomic state with angular momentum JMJ and
parity Π, the multiconfiguration Hartree-Fock approxima-
tion assumes the wave function ΨðtÞ as a superposition of
configuration wave functions ψaðtÞ of the same JMJ and
Π, viz.

ΨðtÞ ¼
X
a

CaðtÞψaðtÞ; ð36Þ

where a is a configuration index and CaðtÞ are time-
dependent weights. A configuration wave function
ψaðtÞ is built up from one-electron orbitals uαðtÞ by the
following procedure. First, an N-electron Slater determi-
nant Θ is specified by the filled one-electron orbitals
fα1; α2;…; αNg. Each orbital is labeled by four quantum
numbers: principle nα (or reduced wave number kα for a
continuum state), orbital lα, total angular momentum jα,
and its z-axis projection mjα . For later convenience,
introduce the shell label ai so that, for the ith orbital,

jαii ¼ jnαi lαi jαi ; mjαi
i≡ jai; mjαi

i: ð37Þ

As Slater determinants are not angular momentum eigen-
states, it is necessary to perform angular momentum
recoupling. Notice that a completely filled shell ai, i.e.,
states jai; mjαi

i with mjα ¼ −jα;…; jα all being occupied,
has zero angular momentum. Therefore, the total angular
momentum of an atom is composed by electrons in open
shells—the “valence” electrons—while electrons in closed
shells, which form the core of an atom, give no
contribution.
In this work, we apply the method to atomic systems

with two electrons outside a closed core. Label the valence
orbitals with indices α1 and α2 and the core ones with
α3;…; αN , and a two-valence (2v) configuration state is
constructed by

jψaðtÞið2vÞ
¼ Na

X
mjα1

;mjα2

hja1mjα1
; ja2mjα2

jJMJiΘðα1; α2; α3;…; αNÞ;

ð38Þ

where hjα1mjα1
; jα2mjα2

jJMi is the Clebsch-Gordan coef-
ficient and the normalization factor

Na ¼
�
1; a1 ≠ a2;

1=
ffiffiffi
2

p
; a1 ¼ a2:

ð39Þ

As one can see, a configuration a for two-valence atomic
systems is completely labeled by the valence shells a1 and
a2 (mjα1 and mjα2

are summed out) and the closed shells in
the core (all mj orbitals are filled so no need to further
specify them).
To guarantee the normalization of ΨðtÞ

hΨðtÞjΨðtÞi ¼ 1; ð40Þ
the following subsidiary conditions:

huαðtÞjuβðtÞi ¼ δαβ; ð41Þ

hψaðtÞjψbðtÞi ¼ δab; ð42ÞX
a

C⋆
aðtÞCaðtÞ ¼ 1 ð43Þ

are imposed. Since the perturbation VðtÞ that induces
atomic transitions is harmonic in time, both CaðtÞ and
uαðtÞ assume the following expansion:

CaðtÞ ¼ Ca þ ½Ca�þe−iωt þ ½Ca�−eþiωt…; ð44Þ

uαðtÞ ¼ uα þ wαþe−iωt þ wα−eþiωt þ � � � ; ð45Þ
where “…” denotes higher harmonic responses. Since
configuration wave function ψaðtÞ is constructed from
uαðtÞ’s, it has a similar harmonic expansion:
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ψaðtÞ ¼ ψa þ ψaþe−iωt þ ψa−eþiωt þ � � � : ð46Þ
An approximate time-dependent solution of Eq. (35) is

thus obtained by varying C⋆
aðtÞ and u†αðtÞ with the wave

function given in the form of Eq. (36) and constrained by
Eqs. (40)–(45).We refer the reader for details toRef. [33] and
mention important features of the solution.
The terms Ca and uα, which are independent of the

external field, lead to the usual stationary multiconfigura-
tion Dirac-Fock (MCDF) description of an atomic state.
This step sets up the multiconfiguration reference state of
the many-body system.
With all Ca and uα known, the terms ½Ca�� and wα�,

which are associated with first-order harmonics e�iωt, are
subsequently solved by the so-called MCRRPA equations
[33,37].3 They contain information of atomic excited states
and from which atomic transition matrix elements can be
calculated. Note that the external perturbation VðtÞ may
contain components of nonvanishing angular momentum
and odd parity; as a result, the resulting atomic wave
function can be mixed in angular momentum and parity.
When an electron is ejected into continuum, to ensure
causality, the incoming Coulomb wave function is imposed
on the asymptotic form of hwα�j and the outgoing one on
jwα�i, respectively, as the boundary condition.

B. From MCRRPA to scattering amplitudes

To make a connection with the general scattering
formalism set up in Sec. II, the key is to calculate the
scattering amplitudes Mðw;γÞ, Eqs. (2) and (9). By the
general S-matrix formalism, they can be identified as

Mðw;γÞjEf¼Ei�ω ¼ hΨf; Ef ¼ Ei � ωjvðw;γÞ� jΨii; ð47Þ

where v� are the components of the perturbing field,
defined in Eq. (31), exerted to atomic electrons by incident
neutrinos. As atoms absorb energy ω ¼ T from neutrinos,
we shall focus on the vþ part. In terms of the MCRRPA
wave functions discussed above, the transition matrix
elements of vþ are computed by

hΨfjvþjΨii ¼
X
α

Λαðhwαþjvþjuαi þ huαjvþjwα−iÞ

þ
X
a;b

ð½Ca�⋆þCb þ C⋆
a½Cb�−Þhψajvþjψbi;

ð48Þ

where

Λα ¼
�

2
2jαþ1

C⋆
aCa; if α ∈ valence orbitals;

1; if α ∈ core orbitals
ð49Þ

and ψa;b are the time-independent components of ψa;bðtÞ,
defined in Eq. (46). The first summation over α applies to
all electrons, valence and core ones both included. The
terms being summed correspond to electron transitions
induced by vþ between filled (uα’s) and open (wα�) orbitals
in one configuration. The second summation over a; b is to
include the possible configuration mixings induced by vþ,
manifested in the products of one C and one ½C��. For a
detailed derivation, see Ref. [33].
As we adopt the spherical-wave basis for all wave

functions, it is convenient to expand the perturbing field
vþ by a series of spherical multipole operators. Here we
give the details that are relevant for the subsequent
discussion.
First, we set up the coordinate system so that the

3-momentum transfer by neutrinos is along the z axis,
i.e., the Cartesian unit vector ê3 ¼ ~q=j~qj. The transforma-
tion between the unit vectors in the spherical (ϵ̂λ¼�1;0) and
Cartesian (êi¼1;2;3) systems is then given by

ϵ̂�1 ¼ ∓ 1ffiffiffi
2

p ðê1 � iê2Þ; ϵ̂0 ¼ ê3: ð50Þ

The spherical component of a vector ~V, denoted by λ,4 is

Vλ ¼ ϵ̂λ · ~V: ð51Þ

According to Eqs. (47), (9), and (5), the transition matrix
element of vþ that describes atomic ionization by neutrino
electromagnetic interactions is

hΨfjvðγÞþ jΨii

¼ 4πα

q2

�
jðγÞ0



Ψf

����
Z

d3xei~q·~xĴ 0ð~xÞ
����Ψi

�

þ
X

λ¼�1;0

ð−1ÞλjðγÞλ



Ψf

����
Z

d3xei~q·~xϵ̂−λ · ~̂J ð~xÞ
����Ψi

�	
:

ð52Þ

By using the relations

ei~q·~x ¼
X∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2J þ 1Þ

p
iJjJðκrÞY0

JðΩxÞ; ð53Þ

ei~q·~xϵ̂0 ¼ −i
κ

X∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2J þ 1Þ

p
iJ ~∇½jJðκrÞY0

JðΩxÞ�; ð54Þ

3If one starts from a single-configuration reference state, the
MCRRPA equations reduce to the usual RRPA equations.

4Vλ¼0 should not to be confused with the time component of a
Lorentz 4-vector.
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ei~q·~xϵ̂�1 ¼−
X
J≥1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2Jþ 1Þ

p
iJ

×

�
1

κ
~∇× ½jJðκrÞY�1

JJ1ðΩxÞ�� jJðκrÞY�1
JJ1ðΩxÞ

	
;

ð55Þ

where j~qj≡ κ, j~xj≡ r, jJðκrÞ is the spherical Bessel
function of order J, YM

J ðΩxÞ the spherical harmonics,
and YM

Jl1ðΩxÞ the vector spherical harmonics formed by
adding Ym

l ðΩxÞ and ϵ̂λ to be an angular momentum
eigenstate jJMi:

YM
Jl1ðΩxÞ≡

X
mλ

hlm1λjl1JMiYm
l ðΩxÞϵ̂λ; ð56Þ

one sees that the perturbing field is expanded:

vðγÞþ ¼4πα

q2

�X∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2Jþ1Þ

p
iJ½jðγÞ0 ĈJ0ðκÞ−jðγÞ3 L̂J0ðκÞ�

þ
X∞
J≥1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2Jþ1Þ

p
iJ
X
λ¼�1

jðγÞλ ½ÊJ−λðκÞ−λM̂J−λðκÞ�
	
:

ð57Þ
The various spherical multipole operators are defined by

ĈJMðκÞ ¼
Z

d3x½jJðkrÞYJM�Ĵ 0ð~xÞ; ð58Þ

L̂JMðκÞ ¼
i
κ

Z
d3x ~∇½jJðκrÞYJMðΩxÞ� · ~̂J ð~xÞ; ð59Þ

ÊJMðkÞ ¼
1

κ

Z
d3x ~∇ × ½jJðκrÞYM

JJ1ðΩxÞ� · ~̂J ð~xÞ; ð60Þ

M̂JMðkÞ ¼
Z

d3x½jJðκrÞYM
JJ1ðΩxÞ� · ~̂J ð~xÞ: ð61Þ

Transition matrix elements of these multipole operators are
evaluated with MCRRPA wave functions in the same way
as Eq. (48).
When dealing with weak interactions, the axial vector

current operator Ĵ 5ð~xÞ [Eq. (5)] generates an additional
four types of multipole operators: Ĉ5

JM, L̂
5
JM, Ê

5
JM, and

M̂5
JM. They are obtained simply by replacing the vector

current operator Ĵ ð~xÞ with Ĵ 5ð~xÞ in the above definitions.
The advantages of such an implementation include the

following: (i) The three-dimensional equation of motion for
each orbital is reduced to a one-dimensional equation.
(ii) Each multipole operator has its own angular momentum
and parity selection rules, so the MCRRPA equations can
be divided into smaller blocks in which numerical calcu-
lations can be performed more efficiently. (iii) For 1=j~qj
larger than the size of the atom, the multipole expansion
converges rapidly.

C. Atomic structure of germanium by MCDF

For the germanium atom, we chose the multiconfigura-
tion reference state to be

Ψ ¼ C1ð4p2
1=2Þ0 þ C2ð4p2

3=2Þ0; ð62Þ

a linear combination of two configurations with total
angular momentum J ¼ 0 and parity Π ¼ even, where
the coefficients C1 and C2 are the configuration weights.
The notation ð4l2jÞ denotes symbolically an antisymme-
trized wave function constructed from two electrons in the
valence orbital 4lj. The rest of the electrons in the ten inner
orbitals 4s1=2, 3d5=2, 3d3=2, 3p3=2, 3p1=2, 3s1=2, 2p3=2,
2p1=2, 2s1=2, and 1s1=2 form the closed core.
The ground-state wave function obeying the MCDF

equations is solved by the computer code [38], which
yields all the core and valence orbitals and the configura-
tion weights C1 and C2. In Table I, all calculated orbital
binding energies are shown and compared with the edge
energies extracted from photoabsorption data of germa-
nium solids (to be discussed in the next section). In Table II,
the configuration weights and their corresponding percent-
ages are given.

TABLE I. The binding energies (in eV) of the atomic germa-
nium orbits from the present MCDF calculations. The exper-
imental data are the edge energies extracted from photoabsorption
data of germanium solids.

Label MCDF Expa

Subshell Orbital

NIII 4p1=2 7.8
NII 4p3=2 8.0
NI 4s1=2 15.4
MV 3d5=2 43.1 29.3
MIV 3d3=2 43.8 29.9
MIII 3p3=2 140.1 120.8
MII 3p1=2 144.8 124.9
MI 3s1=2 201.5 180.1
LIII 3p3=2 1255.6 1217.0
LII 3p1=2 1287.9 1248.1
LI 2s1=2 1454.4 1414.6
K 1s1=2 11185.5 11103.1

aFrom Ref. [39].

TABLE II. Configuration weights of the germanium atom in its
ground state (Jπ ¼ 0þ) from the present MCDF calculations.

Valence configuration Configuration weight Percentage

4p2
1=2 0.84939 72.15%

4p2
3=2 0.52776 27.85%
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D. Photoabsorption of germanium by MCRRPA

To further benchmark the MCRRPA method, in particu-
lar, its applicability to the atomic bound-to-free transition
of germanium, we consider the photoabsorption of germa-
nium above the ionization threshold, for which experimen-
tal data are available.
In the multipole expansion scheme, an external per-

turbing field with parameters J and π, where π ¼ 0 for
M;C5; L5; E5 multipoles and π ¼ 1 for C;L; E;M5 multi-
poles, gives rise to one-particle–one-hole excitation chan-
nels which are restricted by the angular momentum and
parity conservation. Suppose one of the atomic bound
electrons in the nlj orbital is promoted to a free continuum
state ϵl0j0 (ϵ denotes the kinetic energy) by this Jπ
perturbing field; the relevant quantum numbers then satisfy
the following selection rules:

jj − Jj ≤ j0 ≤ jjþ Jj
ðangular momentum selection ruleÞ;

ð63Þ

lþ l0 þ J þ π − 1 ¼ even ðparity selection ruleÞ: ð64Þ
As a result, in response to the multipole perturbations (with
different Jπ), the germanium atom (a many-body 3P0 state)
is excited to a state mixed with components of different
total angular momenta and parities.
For example, consider the case arising from excitations of

the two valence electrons in the valence orbitals 4p1=2 or
4p3=2. There are five possible excitation channels responding
to the electric-type dipole excitation (by a EJ¼1 operator):

4p1=2 → ϵs1=2;

4p1=2 → ϵd3=2;

4p3=2 → ϵs1=2;

4p3=2 → ϵd3=2;

4p3=2 → ϵd5=2:

Besides the above valence-excitation channels, the ten
inner core orbitals give rise to an additional 24 channels. In

total, when one considers all possible excitations from all
orbitals, there are 29 excitation channels to be taken into
account in the electric-type dipole excitation. These 29
interacting jj-coupled channels are all included in our
MCRRPA framework to account for the final ionic-state
electron correlations. The corresponding MCRRPA equa-
tions comprise a system of coupled differential equations
up to 29 channels with 116 unknown radial functions to be
numerically solved in a self-consistent manner.
To obtain the total photoabsorption cross section, all

electric-type (EJ) and magnetic-type (MJ) multipole exci-
tations which contribute to the on-shell transverse response

function RðγÞ
11þ22ðq2 ¼ 0Þ are summed. For photons with

energy T ≲ 10 keV, it is found that high-order multipole
transition probabilities decrease rapidly in an exponential
mode. We choose the cutoff value Jcut in the multipole
expansion by the following recursive procedure: We first
sum over the multipole transition probabilities up to a
definite polarity order (which should be high enough so the
rapidly decreasing pattern starts to show) and extrapolate
the corrections from succeeding higher multipoles by a
proper exponential form. Then Jcut is fixed once the
contributions from

P
J>Jcut are estimated, by the exponen-

tial law, to be below 1% of the total from
P

J≤Jcut .
In Fig. 1(a), the photoabsorption cross sections from the

MCRRPA method and experimental data are shown for
incident photon energies ranging from 10 eV to 10 keV.
The MCRRPA results agree very well with experiments for
photon energies larger than 80 eV, with errors uniformly
below the 5% level. The discrepancy below 80 eV is
relatively large, and we believe it is due to the fact that the
experimental data were taken from solid-phase Ge targets,
whose wave functions and orbital binding energies, in
particular, for outer-shell electrons, are affected by nearby
atoms and therefore different from the ones of a single
atom. As shown by Table I and Fig. 1(a), the solid effects
are especially significant for the 3d orbitals. On the other
hand, the inner-shell electrons are less affected by crystal
structure; as a result, our calculation well reproduces the
data of photon energies T ≥ 100 eV, where cross sections
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FIG. 1. Photoabsorption cross sections of Ge. The data are taken from Ref. [39]. The MCRRPA line in panel (a) shows our numerical
results; the one in panel (b) is obtained by forcing all shell energies aligned to the experimental edge energies.
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are dominated by ionization of inner-shell electrons. To
estimate the degree to which our MCRRPA results will be
affected by the solid effects in the T ≥ 100 eV region, we
carried out a parallel calculation in which the theoretical
ionization thresholds are artificially aligned with the
experimental ones. The results, plotted in Fig. 1(b), show
that the deviations from experimental data are still kept
below the 10% level. Therefore, we estimate the theoretical
uncertainty due to the solid effects to be ≲10% in the
T ≥ 100 eV region.
Summing up this section, we demonstrate that our

MCRRPA approach is capable of giving a good description
of a germanium atom and its photoabsorption process with
photon energy larger than 100 eV. In other words, the
many-body wave functions, single-particle basis states, and
relevant transition matrix elements thus obtained should be
good approximations to the exact answers. In the next
section, we shall apply this approach to germanium
ionization by neutrinos.

IV. IONIZATION OF GERMANIUM
BY NEUTRINOS

As shown in Eqs. (14), (17), and (20), ionization of
germanium by neutrinos depends on various atomic
response functions R’s, which need explicit many-body
calculations. The only differences in calculating the
response functions for this case from the ones for photo-
ionization are (i) different atomic current operators are
involved and (ii) different kinematics are probed (the
former are mostly off shell, while the latter are purely
on shell). Therefore, it is straightforward to treat the
problem in the MCRRPA framework simply by taking
more types of multipole operators and their off-shellness
into account. Both aspects are not expected to generate
additional complexity or problems in many-body physics;
therefore, one can take similar confidence on MCRRPA in
this case as what has been acquired in the photoabsorption
case with T ≥ 100 eV.
Because q2 in a t-channel scattering process is spacelike,

i.e., q2 < 0 or T2 < j~qj2, an off-shell current operator
typically yields a multipole expansion which converges

more slowly than its on-shell counterpart. Here we use an
example to demonstrate a multipole expansion scheme is
still valid and effective for the cases in which we are
interested. Consider an incident neutrino with 1 MeV
energy (a typical value for reactor antineutrinos) and
depositing 1 keV energy to the detector through the
charge-type multipole operators ĈJM in weak, magnetic-
moment, or millicharge interactions. The contributions of
ĈJM to the differential cross sections dσ=dT in these three
cases are plotted in Fig. 2(a), 2(b), and 2(c), respectively.
All these plots feature exponential decay behaviors
with increasing multipolarity J, and they are fitted to be
proportional to e−0.15J, e−0.14J, and e−0.10J, respectively.
Therefore, we can apply the same cutoff procedure men-
tioned in the last section in multipole expansions and
control the higher-multipole uncertainty at the 1% level.
For the entire kinematics considered in this work, it is
found that the cutoff values Jcut are no more than 50–60.

A. Results and discussion

In this section, we present our calculated differential
cross sections for germanium ionization with two repre-
sentative incident neutrino energies: (a) Eν ¼ 1 MeV and
(b) Eν ¼ 10 keV. The former case is typical for reactor
antineutrinos, while the latter case gives an example of very
low-energy neutrinos, e.g., ones from tritium β decay.

1. Weak interaction

The differential cross sections due to the weak inter-
action, i.e., Eq. (14), are given in Fig. 3 (see also Fig. 2 in
Ref. [17]). As shown in Fig. 3(a), our MCRRPA calculation
and the conventional FEA scheme gradually converge
when the energy transfer is larger than 1 keV. On the
other hand, below T ¼ 1 keV, FEA starts to overestimate
the differential cross sections. In other words, we found the
atomic binding effect suppresses the weak scattering cross
sections at low energies in comparison to the free scattering
picture. This conclusion is consistent with previous explicit
many-body calculations [18–21].
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FIG. 2. Normalized contributions from the series of charge multipole operators CJ’s to differential cross sections for (a) weak
interaction, (b) magnetic-moment interaction, and (c) millicharge interaction. The incident neutrino has 1 MeV energy and deposits
1 keV energy.
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In very low-energy neutrino scattering, the FEA scheme
has another severe problem that comes with its specific
kinematic constraint: q2 ¼ −2meT. This leads to a maxi-
mum energy transfer Tmax ≈ 0.38 keV for a 10-keV neu-
trino beam—as shown by the sharp cutoff for the FEA
curve in Fig. 3(b), while there is no such cutoff expected in
a neutrino–atom ionization process. Experiments with good
energy resolution should be able to discern this difference.

2. Magnetic-moment interaction

The differential cross sections due to the interaction with
κðeffÞν , i.e., Eq. (20), are given in Fig. 4 (see also Fig. 2 in
Ref. [17]). The comparison of the MCRRPA and FEA
results shows very similar features as the case of weak
scattering: FEA overestimates in the T ≲ 1 keV region and
gradually converges to MCRRPA for T ≳ 1 keV, and our
conclusion in this case is also consistent with previous
explicit many-body calculations [18–21].
As there have been quite extensive recent discussions

about the role of atomic structure in scattering by neutrino
magnetic moments, we try to clarify the confusion which is
caused by the applicabilities of various approximation
schemes:

(1) EPA.—It was first claimed in Ref. [3] that atomic
structure can greatly enhance the sensitivity to κðeffÞν

by orders of magnitude more than the FEA prediction
in the T < 1 keV region for germanium. However,
later works inspired by this, using various ap-
proaches, all came to the opposite conclusion
[17,22–24]. The source of the huge overestimation
in Ref. [3], the use of an unconventional EPA scheme,
was pointed out in Ref. [31] by considering a simple
case of hydrogen atoms. By applying the same
scheme to germanium, the results are shown by the
EPA* curves in Fig. 4. In Fig. 4(a), one clearly sees
the orders-of-magnitude enhancement that EPA*
predicts. On the other hand, in Fig. 4(b), EPA* does
agree well with MCRRPA for T > 1 keV. This is
consistent with the feature pointed out in Ref. [31]:
When incident neutrino energy (in this case, 10 keV)
falls below the scale of atomic binding momentum (in
this case, 35 keV for the most important 3p shell), the
EPA* works incidentally.

(2) The Voloshin sum rules.—Quantum-mechanical
sum rules for neutrino weak and magnetic-moment
scattering were derived by Voloshin [22] and refined
in later works [23,24]. Using several justified
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FIG. 3. Differential cross sections for germanium ionization by neutrino weak interaction with neutrino incident energies
(a) Eν ¼ 1 MeV and (b) Eν ¼ 10 keV. (See also Fig. 2 in Ref. [17].)
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FIG. 4. Differential cross sections for germanium ionization by neutrino magnetic-moment interaction with neutrino incident energies
(a) Eν ¼ 1 MeV and (b) Eν ¼ 10 keV, in units of κðeffÞ2ν . (See also Fig. 2 in Ref. [17].)
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assumptions, the sum rules concluded that treating
atomic electrons as free particles is a good approxi-
mation. One important step in these sum rules is
extending the integration over q2 (equivalent to
integration over the neutrino scattering angle θ for
a fixed T) from the physical range ½T2; 4E2

ν� to
½0;∞Þ. In this sense, the sum-rule results, or equiv-
alently the FEA results, can be interpreted as upper
limits for realistic dσ=dT, and this is consistent with
our MCRRPA curves being under the FEA ones in
Figs. 3 and 4. However, the larger discrepancy
between realistic calculations and FEA at sub-keV
energies seems to be in contradiction with the sum-
rule-FEA argument: With low T, only outer-shell
electrons are ionized, so the sum rules should work
even better, not worse, since these electrons are less
bound or closer to being free electrons. The main
reason, as pointed out in Ref. [16], is the missing
two-electron correlation in the sum-rule derivation,
which plays a more important role at low energies.

3. Millicharge interaction

The differential cross sections due to the interaction
quadratic in qν, i.e., Eq. (17), are given in Fig. 5. While the
linear term due to the EM-weak interference can be
calculated straightforwardly, it can be safely ignored
at the current and projected sensitivity levels of direct
experiments with qν ∼ 10−12–10−13.
Unlike the previous two cases that FEA works well for

neutrino weak and magnetic-moment scattering with big
enough incident energy Eν and energy deposition T, it
underestimates the millicharge scattering cross sections, in
particular, in the most interesting sub-keV region of T.
Instead, it is EPA that works much better in this case. The
main reason, as pointed out in Ref. [31], is due to the
kinematic factor 1=q2 that goes along the transverse

response function RðγÞ
11þ22 in Eq. (17). This factor weights

more the forward scattering region with q2 → 0, where
photons behave like real particles. For the same reason, one
can see that the FEA constraint q2 ¼ −2meT deviates

substantially from the true kinematics of this scattering
process.
Because of the same 1=q2 factor, we also note that the

differential cross section contains a logarithmic term
logðEν=mνÞ, which diverges at the limit of massless
neutrinos [4]. While it is known that neutrinos are not
massless, their masses have not been determined precisely
yet. Instead of using the current upper limit mνe < 2 eV as
the cutoff value in this logarithm to present our results in
this paper, we adopt the Debye length of germanium solid,
0.68 μm, which characterizes the scale of screened
Coulomb interaction and acts like a 0.29 eV mass cutoff
(a value also similar to the projected sensitivity on mνe by
the KATRIN experiment). The uncertainty in cross sections
due to this one-order-of-magnitude difference in the mass
cutoff is about 20%.

4. Charge radius interaction

The differential cross sections due to the interaction with
hr 2νiðeffÞ, i.e., by taking dσðH:c:Þ=dT − dσðwÞ=dT with qν ¼ 0
in Eq. (16), are given in Fig. 6. Since the charge radius
interaction takes the same contact form as the weak
interaction, it is natural to expect the failure of the EPA
scheme, not shown in the figure. The main difference
between the charge radius and weak interactions is that the
former depends on the atomic vector-current response,
while the latter on the atomic vector-minus-axial-vector-
current (V-A) response. However, as can be seen from the
comparison of Figs. 6 and 3, both differential cross sections
share very similar T dependence. The differences between
the MCRRPA and FEA results are also similar to the case
of weak scattering.

B. Reactor antineutrinos

Existing data from reactor neutrino experiments
using germanium ionization detectors [5–8] provide an
excellent platform to investigate the atomic ionization
effects induced by neutrino electromagnetic interactions.
The sensitivities depend on the detectable threshold of the

0.1 0.2 0.5 1.0 2.0 5.0 10.0

10 4

10 3

10 2

10 1

100

(a)

EPA

FEA

MCRRPA

0.1 0.2 0.5 1.0 2.0 5.0 10.0

10 5

10 4

10 3

10 2

10 1

100

(b)

EPA

FEA

MCRRPA

FIG. 5. Differential cross sections for germanium ionization by neutrino millicharge interaction with neutrino incident energies
(a) Eν ¼ 1 MeV and (b) Eν ¼ 10 keV, in units of q2

ν .
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differential cross section, as well as the neutrino flux, but
are mostly independent of the neutrino energy. Therefore,
the enormous ν̄e flux (the order of 1013 cm−2 s−1, at a
typical distance of 20 m from the reactor core) at the
MeV-range energy from nuclear power reactors is a well-
suited source. The germanium detectors, with their excel-
lent energy resolution and sub-keV threshold, are ideal as a
means of studying these effects. The experimental features
as peaks or edges at the definite K- and L-X-ray energies as
well as with predictable intensity ratios provide potential
smoking-gun signatures of these effects [3,4].
By denoting the reactor ν̄e spectrum by ϕðEνÞ, the

measured differential spectrum hdσ=dTi is related to the
theoretical formulas of Eqs. (14), (17) and (20), via



dσ
dT

�
¼

R
dEνϕðEνÞ dσ

dT ðEνÞR
dEνϕðEνÞ

: ð65Þ

The measurable spectra due to weak interactions, neutrino

magnetic moments at κðeffÞν ¼ 10−11μB, millicharges at
qν¼10−12e, and charge radius at hr 2νiðeffÞ¼½6×10−3 fm�2
at a reactor ν̄e flux of 1013 cm−2 s−1 are depicted in Fig. 7.
These are compared with the most sensitive data set from
the TEXONO [5,6] and GEMMA [7,8] experiments, and
the corresponding limits at 90% C.L. are listed in Table III.
Standard algorithms were adopted to provide best-fit and
confidence intervals to the data (see, for example, the
statistics section of Ref. [2]). Also shown are the potential
sensitivities of realistic next-generation measurements
using Ge with sensitivities as low as 100 eV and at a
background level of 1 count= kg- keV-day.
Both Fig. 7 and Table III confirm the merits of detectors

with low-threshold and good energy resolution in the

studies of κðeffÞν and qν, where the dσ=dT formulas are
enhanced as T → 0. For hr 2νiðeffÞ, detectors with larger mass
like CsI(Tl) [9] making measurements at the MeV energy
range to benefit from the better signal-to-background ratios
would provide better sensitivities.

C. Neutrinos of tritium β decay

The possibility of using the very low-energy β neutrinos
from tritium decay to constrain neutrino magnetic moments
was discussed in Refs. [21,25,26]. In Fig. 8, we compare
the convoluted differential cross sections calculated by our
MCRRPA approach, Ref. [21], and the FEA scheme.
As shown by the figure, below T < 1 keV, FEA predicts

larger cross sections for both neutrino weak and magnetic-
moment scattering than the two realistic many-body cal-
culations. This echoes our previous argument that
the Voloshin sum rule and FEA poses only an upper limit
on cross sections and the binding of an electron is not the
only factor that determines whether FEA can be a good
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FIG. 6. Differential cross sections for germanium ionization by neutrino charge radius interaction with neutrino incident energies

(a) Eν ¼ 1 MeV and (b) Eν ¼ 10 keV, in units of 2cVρþ ρ2 and ρ≡ ffiffi
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approximation or not. For T > 0.9 keV and T > 0.5 keV,
FEA predictions drop quickly below the realistic calcu-
lations for weak and magnetic-moment scattering, respec-
tively. This is mainly because the maximum energy transfer
allowed by FEA, Tmax ¼ 1.2 keV (theQ value for tritium β
decay is 18.6 keV), heavily restricts the allowed final-state
phase space for scattering.
While our MCRRPA approach agrees with the previous

many-body calculations [21] in the T > 0.9 keV and T >
0.5 keV regions for weak and magnetic-moment scatter-
ing, respectively, our results are comparatively smaller at
lower T. This discrepancy is mostly related to the treat-
ments in atomic many-body physics: (i) Ref. [21] adopted
the same framework as Refs. [18–20] by using the
relativistic Dirac-Hartree-Fock method with a local
exchange potential to solve the atomic ground-state
structure, while we used the exact nonlocal Fock poten-
tial. (ii) The local exchange potential used by Ref. [21] is
adapted from Ref. [40]. This local exchange potential is
designed to describe the ground-state structure of several
metals (with Z < 50) in the framework of density func-
tional theory (DFT); therefore, it is not a surprise that it
fits better the M-shell single particle energies of germa-
nium crystal than our atomic calculations, because solid

effects have been accounted for to some extent. (iii) It is
known to be challenging to extend DFT to excited states
(such as the ionization states which are relevant here); it is
not clear how well the simplified mean-field scheme used
by Ref. [21] can reproduce the photoabsorption data, say,
for T > 100 eV—which we take as a very important
benchmark for the computation of transition matrix
elements.

V. SUMMARY AND PROSPECTS

In this paper, we show that the multiconfiguration
relativistic random-phase approximation provides a good
description for the structure of germanium atoms and the
photoabsorption data of germanium solid at photon energy
≳80 eV. These benchmark calculations justify a good
understanding of how germanium detectors respond to
neutrinos, through weak and possible electromagnetic
interactions, with a threshold as low as 100 eV.
After taking atomic ionization effects into account,

existing reactor neutrino data with germanium detectors
[7,8] provide the most stringent direct experimental
limits on neutrino millicharge and magnetic moments:
1.1 × 10−12e and 2.9 × 10−11μB at 90% confidence level,

TABLE III. Summary of experimental limits at 90% C.L. on the various neutrino electromagnetic parameters studied in this work by
using selected reactor neutrino data. The projected sensitivities of measurements at the specified realistic experimental parameters are
also shown. The last row illustrates the effective lower bounds to the sensitivities when a 1% measurement of the SM cross section could
be achieved, at a threshold of 0.1 keV for κðeffÞν̄e and qν̄e and 3 MeV for hr 2ν̄eiðeffÞ, respectively.

Reactor-ν̄e Data strength Analysis Bounds at 90% C.L.
Flux Reactor on/off Threshold κðeffÞν̄e

qν̄e hr 2ν̄eiðeffÞ
Data set (×1013 cm−2 s−1) (kg-days) (keV) (×10−11μB) (×10−12) (×10−30 cm2)

TEXONO 187 kg CsI [9] 0.64 29882.0/7369.0 3000 < 22.0 < 170 < 0.033
TEXONO 1 kg Ge [5,6] 0.64 570.7/127.8 12 < 7.4 < 8.8 < 1.40
GEMMA 1.5 kg Ge [7,8] 2.7 1133.4/280.4 2.8 < 2.9 < 1.1 < 0.80
TEXONO point-contact Ge [4,17] 0.64 124.2/70.3 0.3 < 26.0 < 2.1 < 3.20
Projected point-contact Ge 2.7 800/200 0.1 < 1.7 < 0.06 < 0.74
Sensitivity at 1% of SM � � � � � � � � � ∼ 0.023 ∼ 0.0004 ∼ 0.0014
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FIG. 8. Differential cross sections of germanium ionization by neutrinos of tritium β decay through (a) weak and (b) neutrino

magnetic-moment interaction assuming κðeffÞν ¼ 5 × 10−12μB.
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respectively. Future experiments with 100 eV threshold can
target at the 10−14e and 10−12μB sensitivity range.
In particular, there is substantial enhancement of the
millicharge-induced cross section at low energy, providing
smoking-gun signatures for positive signals. Charge-
radius-induced interactions, on the other hand, do not have
enhancement at low energy, such that the best sensitivities
are obtained in experiment [9] with a larger detector mass
operating at the MeV energy range where the signal-to-
background ratio is much more favorable.
The approach explored in this article as well as adopted

by current laboratory experiments and astrophysics studies
relies on searching possible anomalous effects relative to
those produced by SM electroweak processes. It would
therefore be experimentally difficult to probe nonstandard
effects less than, for example, 1% that of the SM. There
are certain fundamental (limited by physics rather than
technology) lower bounds where such laboratory limits
and astrophysics constraints can reach, as illustrated
in Table III. This limitation can be evaded, at least
conceptually, by the analog of “appearance” experiments

with the studies of detector channels where the SM back-
ground vanishes. For instance, in the case of Majorana
neutrinos with transition magnetic moments, one can look
for signatures of final-state neutrinos with a different flavor
in a pure and intense neutrino beam which passes through a
dense medium or an intense magnetic field. While there is
no fundamental constraint to the lower reach of the
sensitivities, realistic experiments are still many orders
of magnitude less sensitive than the reactor neutrino
bounds [41,42].
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