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In light of the recent discovery of nonzero θ13, we have analyzed the Altarelli-Feruglio A4 flavor
symmetry model extended with additional flavon. The inclusion of the new field leads to the deviation from
the exact tri-bimaximal neutrino mixing pattern in the context of a type-I seesaw by producing a nonzero
θ13 consistent with the recent experimental results at the leading order. A sum rule for light neutrino masses
is also obtained in this context. The setup constrains the two Majorana phases involved in the lepton mixing
matrix in terms of A4 parameter space. We have shown that a nonzero lepton asymmetry can be generated
while next-to-leading order contributions to the neutrino Yukawa couplings are considered. The
two Majorana phases play a crucial role in CP-asymmetry parameter and the involvement of θ13 in it,
is exercised.
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I. INTRODUCTION

The evidence of nonvanishing value of the mixing
angle θ13 from several experiments (Double Chooz [1],
Daya Bay [2], RENO [3], T2K [4]) receives particular
attention in these days since the precise determination of
neutrino mixing would be crucial for better understanding
the issues related to the flavor. In this context it is
important to study the neutrino mass matrix, mν, which
can be structured from discrete flavor symmetry. The

neutrino mass matrix mν, in general, can be diagonalized
by the UPMNS matrix (in the basis where charged leptons
are diagonal) as

mν ¼ U�
PMNSdiagðm1; m2; m3ÞU†

PMNS; ð1:1Þ

where m1, m2, m3 are the real mass eigenvalues. The
standard parametrization [5] of the UPMNS matrix is
given by

UPMNS ¼

2
664

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

3
775
2
64
1 0 0

0 eiα21=2 0

0 0 eiα31=2

3
75; ð1:2Þ

where cij ¼ cos θij, sij ¼ sin θij, δ is the CP-violating
Dirac phase while α21 and α31 are the two CP-violating
Majorana phases. Though the neutrino mixing angles θ12,
θ23 and the two mass-squared differences have been well
measured at several neutrino oscillation experiments [6],
only an upper bound was present (consistent with zero) for
the other mixing angle θ13 until 2011 [7]. Then the recent
results from Double Chooz [1], Daya Bay [2], RENO [3],
and T2K [4] suggest that in fact θ13 is nonzero and of
sizable magnitude. From the updated global analysis [8]
involving all the data from neutrino experiments, we have
1σ and 3σ ranges of mixing angles and the mass-squared
differences as mentioned (NH and IH stand for the normal
and inverted mass hierarchies respectively) in Table I.
Majorana phases are not appearing in neutrino oscillation
probability and therefore cannot be constrained from

neutrino oscillation data directly [9]. As of now, any
specific constraint on the Dirac CP-violating phase δ is
still missing and so it is ranged between 0 to 2π [8].
This clearly indicates a completely different pattern of

mixing in the lepton sector compared to the quark sector.
Efforts therefore have been exercised for a long time in
realizing the neutrino mixing pattern and among them
patterns based on discrete flavor groups attract particular
attention. A case of special mention is where sin2θ12 ¼
1=3, sin2θ23 ¼ 1=2 along with sin θ13 ¼ 0 resulted, called
the tri-bimaximal (TBM) mixing pattern [10]. Note that all
these mixing angles inclusive of vanishing θ13 were in the
right ballpark of experimental findings before 2011. Many
discrete groups have been employed [11] in realizing the
TBM mixing pattern, and A4 turned out to be a special one
which can reproduce this pattern in a most economic way
[12–14]. A4 is a discrete group of even permutations of four
objects. It has three inequivalent one-dimensional repre-
sentations ð1; 10; 100Þ and a three-dimensional representation
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(3). In this paper, we mostly concentrate on the Altarelli-
Feruglio (AF) type of model [14] where the light neutrino
masses are generated through a type-I seesaw mechanism.
So the right-handed neutrinos (Nc) are introduced which
transform as a triplet of A4. Flavon fields transforming
trivially and nontrivially under the A4 are also introduced,
whose vacuum expectation values (VEV) break the A4

flavor symmetry at some high scale. The framework is
supersymmetric and based on the standard model (SM)
gauge interactions. As it was argued in [14], the introduc-
tion of supersymmetry was instrumental to provide the
correct vacuum alignment. Then the type-I seesaw leads to
the TBM mixing in the light neutrinos while the charged
lepton mass matrix is found to be diagonal.
However, with the latest developments toward the non-

zero value of θ13, it is essential to modify the exact TBM
pattern. Several attempts were made in this direction during
past couple of years in the context of A4-based flavor
models [15–23]. It is to be noted from these analyses that
inclusion of higher order terms only would not produce a
sufficiently large θ13 as predicted by experiments. So a
leading order deformation of the original A4 model is
required which we will study in this paper.
Another important phenomenon that cannot be realized

in the context of the standard model is to explain the
observed matter-antimatter asymmetry of the Universe.
However, it is known that the standard weak interactions
can lead to processes (mediated by sphalerons) which can
convert the baryons and leptons. So a baryon asymmetry
can be effectively generated from a lepton asymmetry. The
mechanism for generating the lepton asymmetry is called
leptogenesis [24]. The discussion of it is of particular
importance here, while explaining the generation of light
neutrino mass through a type-I seesaw mechanism.
The inclusion of heavy right-handed (RH) neutrinos in
the framework provides the opportunity to discuss also the
leptogenesis scenario through the CP-violating decay of
it in the early Universe. Although the ingredients (RH
neutrinos) are present, it is known that the seesaw models
predicting the exact TBM structure cannot generate the

required lepton asymmetry [25], the reason being the term
involved in the asymmetry related to the neutrino Yuwaka
coupling matrix is proportional to the identity matrix and
thus the lepton number asymmetry parameter vanishes.
However it was shown in [25] that one can in principle
consider higher dimensional operators in the neutrino
Yukawa couplings of the model. The effect of this inclusion
is to deviate the products of the Yukawa terms in lepton
asymmetry parameter from unity and thereby generating
nonzero lepton asymmetry.
In this paper, our aim is to produce nonzero θ13 as well as

to realize leptogenesis in the same framework. We have
extended the flavon sector of AF [14] by introducing an
extra flavon, ξ0 which transforms as 10 under A4. A similar
sort of extensions has been considered in [16,18]. However
the analyses in those papers are mostly related to the
deviation over the final form of mν obtained from the AF
model, while here we consider modification of mν through
the deviation from the RH neutrino mass matrix MR. In
[20,26], a perturbative deviation from tri-bimaximal mixing
is considered through MR, though leptogenesis was not
considered in that framework. This provides the oppor-
tunity to analyze MR in detail and the effect on the
Majorana phases can also be studied. Inclusion of Z3

symmetry in the model forbids several unwanted terms and
thus helps in constructing specific structure of the coupling
matrices. While the charged lepton mass matrix is found to
be in the diagonal form, the RH neutrino mass matrix has
an additional structure originated from the ξ0-related term.
Due to this, the light neutrino diagonalizing matrix no
longer remains in TBM form rather a deviation is resulted
which leads to nonzero θ13. In the RH neutrino mass
matrix, three complex parameters a, b and d are present.
We found that the low energy observables can be expressed
in terms of two parameters λ1ð¼ jd=ajÞ, λ2ð¼ jb=ajÞ; the
relative phase between b and a (ϕba) and jaj. The relative
phase between d and a is assumed to be zero for simplicity.
We have studied the dependence of θ13 on λ1. The allowed
range of θ13 restricts the range of the parameter space of λ1.
Then following the analysis [27], we are able to constrain
also the Majorana phases (α21, α31) involved in the UPMNS
and study their dependence on the parameter λ2 (for this we
have fixed λ1 to its value that corresponds to the best-fit
value of sin2θ13) for both normal and inverted hierarchy
cases. In this scenario, we obtain a general sum rule
involving the light neutrino masses mi¼1;2;3 and the
Majorana phases, α21, α31. The effective mass parameter
involved in the neutrinoless double beta decay is also
estimated. We then investigate the generation of lepton
asymmetry from the decay of RH neutrinos within “one
flavor approximation” [27–30]. As previously stated, non-
zero lepton asymmetry can be obtained once we include
the next-to-leading order terms in the Yukawa sector. Note
that this inclusion does not spoil the diagonal nature of
charged lepton mass matrix. The explicit appearance of

TABLE I. Summary of neutrino oscillation parameters for
normal and inverted neutrino mass hierarchy from the analysis
of [8].

Oscillation
parameters 1σ range 3σ range

Δm2
21 7.42–7.79 [10−5 eV2] 7.11–8.18

jΔm2
31j 2.41–2.53 [10−3 eV2] (NH) 2.30–2.65

2.32–2.43 [10−3eV2] (IH) 2.20–2.54
sin2θ12 0.307–0.339 0.278–0.375
sin2θ23 0.439–0.599 (NH) 0.392–0.643

0.530–0.598 (IH) 0.403–0.640
sin2 θ13 0.0214–0.0254 (NH) 0.0177–0.0294

0.0221–0.0259 (IH) 0.0183–0.0297
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these Majorana phases in the CP-asymmetry parameter, ϵi,
provides the possibility of studying the dependence of ϵi on
λ2. The expression of ϵi also involves the θ13 mixing angle
in our setup. Since θ13 depends on λ1, we have also studied
the variation of ϵi (or baryon asymmetry YB) against θ13
while λ2 is fixed at a suitable value.
In Sec. II, we describe the structure of the model by

specifying the fields involved and their transformation
properties under the symmetries imposed. Then in
Sec. III, we discuss the eigenvalues and phases involved
in the RH neutrino sector. We also find the lepton mixing
matrix and study the correlation between the mixing angles
in terms of λ1. Section IV is devoted to study the Majorana
phases, light neutrino masses, effective mass parameter
involved in neutrinoless double beta decay. Leptogenesis
is analyzed in Sec. V and, following that, we have the
conclusion in Sec. VI.

II. STRUCTURE OF THE MODEL

We consider here an extension of the original Altarelli-
Feruglio (AF) model [14] (with right-handed neutrinos) for
generating lepton masses and mixing by introducing one
additional flavon ξ0 which transforms as 10 under A4. We
will find this modification turns out to be instrumental to
have nonzero θ13. The particle content and the symmetries
of the model are provided in Table II. The framework is
supersymmetric and the gauge group is the same as that of
the standard model. All the left-handed doublets Lið¼1;2;3Þ
transform as A4 triplets, and the RH charged leptons ec, μc,
τc are A4 singlets 1, 100, 10 respectively. In order to realize
the type-I seesaw, three right-handed neutrinos (Nc

i ) are
considered which are triplets of A4. The flavor symmetry
A4 is accompanied by a discrete Z3 symmetry, which
forbids several unwanted terms. The A4 multiplication rules
are mentioned in Appendix A. There are four flavons (ϕS,
ϕT , ξ, ξ0) in the model, which are SM gauge singlets.
When the flavons (the scalar component of it) get
vacuum expectation values (VEV), hϕSi ¼ ðvS; vS; vSÞ,
hϕTi ¼ ðvT; 0; 0Þ, hξi ¼ u, hξ0i ¼ u0, the A4 × Z3 sym-
metry is broken and generates the flavor structure of the
sector. The fields ϕS

0, ϕ
T
0 and ξ0 are the driving fields,

carrying two units of Uð1ÞR charges, introduced to realize
the vacuum alignments of the flavon fields, ϕS, ϕT , ξ, ξ0.
Supersymmetry helps in realizing this vacuum alignment
by setting the F-term to be zero. A brief discussion on
the vacuum alignment is provided in Appendix B. Hu and
Hd are the two Higgs doublets present in the setup

transforming as singlets under A4 with the VEVs vu and
vd respectively. With the above-mentioned field configu-
ration, the effective superpotential for the charged lepton
sector contains the following terms in the leading order
(LO):

wL ¼ ½yeecðLϕTÞ þ yμμcðLϕTÞ0 þ yττcðLϕTÞ00�
�
Hd

Λ

�
;

ð2:1Þ

where Λ is the cutoff scale of the theory and ye, yμ, yτ are
the coupling constants. Terms in the first parentheses
represent products of two triplets (here L and ϕT for
example) under A4, each of these terms contracts with
A4 singlets 1, 100 and 10 corresponding to ec, μc and τc

respectively. Finally it sets the charged lepton coupling
matrix as the diagonal one in the leading order,

YL ¼ vT
Λ

2
64
ye 0 0

0 yμ 0

0 0 yτ

3
75; ð2:2Þ

once the flavon VEVs as well as the Higgs VEVs are
inserted. The relative hierarchies between the charged
leptons can be generated if one introduces global
Froggatt-Nielsen [Uð1ÞFN] flavor symmetry, under which
RH charged leptons have different charges in addition to a
FN field [31,32].
In the absence of the ξ0 field, the neutrino sector would

have the superpotential of the form

wν ¼ yðNcLÞHu þ xAξðNcNcÞ þ xBðNcNcϕSÞ; ð2:3Þ
which yields the Dirac (mD) and Majorana (MR) neutrino
mass matrices at the LO as given by

mD ¼ yvu

2
64
1 0 0

0 0 1

0 1 0

3
75≡ Yν0vu;

MR ¼

2
64
aþ 2b=3 −b=3 −b=3
−b=3 2b=3 a − b=3

−b=3 a − b=3 2b=3

3
75; ð2:4Þ

where a ¼ 2xAu, b ¼ 2xBvS and Yν0 can be taken as the
LO neutrino Yukawa coupling matrix. Here y, xA, and xB

TABLE II. Fields content and transformation properties under the symmetries imposed on the model. Here ω is the third root of unity.

ec μc τc Li Nc
i Hu Hd ϕS ϕT ξ ξ0 ϕS

0 ϕT
0 ξ0

A4 1 100 10 3 3 1 1 3 3 1 10 3 3 1
Z3 ω ω ω ω ω2 1 ω ω2 1 ω2 ω2 ω2 1 ω2

Uð1ÞR 1 1 1 1 1 0 0 0 0 0 0 2 2 2
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are respective coupling constants. It has been known
[12–14] that this kind of structure produces the exact
TBM mixing, predicting θ13 ¼ 0. However in our setup,
the inclusion of ξ0 ensures the presence of another term in
the superpotential wν, given by

xNξ0ðNcNcÞ; ð2:5Þ

at the LO, where xN is another coupling constant. It
introduces a modified Majorana mass matrix, compared
to the one (MR) in the TBM case, having the form

MRd ¼

2
64
aþ 2b=3 −b=3 −b=3
−b=3 2b=3 a − b=3

−b=3 a − b=3 2b=3

3
75þ

2
64
0 0 d

0 d 0

d 0 0

3
75;

ð2:6Þ

where d ¼ 2xNu0. Since this additional term is also at the
renormalizable level, we expect the term d to be of the order
of a and b, in general. Inclusion of higher order terms inmD
would be very important in having leptogenesis as we will
discuss in Sec. V.
In general we expect the VEVs of the flavon fields (vS,

vT , u, u0) are of the same order of magnitude ∼v (say).
Therefore, the magnitude of light neutrino mν becomes
∼ðyvuÞ2=v, generated through a type-I seesaw mechanism.
However, there could be operators like ðLHuÞðLHuÞ,
which can also contribute to the light neutrino mass. In
our model such terms appear only in combination with ϕS,
ξ and ξ0 in quadrature ðLHuLHu

1
Λ3 ½ϕ2

S;ϕSξ;ϕSξ
0; ξξ0; ξ02�Þ,

as LHuLHu is not an invariant under Z3. Note that these

terms contribute to the light neutrino mass of order v2u
v κ

3

where κ ¼ v
Λ ≪ 1. Hence they are relatively small com-

pared to the neutrino mass generated from a type-I seesaw
by order of κ3 with y ∼Oð1Þ or so and therefore can be
neglected in the subsequent analysis.
There are next-to-leading order (NLO) corrections

present in the model which are suppressed by 1=Λn

with n ≥ 1. For the charged lepton, the leading order
(LO) contribution fcðLϕTÞ Hd

Λ (fc ¼ ec; τc; μc), is already
1=Λ suppressed. So possible NLO contributions are
fcðLðϕTϕTÞAÞ Hd

Λ2 and fcðLðϕTϕTÞSÞ Hd
Λ2 , where the suffixes

A and S stand for antisymmetric and symmetric triplet
components from the product of two triplets in the first
parenthesis under A4. Now the first term essentially
vanishes from the direction of VEVs of ϕT and the
contribution coming from the second term is again diago-
nal, similar to the one obtained from the LO term. So a
mere redefinition of ye, yμ, yν would keep the charged
lepton matrix as a diagonal, even if NLO contributions
are incorporated. This conclusion is in line with earlier
observations [14,25].

We could as well include higher order terms involving
1=Λ (which are allowed by all the symmetries imposed)
to the neutrino Yukawa coupling as xCðNcLÞSϕTHu=Λþ
xDðNcLÞAϕTHu=Λ, with xC and xD as coupling con-
stants. Therefore, at the next-to-leading order, the neu-
trino Yukawa coupling matrix can be rewritten as

Yν ¼ Yν0 þ δYν

¼ y

2
64
1 0 0

0 0 1

0 1 0

3
75þ xCvT

Λ

2
64
2 0 0

0 0 −1
0 −1 0

3
75

þ xDvT
Λ

2
64
0 0 0

0 0 −1
0 1 0

3
75: ð2:7Þ

This will not produce any significant effect on the light
neutrino masses and mixing obtained through the type-I
seesaw mechanism primarily with leading order mD and
MRd, as those terms are suppressed by the cutoff scale Λ
compared to the LO contribution. However these will
have an important role in leptogenesis, which we will
discuss in Sec. V.
For RH Majorana neutrinos, the nonvanishing NLO

corrections in the mass matrix arise from the following
terms:

δMRd ¼ C1ðNcNcÞSϕTξ=Λþ C2ðNcNcÞAϕTξ
0=Λ

þ C3ðNcNcÞðϕSϕTÞ=Λþ C4ðNcNcÞ00ðϕSϕTÞ0=Λ
þ C5ðNcNcÞ0ðϕSϕTÞ00=Λ
þ C6ðNcNcÞSðϕSϕTÞS=Λ
þ C7ðNcNcÞSðϕSϕTÞA=Λ: ð2:8Þ

Here Ci¼1;…;7 are the respective couplings and prefixes
0 and 00 correspond to the 10 and 100 singlets of A4 produced
from the multiplication of two triplets under A4 within
ð� � �Þ. Terms proportional to C3 and C4 can be absorbed in
MRd and contributions from the remaining terms produce a
deviation from MRd that can be written in a compact
form as

ΔMRd ¼

2
64
2XD XB −XA

XB 2XA XD

−XA XD XB

3
75;

where XD ¼ ð3C6vs þ C7vs þ C1uÞκ, XB ¼ C5vsκ and
XA ¼ ð2C7vs þ C2uNÞκ. An almost similar type of con-
clusion was obtained in [27], apart from the fact that we
have absorbed the term proportional to C4 in the LO
contribution of MRd and a new contribution coming from
C2 (through ξ0) is included in the definition of XA.
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III. NEUTRINO MASSES AND MIXING

A light neutrino mass matrix is obtained through the
type-I seesaw mechanism as mν ¼ mT

DM
−1mD, where

M is the Majorana mass matrix for RH neutrinos. Note that
the Majorana mass matrix M, with the form MR as in
Eq. (2.4) (i.e., without ξ0 field), can be diagonalized
through UT

TBMRUTB ¼ diagðMR1eiϕ1 ;MR2eiϕ2 ;MR3eiϕ3Þ,
where UTB exhibits the TBM mixing pattern [10] and is
described by

UTB ¼

2
66664

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

3
77775; ð3:1Þ

and MR1;2;3 are given by jbþ aj, jaj and jb − aj respec-
tively. ϕ1;2;3 are the arguments of the eigenvalues respec-
tively. It is found [20] that the light neutrino mass matrixmν

(¼ mT
DM

−1
R mD) in this case can also be diagonalized by a

matrix U which is the same as UTB except the second and
third rows of it are interchanged (apart from the phases
involved), so as to have UTmνU ¼ diagðm1; m2; m3Þ. The
light neutrino mass eigenvalues mi are given by mi ¼
ðyvuÞ2=MRi, and they can be made real and positive since
the phase of y can be absorbed due to redefinition of phases
in lepton doublets and the phases ϕi can be included in the
diagonal phase matrix of U. As previously discussed, this
structure of MR is not useful in explaining the nonzero θ13,
as seen while comparing the above form of U and UPMNS.
Since the measured value of θ13 is not very small, it is
difficult to reconcile θ13 just by deforming mν from its
above form with the introduction of a small expansion
parameter [33]. Rather we should have a deformation
parameter at the same order of the existing elements in
mν. In our framework, we have introduced the ξ0 field for
this purpose.

A. RH neutrinos

The new scalar singlet ξ0 contributes to the heavy RH
neutrino sector through the xNξ0ðNcNcÞ term and the
Majorana neutrino mass matrix then takes the form of
MRd as in Eq. (2.6). We note that after having a rotation
by UTB, the MRd takes the form as given by

UT
TBMRdUTB ¼

2
664
aþb− d

2
0 −

ffiffi
3

p
2
d

0 aþd 0

−
ffiffi
3

p
2
d 0 −aþbþ d

2

3
775: ð3:2Þ

Therefore a further rotation by U1 (another unitary
matrix) takes the matrix MRd to a diagonal one,
diagðM1eiφ1 ; M2eiφ2 ; M3eiφ3Þ ¼ ðUTBU1ÞTMRdUTBU1,
where Mi¼1;2;3 are given by

M1 ¼ jbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2 − ad

p
j

¼ jajjλ2eiϕba þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ21e

2iϕda − λ1eiϕda

q
j; ð3:3Þ

M2 ¼ jaþ dj ¼ jajj1þ λ1eiϕda j; ð3:4Þ

M3 ¼ jb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2 − ad

p
j

¼ jajjλ2eiϕba −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ21e

2iϕda − λ1eiϕda

q
j; ð3:5Þ

with λ1 ¼ jd=aj and λ2 ¼ jb=aj. ϕda ¼ ϕd − ϕa and
ϕba ¼ ϕb − ϕa are the phase differences between ðd; aÞ
and ðb; aÞ respectively. Phases associated with the above
masses can be written as

φ1 ¼ argðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2 − ad

p
Þ; ð3:6Þ

φ2 ¼ argðaþ dÞ; ð3:7Þ

φ3 ¼ argðb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2 − ad

p
Þ: ð3:8Þ

For simplicity, we will work with ϕda ¼ 0. Hence, the
above set of eigenvalues and phases can be rewritten as

M1 ¼ jajjλ2eiϕba þ Kj φ1 ¼ argðbþ aKÞ; ð3:9Þ

M2 ¼ jajj1þ λ1j φ2 ¼ argðaþ dÞ; ð3:10Þ

M3 ¼ jajjλ2eiϕba − Kj φ3 ¼ argðb − aKÞ; ð3:11Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ1 þ λ21

p
.

B. Light neutrino masses and mixing angles

The light neutrino masses obtained via a type-I seesaw
mechanism through mν ¼ mT

DM
−1
RdmD are now given by

mT
DURU�

m½diagðM1;M2;M3Þ�−1U�
mUT

RmD, where UR ¼
UTBU1 and Um ¼ diagðeiφ1=2; eiφ2=2; eiφ3=2Þ. The special
form of mD [see in Eq. (2.4)] suggests that UR, with the
second and third rows interchanged, will be the diagonal-
izing matrix of the light neutrino mass matrixmν apart from
the diagonal phase matrix. Since the charged lepton mass
matrix is already diagonal, the lepton mixing matrix is
given by [20]

Uν ¼
mT

D

yvu
UTBU�

1diagðeiφ1=2; eiφ2=2; eiφ3=2Þ; ð3:12Þ

so that mν ¼ U�
νdiagðmiÞU†

ν. Note that the light neutrino
masses m1;2;3 (real and positive) are given by

mi ¼
ðyvuÞ2
Mi

; ð3:13Þ
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whereMi¼1;2;3 are taken from Eqs. (3.9)–(3.11). We can now remove one common phase by setting φ1 ¼ 0. Hence, the final
form of unitary matrix that diagonalizes mν is given by

Uν ¼
mT

D

yvu
UTB

2
64

cos θ 0 sin θe−iψ

0 1 0

− sin θeiψ 0 cos θ

3
75diagð1; eiφ2=2; eiφ3=2Þ; ð3:14Þ

¼

2
66664

ffiffi
2
3

q
cos θ 1=

ffiffiffi
3

p ffiffi
2
3

q
sin θe−iψ

− cos θffiffi
6

p þ sin θffiffi
2

p eiψ 1=
ffiffiffi
3

p
− cos θffiffi

2
p − sin θffiffi

6
p e−iψ

− cos θffiffi
6

p − sin θffiffi
2

p eiψ 1=
ffiffiffi
3

p
cos θffiffi

2
p − sin θffiffi

6
p e−iψ

3
77775:
2
64
1 0 0

0 eiφ2=2 0

0 0 eiφ3=2

3
75; ð3:15Þ

where we have parametrized the extra U1 matrix by θ and
ψ and employed Eqs. (2.4) and (3.1). We identify the
Majorana phases as

φ2 ¼ α21 and φ3 ¼ α31: ð3:16Þ
In this type of model, using Eqs. (3.9)–(3.11) and
Eq. (3.13) we find a general sum rule for light neutrino
masses satisfying

1

m1

−
2Keiα21

m2ð1þ λ1Þ
¼ eiα31

m3

: ð3:17Þ

Note that in the limit K → 1 (i.e., with λ1 ¼ 0), the sum rule
is reduced to the one found in [27,34]. The Majorana
phases α21 and α31 are therefore related to the light neutrino
masses. They will play an important role in leptogenesis,
which we discuss in Sec. V. The sum rule may carry an
important consequence in neutrinoless double beta decay.
A study with different sum rules in this direction can be
found in [35].
The charged lepton mass matrix being diagonal, the

above form of Uν leads to [see Eq. (1.2)]

sin θ13 ¼
ffiffiffi
2

3

r
sin θ; δ ¼ ψ ; ð3:18Þ

sin2θ12 ¼
1

3ð1 − sin2θ13Þ
and

sin2θ23 ¼
1

2
þ 1ffiffiffi

2
p sin θ13 cos δ; ð3:19Þ

up to the order sin2 θ13. The study of these correlations in
the presence of A4 is available in the literature [20,22,36].
For rest of our analysis we will consider ψ ¼ 0. The mixing
angle θ is then given by

tan 2θ ¼
ffiffiffi
3

p
λ1

ð2 − λ1Þ
: ð3:20Þ

We have studied the variation of sin2 θ13 against the
parameter λ1 in Fig. 1, where the 1σ and 3σ allowed regions

for sin2 θ13 obtained from [8] are also indicated in the same
by red and blue horizontal shaded regions respectively for
both NH and IH. We observe that for NH, the best fit [8]
value of sin2 θ13 (¼ 0.0234) corresponds to λ1 ¼ 0.37 and
that one for IH (sin2θ13 ¼ 0.024) corresponds to λ1 ¼ 0.38.
We also note that the 3σ range of sin2 θ13 covers a narrow
interval of λ1 that can be approximately expressed as
0.33≲ λ1 ≲ 0.41 as seen from Fig. 1 for both NH and IH.
The other mixing angles θ12 and θ23 are also studied

through the variation of sin2 θ12 and sin2 θ23 against λ1,
using Eq. (3.19) in Fig. 2. Note that once we restrict λ1 to be
in the above-mentioned range [indicated in Fig. 2 by
vertical (blue) patches] so that sin2 θ13 falls within the
3σ allowed range, it constrains the ranges of sin2 θ12 and
sin2 θ23 in our setup. This result is mentioned in Table III as
obtained from Fig. 2. The ranges are well within the 3σ
allowed regions of sin2 θ12 and sin2 θ23 [8]. So we conclude
that this particular range of λ1 (0.33≲ λ1 ≲ 0.41) is con-
sistent in producing all three mixing angles successfully,
and we will use this range of λ1, while studying any other
observables against λ1 unless otherwise stated.

1
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FIG. 1 (color online). sin2θ13 vs λ1 (i.e., jd=aj) plot. The
horizontal blue shaded region stands for the 3σ allowed range for
sin2 θ13 and the red shaded region inside represents the 1σ range
for sin2 θ13 obtained from [8].
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IV. CONSTRAINTS ON PARAMETERS FROM
NEUTRINO OSCILLATION DATA

Apart from λ1, we have other parameters λ2, jaj and ϕba
(after setting ϕda ¼ 0) in the right-handed neutrino sector.
Note that λ1, λ2 and ϕba can be constrained by neutrino
oscillation data through the ratio of solar and atmospheric
mass-squared differences (Δm2⊙ and jΔm2

Aj respectively)
defined by r ¼ Δm2⊙

jΔm2
Aj

as exercised in [27,34]. These

mass-squared differences are defined as Δm2⊙¼Δm2
21¼

m2
2−m2

1 and jΔm2
Aj¼jΔm2

31j¼m2
3−m2

1≈jΔm2
32j¼m2

3−m2
2.

Following [8], the best fit values of Δm2⊙ ¼ 7.60 ×
10−5 eV2 (for both NH and IH) and jΔm2

Aj ¼ 2.48 ×
10−3 eV2 [NH] (and jΔm2

Aj ¼ 2.38 × 10−3 eV2 [IH]) will
be used in our analysis. Using Eqs. (3.9)–(3.11), and (3.13)
weobtain r in terms of parameters involved in our framework
as given by

r ¼ ½λ22 þ 2λ2Kcosϕba þ K2 − ð1þ λ1Þ2�ðλ22 − 2λ2Kcosϕba þ K2Þ
4ð1þ λ1Þ2λ2Kj cosϕbaj

: ð4:1Þ

We recall that ϕba is the relative phase between parameters
b and a. Note that with λ1 ¼ 0, K becomes unity and the
expression for r gets back the form in [34]. Considering
λ1 < 1 (as required for θ13 being in the acceptable range,
see Fig. 1) and as ϕda ¼ 0, K becomes real and considered
to be positive. Then as is evident from Eqs. (3.9)–(3.11)
and (3.13), cosϕba > 0 for NH and cosϕba < 0 for IH.
Using r ¼ 0.03 [8], we can use Eq. (4.1) now to study the
correlation between λ2 and cosϕba as shown in Fig. 3.
In doing so, we have set the value of λ1 to be 0.37 (0.38)
which corresponds to the best fit value of sin2 θ13 for NH
(IH) as stated before. Obviously the right panel of the plot
corresponds to NH (as cosϕba > 0) and the left panel is for
IH (as cosϕba < 0). We find that for NH, with λ1 ¼ 0.37,

λ2 is restricted to be in the range 0.71–1.2 and for IH, with
λ1 ¼ 0.38, λ2 falls within1 the range 1.1–2.3. It will be
further modified as we proceed after including the con-
straint on the sum of all the light neutrinos from the Planck
data [37].
The light neutrino mass m1 in this framework can be

expressed as

m2
1 ¼ jΔm2

Ajr
ð1þ λ1Þ2

½λ22 þ 2λ2Kcosϕba þ K2 − ð1þ λ1Þ2�
:

ð4:2Þ

Now using the best fit value of jΔm2
Aj ¼ 2.48 × 10−3 eV2

[NH] (2.38 × 10−3 eV2 [IH]), r ¼ 0.03 and λ1 ¼ 0.37
(0.38), we can estimate m1 from the above relation for
NH (IH), shown in Fig. 4, as a function of λ2. Similarly m2

andm3 are also plotted in Fig. 4. Note that in doing this, the
correct sign of cosϕba in Eq. (4.2) needs to be taken into
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FIG. 2 (color online). λ1 dependence of sin2 θ12 and sin2 θ23. The vertical blue patch indicates the restricted region of parameter
space for λ1 obtained from Fig. 1. The horizontal red dashed lines represent the 3σ allowed range for sin2 θ12 in the left panel, while
in the right panel the horizontal red dashed and green large-dashed lines represent 3σ allowed regions for sin2 θ23 both NH and IH
respectively as in [8].

TABLE III. Allowed regions of sin2 θ12 and sin2 θ23 obtained
from Fig. 2 for a restricted range of λ1 (corresponding to Fig. 1) in
our setup.

Range of λ1 obtained from Fig. 1 sin2 θ12 sin2 θ23

0.36≲ λ1 ≲ 0.39 0.341–0.342 0.604–0.614
0.33≲ λ1 ≲ 0.41 0.339–0.343 0.595–0.620

1Equation (4.1) describes a quadratic equation of j cosϕbaj
once other parameters are fixed. The range of λ2 between 0 and
0.71 is excluded to keep the discriminant positive for λ1 ¼ 0.37
(for NH).
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account while NH and IH cases are considered. The lightest
neutrino mass m1 (m3) falls in the range 0.008 eV≲m1 ≲
0.02 eV for NH (0.02 eV≲m3 ≲ 0.12 eV for IH). In this
plot we have also shown the sum of the light neutrino
masses,

P
mi. From Fig. 4, we conclude that it lies in the

range 0.07 eV≲P
mi ≲ 0.1 eV for NH and 0.13 eV≲P

mi ≲ 0.28 eV for IH. The Planck data along with
external CMB and BAO results [37] provide an upper
bound as

P
mi ≲ 0.23 eV. Once this is considered, the

range of
P

mi as obtained from our analysis for NH would
not be affected. However in the case of IH, it further
restricts the range of λ2 (1.3≲ λ2 ≲ 2.3, indicated by
vertical dashed line) as observed from the shaded region
of Fig. 4, right panel. So the model’s prediction for a sum of
all three light neutrino masses turns out to be

0.07 eV≲X3
i¼1

mi ≲ 0.1 eVðNHÞ and

0.13 eV≲X3
i¼1

mi ≲ 0.23 eVðIHÞ: ð4:3Þ

In our analysis we can comment also on the relative
magnitudes of heavy RH neutrinos. For NH we obtain

M1 ≃ ð1.1 − 1.5ÞM2 ≃ ð2.7 − 6.6ÞM3 and for IH we have
M1 ≃M2 ≃ M3

1.2−2.3. So, in the present setup Majorana
neutrinos are not strongly hierarchical.
Two Majorana phases α21 and α31 can be investigated in

the setup in a similar way as done in [27]. Here in the model
under consideration, we find Majorana phases α21 and α31
in terms of λ1, λ2 and ϕba as given by

tan α21 ¼ −
λ2 sinϕba

Kþ λ2 cosϕba
; ð4:4Þ

tan α31 ¼
2Kλ2 sinϕba

λ22 − K2
: ð4:5Þ

Note that there exists a relative sign between sin α21 and
sin α31 as observed from the neutrino mass sum rule in
Eq. (3.17). For NH, cosϕba > 0 as discussed before and
sinϕba < 0 is considered in order to produce the correct
sign of baryon asymmetry [27]. Similarly, for IH we have
cosϕba < 0 and sinϕba < 0. Taking all this into consid-
eration, Eqs. (4.4) and (4.5) can successfully correlate
Majorana phases (α21 and α31) with parameters λ1 and λ2.
We have plotted variation of α21 and α31 with λ2 for both
NH and IH in Figs. 5 and 6 respectively. As before we have
fixed λ1 ¼ 0.37 for NH (λ1 ¼ 0.38 for IH). This study of
Majorana phases will be particularly useful when we will
study the dependence of CP-violating parameter ϵi in our
model on λ2. The effective neutrino mass parameter, jhmij,
is an important quantity which controls the neutrinoless
double beta decay. In our model, the effective neutrino
mass parameter is obtained as [5,38]

jhmij ¼
���� 23m1cos2θ þ

1

3
m2eiα21 þ

2

3
m3sin2θeiα31

����: ð4:6Þ

Since the dependence ofmi and α21;31 on λ2 (for fixed λ1) is
known (from Figs. 4–6), we plot jhmij as a function of λ2
with λ1 ¼ 0.37 for NH and λ1 ¼ 0.38 for IH in Fig. 7. We
found the range for the jhmij as 0.01 eV< jhmij<0.02 eV
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FIG. 4 (color online). Light neutrino massesmi’s and their sum,
P

mi, as a function of λ2 for NH (λ1 ¼ 0.37) and IH (λ1 ¼ 0.38). Here
in the right panel the shaded region indicates the disfavored values of

P
mi. This makes allowed range for λ2 more restricted for IH,

indicated by the vertical black dashed line.
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FIG. 3. Variation of λ2 with cosϕba. Here we have fixed λ1 ¼
0.37 for NH and λ1 ¼ 0.38 for IH.
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for NH and 0.015 eV < jhmij < 0.067 eV for IH. The
current upper limit on jhmij however varies between
0.177 eV and 0.339 eV taking into account the different
choices of nuclear matrix elements [39].

V. LEPTOGENESIS

The presence of seesaw realization of light neutrino
mass in the model under consideration gives the oppor-
tunity to study leptogenesis as the heavy RH neutrinos are
already present in the model. It allows the generation of
lepton asymmetry through the out-of-equilibrium decay
of heavy RH neutrinos in the early Universe. This lepton

asymmetry can be converted into baryon asymmetry of the
Universe with the help of sphaleron process. With the
consideration that the generation of lepton asymmetry
happens at a temperature of the Universe T ∼Mi ≳ ð1þ
tan2βÞ1012 GeV (where tan β ¼ vu=vd), it does not dis-
tinguish between flavors, the so-called one flavor approxi-
mation regime [27–30] is achieved. The CP-asymmetry
generated by the out-of-equilibrium decay of each RH
neutrinos (and sneutrinos) is given by [40–46]

ϵi ¼
1

8π

X
j≠i

Im½ððŶνŶ
†
νÞjiÞ2�

ðŶνŶ
†
νÞii

f

�
mi

mj

�
; ð5:1Þ
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FIG. 5. Variation of Majorana phases (α21: left panel; α31: right panel) with λ2 for NH.
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FIG. 6. Variation of Majorana phases (α21: left panel; α31: right panel) with λ2 for IH.
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FIG. 7 (color online). Variation of jhmij with λ2 for NH (left panel) and IH (right panel) respectively.
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where Ŷν is the effective Yukawa coupling matrix for
neutrinos in the basis where RH neutrino mass matrix
MRd is diagonal.2 In the present setup, Ŷν ¼
diagð1; e−iα21=2; e−iα31=2ÞUT

RYν, where UR ¼ UTBU1. The
loop factor fðxÞ in the above expression (the model being
supersymmetric) is defined as follows [46]:

fðxÞ≡ −x
�

2

x2 − 1
þ ln

�
1þ 1

x2

��
; ð5:2Þ

with x ¼ mi=mj. The total lepton asymmetry receives a
contribution from the decay of all three RH neutrinos (and
sneutrinos).
It has been observed that at LO (i.e., when Yν ¼ Yν0), the

product of the effective Yukawa coupling matrices Ŷν0Ŷ
†
ν0

is proportional to a unit matrix, hence lepton asymmetry
parameter ϵi vanishes [25]. However considering NLO
corrections to the Yukawa, we have obtained Eq. (2.7).
Therefore using Eq. (2.7), ŶνŶ

†
ν becomes

ŶνŶ
†
ν ¼ y2Iþ

2
6664

cos 2θ
ffiffiffi
2

p
e
iα21
2 cos θ e

iα31
2 sin 2θffiffiffi

2
p

e−
iα21
2 cos θ 0

ffiffiffi
2

p
e
iðα31−α21Þ

2 sin θ

e
−iα31

2 sin 2θ
ffiffiffi
2

p
e
−iðα31−α21Þ

2 sin θ − cos 2θ

3
7775ð2ReðxCÞκyÞ

þ

2
666664

− sin 2θffiffi
3

p
ffiffi
2
3

q
ei

iα21
2 sin θ 1ffiffi

3
p e

iα31
2 cos 2θffiffi

2
3

q
e−i

iα21
2 sin θ 0 −

ffiffi
2
3

q
e
iðα31−α21Þ

2 cos θ

1ffiffi
3

p e
−iα31

2 cos 2θ −
ffiffi
2
3

q
e
−iðα31−α21Þ

2 cos θ 1ffiffi
3

p sin 2θ

3
777775
ð2ReðxDÞκyÞ: ð5:3Þ

Note that having the origin related to a NLO correction term, κ in general is expected to be small, κ ¼ vT=Λ ≪ 1. Hence the
expression of Eq. (5.3) is kept up to first order in κ. Finally in our framework the CP-asymmetry parameters corresponding
to all three RH neutrinos, ϵ1;2;3 take the form as

ϵ1 ¼
−κ2

2π

�
sin α21

�
2ReðxCÞ2cos2θ þ

2ReðxDÞ2
3

sin2θ þ 2ReðxCÞReðxDÞffiffiffi
3

p sin 2θ

�
f

�
m1

m2

�

þ sin α31

�
ReðxCÞ2sin22θ þ

ReðxDÞ2
3

cos22θ þ ReðxCÞReðxDÞffiffiffi
3

p sin 4θ

�
f

�
m1

m3

��
; ð5:4Þ

ϵ2 ¼
κ2

2π

�
sin α21

�
2ReðxCÞ2cos2θ þ

2ReðxDÞ2
3

sin2θ þ 2ReðxCÞReðxDÞffiffiffi
3

p sin 2θ
�
f
�
m2

m1

�

− sinðα31 − α21Þ
�
2ReðxCÞ2sin2θ þ

2ReðxDÞ2
3

cos2θ −
2ReðxCÞReðxDÞffiffiffi

3
p sin 2θ

�
f

�
m2

m3

��
; ð5:5Þ

ϵ3 ¼
κ2

2π

�
sin α31

�
ReðxCÞ2sin22θ þ

ReðxDÞ2
3

cos22θ þ ReðxCÞReðxDÞffiffiffi
3

p sin 4θ

�
f

�
m3

m1

�

þ sinðα31 − α21Þ
�
2ReðxCÞ2sin2θ þ

2ReðxDÞ2
3

cos2θ −
2ReðxCÞReðxDÞffiffiffi

3
p sin 2θ

�
f

�
m3

m2

��
: ð5:6Þ

Lepton asymmetry in this scenario therefore depends on light neutrino masses mi (through loop factor), Majorana phases
α21;31, couplings ReðxC;DÞ, κ (coming from the NLO correction terms in Yukawa) and interestingly on θ (and hence on λ1).
Recall that θ was originated from the deviation from the exact tri-bimaximal mixing and therefore leads to nonzero sin θ13.
We will come back to discuss it; before that let us discuss how this lepton asymmetry parameter is connected with observed
baryon asymmetry of the Universe.
Lepton asymmetry can be linked to the baryon asymmetry [24,47–49] as

YB ¼ −1.48 × 10−3
X
i

ϵiηii: ð5:7Þ

2Here Eq. (3.13) is used to express the loop factor f in terms of the ratio of light neutrino masses.
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Here ηii stands for the efficiency factor [46]. We consider
the efficiency factor to be given by

1

ηii
≈
3.3 × 10−3 eV

~mi
þ
�

~mi

0.55 × 10−3 eV

�
1.16

; ð5:8Þ

with ~mi as the washout mass parameter, ~mi ¼ ðŶνŶ
†
νÞiiv2u
Mi

≃
mi to the leading order. The above expression is valid for
Mi < 1014 GeV [50]. This upper bound on Mi is also
consistent in keeping the lepton number violating decays
within the experimental limit [50,51]. As we already have a
lower bound on Mi from the one flavor approximation, it
turns out that low values of tan β are favored for this
scenario to work.3 Interestingly in [52], the authors have
shown that if the scale of supersymmetry breaking (ms) in
minimal supersymmetric standard model is sufficiently
large (say ∼10 TeV or so) the low tan β region tan β ≲
ð3–5Þ is consistent with the results of LHC so far. Such
large value of ms on the other hand can in principle reduce
the branching ratio for the lepton flavor violating processes.
However the details of this conjecture is beyond the scope
of the present study.

A. Leptogenesis with fixed λ1 and varying λ2
In this section we will study the range of the parameters

involved in the YB expression so as to reproduce the correct
amount of matter-antimatter asymmetry of the Universe.
The observed value of YB is reported to be [53]

YB ¼ ð8.79� 0.20Þ × 10−11: ð5:9Þ

As the efficiency factor (ηii) is found to be ∼Oð10−2Þ, ϵi
should be of order Oð10−6Þ in order to reproduce the
correct amount of baryon asymmetry of the Universe. As
discussed earlier, we have kept λ1 to be fixed at 0.37 for NH

(0.38 for IH) which corresponds to the best fit value of
sin2 θ13 [8]. We further note that the expression of YB
involves θ which in turn is related to θ13. So once λ1 is fixed
it would correspond to a particular value of θ. The expansion
parameter κ ¼ vT=Λ is taken to be ∼10−2. The variation of
α21;31 and mi’s with λ2 (for λ1 ¼ 0.37, 0.38 for NH and IH
respectively) are already studied. Using this information, we
can study the dependence of YB on λ2 for fixed values of
ReðxCÞ and ReðxDÞ. The first bracketed expression in
Eqs. (5.4)–(5.6) therefore serves merely as constant factor.
In Fig. 8 (left panel), we have plotted total baryon

asymmetry YB (red continuous line) along with individual
YB1;2;3 (orange large dashed, green dotted and blue dot-
dashed lines respectively) against λ2 for ReðxCÞ ¼
ReðxDÞ ¼ 0.2 in the case of NH. Note that the range of
λ2 0.71–1.2 for NH and 1.3–2.3 for IH was already fixed
(from Figs. 3 and 4) for λ1 ¼ 0.37 (for NH) and λ1 ¼ 0.38
(for IH) respectively. The relative sign between sin α21
and sin α31 is fixed from the sum rule, Eq. (3.17). Their
dependence on λ2 is depicted in Fig. 5. In producing these
plots, we recall that cosϕba > 0 for NH and cosϕba < 0
for IH. Also sinϕba < 0 is considered to produce correct
sign of YB. In ϵ1, fðm1=m2Þ is of positive sign and remains
dominant over jfðm1=m3Þj throughout the range of λ2 by
orders of magnitude. So an overall negative sign for ϵ1
results when combined with sin α21 > 0 and sinα31 < 0 for
the range of λ2 inferred from Fig. 8. A similar conclusion
can be drawn for ϵ2. In this case fðm2=m1Þ is negative and
its magnitude is sufficiently large compared to jfðm2=m3Þj
so that differences between magnitude of sin α21 and
sinðα31 − α21Þ cannot produce any sizable effect between
the two terms [one is the set of terms proportional to sin α21
and another is the similar set proportional to sinðα31 − α21Þ]
involved. So ϵ2 is effectively dominated by the first term
and overall it gives a negative contribution. In ϵ3, however
both the terms involved contribute almost equally and
overall ϵ3 contributes with opposite sign (also seen in the
Fig. 8 terms of YB3 which is negative, left panel) compared
to ϵ1;2. As shown in Fig. 8 (left panel), the contribution
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FIG. 8 (color online). Baryon asymmetry of the Universe as a function of λ2 for NH (with λ1 ¼ 0.37, left panel) and IH (with
λ1 ¼ 0.38, right panel). Here, the red continuous line, orange large dashed line, green dotted line and blue dot-dashed line stand for total
YB, YB1;2;3 respectively. The horizontal blue patch represents the allowed range for total baryon asymmetry. For NH we have taken
ReðxCÞ ¼ ReðxDÞ ¼ 0.2 and for IH we have ReðxCÞ ¼ ReðxDÞ ¼ 0.05. For both cases we have fixed κ at 0.01.

3y is expected to be ∼Oð10−1Þ in order to reproduce correctmi
for this range of Mi.
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from YB3 is suppressed (and of opposite sign). This is due
to the fact that the corresponding washout is larger though
in magnitude jϵ3j≲ jϵ1;2j. A horizontal patch in Fig. 8 is
provided to indicate the allowed YB range [53]. It shows
that for this specific choice of ReðxC;DÞ ¼ 0.2, the correct
amount of baryon asymmetry can be generated in our
framework for λ2 ∼Oð1Þ. Note that we can achieve this YB
for not so large value of ReðxC;DÞ in comparison to the
findings of [27]. To check the possible values of ReðxCÞ
and/or ReðxDÞ we have drawn a contour plot in Fig. 9 (left
panel) between ReðxDÞ and λ2, while ReðxCÞ ¼ ReðxDÞ is
assumed as an example. The pattern of the YB plot is also
different from what was obtained in [27]. This is due to the
involvement of nonzero θ.
In Fig. 8 (right panel), we then plot YB, YB1;2;3 vs λ2 in

the case of IH with ReðxCÞ ¼ ReðxDÞ ¼ 0.05. As it was
found in Sec. IV, λ2 ranges between 1.3 and 2.3 and
cosϕba < 0 and sinϕba < 0 in this case. The Majorana
CP-violating phases α21 and α31 are obtained in Sec. IVas a
function of λ2 (see Fig. 6, with λ1 ¼ 0.38). Here m1

and m2 are much closer to each other leading to large
enhancement in the magnitude of loop factors fðm1=m2Þ
and fðm2=m1Þ. Their magnitudes are even larger than their
counterpart in NH. Variation of these loop factors with λ2
shows that fðm1=m2Þ≃ −fðm2=m1Þ ≫ fðm3=m1;2Þ and
fðm1=m2Þ≃ −fðm2=m1Þ ≫ −fðm2;1=m3Þ. Overall non-
zero CP-violating phases α21 and α31 are required to have
leptogenesis but it appears that the final asymmetry is
dominated by the loop factors. Though YB1 and YB2 face a
relatively large washout effect, still they generate a sizable
contribution and YB3 gives a subdominant contribution as
shown in Fig. 8. Here also we have plotted a contour
between ReðxDÞ and λ2, assuming ReðxCÞ ¼ ReðxDÞ with
YB fixed at its central value, as shown in Fig. 9 (right
panel). We find that in this case, smaller values of
ReðxCÞ ¼ ReðxDÞ are favored compared to the ones in
the NH case.
Since the RH Majorana neutrino masses (in IH case

particularly) are close to each other, we need to check the

possibility of satisfying condition for resonant leptogenesis
[54]. In our model, the quantity related to the mass
degeneracy has been computed and found to be

M2

M1

− 1 ≈ ð10−2 − 10−3Þ; ð5:10Þ

after scanning over the full range of λ2 (1.3≲ λ2 ≲ 2.3). We
find that the resonance condition,

����M2

M1

− 1

����∼
���� ðŶνŶ

†
νÞ12

16π

����;
is not satisfied in our model. This is because the term in the
right-hand side of the resonance condition turns out to
be of order 5 × 10−2κy½ReðxCÞ cos θ þ ReðxDÞ sin θ�. As
κ ∼ 10−2, y ∼ 10−1 and θ is expected to produce correct θ13,

ðŶνŶ
†
νÞ12

16π
∼ 10−5 − 10−6:

Hence, in the present model, the resonant condition is not
satisfied.

B. Leptogenesis with fixed λ2 and varying λ1
In this case we have taken a different approach by

keeping λ2 fixed at a certain value, λ2 ¼ 1 for NH and λ2 ¼
2.1 for IH.4 Then we can study the variation of YB with λ1.
The range of λ1 (0.33≲ λ1 ≲ 0.41) is of course restricted
from Fig. 1 in Sec. III. By using Eq. (4.1) and taking
r ¼ 0.03, we can now investigate the variation of cosϕba vs
λ1. This is shown in Fig. 10. We find that cosϕba does not
vary much with λ1 in the specified range. Similar to the one
discussed in Sec. IV, we can also set the Majorana phases
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FIG. 9 (color online). Contour plot of ReðxCÞð¼ ReðxDÞÞ and λ2, with YB fixed at its central value.

4From Fig. 3 and the Planck limit on
P

mi, note that no such
common value of λ2 exists for which both NH and IH cases can be
considered.
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α21 and α31 as a function of λ1 and finally we plot YB

against sin2 θ13 in Fig. 11 as sin2 θ13’s dependence on λ1 is
known. Note that, here also we have used the values
ReðxC;DÞ ¼ 0.2 for NH and 0.05 for IH as before. The
maximum value of the effective neutrino mass parameter
turns out to be jhmij ∼ 0.01 eV for NH (0.025 eV for IH).

VI. CONCLUSION

In this paper, we have studied the generation of nonzero
θ13 in a A4 symmetric framework. For this, we have
extended the particle content of the AF model by adding
one flavon, ξ0. In doing so, we consider the generation of
light neutrino masses and mixing through the type-I seesaw
mechanism. The addition of ξ0 leads to a deformed structure
for the right-handed neutrino mass matrix as compared to
the one obtained in the case of a tri-bimaximal mixing
pattern. The explicit structure of the right-handed neutrino
mass matrix as well as the neutrino Yukawa matrices
dictated by the flavor symmetry imposed (A4 × Z3) help
in studying the mixing angles involved in the UPMNS
matrix. We find that our framework can reproduce all
the mixing angles consistent with recent experimental
findings for a restricted range of parameter space for λ1
involved in the theory. We find a modified sum rule for this

particular setup. Also the effective neutrino mass parameter
jhmij is studied. Since the structure of right-handed
neutrino sector is known, it also opens up the possibility
to study leptogenesis in this framework and particularly
the involvement of Majorana phases in the setup can be
utilized. Following [27], we then study the Majorana
phases α21 and α31 involved inUPMNS and their dependence
on parameter λ2, while keeping λ1 fixed at a value that could
reproduce the best fit value of sin2 θ13. This is done while
constraints on neutrino parameters like the ratio of Δm2

21

and Δm2
31 are considered in conjugation with the sum rule

obtained. It is known that this sort of model will not
generate lepton asymmetry due to the special form of
neutrino Yukawa matrix involved. The same conclusion
holds here also and we need to consider the next-to-leading
order effect to the neutrino Yukawa sector in order to realize
nonzero lepton asymmetry. We have calculated the next-to-
leading order terms in our setup and their involvement in
the expression for the CP-asymmetry parameter ϵi. Then we
have shown that within one flavor approximation, our setup
is able to generate a sufficient amount of lepton asymmetry
through the decay of the right-handed neutrinos (and
sneutrinos) without assigning large values to the parameters
involved. In obtaining this result, we use the information
obtained on the Majorana phases α21, α31 as a function of

NH
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FIG. 11 (color online). Baryon asymmetry YB vs sin2 θ13 for NH (left panel) and IH (right panel). Here the region between horizontal
dashed lines represents observed value for YB from [53].
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the parameters involved. As the baryon asymmetry can be
linked with the generated lepton asymmetry finally we have
studied the variation of baryon asymmetry parameter YB
with λ2. The effect of having nonzero θ13 is also studied.
It can also be noted that the framework restricts the

RH neutrino masses in a narrow range between ð1þ
tan2βÞ1012 GeV and 1014 GeV as evident from the dis-
cussion below Eq. (5.8). This in turn can be used to
estimate the scales involved in the theory. With our
consideration that all the VEVs of the new scalars involved
in the setup to be of similar order of magnitude, v, the RH
neutrino masses are of order Mi ∼ 2xv as seen from
Eqs. (3.9)–(3.11). With coupling constants x ∼Oð1Þ, it
further tells that v is of order 1013 GeV with tan β ∼ 3.
Therefore the new flavons [whose masses are proportional
to v as seen from Eq. (B1)] are found to be as heavy as RH
neutrinos, while the couplings involved are considered to
be of order 1. So although the RH neutrinos have other
interactions with the new scalars of the setup [from
Eq. (2.3)], its decay mode is essentially dominated by
the Yukawa interactions with the lepton and Higgs doublets
only. This justifies our consideration of employing
Eq. (5.1) which is the standard expression of leptogenesis
for the decay of RH neutrinos through Yukawa interaction.
Now, in order to produce a correct amount of lepton
asymmetry, we require to have κ ¼ v

Λ to be of order
10−2. This value is also consistent with the tau lepton
mass as appeared in Eq. (2.1) with the coupling yτ ∼Oð1Þ.
This sets the typical value of the cutoff scale Λ to be
1015 GeV. The close proximity of Λ with the grand
unification scale turns out to be an intriguing feature of
the model.

APPENDIX A: A4 MULTIPLICATION RULES

A4 is a discrete group of even permutation of four
objects.5 It has three inequivalent one-dimensional repre-
sentations 1, 10, 100 and a irreducible three-dimensional
representation 3. Products of the singlets and triplets are
given by

1 ⊗ 1 ¼ 1;

10 ⊗ 10 ¼ 100;

10 ⊗ 100 ¼ 1;

100 ⊗ 100 ¼ 10; and

3 ⊗ 3 ¼ 1 ⊗ 10 ⊗ 100 ⊗ 3A ⊗ 3S; ðA1Þ

where subscripts A and S stand for “asymmetric” and
“symmetric” respectively. If we have two triplets
ða1; a2; a3Þ and ðb1; b2; b3Þ; their products are given by

1 ∼ a1b1 þ a2b3 þ a3b2;

10 ∼ a3b3 þ a1b2 þ a2b1;

100 ∼ a2b2 þ a3b1 þ a1b3;

3S ∼

2
64
2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

3
75;

3A ∼

2
64
a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

3
75: ðA2Þ

APPENDIX B: A4 VACUUM ALIGNMENTS

In our model driving part of the LO superpotential,
invariant under A4 × Z3 with R ¼ 2, can be written as

wd ¼ MðϕT
0ϕTÞ þ gðϕT

0ϕTϕTÞ
þ ϕS

0ðg1ϕSϕS þ g2ϕSξþ g3ϕSξ
0Þ

þ ξ0ðg4ϕSϕS þ g5ξξÞ: ðB1Þ

Equations which give vacuum structure of ϕT are
given by

∂w
∂ϕT

01

¼ MϕT1 þ
2g
3
ðϕ2

T1 − ϕT2ϕT3Þ ¼ 0;

∂w
∂ϕT

02

¼ MϕT1 þ
2g
3
ðϕ2

T2 − ϕT1ϕT3Þ ¼ 0;

∂w
∂ϕT

03

¼ MϕT1 þ
2g
3
ðϕ2

T3 − ϕT1ϕT2Þ ¼ 0: ðB2Þ

A solution of these equations can be given by hϕTi ¼
ðvT; 0; 0Þ where vT ¼ − 3M

2g . Again, equations responsible
for vacuum alignments of ϕS, ξ and ξ0 are

∂w
∂ϕS

01

¼ 2g1
3

ðϕ2
S1 − ϕS2ϕS3Þ þ g2ξϕS1 þ g3ξ0ϕS3 ¼ 0;

∂w
∂ϕS

02

¼ 2g1
3

ðϕ2
S2 − ϕS1ϕS3Þ þ g2ξϕS3 þ g3ξ0ϕS2 ¼ 0;

∂w
∂ϕS

03

¼ 2g1
3

ðϕ2
S3 − ϕS1ϕS2Þ þ g2ξϕS2 þ g3ξ0ϕS1 ¼ 0;

∂w
∂ξ0 ¼ g4ðϕ2

S1 þ 2ϕS2ϕS3Þ þ g5ξξ ¼ 0.: ðB3Þ

From these equations we obtain hϕSi¼ðvS;vS;vSÞ, hξi¼u

and hξ0i ¼ u0 ≠ 0 with v2s ¼ −g5u2
3g4

and u0 ¼ −g2u
g3

. Note that
NLO correction terms with 1=Λ suppression involving ξ0
in the superpotential wd are absent and so the VEVs of
the flavon fields remain unchanged.5For a detailed discussion on A4, see [32].
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