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We propose that the observed large leptonic mixing may just reflect a quasidegeneracy of three
Majorana neutrinos. The limit of exact degeneracy of Majorana neutrinos is not trivial, as leptonic mixing
and even CP violation may occur. We conjecture that the smallness of jU13j, when compared to the other
elements of UPMNS, may be related to the fact that, in the limit of exact mass degeneracy, the leptonic
mixing matrix necessarily has a vanishing element. We show that the lifting of the mass degeneracy can
lead to the measured value of jU13j while at the same time accommodating the observed solar and
atmospheric mixing angles. In the scenario we consider for the breaking of the mass degeneracy, there is
only one CP violating phase, already present in the limit of exact degeneracy, which upon the lifting of
the degeneracy generates both Majorana and Dirac-type CP violation in the leptonic sector. We analyze
some of the correlations among physical observables and point out that, in most of the cases considered,
the implied strength of leptonic Dirac-type CP violation is large enough to be detected in the next round
of experiments.
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I. INTRODUCTION

The observed pattern of fermion masses and mixing
continues to be a major puzzle in particle physics, and the
discovery of large leptonic mixing makes the question even
more intriguing. A large number of models have been
suggested in the literature for providing an understanding
of neutrino masses and mixing. These models cover a large
number of possibilities, from models with discrete Abelian
or non-Abelian symmetries [1] to the suggestion that in the
neutrino sector anarchy prevails [2].
In this paper, we conjecture that the observed large

mixing in the lepton sector may just reflect a Majorana
character of neutrinos and quasidegeneracy of neutrino
masses. It is well known that, for Dirac neutrinos, leptonic
mixing can be rotated away in the limit of exact neutrino
mass degeneracy. For Majorana neutrinos, it has been
pointed out that leptonic mixing and even CP violation
can occur in the limit of exact neutrino mass degeneracy,
and in this limit, leptonic mixing is characterized by two
angles and one CP violating phase [3]. In this limit, the
leptonic unitarity triangles are collapsed in a line since one
of the entries of the leptonic mixing vanishes, thus implying
no Dirac-type CP violation. However, the Majorana tri-
angles do not all collapse into the real or imaginary axis,

thus implying [4] CP violation of the Majorana type. We
identify the zero entry of the leptonic mixing matrix with
U13 and show that a small perturbation around the
degenerate limit generates the observed neutrino mass
differences, as well as leptonic mixing, in agreement with
experiment, including the recent measurements of the
smallest mixing angle, θ13, at the reactor [5] and accelerator
[6] neutrino experiments. In this framework, one also finds
a possible explanation for the smallness of jU13j, compared
to the other entries of the UPMNS. This may just reflect the
fact that, in the exact degenerate limit of Majorana
neutrinos, one of the entries ofUPMNS necessarily vanishes.
As soon as it became clear that the experimental

evidence favored a nonvanishing U13, many proposals
[7] were put forward in the literature analyzing how small
perturbations around various textures obtained from sym-
metries could accommodate a nonvanishing U13 while also
correctly reproducing the data on the solar and atmospheric
mixing angles. The distinctive feature of our proposal is the
fact that we start from the nontrivial limit of exactly
degenerate Majorana neutrinos.
This paper is organized as follows. In the next section,

we study the limit of exact degeneracy of three Majorana
neutrinos, pointing out that in this limit the Majorana mass
matrix is proportional to a unitary matrix and describing
the implications for leptonic mixing and CP violation. In
Sec. III, we study the lifting of the mass degeneracy with
the generation of neutrino mass differences and a non-
vanishing U13. We analyze in detail the case where the
unperturbed leptonic mixing is given by some of the most
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popular Ansätze, allowing for Majorana-type CP violation,
with special emphasis on the tribimaximal case [8].
We consider a scenario for the breaking of the degeneracy,
where there is only one CP violating phase which, upon
lifting of the degeneracy, generates both Majorana and
Dirac-type CP violation. Finally, in Sec. IV we present our
conclusions.

II. THE LIMIT OF EXACT DEGENERACY

A. The Majorana neutrino mass matrix

Without loss of generality, we choose to work in a weak
basis (WB) where the charged lepton mass matrix is
diagonal, real, and positive. We assume three left-handed
neutrinos and consider a Majorana mass term with the
general form

Lmass ¼ −ðνLα
ÞTC−1ðMoÞαβνLβ

þ H:c: ð1Þ

where the νLα
stand for the left-handed weak eigenstates

and Mo is a 3 × 3 symmetric complex mass matrix. Since,
in general, Mo is diagonalized by a unitary matrix Uo

through UT
o Mo Uo ¼ diag ðmν1 ; mν2 ; mν3Þ, it follows that

in the limit of exact neutrino mass degeneracy, Mo can be
written

Mo ¼ μSo ð2Þ

where μ is the common neutrino mass and So ¼ U�
oU

†
o.

In the limit of exact degeneracy, a novel feature arises;
namely,Mo is proportional to the symmetric unitary matrix
So. Under a WB transformation corresponding to a rephas-
ing of both νL and the charged lepton fields, the neutrino
mass matrix transforms as

Mo → LMoL; ð3Þ

with L≡ diagðeiφ1 ; eiφ2 ; eiφ3Þ. As a result, the individual
phases of Mo have no physical meaning, but one can
construct polynomials in ðMoÞij which are rephasing
invariant [9], such as ðM�

oÞ11ðM�
oÞ22ðM�

oÞ212 or ðMoÞ11
ðM�

oÞ33ðMoÞ213. The fact that So is symmetric and unitary
implies that, in general, So can be parametrized by two
angles and one phase. In Ref. [3], the limit of exact
degeneracy for Majorana neutrinos was analyzed in some
detail and it was shown that leptonic mixing and even CP
violation can occur in that limit. Leptonic mixing can be
rotated away if and only if there is CP invariance and all
neutrinos have the same CP parity [10,11]. Furthermore, it
was also shown in Ref. [3] that in the case of different CP
parities, the most general matrix So can be parametrized
in terms of two rotations with three-by-three orthogonal
matrices having only a two-by-two nondiagonal block
each, corresponding to a single mixing angle, together
with one diagonal matrix with one phase:

So ¼

0
B@

1 0 0

0 cϕ sϕ
0 sϕ −cϕ

1
CA ·

0
B@

cθ sθ 0

sθ −cθ 0

0 0 eiα

1
CA

·

0
B@

1 0 0

0 cϕ sϕ
0 sϕ −cϕ

1
CA: ð4Þ

This equation is of the form

So ¼ O23ðϕÞO12ðθÞ

0
B@

1 0 0

0 1 0

0 0 eiα

1
CAO23ðϕÞ; ð5Þ

with each orthogonal matrix Oij chosen to be symmetric.

Using the fact that So ¼ U�
oU

†
o, one concludes that, in this

limit, the leptonic mixing matrix is given by

Uo ¼ O23ðϕÞO12

�
θ

2

�0B@
1 0 0

0 i 0

0 0 e−i
α
2

1
CA ð6Þ

up to an orthogonal rotation of the three degenerate
neutrinos.
Given the Majorana character of neutrino masses, it is

clear that even in the limit of exact degeneracy with CP
conservation, but with different CP parities, one cannot
rotateUo away through a redefinition of the neutrino fields.
It should be emphasized that the leptonic mixing matrix is
only defined up to an orthogonal rotation of the three
degenerate neutrinos. Indeed, if Uo diagonalizes Mo, so
does UoO, as is evident from Eq. (2) and the fact that
So ¼ U�

oU
†
o. Without loss of generality, one can eliminate

the matrix O. It is important to notice that Uo always has
one zero entry which in the above parametrization appears
in the (13) position. This may be a hint that the limit of
exact degeneracy is a good starting point to perform a small
perturbation around it, leading to the lifting of the degen-
eracy and the generation of a nonzero Ue3. At this stage, it
should be noted that although the limit of exact degeneracy
necessarily implies a zero entry in Uo, the location of the
zero is not fixed. If we had interchanged the roles of O23

and O12 in Eq. (4), the zero entry would appear in the (31)
position. Our choice of Eq. (4) was dictated by the
experimental fact that the leptonic mixing matrix has a
small entry in the (13) position. It should be stressed that
the identification of UPMNS with UoO can only be done
after the lifting of the degeneracy, which will be done in the
sequel. The matrix O will be fixed by the perturbation of
Mo leading to the lifting of the degeneracy. In the exact
degenerate limit, the individual elements of the matrixUoO
have no physical meaning. But there are physical quantities
which do have physical meaning even in the exact
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degenerate limit. These quantities are independent of the
matrix O, depending only on combinations of the angles θ,
ϕ and the phase α, entering in the parametrization of Uo
given in Eq. (4). An example of such a physical quantity
will be given in the next subsection, where we evaluate in
the exact degenerate limit the strength of Majorana-type
CP violation, expressed in terms of the mixing angles θ, ϕ
and the phase α. Of course, this quantity does not depend
on the matrix O.
It is easy to understand why a symmetric unitary 3 × 3

matrix, such as So, can be parametrized by only two angles
and one phase. On one hand, there is the freedom of choice
of WB given by Eq. (3); on the other hand, for a general
3 × 3 unitary matrix U, one can define an asymmetry
parameter, given by [12]

As ≡ jU12j2 − jU21j2 ¼ jU31j2 − jU13j2 ¼ jU23j2 − jU32j2:
ð7Þ

In the case of a unitary symmetric matrix, one has As ¼ 0,
which leads to the loss of one parameter.
The parametrization of So in terms of two rotations and

one phase is the most general one [apart from the unphysical
complex phases which can be rotated away as in Eq. (3)].
This can be seen by recalling that the parametrization of a
general unitary matrix through Euler angles involves three
orthogonal rotations, usually denoted by O12, O13, O23. The
fact that So is symmetric implies the loss of one parameter
and, as a result, only two orthogonal matrices are needed.
The rotation matrix Ors that is left out dictates the entry of
Uo that is zero to be ðr; sÞ or ðs; rÞ depending on the order
chosen for the other two orthogonal matrices.

B. So unitarity triangles, leptonic mixing,
and CP violation

Since So is a unitary matrix, one can consider So unitarity
triangles, which are analogous to the ones [4] encountered
in the leptonic mixing matrix UPMNS, but with a different
physical meaning. A unitarity triangle corresponding to
orthogonality of the first two columns of So is displayed in
Fig. 1. Note that the orientation of the So unitarity triangles
rotates under the rephasing of Eq. (3), and therefore, it has
no physical meaning. However, the area of the So triangles
has physical meaning, giving a measure of the strength of

Majorana-type CP violation in leptonic mixing in the case
of exact degeneracy. All So unitarity triangles have the
same area A, which equals twice the absolute value of any
of the rephasing invariant quartets Qs of So:

A ¼ 2jImQsj ¼
1

2
j cosðθÞsin2ðθÞsin2ð2ϕÞ sinðαÞj ð8Þ

with jQsj≡ jðSoÞijðSoÞ�ikðSoÞ�ljðSoÞlkj, where i ≠ l, j ≠ k.
In the limit of exact degeneracy, we have seen that the
leptonic mixing matrix Uo has a zero entry, which implies
that there is no Dirac-type CP violation and all the Uo
unitarity triangles collapse to lines. However, there is CP
violation of the Majorana type, since the Majorana unitarity
triangles for Uo are, in general, not collapsed along the real
and imaginary axes [4]. Once the degeneracy is lifted, the
leptonic unitarity triangles open up and Dirac-type CP
violation is generated. In Ref. [13], it was shown how to
express, in this case, the full PMNS matrix, including the
strength of Dirac-type CP violation in terms of arguments
of the six independent rephasing invariant bilinears corre-
sponding to the orientation of the sides of Majorana-type
unitarity triangles, thus showing that Dirac-type CP vio-
lation in the leptonic sector with Majorana neutrinos
necessarily implies Majorana-type CP violation.

III. LIFTING THE DEGENERACY

A. Rationale and strategy

For definiteness and without loss of generality, we work
in the weak basis where the charged lepton mass matrix is
diagonal and real. As emphasized in the previous section, in
the case of exactly degenerate Majorana neutrinos, mixing
is meaningful and it can be parametrized by two angles and
one phase.
Several textures for the leptonic mixing matrix have been

studied in the literature, often in the context of family
symmetries [1]. In most of the proposed schemes, the
pattern of leptonic mixing is predicted but the spectrum of
masses is not constrained by the symmetries. It is therefore
consistent to consider these schemes, together with the
hypothesis of quasidegeneracy of Majorana neutrinos.
A different approach connecting the leptonic mixing
parameters with certain kinds of degeneracy of the neutrino
mass spectrum was followed in [14].
Until recently, one of the most favored Ansätze, from the

experimental point of view, seemed to be the tribimaximal
mixing [8] which has a zero in the (13) entry. Other
interesting textures which also have a zero entry in this
location [15] include the democratic mixing [16], bimax-
imal mixing [17], golden ratio mixings [18,19], hexagonal
mixing [20], and bidodeca mixing [21,22]. Recent mea-
surements of θ13, the smallest of the mixing angles of
UPMNS as given by the standard parametrization [23], have
established a nonzero value for this angle [24]. In the
standard parametrization, UPMNS is given by

S0 11 S0 12

S 0
21

S 0
22

S
0

31 S
0

32

FIG. 1. Unitarity triangle built from the first two columns of S0,
for a generic unitary matrix, assuming CP violation.
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UPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CA · P; ð9Þ

where cij ≡ cosðθijÞ; sij ≡ sinðθijÞ, with all θij in the first
quadrant; δ is a Dirac-type phase; and P ¼ diagð1; eiα; eiβÞ,
with α and β denoting the phases associated with the
Majorana character of neutrinos.
The clear experimental evidence for a nonzero θ13 has

motivated a series of studies on how to generate a non-
vanishing θ13 through a small perturbation of the tribimax-
imal and other schemes which predict θ13 ¼ 0 to lowest
order. The distinctive feature of our analysis is the fact that
we start from a nontrivial limit of three exactly degenerate
Majorana neutrinos. In the previous section, we presented
the most general mixing matrix Uo in this limit and
explained that it can be parametrized by two angles and
one CP violating phase:

Uo ¼ Oðθ;ϕÞ · K ð10Þ

with K a diagonal matrix such as the one written in Eq. (6).
This choice for the matrix K implies that in the CP
conserving limit corresponding to α ¼ 0 or π, one neutrino
has a CP parity different from the other two. Otherwise, in
the limit of exact degeneracy, with CP conservation and all
neutrinos having the same CP parity, the two angles ϕ and
θ could be rotated away.
Lifting the degeneracy corresponds to adding a small

perturbation to So,

M ¼ μðSo þ ε2QoÞ: ð11Þ

The matrix Qo is fixed in such a way that the correct
neutrino masses are obtained. It will be a function of the
neutrino mass differences given in terms ofΔm2

21 andΔm2
31

defined by

Δm2
21 ¼ m2

2 −m2
1

Δm2
31 ¼ jm2

3 −m2
1j ð12Þ

as well as the overall mass scale μ. The parameter ε2 is
chosen as

ε2 ≡ Δm2
31

2μ2
: ð13Þ

Quasidegeneracy forces the overall mass scale to be much
larger than the neutrino mass differences and guarantees the
smallness of the perturbation parameter ε2. See Table I and
subsequent comments.

Our strategy for confronting the data on neutrino masses
and mixing is the following:

(i) We assume that the physics responsible for the
lifting of the degeneracy does not introduce new
sources of CP violation beyond the phase α, which
is already present in the limit of exact degeneracy.
As a result, after lifting of the degeneracy, the
leptonic mixing matrix is given by

UPMNS ¼ Uo ·O; ð14Þ

where O is an orthogonal matrix, parametrized by
small angles. The fact that O is orthogonal, rather
than a general unitary matrix, implies that UPMNS
still diagonalizes So, thus establishing a strong
connection between the degenerate and quasidegen-
erate cases. This is particularly relevant since we
take as starting point for Uo some of the most
interesting examples considered in the literature
based on symmetries and with a zero in the (13)
entry of Uo.

(ii) After lifting of the degeneracy, the single phase α
will generate both Dirac and Majorana-type CP
violations. This is a distinctive feature of our
framework.

With the notation of Eq. (14), Qo introduced in Eq. (11)
is determined by

ε2Qo ¼ U�
o ·O

�
1

μ
Dν − 1

�
OT · U†

o;

Dν ¼ diagðmν1; mν2; mν3Þ: ð15Þ

TABLE I. Neutrino oscillation parameter summary. For Δm2
31,

sin2 θ23, sin2 θ13, and δ, the upper (lower) row corresponds to
normal (inverted) neutrino mass hierarchy.

Parameter Best fit 1σ range

Δm2
21 ½10−5 eV2� 7.62 7.43–7.81

Δm2
31 ½10−3 eV2� 2.55 2.46–2.61

Δm2
31 ½10−3 eV2� 2.43 2.37–2.50

sin2 θ12 0.320 0.303–0.336
sin2 θ23 0.613 (0.427) 0.400–0.461 and

0.573–0.635
sin2 θ23 0.600 0.569–0.626
sin2 θ13 0.0246 0.0218–0.0275
sin2 θ13 0.0250 0.0223–0.0276
δ 0.80 π 0–2 π
δ −0.03 π 0–2 π
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In the limit of exact degeneracy, the matrix O has no
physical meaning; it only acquires meaning with the
lifting of the degeneracy. A striking feature is the fact that
new sources of CP violation are not introduced. However,
once the matrix O is included, the CP violating phase
present in K ceases to be a factorizable phase and, in
general, gives rise to Dirac-type CP violation.
The matrix O will be parametrized by three mixing

angles which we denote by

O ¼ O12O13O23 ¼

0
B@

cϕ1
sϕ1

0

−sϕ1
cϕ1

0

0 0 1

1
CA

×

0
B@

cϕ3
0 sϕ3

0 1 0

−sϕ3
0 cϕ3

1
CA

×

0
B@

1 0 0

0 cϕ2
sϕ2

0 −sϕ2
cϕ2

1
CA: ð16Þ

Our choice of Uo’s is based on the fact that θ13 is known
to be a small angle. Furthermore, in each case, the resulting
O matrices represent small perturbations around Uo
matrices. Once the matrix O is fixed and the scale μ
of neutrino masses is specified, Qo can be computed
from Eq. (15).
In our analysis, we use data from the global fit of

neutrino oscillations provided in Ref. [24], requiring agree-
ment within the 1σ range. Table I summarizes the data
obtained from Ref. [24]. From Table I, assuming
μ ∼ 0.5 eV, we obtain ε2 of the order 5 × 10−3.
In what follows, we discuss separately several different

cases of interest.

B. Perturbing tribimaximal mixing

In this case, our starting point is Uo ¼ UTBM · K with

UTBM ¼

0
BB@

2ffiffi
6

p 1ffiffi
3

p 0

1ffiffi
6

p − 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p − 1ffiffi
3

p − 1ffiffi
2

p

1
CCA and

K ¼ diagð1; i; e−iα=2Þ: ð17Þ

In the notation of Eq. (6), this ansatz corresponds to ϕ ¼
45° and cosðθ

2
Þ ¼ 2ffiffi

6
p , i.e., θ

2
¼ 35.26°. We allow the angle α

to vary, together with the three angles of the matrix O. In
this example, agreement with the global fit for the exper-
imental values requires lowering the values for the mixing
angles θ12 and θ23 ofUo and, at the same time, generating a
θ13 different from zero.

Denoting the entries of UPMNS by Uij, we have

jU11j ¼
���� 2ffiffiffi

6
p O11 þ

iffiffiffi
3

p O21

���� ¼ c12c13

jU12j ¼
���� 2ffiffiffi

6
p O12 þ

iffiffiffi
3

p O22

���� ¼ s12c13

jU13j ¼
���� 2ffiffiffi

6
p O13 þ

iffiffiffi
3

p O23

���� ¼ s13

jU23j ¼
���� 1ffiffiffi

6
p O13 −

iffiffiffi
3

p O23 þ
1ffiffiffi
2

p e−iα=2O33

���� ¼ s23c13:

ð18Þ
The first three equations allow us to determine ϕ1, ϕ3, and
ϕ2; the fourth one puts bounds on the phase α, thus
constraining the strength of leptonic CP violation [25].
At this stage, it is worth emphasizing that there is strong
experimental evidence that, in the quark sector, the VCKM
matrix is complex even if one assumes the possible
presence of physics beyond the Standard Model [26]. As
a result, it is natural to assume that the leptonic sector also
violates CP.
This scenario allows for a particularly simple solution

since one can reach agreement with the experimental data
by choosing a matrix O with only one parameter different
from zero, namely, the angle ϕ2. In this case, the relevant
Oij simplify significantly, and one can express sin2ðθ12Þ,
sin2ðθ23Þ, and sin2ðθ13Þ simply in terms of ϕ2, and the
phase α, or equivalently, in terms of jU13j and the phase α:

sin2ðθ13Þ≡ jU13j2 ¼
sin2ðϕ2Þ

3
ð19Þ

sin2ðθ12Þ≡ sin2ðθsolarÞ ¼
1 − sin2ϕ2

3 − sin2ϕ2

¼
1
3
− jU13j2

1 − jU13j2
ð20Þ

sin2ðθ23Þ≡ sin2ðθatmÞ ¼
1

2
−

ffiffiffi
6

p
sinðα

2
Þ sinϕ2 cosϕ2

3 − sin2ϕ2

¼ 1

2
−

ffiffiffi
2

p
sinðα

2
ÞjU13j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3jU13j2

p
1 − jU13j2

: ð21Þ

Clearly, jU13j fixes the allowed range for the angle ϕ2,
and in this limit, only sin2ðθatmÞ depends on the phase α.
From Eq. (19) and taking the best-fit value from Table I,
we obtain sinðϕ2Þ ¼ 0.27. It is instructive to determine
Qo for this value of sinðϕ2Þ. Making use of Eq. (15),
keeping only the dominant terms and making the following
approximations:

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δm2

21

μ2

s
≃ μ;

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δm2

31

μ2

s
≃ μ

�
1þ Δm2

31

2μ2

�
¼ μð1þ ε2Þ; ð22Þ
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the explicit expression for Qo simplifies to

Qo ¼

0
B@

−0.0243 0.0243 − 0.1061ei
α
2 0.0243þ 0.1061ei

α
2

0.0243 − 0.1061ei
α
2 ð0.1559iþ 0.6808ei

α
2Þ2 −0.0243 − 0.4634eiα

0.0243þ 0.1061ei
α
2 −0.0243 − 0.4634eiα ð0.1559i − 0.6808ei

α
2Þ2

1
CA: ð23Þ

It should be noticed that, even after factoring out ε2, most
entries of the matrixQo have modulus much smaller than 1,
thus confirming that we are doing a very small perturbation
around the degeneracy limit.
We find that the angle ϕ2 cannot deviate significantly

from the value of the Cabibbo angle. The constraints on the
phase α obtained from Eq. (21) translate into bounds for the
Dirac CP violating phase δ. The strength of Dirac-type CP
violation is often given in terms of the modulus of the
parameter ICP defined as the imaginary part of a quartet of
the mixing matrix UPMNS, i.e., ICP ≡ ImjUijU�

ikU
�
ljUlkj

with i ≠ l, j ≠ k. Because of the unitarity of UPMNS, all
quartets have the same modulus. For the standard para-
metrization, given in Eq. (9), we have

ICP ≡ 1

8
j sinð2θ12Þ sinð2θ13Þ sinð2θ23Þ cosðθ13Þ sinðδÞj:

ð24Þ

In our framework, with only ϕ2 and α different from zero,
ICP is given by

ICP ¼
���� cosðα=2Þ sinðϕ2Þ cosðϕ2Þ

3
ffiffiffi
6

p
���� ð25Þ

and is predicted to be of order 10−2, meaning that it could
be within reach of future neutrino experiments. This is a
special prediction for this framework since, from the values
of Table I, we can conclude that the experimental bounds at
the 1σ level allow for the leptonic strength of Dirac-type
CP violation to range from 0 to about 4 × 10−2. In Fig. 2,
we present sin2ðθatmÞ versus jU13j2. The dotted vertical lines
delimit the allowed experimental values for jU13j2. The
dotted horizontal lines delimit the two allowed experimental
regions for sin2ðθatmÞ according to Table 1. The authors of
Ref. [24] consider the region of lower sin2ðθatmÞ to be
experimentally favored; therefore, in our analysis we require
that this region can be reached even though we also indicate
the above region. The different solid lines correspond to our
framework with only one parameter different from zero, the
angle ϕ2, and for different values of the phase α as indicated
in the figure. The values for this phase are chosen in such a
way as to give an indication of the intervals that are
compatible with the experimental data. Points represented
by squares and triangles were obtained with one additional
mixing angle, ϕ3, different from zero. Squares and triangles
correspond to different values of the phase α respectively, as
indicated in the figure. In Fig. 3, we plot ICP versus jU13j2.
Again, the dotted vertical lines delimit the allowed exper-
imental values for jU13j2, and the different solid lines
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FIG. 2 (color online). sin2 θ23 versus jU13j2 obtained by perturbing tribimaximal mixing with ϕ3 ¼ 0. Each curve corresponds to a
fixed α and to ϕ1 ¼ 0; therefore, ϕ2 is the only variable. The points drifting away from each curve were obtained by also varying ϕ3.
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correspond to our framework, with only one mixing angle
different from zero and for different values of the phase α
as indicated in the figure. The values chosen for this phase
are based on the information contained in Fig. 2. Points
represented by squares and triangles were obtained with one
additional mixing angle different from zero, which in this
case was chosen to be ϕ1. Squares and triangles correspond
to different values of the phase α respectively, as indicated in
the figure.
Concerning the neutrinoless double beta decay, this proc-

ess depends on the effective Majorana mass mee, defined by

mee ¼
����X3
k¼1

U2
1kmk

����: ð26Þ

In the above framework, the dominant terms, ignoring, in
particular, corrections of order Δm2

21=μ
2, are

mee ¼
μ

3

�
1 −

Δm2
31

2μ2
sin2ðϕ2Þ

�
¼ μ

3

�
1 − 3

Δm2
31

2μ2
jU13j2

�
:

ð27Þ
Agreement with the present experimental bounds [27], taking
into account nuclear physics uncertainties [28], requires jmeej
to be smaller than 0.4 eV. The Heidelberg-Moscow experi-
ment [27] claimed to have obtained a nonzero result close to
0.38 eV, which would imply that all three neutrino masses
were close to 1 eV. These masses are somewhat above the
bound favored by cosmology; however, the cosmological
bound depends onmodel assumptions and on the data set that
is taken into consideration [29].
In this framework, the angle ϕ2 cannot deviate signifi-

cantly from the value of the Cabibbo angle even when we

extend it to include other nonzero mixing angles. In fact,
the range of the allowed experimental parameters given in
Table I can accommodate nonzero values for the two other
angles in the matrix O, requiring them to be smaller than
the Cabibbo angle. In this case, the simple expressions
given above must be replaced by somewhat more cumber-
some and less transparent ones. The solar angle obtained in
the unperturbed tribimaximal mixing case is larger than the
allowed experimental values. The angle ϕ2 is the only one
in O capable of lowering its value. The effect of the other
two mixing angles is the opposite.

C. Perturbing other interesting schemes

As stated before, we analyzed perturbations around some
of the well-known mixing textures considered in the
literature with a zero in the (13) entry. Examples of such
textures include the democratic mixing UDM [16], bimax-
imal mixing UBM [17], golden ratio mixings UGRM1 [18]
and UGRM2 [19], hexagonal mixing UHM [20], and bido-
deca mixing UBDM [21,22]. The democratic mixing and the
bimaximal mixing are of the form

UDM ¼

0
BB@
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FIG. 3 (color online). ICP versus jU13j2 obtained by perturbing tribimaximal mixing with ϕ3 ¼ 0. Each curve corresponds to a fixed α
and to ϕ1 ¼ 0; therefore, ϕ2 is the only variable. The points drifting away from each curve were obtained by also varying ϕ3.
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These two cases are very constrained in our framework
since they correspond to sin2ðθsolÞ ¼ 0.5, which lies
significantly above the favored experimental range given
in Table I. Although it is still possible to bring it down to
acceptable values making use of ϕ2, agreement with the
experimental values given in Table I is hardly possible at
the 1σ level. Therefore, we do not further analyze these
two cases.
The other textures mentioned above are UGRM1, UGRM2,

and the hexagonal mixing UHM, which coincides with the
bidodeca mixing UBDM:

UGRM1 ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1þ 1ffiffi

5
p Þ
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5
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p

1ffiffiffiffiffiffiffiffiffi
5þ ffiffi

5
pp − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

5
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2

p

1
CCCCCA;

UGRM2 ¼

0
BBB@

1
4
ð1þ ffiffiffi

5
p Þ 1
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2
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UHM ¼ UBDM ¼

0
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The case of the golden ratio mixing 2 is less favorable
than the golden ratio mixing 1, due to the fact that the

corresponding solar angle is larger. We analyzed in more
detail only the cases starting with UGRM1 and UHM.
We have scanned the allowed region of parameter space
for the angles ϕ1, ϕ3, ϕ2 of our perturbation and for the
phase α. Both examples have very similar features. The
exact analytic expressions are obtained from Eqs. (14)
and (16). A novel feature of these examples is the fact
that agreement with experiment cannot be obtained with
the matrix O parametrized by one mixing angle only.
Furthermore, unlike the tribimaximal mixing case, it is ϕ1

that is required to differ from zero, and on the other hand,
either ϕ2 or ϕ3 can be zero, although not simultaneously.
These new features are related to the fact that in both cases
the corresponding solar angle lies below the experimental
range, unlike in the tribimaximal case. As pointed out, in
the tribimaximal case, the angle ϕ2 played a fundamental
role in lowering this angle. In the case of ϕ3 equal to zero,
U13 is then given by

U13 ¼ ðUoÞ11 sinðϕ1Þ sinðϕ2Þ þ ðUoÞ12 cosðϕ1Þ sinðϕ2Þ;
ð28Þ

it is the second term that gives the dominant contribution.
The fact that there are two independent parameters in the
matrix O does not allow us to express sin2ðθsolarÞ,
sin2ðθatmÞ, and ICP in terms of jU13j only. However, it is
still instructive to plot these quantities as a function of jU13j
for certain choices of the parameters of the matrix O.
For illustration, we present in Fig. 4 sin2ðθ23Þ versus jU13j2
with sinðϕ3Þ ¼ 0. This plot is done for golden ratio 1.
The hexagonal mixing case presents similar features.
Each curve in the figure corresponds to a fixed value of
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FIG. 4 (color online). sin2 θ23 versus jU13j2 obtained by perturbing golden ratio 1 with ϕ3 ¼ 0. Each curve corresponds to a fixed α
and a fixed value of ϕ1. The points drifting away from each curve were obtained by varying ϕ1.
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the parameter ϕ1 and of the phase α and is therefore
obtained by varying ϕ2. The points drifting away from each
curve were obtained by varying, in turn, ϕ1, still keeping α
fixed and ϕ3 ¼ 0. Circles, triangles, and squares are
associated with different choices of the phase α, respec-
tively, as indicated in the figure. The figure shows that it is
possible to accommodate α ¼ 0, corresponding to the CP
conserving case; however, agreement with experiment in
this case is only possible for a small range of the parameter
space. On the other hand, fixing ϕ3 ¼ 0 allows both ϕ1 and
ϕ2 to be close to the Cabibbo angle.

IV. CONCLUSIONS

In this paper, we present a novel proposal for the
understanding of the observed pattern of leptonic mixing,
which relies on the assumption that neutrinos are Majorana
particles. It is argued that the observed large leptonic
mixing may arise from a quasidegeneracy of three
Majorana neutrinos. The essential point is the fact that
the limit of exact mass degeneracy of three Majorana
neutrinos is nontrivial as lepton mixing and even CP
violation can arise. This limit is particularly interesting
since, in this case, leptonic mixing can be parametrized by
only two mixing angles and one phase, implying that,
without loss of generality, the leptonic mixing matrix can
be written with one zero entry. We then conjectured that the
smallness of jU13j when compared to the other elements of
UPMNS may result from this fact. We show that the
observed pattern of mixing and neutrino mass differences
can be generated through a small perturbation of the exact
degenerate case, without the introduction of additional
CP violating sources. A key point in our work is the

assumption that the physics responsible for the lifting of
the degeneracy does not introduce new sources of CP
violation. Our perturbation requires the multiplication on
the right by an orthogonal matrix. The resulting unitary
matrix UoO, which can be identified as the UPMNS matrix,
also diagonalizes the neutrino mass matrix in the fully
degenerate case. This allows us to establish a strong
connection between the degenerate and quasidegenerate
cases, at the same time reducing the number of free
parameters. Upon the lifting of degeneracy, this single
phase generates both Majorana and Dirac-type CP viola-
tion in the leptonic sector. For definiteness, we used, as the
starting point for the perturbation around the limit of exact
degeneracy, some of the most interesting Ansätze consid-
ered in the literature, which were proposed in the past
assuming θ13 ¼ 0. We analyze correlations among physical
observables and point out that, in most of the cases
considered, the implied strength of leptonic Dirac-type
CP violation is large enough to be detectable in the next
round of experiments.
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