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Accurate fits to pp and p̄p cross section, data up to Tevatron energies, incorporating the constraints
imposed by analyticity and unitarity, successfully predict the results of recent LHC and cosmic ray
measurements and suggest that the cross sections approach a black disc limit asymptotically. The approach
to the limit is, however, very slow. We present a simple geometric picture which explains these features in a
natural way. A “black disc” of logarithmically growing radius is supplemented by a soft “edge” whose
properties are invariant with energy. The constancy of the edge results in the prediction that the quantity
ðσTOT − 2σElÞ=pσTOT approaches a constant at high energy. Using the existing fits, this prediction appears
to be verified. The value of the limiting constant allows an estimate of the thickness of the edge, which turns
out to be on the order of 1 fm. One thus arrives at a picture where the proton-proton scattering at lower
energies is dominated by what becomes the edge, while at higher energies it is dominated by the disc.
The crossover between the two regimes is only at

p
s ≥ 10 TeV, accounting for the slow approach to

asymptotic behavior. Some questions as to the nature of the edge are discussed.
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I. INTRODUCTION

Since the earliest days of high energy physics, questions
and speculations have been raised about the ultimate nature
and geometric form of very high energy elementary particle
interactions. A Yukawa-like mass-energy density around
the proton plus the assumption of a strongly energy-
dependent interaction strength leads to an effective radius
of interaction R ∼ ln s and thus a cross section, ∼R2 ∼ ln2s
[1]. A model with diffusion in the transverse dimensions
leads to a similar conclusion, with additionally a relation
between the cross section, and the multiplicity which
appears to be satisfied [2]. Analyticity arguments lead to
the conclusion that a ln2 s growth of the cross section is in
fact the most rapid allowable behavior [3,4].
Indeed, the very high energy pp and p̄p cross sections

approach a σ ∼ ln2 s form at the highest energies as shown

by the fits in [5]. These included data up to Tevatron
energies of ∼1.8 TeV, and accurately predicted both the
LHC and cosmic ray experimental results [6,7]. It is found
that both the total cross section, and the elastic cross
section, have a leading ln2 s behavior. Furthermore the ratio
of the coefficients of these terms are closely 2∶1, as would
be expected in a black-disc picture. However, in these fits
the ln2 s terms are not totally dominant, even at LHC
energies, indicating a very slow approach to “asymptopia.”
Here we present a picture of the scattering in which these

features arise in a natural way, and a test which seems to
confirm the model and to determine some of its parameters.

II. DISC PLUS EDGE MODEL

A simple “black disc” scattering amplitude with a sharp,
step-function edge is physically implausible, even if the
black disc picture is basically correct. It seems more
plausible to us to assume a fixed, soft edge on the disc,
where the edge has fixed, energy -independent properties.

*Corresponding author.
les@mpp.mpg.de

†Present address: 415 Pearl Court, Aspen, CO 81611, USA.

PHYSICAL REVIEW D 91, 011501(R) (2015)

1550-7998=2015=91(1)=011501(4) 011501-1 © 2015 American Physical Society

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.91.011501
http://dx.doi.org/10.1103/PhysRevD.91.011501
http://dx.doi.org/10.1103/PhysRevD.91.011501
http://dx.doi.org/10.1103/PhysRevD.91.011501


This edge will then gradually become relatively less
important as the disc grows in size.

A. Test for an energy-independent edge

We test the picture of a finite, energy-independent edge
in the pp scattering amplitude as follows.
We assume initially that at high energies, the elastic

scattering amplitude is purely imaginary. We can then write
the total and elastic cross sections in two-dimensional
impact parameter space b [8] as

σTOT ¼ 8π

Z
∞

0

1

2
ð1 − ηÞbdb;

σEL ¼ 8π

Z
∞

0

�
1

2
ð1 − ηÞ

�
2

bdb: ð1Þ

The quantity ηðb; sÞ is the “transparency” at impact
parameter b. In an eikonal picture, it is given by the
eikonal function χðb; sÞ as ηðbÞ ¼ expð−χÞ [8]. It has the
general form indicated in Fig. 1, starting from approx-
imately zero at b ¼ 0 and rising rapidly to 1 in the vicinity
of the black disc radius b ¼ R. If the jump to 1 at b ¼ R
were simply a step function, one would have the ideal black
disc with radius R and a sharp edge. However with a
smooth rise as we have indicated in the figure, there is an
edge, whose properties we wish to study.
A quantity which exhibits the nature of the edge is the

following:

σTOT − 2σEL ¼ 4π

Z
∞

0

ηð1 − ηÞbdb: ð2Þ

We note that ηð1 − ηÞ vanishes both at b ¼ 0 and b ¼ ∞
while peaking near b ¼ R and, therefore, seems to be a
suitable quantity for isolating the edge.
If we now assume that the important contribution to the

integral in Eq. (2) occurs over a relatively narrow range
of b around R, we can set the factor b in the integrand to R
and write

σTOT − 2σEL ≈ 4πRI ; ð3Þ

where I is the integral
R∞
0 ηð1 − ηÞdb. If the edge has

energy-independent properties, we expect I to be constant.
Since the disc scattering dominates the cross section

at high energies, we approximate R as R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σTOT=2π

p
.

Thus, we expect for a constant edge that

ðσTOT − 2σELÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=2ÞσTOT

p ≈ 4I → constant ð4Þ

at high energies. Since the maximum value of ηð1 − ηÞ is
1=4, one may think of I as I ¼ 1

4
t, where t is an effective

“thickness” of the edge. With this definition, the ratio in
Eq. (4) is simply t.
Figure 2 shows an evaluation of the left-hand side of

Eq. (4) using the even combination of cross sections
1
2
ðppþ p̄pÞ from the preexisting fit from Ref. [5]. This

fit did not include data above ∼1.8 TeV, but successfully
and accurately predicted the cross sections measured at
LHC and cosmic ray energies. The dashed (blue) line
represents t. For comparison the dashed-dotted line (red)
represents the radius inferred from the total cross section,
namely R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σTOT=2π

p
.

The thickness t is approximately 1 fermi and is quite
constant over an enormous energy region.
In defining R, one could also try using R ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
σEL=π

p
.

This does not make a large quantitative difference and leads
to the same asymptotic value for t. However, due to the
slow logarithmic behavior of the quantities, the crossover is
moved to higher energy, over 100 TeV.

B. Real part of the amplitude

In writing the expressions in Eq. (1), we have taken the
elastic scattering amplitude to be purely imaginary and
neglected its real part. A small real part is known to be
present in the forward scattering amplitude fðs; 0Þ at high
energy, both from direct measurements and from dispersion
relations [6]. It reaches a peak of about 10% of the imaginary
part for energies

ffiffiffi
s

p
in the range 100–1000 GeV and is

smaller at lower and higher energies. Since our relation
Eq. (4) deals with cross sections, where the real part enters
squared, we may expect a real part correction to be small.
For example, in the eikonal representation of the

scattering amplitude [8], where one introduces an imagi-
nary as well as real part to the eikonal function,
χ ¼ χR þ iχI , one finds that

FIG. 1 (color online). Schematic shape of the transparency η as
a function of impact parameter b (upper curve, red). With a sharp
edge, η would simply jump to 1 at b=R ¼ 1. Also shown is the
corresponding ηð1 − ηÞ (lower curve, green).
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Refðs; 0Þ ¼ −
Z

∞

0

η sin χIbdb;

Imfðs; 0Þ ¼
Z

∞

0

ð1 − η cos χIÞbdb; ð5Þ

where η ¼ exp ð−χRÞ is the transparency. The correspond-
ing edge integral is

σTOT − 2σEL ¼ 4π

Z
∞

0

ηðcos χI − ηÞbdb: ð6Þ

Since η ≈ 0 in the black disc region, and χ is expected to
vanish rapidly at large b, we conclude from the observed
smallness of the forward real-to-imaginary ratio that χI is
itself small in the edge region. The factor ðcos χI − ηÞ ¼
ð1 − ηÞ − 1

2
ηχ2I þ � � � in Eq. (6) therefore, differs from the

factor ð1 − ηÞ in Eq. (2) only in second order in χI .
We, therefore, expect corrections of, at most, a few percent
to the results discussed in the preceding section. These
expectations are confirmed by a numerical calculation in
this eikonal model [8], where the change in the integrand
of the edge integral Eq. (4) with and without χI , is barely
perceptible.

III. INTERPRETATION

The flatness of the curve for t in Fig. 2 is impressive.
It strongly supports the picture of a proton-proton scattering
amplitude consisting of a growing black disc with a
constant smooth edge with an energy-independent shape.
It should be kept in mind that the data used for the fit of

the pp and p̄p cross sections in Ref. [5] extended only up

to
p
s ∼ 1.8 TeV. This fit was used unchanged in making

the curves in Ref. [7]; these include the new LHC and
cosmic ray data and show the accuracy of the predictions.
Since the fit gives a very good representation of the new
experimental data up to ∼80 TeV, our curves up to this
energy could just as well have been made directly from the
experimental data. However, for energies above 80 TeV,
the extrapolation could depend possibly on the functional
forms used in making the fit.
The essential feature of the fit which leads to the

constancy of the ratio in Eq. (4) is that the leading ln2 s
terms in σTOT and σEL appear with coefficients in the ratio
2∶1 as noted in [6] and so cancel in the cross sections. The
next-to-leading terms are proportional to ∼ ln s, but with
different coefficients, so that the difference ðσTOT − 2σELÞ
is proportional to ln s. This logarithm is effectively can-
celed by the leading ln s from the square root of σTOT in the
denominator, leaving a constant difference up to terms of
order 1= ln s.
It is conceivable that some other next-to-leading para-

metrization—provided it gives a good lower energy fit
and is consistent with the Froissart bound—could give a
different asymptotic behavior for Eq. (4). However, it
should be noted both that ln s terms are naturally the
leading subdominant terms generated in eikonal models in
which χ decreases exponentially at large b and that such
terms are also implicit when the leading term is ∼ ln2 s
since s must appear with a scale factor s0, and this is
interchangeable with a ln s term.
Thus, in the simplest picture where all cross sections

have the same leading black disc behavior, one expects
asymptotically

FIG. 2 (color online). Plot of the ratio Eq. (4). The dashed (blue) line represents t, the effective thickness of the edge in fermis, as
explained in the text. For comparison the dashed-dotted line (red) represents the black-disc radius R inferred from the total cross section,
namely R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σTOT=2π

p
, in Fermis.
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σTOTj ¼ βln2
ffiffiffiffiffiffiffiffiffi
s=sj0

q
þ � � �

σELj ¼ 1

2
βln2

ffiffiffiffiffiffiffiffiffiffi
s=sj

0
0

q
þ � � � ; ð7Þ

where β is universal, according to [7] β ¼ 1.1 mb, but the
s0 depend on the particular reaction, reflecting differences
in the scale where universal behavior sets in.
When subtracting two cross sections as in Eq. (4),
this necessarily leads to a ln s term: σTOT − 2σEL ¼
2β ln

ffiffiffiffiffiffiffiffiffi
s=sj0

q
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
sj

0
0 =s

j
0

q
þ � � �. This said, it would of course

be helpful if even higher energy data were somehow to
become available in order to extend and confirm the fits [6].
The estimate of the thickness of the edge, about 1 fm,

arrived at from the constant on the right-hand side of
Eq. (4), is quite reasonable. Since πð1 fmÞ2 ≈ 30 mb is on
the order of the low energy pp cross section, ∼40 mb atp
s ¼ 30 GeV, one might say that at low energy the pp

scattering amplitude is “all edge,” that is, dominated by pp
interactions at impact parameters b ≈ 1 fm. Since the disc-
type behavior only sets in around 1 TeV and grows slowly,
the relatively large thickness of the “edge” means that the
transition to disc domination occurs at high energy, at least
around

p
s ∼ 10 TeV. This gives a natural explanation of

the slow approach to “asymptopia.”
The question of the nature or physical constitution of

the edge raises some interesting points. Is it the same
for reactions with different particles? If the apparently

universal behavior of cross sections at high energy orig-
inates in the gluon field, one would suppose that the disc
and its edge are asymptotically the same for all particle
species. On the other hand, our observation that at low
energy the scattering amplitudes appear to be all edge
might suggest that the differences in cross sections at low
energy are preserved to high energy through differences in
the edge. Since, as we have explained, the edge gives a
subdominant contribution to the total cross sections, this
would not affect the universality of the cross sections
themselves. Unfortunately, data for other particle species
are not obtainable as directly as for protons, where one has
the LHC and cosmic rays, but it would be of great interest if
such information became available.
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