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The Lorentz-violating model proposed by Myers and Pospelov suffers from a higher-derivative
pathology due to a dimension-five operator. In particular, its electromagnetic sector exhibits a spectrum
which contains, in addition to an expected massless photon, ghost contributions that could (in principle)
spoil the unitarity of the model. We find that unitarity at tree level can be assured for pure spacelike,
timelike, and lightlike background four-vectors (the last two under restrictions upon the allowed momenta).
We then analyze the nonrelativistic interparticle potential energy behavior for different background four-
vectors and compare to the usual Coulomb potential.
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I. INTRODUCTION

The search for new physical effects that may emerge at
high-energy processes or could arise at a quantum gravity
level has lead some physicists to propose modifications to
the Standard Model of particles and General Relativity. The
current view is that our perturbative approach that works so
well in explaining the accessible energy scale nowadays is
just an effective theory, meaning that it is the lower limit of
an underlying unified theory. However, since we are still
not able (and will not be in a foreseeable future) to
experimentally probe this Planck scale (≈1019 GeV), we
are actually searching for small deviations from the
standard theories as such those suppressed by the Planck
mass, for instance [1,2].
If we expect to find this type of deviation that comes

from a unified theory (e.g., string theory, loop quantum
gravity, noncommutative field theory [3,4]), one should ask
“which is the most fundamental aspect of our actual
theories that may not hold in an unified scheme and
how it would manifest itself as we get closer to the limit
of validity of our effective theory?” In the context of
quantum field theories, the Lorentz invariance is one of the
greatest foundations that has been put into scrutiny recently
(ironically, the same invariance that took us from classical
to relativistic physics in the past century) [5].
In this vein, Kostelecký and collaborators has carried out

an systematic program in order to classify and quantita-
tively describe Lorentz and CPT symmetry violations,
parametrized by a set of coefficients determined by experi-
ments, namely, the Standard Model Extension [6].

However, since the various sectors of the usual Standard
Model [SUð3Þ × SUð2Þ × Uð1Þ] exhibit a plethora of those
coefficients, it would be wise to have a guide principle to
carefully study those violations. An interesting proposal
made by Myers and Pospelov (based in six consistent
criteria) considers ultraviolet modifications in the photon’s
dispersion relation induced by a dimension-five operator
that, besides an external background field that violates
Lorentz invariance, also presents higher derivatives [7].
As it is expected, the presence of this higher-derivative

operator introduces ghost states that, in principle, could
jeopardize the unitarity of the model (since the energy
would not be bounded from below). The problems of
nonunitarity concerning higher-derivative theories have
been extensively studied in the context of Lee and Wick
theories, and many solutions for this issue have been
proposed along the last decades [8–12]. Although it was
recently shown, for the Myers-Pospelov model, that in
electron-positron and Compton scattering there is no
contribution of the ghost states [13,14], we present here
an alternative approach to the subject of tree-level unitarity.
Based on a method pioneered by Veltman that has been

extensively used even in theories violating Lorentz
symmetry (e.g., Maxwell-Proca-Chern-Simons or Carroll-
Field-Jackiw theories), we analyze the poles of the satu-
rated propagator of the model in order to check the unitarity
at tree level [15,16]. We also take advantage of the previous
calculated saturated propagator to find deviations from
the usual potential energy between two charges, since
a modified dispersion relation can be translated into
modifications to the Coulomb’s law [17,18].
In order to achieve those results, in Sec. II we show how

we obtain the Feynman propagator for the electromagnetic
sector of the Myers-Pospelov model and find the conditions
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for the model to be unitary. In Sec. III we proceed to extract
the nonrelativistic limit of the potential energy between two
static point charges, and calculate this potential for different
background vectors. We conclude in Sec. IV with some
considerations about the implications of our results and
further analysis.
In our conventions ℏ ¼ c ¼ 1, and the metric signature

is (þ − −−).

II. THE FEYNMAN PROPAGATOR OF THE
MODEL AND UNITARITY

The free electromagnetic sector of the Myers-Pospelov
model is defined by the following Lagrangian:

L¼−
1

4
FμνFμνþ

g
2
nμFμνðn ·∂Þnα ~Fαν−

1

2λ
ð∂μAμÞ2; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the usual field strength of the
electromagnetic field and nα is the Lorentz violating four-
vector defining a preferred reference frame. Moreover,
g ¼ ξ

Mp
, with ξ being a dimensionless parameter suppressed

by the Planck mass Mp, and λ is a gauge parameter.
Notwithstanding, to analyze the unitarity of the model

and find the nonrelativistic interparticle potential energy,
we need to find the Feynman propagator that intermediates
this interaction. The above Lagrangian can be rewritten as

L ¼ 1

2
AνΔνσAσ;

with

Δνσ ¼
�
□ηνσ − ∂ν∂σ

�
1 −

1

λ

�
− 2gnαϵανρσðn · ∂Þ2∂ρ

�
;

where Δνσ is the wave operator associated with the
Lagrangian. A formal inversion of the operator Δ in
the momentum space will give us the correct form of
the propagator

ðΔ−1Þμν ¼ 1

DðkÞ
�
−k2ημν − 4g2ðn · kÞ4n2ωμνþ

− 4g2ðn · kÞ4
�
nμnν −

ðn · kÞ
k2

ðkμnν þ nμkνÞ
�

þ 2giðn · kÞ2εμναβnαkβ
�
; ð2Þ

with DðkÞ ¼ k4 − 4g2ðn · kÞ4½ðn · kÞ2 − n2k2�. If we satu-
rate the propagator in (2) with conserved currents, i.e.,
SP≡ JμðkÞΔ−1

μν JνðkÞ, we are left with

JμΔ−1
μν Jν ¼

−k2J2 − 4g2ðn · kÞ4ðn · JÞ2
k4 − 4g2ðn · kÞ4½ðn · kÞ2 − n2k2� : ð3Þ

In the above expression, JμðkÞ≡ R
d4xe−ikxJμðxÞ is the

conserved four-current such that kμJμðkÞ ¼ 0. We can
assure the tree-level unitarity of our model if the residues

of the saturated propagator (SP) calculated in its simple
poles are greater than zero for propagating modes [15].
Since we can have three distinct situations for the Lorentz-
violating background four-vector, we proceed in our
analysis with each one of those possibilities separately.

A. Spacelike Lorentz-violating background four-vector

If we choose a representation such that kμ ¼
ðk0; 0; 0; k3Þ, thus the current conservation implies
Jμ ¼ ðJ0; J1; J2; J0k0k3

Þ. Taking these results into account
and choosing a pure spacelike background four-vector
such as nμ ¼ ð0; 0; 0; 1Þ, the saturated propagator (3)
assumes, with no loss of generality, the following form:

SP ¼ −k2J2 − 4g2k43J
2
3

ðk2 −m2þÞðk2 −m2
−Þ

;

with the poles m2
� ¼ k20 − k23 ¼ 2g2k43 � 2gk33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2k23

p
.

Therefore, the residue of the saturated propagator in each
pole is

Res½SP�jk2¼m2
�
¼

"
�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

g2k2
3

q þ 1

2

#
ðJ21 þ J22Þ > 0:

As can be seem from the previous result, the residue is
always positive for any real value of k3, thus ensuring the
tree-level unitarity of the model in the spacelike case.

B. Timelike Lorentz-violating background four-vector

The timelike situation is, mutatis mutandis, similar to the
previous case. We use a pure timelike background four-
vector nμ ¼ ð1; 0; 0; 0Þ and the saturated propagator (3)
assumes the form

SP ¼ −k2J2 − 4g2k40J
2
0

ðk2 −m2þÞðk2 −m2
−Þ

:

Here, the poles m2
� are solutions of DðkÞ for the timelike

nμ, and can be written as

m2
� ¼ k23

1� 2gk3
− k23:

The residue of the saturated propagator in those poles
yields

Res½SP�jk2¼m2
�
¼ J21 þ J22

2ð1� 2gk3Þð1 − 4g2k23Þ
:

Contrary to the spacelike case, we have found that the
sign of Res½SP�jk2¼m2

�
depends upon the sign of (1� 2gk3),

which could introduce a ghost in our spectrum and spoil the
unitarity of the model in this particular case. However, this
contribution can be discarded since its energy (∼1=2g) lies
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beyond the region of the validity of the effective theory (we
expect 1=2g to be comparable to the Planck scale), and we
can restore Res½SP�jk2¼m2

�
> 0 for jk3j < 1

2g. Therefore one
must not be afraid, for this region is not haunted by ghosts.

C. Lightlike Lorentz-violating background four-vector

From the previous analysis of different types of back-
grounds, we can see that the general form of the residues of
the saturated propagator in each pole m2

i cancels out the J0
and J3 contributions (due to current conservation), giving

Res½SP�jk2¼m2
i
¼ m2

i ðJ21 þ J22ÞQ
n
j¼1 ðm2

i −m2
jÞ
; j ≠ i;

where the m2
j ’s are the other n roots of DðkÞ.

For the lightlike case, with nμ ¼ ð1; 0; 0; 1Þ as a pre-
ferred background, the poles in which we are interested in
are the solutions of DðkÞ ¼ k4 − 4g2ðk0 − k3Þ6 ¼ 0,

m2
ð1Þ ¼ 0;

m2
ð2Þ� ¼

�
−1þ 4gk3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16gk3

p
4g

�
2

− k23;

m2
ð3Þ� ¼

�
1þ 4gk3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16gk3

p
4g

�
2

− k23:

Just like in the timelike situation, there are some
troublesome poles that could entail negative norm states
in the model, as can be directly seen in Table I. Therefore,
for jk3j < 1

16g, there are attainable real mi excitations such
that Res½SP�jm2

ðiÞ
> 0, preserving the unitarity as well.

III. NONRELATIVISTIC POTENTIAL ENERGY

One important question to pose, since we are searching
for ways to probe the effects of a Lorentz symmetry
violation, is whether classical effects can be sensible to
this violation or not. Although those effects are suppressed
by the Planck scale, it is worth to see what kind of deviation
from the Coulomb potential this violation would introduce,
how sensitive this correction is and if any other effect may
emerge at this nonrelativistic level.
With the explicit form of the propagator given in (2), we

are able to compute the nonrelativistic potential energy
between two static point charges separated by a distance
r ¼ x1 − x2.
The Yukawa-like potential in which we are interested can

be found using the method based on the path integral
formalism. Since the generating functional related to the
connected Feynman diagrams, WðJÞ, is related to the
generating functional for the free theory, ZðJÞ, by
ZðJÞ ¼ eiWðJÞ, we find [19]

WðJÞ ¼ −
1

2

Z
d4k
ð2πÞ4 J

μðkÞ�Δ−1
μν ðkÞJνðkÞ: ð4Þ

For a charge distribution JμðxÞ ¼ η0μ½q1δ3ðx − x1Þþ
q2δ3ðx − x2Þ�, we have two static qi (q ¼ 1; 2) point
charges separated by r.
Substituting the charge distribution into (5) and bearing

in mind that in the path integral formalism we have Z ¼
eiWðJÞ ¼ h0je−iHtj0i ¼ e−iEt (where E is the interparticle
energy that we want to find), we have iW ¼ iEt. After
integrate the zeroth components, we obtain

E ¼
Z

d3k
ð2πÞ3

q1q2½jkj2 þ 4g2ðn · kÞ4n20�eik·r
jkj4 − 4g2ðn · kÞ4½ðn · kÞ2 þ n2jkj2� : ð5Þ

A. Timelike potential energy

If we proceed with our analysis for the timelike case
(with n0 ¼ 1, n ¼ 0), we find that it gives us no additional
information, since the potential energy in (5) reduces to the
Coulomb one, i.e.,

Etl ¼ q1q2

Z
d3k
ð2πÞ3

eik·r

jkj2 ¼ q1q2
4π

1

r
:

This result is somewhat expected, taking into account that
the pure timelike case does not introduce any anisotropies

TABLE I. Residues for different poles of the saturated propa-
gator in the lightlike case, and conditions for Res½SP�jm2

ðiÞ
> 0.

Pole Res½SP�jm2
ðiÞ
=ðJ21 þ J22Þ Conditions for Res½SP�jm2

ðiÞ
> 0

m2
ð1Þ

1
k3

k3 > 0

m2
ð2Þþ

2g

1−16gk3−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−16gk3

p k3 < 0

m2
ð2Þ− − 1

8k3
þ 1

8k3
ffiffiffiffiffiffiffiffiffiffiffiffi
1−16gk3

p k3 < 0, or 0 < k3 <
1
16g

m2
ð3Þþ − 1

8k3
− 1

8k3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16gk3

p k3 > 0 or − 1
16g < k3 < 0

m2
ð3Þ− − 1

8k3
þ 1

8k3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16gk3

p − 1
16g < k3 < 0

FIG. 1 (color online). Plot of the potential energy between two
unitary charges q1 ¼ 1 ¼ −q2 for the Coulomb case EC (solid
line), for the spacelike case Esl (dashed line), and for the lightlike
case Ell (dotted line), with g ¼ 1 × 10−26m.
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in space. Therefore, we cannot observe any modifications
introduced by the Lorentz-violating background vector for
this nonrelativistic approximation.

B. Spacelike potential energy

Using a similar procedure as before, we define a pure
spacelike four-vector nμ ¼ ð0;nÞ and consider the follow-
ing relations (for n∥r):

n · k ¼ nk cos θ; k · r ¼ kr cos θ; and n · r ¼ nr:

ð6Þ
With those assumptions we are left only with the first term
of (5) (since n0 ¼ 0), which can be expressed in spherical
coordinates as

Esl ¼
q1q2
ð2πÞ2

Z
∞

0

Z
π

0

eikr cos θ sin θ
1þ 4g2k2n6cos4θsin2θ

dθdk: ð7Þ

Performing an expansion in k2g2ð≪ 1Þ and taking
jnj ¼ n ¼ 1, we have, at second order in g

1

1þ 4g2k2cos4θsin2θ
≈ ð1 − 4g2k2cos4θsin2θÞ;

and we are left with

Esl ¼
q1q2
ð2πÞ2

Z
∞

0

×
Z

π

0

eikr cos θ sin θ½1þ −4g2k2cos4θsin2θ�dθdk:

ð8Þ
In this way, the correction to the ordinary Coulomb
potential energy ECð¼ q1q2

4πr Þ will be
Esl ¼ EC − Eg

sl; where

Eg
sl ¼

4g2q1q2
ð2πÞ2

Z
∞

0

Z
π

0

eikr cos θk2cos4θsin3θdθdk: ð9Þ

As one can see, this last term is highly divergent, so we
have to introduce a cutoff in order to obtain a meaningful
result to analyze. In this approximation an appropriate
choice would be Λ ¼ 1=16g, since, as it was shown in
Sec. II C, we can preserve the unitarity of the model in the
timelike and lightlike situations provided jkj < 1=ð16gÞ
(a discussion about the effectiveness of the quantum model
at this scale can be found in [20]). With this cutoff, keeping
only terms up to g2, the equation (9) reduces to

Eg
sl ¼ −

16g2q1q2
ð2πÞ2r3 sin

�
r

16g

�
ð10Þ

and the potential energy takes the form

Esl ¼
q1q2
4πr

�
1þ 16g2

πr2
sin

�
r

16g

��
:

We can see that deviations from Coulomb’s law are
suppressed by a factor of g2 and smoothly reduces to it
for limg→0E

g
sl ¼ 0. Using the existent bounds on ξ

(< 10−15) and remembering that g ¼ ξ=MP, it can be
found g ∼ 10−41m. Even less stringent limits (≈1) set g
to ∼10−26m [21–23]. Therefore, as expected, we should not
observe any departure from the Maxwellian potential in the
range of validity of this semiclassical approximation, since
deviations of the ordinary potential 1=r only take place for
distances comparable to the Planck length (lP ∼ 10−35m).

C. Lightlike potential energy

In the case for a lightlike background four-vector we
have the additional contribution of the second term in (5),
since now jn0j2 ¼ jnj2 ¼ 1, and the potential energy takes
the form

Ell ¼
q1q2
ð2πÞ2

Z
∞

0

Z
π

0

1þ 4g2k2cos4θ
1 − 4g2k2cos6θ

eikr cos θ sin θdθdk:

Carrying a similar expansion and keeping terms of order g2,
we can write

Ell ¼ EC þ Ell; where

Eg
ll ¼

4g2q1q2
ð2πÞ2

Z
Λ

0

×
Z

π

0

eikr cos θk2ð1þ cos2θÞcos4θ sin θdθdk: ð11Þ

Integrating Eg
ll enables us to write

Ell ¼
q1q2
4πr

�
1 −

g
πr

�
cos

�
r

16g

�
−
96g
r

sin

�
r

16g

���
:

For values of r comparable to g we approximate the cutoff
and the solution above is no longer valid. As we can see, it
oscillates since now we have significant contributions that
arise from cos ðr=2gÞ and sin ðr=2gÞ. However, in its region
of validity (i.e., the Compton wavelength of the electron,
∼10−12m, although the Coulomb’s law is verified up to
∼10−17m [17]), the potential is essentially Coulombian (as
it should for g → 0 as well). It is also important to stress
here that the values adopted for g (or ξ) do not necessarily
have to be the same for the different backgrounds, as
observed in [23], but even for the less stringent limits we
found no deviations. A comparative plot of the previous
situations is exhibited on Fig. 1.

IV. DISCUSSION

In this paper we have studied the unitarity of the
electromagnetic sector of a Lorentz-violating model with
a dimension-five operator proposed by Myers and
Pospelov. Since this operator introduces higher-derivative
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terms, it is possible that negative norm states emerge upon
the choice of the background four-vector nμ. Analyzing
under which conditions the residue of the saturated
propagator is positive, we found a class of possible results
that are unitary at tree level. For the spacelike case the
conditions for unitarity are completely fulfilled. Moreover,
we found that for the lightlike and timelike situations, a
cutoff can be implemented and the unitarity can be assured,
confirming the results obtained by Reyes for the electron-
positron scattering [13]. Taking advantage of the saturated
propagator obtained before, we also found the nonrelativ-
istic potential energy from the interaction between two
charges.
In the process for obtaining those results we have

introduced a cutoff Λ ¼ 1=16g, based on the constraint
that guarantees the unitarity in both timelike and lightlike
situations. Since we can always perform a boost such that
nμ ¼ ðn0; 0; 0; 0Þ acquires a spacial component, we must
restrict the possible concordant frames as well [24], which
implies a cutoff for other anisotropic cases. It is also
important to notice that those results, even though obtained
for particular nμ, signals that we should not expect any
modifications in the general potential energy given by (5).
Furthermore, in its complete form we should expect a
dependence upon the constant angle α between n and r

(n · r ¼ nr cos α), making explicit the induced space
anisotropy.
It is clear that significant contributions will only manifest

themselves in higher energy processes or some quantum
effect, so that we can really grasp the modifications
introduced by this Lorentz symmetry violation. From a
theoretical point of view, we should be able to understand
what the mechanisms are that induce such a violation and
what is the best framework to study them. In this vein, the
emerging scenario of very special relativity seems to
accommodate very well those kinds of symmetry breaking
[25,26]. Recently it was also shown that one can obtain the
Myers-Pospelov model by introducing the fermion sector
of a Lorentz symmetry violating master QED and radia-
tively inducing a master effective action [27,28].
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