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By using a simple thermodynamical method, we confirm the finding of Chavanis and Harko that stable
Bose-Einstein condensate stars can form. However, by using a thermodynamically consistent boson
equation of state, we obtain a less massive Bose-Einstein condensate star compared to the one predicted by
Chavanis and Harko. We also obtain that the maximum mass of a boson star is insensitive to the change of
matter temperature. However, the mass of a boson star with relatively large radius depends significantly on
the temperature of the boson matter.
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Since the Bose-Einstein condensation has been observed
and well studied in the laboratory, the possible existence of
this object and its implications on astrophysical or cosmic
scales have recently attracted much attention. The conse-
quences if dark matter were in the form of Bose-Einstein
condensation and finite temperature boson matter have
been extensively studied (see, e.g., Ref. [1] and the
references therein). It was shown in Ref. [2] that self-
gravitating Bose-Einstein condensates may form a gravi-
tationally stable structure. This is the basis of the boson star
formation. The degenerate or nondegenerate boson stars
have been also investigated by many authors, not only by
using relativistic but also nonrelativistic approaches, as
well as by employing different techniques [3–5]. For the
latest review on boson stars, we refer the reader to
Refs. [6,7].
Recently, Chavanis and Harko [3] studied the Bose-

Einstein condensate by using the Gross-Pitaevskii equation
with an arbitrary nonlinearity. To formulate the dynamics of
the system, they used the continuity and hydrodynamics
Euler equations. In the case of a condensate with quartic
nonlinearity, they found a polytropic equation of state
(EOS) with index 1. They also found that the condensates
with particle masses of the order of 2 neutrons’ mass and
scattering length of the order of 10–20 fm produce a
maximum mass of a nonrotating starlike object of the order
of 2M⊙, whereas the corresponding radius is in the range of
10–20 km. Based on this result they considered that the
recently observed pulsar [8] with the mass of around 2M⊙
might be connected to the Bose-Einstein condensate star
[3]. However, it should be noted that in Ref. [3] and in this
paper only the nonrotating solutions are investigated.
Furthermore, there exist enough successful models for
explaining massive pulsars in the literature (see, for
example, Refs. [9–11]).
In this brief paper we confirm the finding of Ref. [3]

by using a different method to calculate the EOS and
extend the calculation to the case of a boson star at finite
temperature. We use the thermodynamical method with a
simple mean-field approximation in Hamiltonian density.

The Hamiltonian operator of a nonrelativistic interacting
identical bosons system [3,12] with free boson mass m as
the zero energy reference can be written as

Ĥ ¼
Z

drΨ̂†ðrÞ
�
−

1

2m
∇2 þm

�
Ψ̂ðrÞ

þ 1

2

Z
drdr0Ψ̂†ðrÞΨ̂†ðr0ÞVðr − r0ÞΨ̂ðrÞΨ̂ðr0Þ; ð1Þ

where Ψ̂ðrÞ and Ψ̂†ðrÞ are the boson field annihilation and
creation operators at the position r, while Vðr − r0Þ is the
general two-body potential. The additional free boson mass
term in Eq. (1) is important to obtain a correct energy
density (ε) of the bosons system. Note that we use
ℏ ¼ c ¼ kB ¼ 1 as a convention.
In the case that the interaction between two bosons is

short range, the two-body potential may be approximated
as a contact interaction [3], i.e., Vðr − r0Þ → u0δðr − r0Þ,
where the coupling parameter u0 indicates the strength of
the two-body interaction. The physical motivation of this
approximation is that in dilute and cold boson gas only
binary collisions at low energies are relevant, whereas these
collisions are characterized by a single parameter, i.e., the
s-wave scattering length a, independent of the details of
the two-body potential. Therefore, it can be shown that
u0 ¼ 4πa=m (see, e.g., Refs. [3,12] for further explana-
tion). If we substitute the boson field in Eq. (1) with its
explicit form, i.e., Ψ̂ðrÞ ¼ P

αΨαðrÞâα, where âα is the
boson annihilation operator, and rewrite the Hamiltonian in
the momentum basis, we obtain the Hamiltonian density in
the form of

Ĥ ¼
X
k

k2
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2
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X
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n̂kn̂k0
�

≡ Ĥf þ Ĥi: ð2Þ

In Eq. (2) n̂k is the occupation number operator in state k.
When the number of bosons involved becomes very large
(dense matter) and the temperature (T) is not too high
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(much less than the boson mass), the role of the quantum
fluctuation that enters into the energy density becomes less
significant compared to that of the nonlinear interactions
[3]. In this situation, we may approximate the interaction
Hamiltonian density with its expectation value, i.e.,
Ĥi ≈ hĤii≡Hi. At first glance this approximation seems
like a drawback. However, by using this approximation, we
obtain a thermodynamically consistent relation of the
pressure and energy density of an interacting boson system
for finite temperature and the result can be expressed in a
simple analytical form. Therefore, due to the latter, it can be
compared easily to other analytical results such as the one
predicted by the Thomas-Fermi approach [3]. In the limit of
T → 0, it can be seen later that the pressure of the boson
system predicted by this approximation is consistent with
the one obtained by using the Thomas-Fermi approach [3].
Furthermore, this result can be used as a benchmark for
further investigation by using a similar method, but with a
more refined numerical approximation. To this end, we can
obtain an approximate form of the grand canonical partition
function of Eq. (2) as

ZB ≈ e−βVð12u0n2−mnÞZf; ð3Þ

where β ¼ 1=T, V is the volume of the boson system,
and n ¼ hn̂i ¼ P

khn̂ki, while Zf is the partition function
for free bosons. By using grand canonical potential
density, ~ΩB ¼ − lnZB=Vβ, we can calculate the pressure,
energy density, and number density of the interacting
boson system with the density-dependent interaction
through [13]

P ¼ − ~ΩB þ n

�∂ ~ΩB

∂n
�

T;μ

ε ¼ ~ΩB þ μn − T

�∂ ~ΩB

∂T
�

μ;n

n ¼ −
�∂ ~ΩB

∂μ
�

T;V
; ð4Þ

where μ is the chemical potential of the system. It can be
proved easily that the pressure and energy density of the
system in Eq. (4) are thermodynamically consistent
because they obey the relation P ¼ n2f∂ðε=nÞ=∂ngT
[14]. In the thermodynamical limit [15], i.e.,

P
k →

fV=ð2πÞ3g R dk, the pressure in Eq. (4) becomes

P ¼ 1

2
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�
; ð5Þ

where the fugacity z ≡ eβμ and gnðzÞ ¼
P∞

k¼1 z
k=kn for

0 ≤ z ≤ 1. It is obvious that if u0 ¼ 0, then the pressure
reduces to the case of the nondegenerate free bosons system
[15], while in the limit of T → 0 it becomes P ¼ 1

2
u0n20.

This result is identical to the finding of Ref. [3]. In other
words, in the limit of T → 0 the prediction of this
approximation is quite good. Therefore, it is reasonable
to believe that for a system with nonzero T, but not too far
from zero, a more refined approximation in the
Hamiltonian density may not lead to a much different
result and the trend remains the same. Note that n0 is the
number density at ground state. On the other hand, the
energy density reads

ε ¼ mnþ 1

2
u0n2 þ μn; ð6Þ

whereas in the limit of T → 0 it becomes
ε ¼ mn0 þ 1

2
u0n20. The latter is in contrast to the energy

density used in Ref. [3], in which the second term is
missing, in spite of the fact that this term is crucial for
maintaining the thermodynamical consistency of the pres-
sure and energy density. Therefore, it is interesting to check
how significant the role of the term 1

2
u0n20 is inside the

energy density of the system in the boson star properties. In
Fig. 1 we plot the EOS of boson matter with and without
this term in the limit of T → 0. It is obvious that at low
density or low pressure this term provides a negligible
effect, but at high densities the effect of this term is quite
significant; i.e., it stiffens the EOS. For completeness, we
also provide the EOS of a neutron star without the presence
of exotics, such as hyperons, calculated by using the
Florida State University parameter set [16], in the inset
of Fig. 1. Obviously, the EOS of boson matter has the
same order of magnitude, but softer than that of the neutron
star. However, by increasing the scattering length a (the
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FIG. 1 (color online). The equation of state (EOS) of boson
matter in the case of T → 0 used as input to obtain the mass-
radius plots with (solid line) and without (dash-dotted line) the
1
2
u0n20 term in the energy density. The inserted panel exhibits the

corresponding EOS at low pressure.
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strength of interaction), we can obtain a stiffer boson star
EOS.We need also to note that the number density of boson
matter is

n ¼
�
1

23

�
2m
πβ

�
3=2

g3=2ðzÞ
�
þ n0: ð7Þ

Obviously, the number density of the boson system in this
approximation is similar to the one of the free boson system
and in the limit of T → 0 it becomes n ¼ n0.
Using Eqs. (5), (6), and (7) as the boson EOS input, we

can obtain the structure of a boson star by integrating the
standard Tolman-Oppenheimer-Volkoff equation [14,17]

dP
dr

¼ Gðεþ PÞðM þ 4πr3PÞ
rðr − 2GMÞ ;

dM
dr

¼ 4πεr2: ð8Þ

Here, we consider that the interior of the star is
composed in whole of boson matter without crust on the
star surface. At the center of the star Mð0Þ ¼ 0, while on
the surface PðRÞ ¼ 0. In Fig. 2, we show the boson star
mass-radius relation for T ¼ 0 by taking into account the
1
2
u0n20 term in the energy density and compare it with the

case without this term, whereas in Fig. 3 we show the effect
of temperature variation on the structure of a boson star.
Note that in Figs. 2 and 3, we use the same definitions of R�
andM� as the ones used in Ref. [3], i.e., R� ¼ ða=Gm3Þ1=2
and M� ¼ ffiffiffi

a
p

=Gm3=2. The inset in Fig. 2 enlarges the
region with small values of M=M�, where we can see that
both curves coincide with each other. In our calculation, for
example, we take a ¼ 1 fm, m ¼ 2mn, and mn is the
nucleon mass, so that R� ¼ 2.106 km andM� ¼ 1.420M⊙.
Definitely the mass and radius of the star depend quite
sensitively on the values of a and m [3]. Figure 2 displays
that by increasing the mass, the radius increases up to the
critical radius R ≈ 3.1R�. After that the radius decreases as
the mass increases up to the maximum mass. At this point

the radius is minimum. Such a trend is similar to the case of
the quark star [18]. However, in the quark star mass-radius
relation, in contrast to the case of a boson star, the critical
radius appears at a relatively higher mass.
By comparing Figs. 1 and 2, it is obvious that since

the role of the 1
2
u0n20 term is to stiffen the EOS at high

densities, the maximum mass prediction obtained by
taking into account this term in the energy density is lower
than that obtained by neglecting this term. The reason is
clear; i.e., the presence of the 1

2
u0n20 term in this case leads

to a linearly increasing binding energy with respect to
density, instead of the zero binding energy obtained by
Chavanis and Harko [3]. The binding energy of boson
matter as a function of density for some fixed temperature
values is shown in Fig 5. Clearly, the effect of temperature
appears only at low densities. It is also obvious that the
difference between the two calculations is significant
only for the small radius region. Here, we obtain
Mmax ≈ 0.56M⊙, while Chavanis and Harko [3] predict
Mmax ≈ 0.7M⊙, both with Rmin ≈ 4.2 km. In this work we
note that the Schwarzschild radius for the corresponding
maximum mass of the present analysis is RScd ¼
2GMmax ≲ 3.0 km, so that RScd=Rmin ≲ 0.7 < 0.9, which
still fulfills the Buchdall limit [19]. We also note that the
neutron star EOS found in the literature is mostly thermo-
dynamically consistent and it is also well known that the
neutron star matter with stiffer EOS predicts a higher
maximummass (see, e.g., Ref. [20] and references therein).
On the other hand, it is obvious from Fig. 3 that the

temperature variation in a reasonable range, i.e., from 0 to
19 MeV, does not provide a significant effect on the
maximum mass of a boson star, but for the boson star
with relatively large radius, up to the radius of the minimum
mass, it can be seen that by increasing the temperature, the
mass of the corresponding boson star becomes heavier.
Note that the mass range of a stable star is from its
minimum mass up to its maximum mass, for which on
both points ∂MðεcÞ=∂εc ¼ 0 [14]. We can understand this
result by observing the corresponding EOS shown in Fig. 4.
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FIG. 2 (color online). The mass-radius relation for a boson star
at T ¼ 0. The solid line represents the result obtained by using the
EOS of Eqs. (5) and (6), while the dash-dotted line is the result
obtained by the authors of Ref. [3].
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FIG. 3 (color online). The mass-radius relation of a boson star
for a reasonable range of temperature variation.
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From this figure it is clear that at high density the EOS does
not depend sensitively on the temperature variation, so that
the maximum mass predictions are not significantly differ-
ent, while at low densities, however, the EOS is quite
sensitive to the temperature of boson matter. The latter is
the main reason for the fact that the mass of a boson star
with relatively large radius is sensitive to the temperature of
boson matter.
The trend that the EOS of matter does not significantly

change due to the variation of temperature is also found in
the case of the isothermal neutron star matter EOS based on
Walecka or quark meson coupling models [21], as well as
in the case of the compact star based on the bag model [22].
However, the Nambu–Jona-Lasinio model in the case of a
compact star predicts a relatively different trend at high
densities [22]. This leads to the same mass-radius behavior
for boson stars and neutron stars [21] due to the temperature
variation of each corresponding matter. Finally, we also
note that if T ≥ m, the situation might be different because

at such temperature the production of particle-antiparticle
pairs cannot be neglected, whereas the quantum fluctuation
and the relativistic effect start to play a significant
role [4,23].
In conclusion, by using a simple thermodynamical

method we confirm the result obtained by the authors of
Ref. [3] that a stable Bose-Einstein condensate star can
form. To fulfill the requirement that the EOS should be
thermodynamically consistent, we have obtained a less
massive Bose-Einstein condensate star compared to
the prediction of Ref. [3]. We have also found that the
maximum mass of a boson star is insensitive to the
temperature variation. However, the mass of a boson star
with relatively large radius depends significantly on the
temperature of boson matter. The boson star’s mass-radius
behavior observed in the present work originates from the
properties of the interacting boson matter.
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