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The creation of cold dark matter cosmology model is studied beyond the linear perturbation level. The
skewness is explicitly computed, and the results are compared to those from the ΛCDM model. It is
explicitly shown that both models have the same signature for the skewness and cannot be distinguished by
using this observable.
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I. INTRODUCTION

In a recent work [1], we have investigated the creation of
cold dark matter (CCDM) cosmology as an alternative to
explain cosmic acceleration. The CCDM cosmology [2] is
a phenomenological scenario in which it is assumed that the
gravitational field induces particle creation such that a
special choice of the particle production rate produces a
cosmology that, at the background level, is indistinguish-
able from the standard ΛCDM model. There have been
some recent papers that try to give a more than phenom-
enological basis for CCDM particle creation, e.g., Ref. [3],
while a more detailed study and review of the thermody-
namics of cosmologies of particle creation, including
CCDM, has been discussed in Refs. [4,5]. By assuming
zero effective sound speed, in Ref. [1], we have compared
CCDM with ΛCDM showing that these models are
observationally degenerated not only at background but
also at the first-order perturbation level.
More recently, some of our results have been criticized in

Ref. [6]. The authors of this paper claim that, since inCCDM
dark matter particles are being continuously created while
baryons are conserved, the ratio between dark matter and
baryons energy densities is not constant and would change
with redshift in these models. According to them, the
existence of such variation would be detectable by current
observations breaking the above-mentioned degeneracy. In
fact, they use this argument to rule outCCDM.The keypoint
here is that, to obtain their result, these authors have
considered in their analysis all the amount of dark matter
(clustered or not) in estimating the baryon-dark matter
energy densities ratio. However, what can be measured in
gravitational experiments with clusters of galaxies is only
clustered matter, of course. Smoothly distributed matter or
energy at scales of 20–30h−1 Mpc, like, for instance, that
associated with Λ, is undetectable in cosmological tests on

these scales. Since in both CCDM and ΛCDM clustered
matter (baryons and dark matter) redshifts as ð1þ zÞ3, the
ratio between dark matter and baryons energy densities is
expected to be constant in both models. Therefore, contrary
to the arguments used in Ref. [6], these models cannot be
observationally distinguished by using, for instance, the gas
mass fraction test [7].
In this paper, we extend the results presented in Ref. [1]

and consider the nonlinear dynamics in the CCDM. Here,
we explicitly show that the degeneracy between the CCDM
and the ΛCDM remains at any order in perturbartion
theory. It is also shown that both models have the same
signature for the skewness and cannot be distinguished by
using this observable.
This paper is organized as follows. In Sec. II, we briefly

present the CCDMscenario, emphasizing the reason it is not
possible to distinguish CCDM from ΛCDM with gravita-
tional experiments like the gas mass fraction test. In Sec. III,
we extend our previous results, obtained in Ref. [1], and
consider nonlinear dynamics in the CCDMmodels. Finally,
our conclusions and final remarks are given in Sec. IV.

II. CCDM MODEL: CONSERVED, CREATED,
AND CLUSTERED MATTER

Throughout this work, a flat Friedmann–Robertson–
Walker metric is assumed. Since we are mainly interested
in processes that occurred after radiation domination, we
neglect radiation, and, for the sake of simplicity, unless
explicitly stated, we also neglect baryons considering only
the presence (and creation) of pressureless (p ¼ 0) dark
matter particles.
The relevant cosmological equations for the CCDM

model are (c ¼ 1)

H2 ¼
�
a
:

a

�
2

¼ 8πG
3

ρ; ð2:1Þ

ä
a
¼ H

: þH2 ¼ −
4πG
3

ðρþ 3pcÞ; ð2:2Þ
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where the creation pressure pc ¼ −ρΓ=ð3HÞ and Γ is the
particle production rate. The fluid equation for ρ is

ρ
: þ 3Hρ ¼ ρΓ: ð2:3Þ

In the CCDM cosmological model, Γ is given by [1,2]

Γ ¼ 3βH2
0

H
¼ 3β

�
ρc0
ρ

�
H; ð2:4Þ

where β is aOð1Þ dimensionless constant,H0 is the current
value of the Hubble parameter, and ρc0 ≡ 3H2

0=ð8πGÞ is
the critical density at the present time, which, in our flat-
space and simple-fluid approximation, is equal to the value
of dark matter energy density at the present time. With the
above choice for the particle production rate, Eq. (2.3) can
be easily integrated obtaining

ρ ¼ ρc0½ð1 − βÞð1þ zÞ3 þ β�: ð2:5Þ
By substituting Eq. (2.5) in Eq. (2.1), we obtain

H2

H2
0

¼ ð1 − βÞð1þ zÞ3 þ β: ð2:6Þ

The two terms in the right-hand side of Eq. (2.6) have a
clear meaning: The first term redshifts exactly as matter,
while the second term, the constant β, plays the role of the
cosmological constant density parameter at the present
time, ΩΛ0. The CCDM model is then able to mimic exactly
the ΛCDM background expansion history.
In our previous work, Ref. [1], we have split the total

dark matter energy density ρ in a conserved and created
part, ρ ¼ ρconserved þ ρcreated, and assumed that the con-
served part of the dark matter energy density is given by
ρconserved ¼ ρc0ð1 − βÞð1þ zÞ3, while the created one is
ρcreated ¼ ρc0β. Although, from the physical point of view,
there is nothing wrong with this choice, it should be
remarked that it is not mandatory since there are other
possibilities. To better understand this statement, notice that
from the integration of Eq. (2.3) we get that the conserved
energy density part can be written as ρconserved ¼ A=a3,
while the created part becomes ρcreated ¼ B=a3 þ βρc0,
where A and B are integration constants. In the special
case in which β ¼ 0, from Eq. (2.4), we have Γ ¼ 0, and,
since there is no matter creation, it follows from the
expression for ρcreated that we should also have B ¼ 0.
Thus, we can think of B as an arbitrary function of β such
that it vanishes when β ¼ 0. For the sake of simplicity, let
us assume a linear function, B ¼ ρc0αβ, where α is a
constant. In this case, it is straightforward to show from the
above equations that

A ¼ ρc0½1 − ð1þ αÞβ�: ð2:7Þ
In Ref. [1], we have assumed α ¼ 0. This corresponds to

the special case in which all the energy density of the

created part is constant and all the clustered dark matter (the
part that redshifts as matter as expected) is conserved. As
remarked above, this choice in not mandatory. Indeed,
since the energy density of both created and conserved
parts should be positive definite, we have the constraint
0 ≤ α ≤ 1=β − 1. In the case in which α ¼ 1=β − 1, i.e., for
the upper limit for α, there is no conserved dark matter. In
other words, in this special case, all the dark matter
(clustered and unclustered) is created during the
Universe evolution. Notice that, since current observations
indicate β ∼ 0.7 (recalling that β in CCDM plays the role of
ΩΛ0 in ΛCDM), the choice α ¼ 1, made by the authors of
Ref. [6], is unphysical since, in this case, the energy density
of the conserved part would be negative. Thus, it is
important to emphasize that in the CCDM scenario we
do not know a priori which part of the total dark matter
particles has been created and which one is conserved.
Only by fixing a value for α is this choice specified.
Although we do not know a priori which part is created (or
conserved), we do know which one clusters and which one
does not. In other words, independent of the value of α (the
way we split the created and conserved parts for ρ), it is
clear from Eq. (2.6) that the unclustered part of the energy
density is constant, while the clustered one redshifts as a−3.
If in addition to dark matter we had considered

also baryons, assuming B ¼ ρc0αβ and that baryons
are conserved, instead of Eq. (2.7), we would get A ¼
ρc0½1 − ð1þ αÞβ −ΩB0�, where ΩB0 is the present value
of the baryons density parameter. The total (baryons+
dark matter) energy density will be ρ ¼ ρc0½ΩB0a−3þ
ð1 − β − ΩB0Þa−3 þ β�. Therefore, regardless of the value
of α again, the ratio between the baryons energy density
(ρB) and the clustered dark matter energy density (ρclust) is
independent of redshift:

ρB
ρclust

¼ ΩB0

1 − β −ΩB0
: ð2:8Þ

As stressed in Ref. [1], it is this ratio, and not ρB=ρ, that is
estimated, for instance, in x-ray surveys [7]. Thus, since it
does not depend on redshift, it will not be possible to
distinguish the CCDM scenario from ΛCDM by using
measurements of the baryon mass fraction in clusters, as
originally suggested in Ref. [8] and considered in Ref. [6].

III. DARK DEGENERACY AND SKEWNESS

In Ref. [1], we have investigated the growth of linear
perturbations in CCDM models and compared the neo-
Newtonian [9] and the general-relativistic frameworks. We
have shown that both approaches are formally identical
only when the effective sound speed (ceff ) vanishes [10].
We also showed, assuming c2eff ¼ 0, that CCDM and
ΛCDM models are degenerate not only at the background
level but at the linear perturbation order as well. In this
section, we will explicitly show that this result is also valid
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in the nonlinear regime (nonlinear perturbations have been
extensively examined, for example, in Ref. [11]).
Instead of using the neo-Newtonian formulation, as

considered in Ref. [1], in this work, we follow a different,
but to some extent equivalent, approach and start consid-
ering Raychaudhuri’s equation for a nonrotating and
shearless fluid,

_Θþ 1

3
Θ2 ¼ Rμνuμuν; ð3:1Þ

where Rμν is the Ricci tensor, and in our coordinate system
the fluid 4-velocity is given by uμ ¼ ð1; _a ~xþ~vÞ, where ~v is
the peculiar velocity. Therefore, Θ≡ uμ;μ can be written as
Θ ¼ 3_a=aþ θ=a, where θ≡∇ · ~v. By using Einstein
equations, we can write Eq. (3.1) as

θ0 þ θ

a
þ θ2

3H
¼ −

4πG
H

ðδρþ 3δPÞ; ð3:2Þ

where the prime denotes differentiation with respect to the
scale factor a and, as usual, we decompose the dynamical
variables into their background and inhomogeneus parts;
i.e., we write ρ ¼ ~ρþ δρ ¼ ~ρð1þ δÞ and P ¼ ~Pþ δP.
Here, the tilde denotes background quantities.
By using the conservation equation _ρþ ðρþ PÞΘ ¼ 0,

we obtain that the density contrast δ satisfies the differential
equation

δ0 þ 3

a
ðc2eff − wÞδþ ½1þ wþ δð1þ c2effÞ�

θ

Ha2
¼ 0; ð3:3Þ

where w ¼ ~P=~ρ and c2eff ¼ δP=δρ.
Assuming c2eff ¼ 0, differentiating (3.3) with respect to

the scale factor, and using (3.2), after some algebra, we
obtain the following differential equation for the density
contrast:

a2δ00 þ aδ0
�
3− 9w

2
−

aw0

1þwþ δ

�
−

4a2δ02

3ð1þwþ δÞ

þ 5aδδ0w
1þ wþ δ

þ 3δ

2

�
3w2 − 2w − 1− 2aw0 þ 2aww0

1þwþ δ

�

− 3δ2
�

w2

1þ wþ δ
þ 1

2

�
¼ 0: ð3:4Þ

The same differential equation for the density contrast as
above was obtained in Ref. [12] by using the neo-
Newtonian formulation (note that in Ref. [12] the deriv-
atives were taken with respect to the conformal time). As
discussed in Ref. [1], assuming c2eff ≠ 0 introduces a scale
dependence of the perturbations even at linear order. This
scale dependence can cause strong oscillations if c2eff > 0,
or exponential growth if c2eff < 0. Thus, only models with
jc2eff j ≪ 1 are acceptable at linear scales.
Since we are interested in studying the weakly nonlinear

regime of structure formation and to compute higher-order

moments of the density distribution, it is useful to expand δ
as [13]

δ ¼
X∞
i¼1

δi ¼
X∞
i¼1

DiðaÞ
i!

δi0; ð3:5Þ

where δ0 is a small perturbation. For special models, like
CCDM, in which the adiabatic sound speed is equal to zero
and recalling that c2s ¼ ~P0=~ρ0 ¼ w − aw0=½3ð1þ wÞ�, we
obtain that D1 satisfies

D00
1þ

3

2a
ð1−5wÞD0

1þ
3

2a2
ð3w2−8w−1ÞD1¼ 0: ð3:6Þ

By using that in CCDM wðaÞ ¼ −β=½β þ ð1 − βÞa−3�,
Eq. (3.6) can be integrated, and, in terms of the hyper-
geometric functions, 2F1ða; b; c; xÞ, the growing mode can
be expressed as [1]

D1ða; βÞ ¼
a

1þ a3β
1−β

2F1

�
1

3
; 1;

11

6
;−

a3β
1 − β

�
: ð3:7Þ

As remarked in our previous work [1], at first order in
CCDM, as we increase β, there is a density contrast
suppression as compared to ΛCDM. The suppression
factor is given by 1=½1þ βa3=ð1 − βÞ� ¼ 1þ wðaÞ and,
as it will be demonstrated below, remains in any order of
perturbation theory. As discussed in Ref. [1], the presence
of this suppression is related to the fact that in CCDM
dark matter clusters in the same manner as it does in
ΛCDM. The suppression appears when the constant and
nonclustered part of CCDM energy density starts to
become non-negligible, and, as a consequence, the equa-
tion of state parameter deviates from zero. However, as we
have already pointed out, in CCDM when considering
tests that involve the growth factor like, for instance, the
redshift-space-distortion fðzÞσ8ðzÞ test, what should be
considered in the calculation of these quantities is only
the clustered part of ρ (we direct the interested reader to
Ref. [1], where this issue has been more closely
discussed).
Let us now illustrate the validity of the above result

also in second order of perturbation theory. The second-
order solution is obtained by using in Eq. (3.4) that
δ ¼ D1δ0 þD2δ

2
0=2 and 1=ð1þ wþ δÞ ¼ 1=ð1þ wÞ−

1=ð1þ wÞ2δþOðδ2Þ. We then find that the second-order
factor in the expansion (3.5), when keeping only second-
order terms in δ0, satisfies the differential equation

D2
00 þ 3D2

0

2a
ð1 − 5wÞ þ 3D2

2a2
ð3w2 − 8w − 1Þ − 8D02

1

3ð1þ wÞ

þ 16D1D1
0w

að1þ wÞ −
3D1

2

a2

�
8w2

1þ w
þ 1

�
¼ 0: ð3:8Þ
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Analogously, higher-order terms are obtained recursively
by using the solutions of the differential equations for the
lower-order ones. The solution forD2 in CCDM is obtained
by numerically integrating Eq. (3.8), using the solution D1

in CCDM given by Eq. (3.7), and assuming initial con-
ditions such thatD1 andD2 at high redshift (small values of
the scale factor) behave like in an Einstein–de Sitter model
(D1 ∝ a, D2 ∝ a2 and such that the skewness assumes the
value S3 ¼ 34=7 at that time). The solution D2 for ΛCDM
is obtained analogously by numerical integration of the
differential equation, equivalent to Eq. (3.8), valid in the
ΛCDM case (see also, e.g., Ref. [14]).
In Fig. 1(a), we show the ratio for D2 between CCDM

and ΛCDM. It is clear again the presence of suppression
in CCDM as compared to ΛCDM as we increase β.
The suppression is found again to be such that
DCCDM

2 ¼ ½1þ wðaÞ�DΛCDM
2 . This result holds for any

order in perturbation theory, and it can be proved as
follows. First, note from Eq. (2.5) that ρCCDMðaÞ ¼
ρc0½ð1 − βÞ=a3 þ β�, while ρΛCDMm ¼ ρc0Ωm0=a3, with
Ωm0 ¼ 1 − β. Thus, at any order of perturbation theory,

it holds that δρ ¼ δρm for a constant β, and then we also
find that ρΛCDMm ¼ ½1þ wðaÞ�ρCCDM. Hence, the density
contrast in each case is then simply related by
δCCDM ¼ ½1þ wðaÞ�δΛCDM. Using this result back in the
definition (3.5), it immediately allows us to conclude
that at any nth-order in perturbation theory DCCDM

n ¼
½1þ wðaÞ�DΛCDM

n . This concludes our proof.
Returning again to the second-order result, D2, and

assuming Gaussian initial conditions, we can associate D2

with the emergence of non-Gaussian features in the matter
density field. Indeed, D2 is related to the skewness of the
cosmic field [15,16]. The skewness is defined by

S3 ¼ 3D2=D2
1: ð3:9Þ

We show in Fig. 1(b) the ratio for the skewness
between the CCDM the ΛCDM models. The numerical
result, in fact, can be expressed analytically as SCCDM3 ðaÞ¼
1=½1þwðaÞ�SΛCDM3 ðaÞ. In particular, S3ðz¼0Þ¼1=ð1−βÞ×
SΛCDM3 ðz¼0Þ. For ΛCDM, the skewness is nearly constant,
with SΛCDM3 ≈ 4.86, and is weakly sensitive to Ωm0. One
may be tempted to interpret that this difference is an
indication that CCDM models with β≃ 0.7 (Ωclust0≃
0.3) are inconsistent with large-scale skewness measure-
ments [17]. However, care should be taken when analyzing
this issue for two reasons. First, in our discussion, baryons
were neglected, and measurements of skewness from large-
scale galaxy distribution are based on counting luminous
objects, not the dark component. Our analysis can easily be
generalized to include a small amount of baryons as
observed (Ωb0 ≈ 0.04). It can be shown that in CCDM
the baryonic skewness does not change much with red-
shift;, it is nearly constant such that S3b ≃ 4.86 as expected
for dark matter and/or baryons in ΛCDM. Therefore,
skewness from large-scale galaxy distribution will not be
able to break the degeneracy. Second, one may still argue
that lensing (convergence) skewness [18] could break the
degeneracy between CCDM and ΛCDM. However, lensing
skewness is sensitive to clustered matter (baryons and dark
matter), and since dark matter in CCDM clusters in the very
same manner as it does in ΛCDM, measurements of lensing
skewness will also not be able to break the degeneracy
between the models.

IV. DISCUSSION AND CONCLUSIONS

A common assumption in cosmology is that we live in a
Universe with a dark sector composed by two separately
conserved components: clustering dark matter, responsible
for large-scale structure formation, and a nonclustering
dark energy, responsible for the cosmic acceleration.
Cosmologies, like ΛCDM, with the dark sector defined
in this manner can fit well the observations. However,
this kind of division of the dark sector is not unique and
is, in a certain sense, arbitrary. As a matter of fact, we
have physically different cosmologies, based on distinct
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FIG. 1. (a) The ratio of growth function at second orderD2, as a
function of the scale factor, and (b) the ratio of skewness S3, as a
function of the redshift, between the CCDM and ΛCDM models
and for different values of β. In both cases, the total density ρ is
included, Eq. (2.5), for the CCDM. When including only the
clustering part (see the text), w ¼ 0, ρCCDM → ρΛCDMm , and both
CCDM and ΛCDM become fully degenerate.
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assumptions and/or a separation of the dark sector, that
cannot be observationally distinguished from the two dark
components cosmologies. Different aspects of this degen-
eracy in the dark sector, and how cosmological models can
be observationally distinguished, have been considered
in the literature by several authors (see, for instance,
Refs. [19,20]). Dark degeneracy is what this property
has been called [19].
Perhaps, the first controversy we find in the literature

regarding the above-mentioned difficulty is related to the
ΛCDM limit of the so-called generalized Chaplygin gas
(GCG) cosmological model [21,22]. Indeed, in Ref. [21]
(see also Ref. [23]), it has been shown that gravity alone
cannot distinguish the α ¼ 0 quartessence GCG model
from ΛCDM. The basis of the results we have presented in
this paper is the same. In other words, under certain
assumptions like, for instance, zero effective sound
speed, we cannot distinguish with cosmological observa-
tions CCDM from ΛCDM (and, of course, also the α ¼ 0
GCG model).

By assuming zero effective sound speed, we have shown
in Ref. [1] that CCDM and ΛCDM are observationally
degenerated at both the background and at first-order
perturbation levels. In this paper, we have extended those
results considering nonlinear dynamics in these models. In
particular we have shown that they have the same signature
for the skewness and explained why they cannot be
distinguished by using this observable.
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