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E-strings arise from M2 branes suspended between an M5 brane and an M9 plane. In this paper we
obtain explicit expressions for the elliptic genus of two E-strings using a series of string dualities. Moreover
we show how this can be used to recover the elliptic genus of two E8 × E8 heterotic strings using the
Hořava–Witten realization of heterotic strings in M-theory. This involves highly nontrivial identities among
Jacobi forms and is remarkable in light of the fact that E-strings are “sticky” and form bound states whereas
heterotic strings do not form bound states.
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I. INTRODUCTION

The six-dimensional super-conformal field theory
(SCFTs) with (1, 0) supersymmetry are among the least
understood quantum field theories. This is partly due to the
fact that they have light (tensionless) strings as a main
ingredient. In previous work [1,2] (see also Refs. [3,4]) we
have made some progress in understanding the relation
between the supersymmetric partition function of these
theories and the partition function of the associated strings.
In particular as was shown in Refs. [5–10] the partition
function of these theories on S4 × S1 or S5 can be computed
by the partition function of these theories on R4⋉T2

backgrounds (where R4 is twisted as we go along the
T2 cycles and Wilson lines are turned on for the various
global symmetries). This in turn can be computed by the
elliptic genus of the tensionless strings on T2, as they
constitute the only bogomol'nyi prasad sommerfield (BPS)
instantons of these theories. In particular, for a theory that
has k different types of strings with tensions ðt1;…; tkÞ
[which can be identified with scalar vacuum expectation
value (vevs) in the associated tensor multiplets], one has

Zð1;0Þ
R4⋉T2 ¼

X
~n

e−~n·~tZ~n
T2 ;

where Z~n
T2 denotes the elliptic genus of a collection of

ðn1;…; nkÞ strings. Furthermore, this partition function can
be identified with either the refined topological string
partition function of a dual geometry, or if there is a gauge
theory description, with the Nekrasov partition function,
and one can in principle use methods developed in those
contexts to study it. This can be used to compute the elliptic
genus of tensionless strings. On the other hand, in some
cases (such as the (1, 0) theory obtained by probing the AN
singularity with M5 branes [2]) it is possible to reverse this
by identifying the theory on the tensionless strings (which
is in some cases given by a quiver gauge theory) and using
it to compute the partition function of the (1, 0) SCFT itself.

The main focus of this paper is on E-strings, which arise
[11–13] from an M5 brane probing the Hořava–Witten M9
plane; the E-strings are identified with M2 branes stretched
between the M5 brane and the M9 plane. In this context
string dualities [14] relate this system to topological strings
on a Calabi-Yau (CY) 3-fold in the vicinity of the 1

2
K3

surface. The topological string partition function for this
theory has been studied in Refs. [14–22], and, even though
major progress has been made, the result is still incomplete.
Our main aim is to build on these partial results to obtain
explicit formulas for the elliptic genus of two E-strings,
ZE-str
2 ; the answer we propose passes highly nontrivial

checks.1 We find that, as in the case of M-strings [1],
two E-strings have a rather nontrivial bound state structure,
unlike fundamental strings which do not form bound states.
The lack of the bound states for fundamental strings is
reflected in the fact that the partition function for n
fundamental strings is simply an order n Hecke transform
of the one for a single string. We find that this is not the case
for two E-strings.
This raises the following question. We know that an M5

brane placed between the two M9 planes of M-theory gives
rise to EL-strings from the left plane as well as ER-strings
from the right plane. On the other hand, we also know
that an E8 × E8 heterotic string can be identified with an
M2 brane stretched between the two M9 planes [23]. Thus,
n pairs of E-strings can recombine to give n heterotic
strings (H):

nEL þ nER → nH:

At first glance this is puzzling, as it is not obvious how the
lack of bound states of two heterotic strings is compatible
with the existence of a bound state structure for two
E-strings. The answer to this puzzle is provided by the
presence of the M5 brane which serves as a “glue” for the

1The result for one E-string is much simpler and was already
studied in Refs. [14,16].
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M2 branes. One may also wonder whether it is possible to
recover the partition function of heterotic strings from that
of E-strings. The fact that E-strings recombine to give
heterotic strings strongly suggests that this should be
possible, and in this paper we indeed show that this can
be done at least up to n ¼ 2 E-strings. The basic idea is to
view the theory of n M2 branes on R × T2, in the limit
where the area of the T2 (on which the elliptic genus does
not depend) is small, as a

quantum mechanical system on R. Under this reduction the
states in the Hilbert space of n M2 branes are labelled by
Young diagrams of size n [1,24], and M5 branes as well as
M9 planes intersecting the M2 branes on T2 can be
interpreted as operators or states in this quantum mechani-
cal system. We call them domain wall operators/states due
to their interpretation in the world volume theory of M2
branes. In a previous paper [1] we computed the contri-
bution of M5 brane domain walls to this quantum
mechanical system. Here, using low genus results from
topological strings for up to two E-strings, and using the
known M5 brane domain wall, we determine the exact M9
domain wall wave function for up to two M2 branes. We
then deduce a closed formula for the elliptic genus of two
E-strings, which from the viewpoint of topological string
theory provides an all-genus A-model amplitude for up to
two E-strings. We also test our M9 domain wall expressions
by checking whether the left and right walls combine
correctly into the elliptic genus of up to two heterotic
strings, and remarkably we find that they do (up to taking
into account a symmetrization which the heterotic string
enjoys and which is broken in the E-string background by
the M5 brane).
The organization of this paper is as follows. In Sec. II we

present the M2-M5-M9 configurations corresponding
to the heterotic, E- and M-strings. In Sec. III we review
the computation of the M-string elliptic genus in terms of
M5 domain wall operators and the resulting partition
function for two M5 branes. In Sec. IV we obtain the
elliptic genus of heterotic strings by using the Hecke
transform. We then proceed in Sec. V to outline the series
of string dualities which relate the E-string theory to the

topological string on the half-K3 Calabi–Yau 3-fold.
Finally, in Sec. VI we determine the M9 domain wall
operator for up to two strings and use it to compute the
elliptic genus of E- and heterotic strings.

II. M2 BRANES ON T2 ×R AND
BOUNDARY CONDITIONS

In this section we review possible boundary conditions
for M2 branes together with the preserved supersymme-
tries. To do this we consider M-theory on T2 ×R9 and take
the M2 branes to wrap the T2 and extend along one of the
directions of R9, so that their world volume is given by
T2 ×R. We choose coordinates XI; I ¼ 0; 1; 2;…; 10, and
parametrize the torus by X0; X1 and take the direction along
which the M2 branes are extended to be X6. We obtain
different boundary conditions by letting the M2 branes end
on M5 branes or M9 planes. This can be done in various
combinations which we describe here.

A. M9-M9

Here the relevant setup is the one of Hořava and Witten
[23]. We compactify M-theory on T2 ×R8 × S1=Z2 where
the Z2 acts as an orbifold action,

X6 ↦ −X6; ð2:1Þ
together with a suitable action on the fields. At the two
fixed points of the orbifold action, X6 ¼ 0 and X6 ¼ π, one
has two fixed planes which we denote as M9 planes and are
here of the topology T2 ×R8; the situation is illustrated
in Fig. 1.
In the limit where the size of S1=Z2 goes to zero, the

M2 branes give rise to heterotic strings charged under an
E8 × E8 current algebra, with each E8 coming from oneM9
plane [23]. Next, we want to look at the preserved super-
symmetries on these strings. Each brane type projects out
half of the 32 supercharges as

FIG. 1. M2 branes suspended between M9 planes corresponding
to the heterotic string. The world volumes of the M2 branes and
M9 planes share a common T2 which is suppressed in the picture.
The directions orthogonal to the torus are represented as the
separation X6 and the quaternionic subspaces X2345 and X78910.
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M9∶ Γ6ϵ ¼ ϵ; M2∶ Γ016ϵ ¼ ϵ; ð2:2Þ

and thus we see that the worldsheet theory on the strings is
chiral and carries (8, 0) supersymmetry. We can break this
supersymmetry down to (4, 0) and (2, 0) by introducing a
twisted background, i.e. turning on fugacities when going
along the cycles of the T2. The way this works is as follows.
As explained in Refs. [1] viewing the torus as S1 × S1

we twist the R4
2345 ×R4

78910 by the action of the Cartan
subalgebra of the SOð8Þ R-symmetry parametrized by
Uð1Þϵ1 ×Uð1Þϵ2 ×Uð1Þϵ3 ×Uð1Þϵ4 as we go around the
cycles of the torus,

Y4
i¼1

Uð1Þϵi∶ ðz1; z2Þ ↦ ðe2πiϵ1z1; e2πiϵ2z2Þ; ð2:3Þ

∶ðw1; w2Þ ↦ ðe2πiϵ3w1; e2πiϵ4w2Þ; ð2:4Þ

where we impose the relation

ϵ1 þ ϵ2 þ ϵ3 þ ϵ4 ¼ 0; ð2:5Þ

in order to preserve supersymmetry. For generic values of
the ϵi only a (2, 0) subset of the supercharges is preserved
which enhances to (4, 0) for the locus given by ϵ2 ¼ −ϵ1
and ϵ3 ¼ −ϵ4 or permutations of these.
In this paper we will be interested in the computation of

the elliptic genus of n heterotic strings wrapping the T2,
which is given by

TrRð−1ÞFq̄HLqHR

Y
a

xKa
a ; ð2:6Þ

where the Ka denote the Cartan generators associated
with general supersymmetry preserving SORð8Þ spacetime
twists and E8 × E8 fugacities. We will denote this
quantity by

ZHet
n ðτ; ϵ1; ϵ2; ϵ3; ϵ4; ~mE8×E8

Þ; ð2:7Þ

where τ denotes the complex structure of the torus.

B. M9-M5

This setup leads to the theory of E-strings [12,13] which
is a six-dimensional superconformal field theory with (1, 0)
supersymmetry. This theory arises from a system of M9 and
M5 branes with M2 branes suspended between them [12].
To be more specific, we take an M9 plane as before along
the coordinates X0;…; X5; X7;…; X10 and an M5 brane
along the directions X0;…; X5 and separate them along the
X6 direction. We depict this in Fig. 2.
Each of the branes projects out half of the 32

supercharges, and the surviving supercharges satisfy the
condition

M9∶ Γ6ϵ ¼ ϵ; M5∶ Γ012345ϵ ¼ ϵ;

M2∶ Γ016ϵ ¼ ϵ:
ð2:8Þ

Thus, the world volume theory of the E-string being the
intersection of the M2 brane and the M5 brane has (4, 0)
supersymmetry. As the M2 brane is ending only on one of
the M9 planes the string is charged under one E8 current
algebra. One can now again consider a twisted background
by introducing boundary conditions labelled by Cartan
generators of SORð8Þ along cycles of the T2. Generic twists
will break the supersymmetry down to (2, 0), while setting
ϵ1 ¼ −ϵ2 gives an enhancement to (4, 0). In this paper we
will be interested in the computation and properties of the
elliptic genus of n E-strings with various fugacities turned
on, namely

ZE-str
n ðτ; ϵ1; ϵ2; ~mE8

Þ: ð2:9Þ
Here it is important to note that the E-string elliptic
genus does not depend on ϵ3 and ϵ4. The reason is that
the six-dimensional E-string theory only enjoys an SUð2Þ
R-symmetry which can be identified with SUð2ÞL in the
decomposition

Spinð4Þ78910 ¼ SUð2ÞL × SUð2ÞR; ð2:10Þ

while the Uð1Þ symmetry associated to ϵ3 − ϵ4 lies
in SUð2ÞR.

C. M5-M5

This configuration leads to the six-dimensional AN−1
(2, 0) superconformal field theory [25]. Specializing to two
M5 branes we obtain the A1 theory that we describe here.
The compactification of this theory on T2 gives rise to
N ¼ 4 Super-Yang-Mills (SYM) in four dimensions.
Taking the M5 branes to be extended along X012345 and
the M2 branes along X016 we obtain the schematic picture
shown in Fig. 3.

FIG. 2. An M2 brane suspended between an M9 and an M5
brane corresponding to the E-string. The world volumes of the
branes share a common T2 which is suppressed in the picture.
The directions orthogonal to the torus are represented as the
separation X6 and the quaternionic subspaces X2345 and X78910.
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We denote by M-strings the strings arising from M2
branes stretching between the M5 branes. The supercharges
preserved by M-strings obey the constraints

M2∶ Γ016ϵ ¼ ϵ; M5∶ Γ012345ϵ ¼ ϵ; ð2:11Þ
which lead to (4, 4) supersymmetry on the string world-
sheet. Turning on fugacities ϵi breaks this down to (4, 0),
(2, 2) or (2, 0) supersymmetry (SUSY) as discussed in
Ref. [1]. The theory one arrives at is five-dimensional
N ¼ 2� SYM compactified on a circle. The mass m of the
adjoint hypermultiplet is related to the ϵ3 and ϵ4 parameters
as follows:

ϵ3 ¼ −m −
ϵ1 þ ϵ2

2
; ϵ4 ¼ m −

ϵ1 þ ϵ2
2

: ð2:12Þ

Note that the condition ϵ1 þ ϵ2 þ ϵ3 þ ϵ4 ¼ 0 is automati-
cally satisfied. The elliptic genus of n M-strings, with
generic fugacities, was computed in Ref. [1]; we denote this
elliptic genus by

ZM-str
n ðτ; ϵ1; ϵ2; mÞ: ð2:13Þ

In the next section we will review its computation and its
connection to the N ¼ 2� partition function.

III. REVIEW OF M-STRINGS

M-strings arise naturally in the context of AN−1 (2, 0)
theories and capture the spectrum of BPS states which arise
when deforming away from the Conformal Field Theory
(CFT) point [1]. It was shown there that the five-dimensional
BPS index one obtains from performing a compactification
of these theories on T2 with general twists can be written in
terms of a sum of elliptic genera of different numbers of
M-strings. In particular, for two M5 branes we have the
relation

Z5d N¼2�SUð2Þ ¼
X
n

QnZM-str
n ðτ; ϵ1; ϵ2; mÞ; ð3:1Þ

where

Q ¼ e2πit; ð3:2Þ
t being the Coulomb branch parameter of the gauge theory.
Since the Coulomb branch parameter is the separation
between the M5 branes along an interval I, one sees that
t is also the tension of the self-dual strings of the (2, 0)
theory, i.e. the M-strings. In the expansion (3.1) the M2
branes wrapped on T2 × I play the role of instantons of
which the moduli space gives rise to a path integral
representation of the elliptic genus [1,2]. This leads to the
computation of the partition function of the five-dimensional
N ¼ 2� SUð2Þ theory in terms of the elliptic genera of
M-strings.
Let us next review how ZM-str

n is computed. As shown in
Ref. [1] it can be decomposed into “domain wall” con-
tributions as

ZM-str
n ¼

X
jνj¼n

DM5

0ν
DM5

ν0
; ð3:3Þ

where ν are Young tableaux with n boxes and 0 denotes the
empty Young tableau. The DM5

μν factors can be interpreted
as domain walls of Aharony-Bergman-Jafferis-Maldacena
(ABJM) theory which interpolate between two different
vacua. More precisely, it is known that ABJM theory [26]
on T2 ×R has vacua labeled by Young tableaux [24]. Thus,
reducing the theory on T2 gives rise to a quantum
mechanics of which the Hilbert space is labelled by
Young tableaux, where the Euclidean time flows along
X6. We can then define the DM5 as matrix elements in this
quantummechanics with an insertion of an M5 brane defect
operator as follows:

DM5
μν ¼ hνjD̂M5jμi: ð3:4Þ

A pictorial representation of this operator is shown
in Fig. 4.
This operator was computed in Ref. [1] by means of the

refined topological vertex [27], and the result is given by

FIG. 3. An M2 brane suspended between two M5 branes
corresponding to the M-string. The world volumes of the branes
share a common T2 which is suppressed in the picture. The M5
branes are extended along the X012345 directions.

FIG. 4. An M2 domain wall with an M5 defect.
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DM5
νμ ðτ; m; ϵ1; ϵ2Þ ¼ t−

∥μt∥2
2 q−

∥ν∥2
2 Q

−jνjþjμj
2

m

Y∞
k¼1

Y
ði;jÞ∈ν

ð1 −Qk
τQ−1

m q−νiþj−1
2t−μ

t
jþi−1

2Þð1 −Qk−1
τ Qmqνi−jþ

1
2tμ

t
j−iþ1

2Þ
ð1 −Qk

τqνi−jt
νt;j−iþ1Þð1 −Qk−1

τ q−νiþj−1t−ν
t
jþiÞ

×
Y

ði;jÞ∈μ

ð1 −Qk
τQ−1

m qμi−jþ1
2tν

t
j−iþ1

2Þð1 −Qk−1
τ Qmq−μiþj−1

2t−ν
t
jþi−1

2Þ
ð1 −Qk

τqμi−jþ1tμ
t
j−iÞð1 −Qk−1

τ q−μiþjt−μ
t
jþi−1Þ ; ð3:5Þ

where we have defined

q ¼ e2πiϵ1 ; t ¼ e−2πiϵ2 ;

Qm ¼ e2πim; Qτ ¼ e2πiτ: ð3:6Þ

We now specialize to the cases of interest for us, namely
DM5

0ν
and DM5

ν0
, and introduce the notation

ξþðτ; zÞ ¼
Y
k≥1

ð1 −Qk
τe2πizÞ;

ξ−ðτ; zÞ ¼
Y
k≥1

ð1 −Qk−1
τ e−2πizÞ:

ð3:7Þ

The functions ξ−ðτ; zÞ and ξþðτ; zÞ are quantum dilogar-
ithms which can be thought of as “half theta functions,” as
they combine nicely into a theta function

−ie−iπzeπiτ
6 ηðτÞξ−ðτ; zÞξþðτ; zÞ ¼ θ1ðτ; zÞ; ð3:8Þ

so that the product DM5

0ν
DM5

ν0
is a modular function in τ.

Up to prefactors, one finds2

DM5

0ν
¼

Y
ði;jÞ∈ν

θ1ðτ;−mþ ϵ1ðνi − jþ 1=2Þ − ϵ2ð−iþ 1=2ÞÞηðτÞ−1
ξ−ðτ; ϵ1ðνi − jÞ − ϵ2ðνtj − iþ 1ÞÞξþðτ; ϵ1ðνi − jþ 1Þ − ϵ2ðνtj − iÞÞ ; ð3:9Þ

DM5

ν0
¼

Y
ði;jÞ∈ν

θ1ðτ;−m − ϵ1ðνi − jþ 1=2Þ þ ϵ2ð−iþ 1=2ÞÞηðτÞ−1
ξ−ðτ; ϵ1ðνi − jþ 1Þ − ϵ2ðνtj − iÞÞξþðτ; ϵ1ðνi − jÞ − ϵ2ðνtj − iþ 1ÞÞ : ð3:10Þ

Note that DM5

0ν
and DM5

ν0
get exchanged under the map3

m ↦ −m; ξ� ↦ ξ∓: ð3:11Þ

Indeed one can immediately see, using the above
building blocks, that the partition function of two M5
branes (3.1) has the form

Z5d N¼2�SUð2Þ ¼
X
ν

Qjνj Y
ði;jÞ∈ν

θ1ðτ; zijÞθ1ðτ; vijÞ
θ1ðτ;wijÞθ1ðτ; uijÞ

; ð3:12Þ

where following Ref. [1] we have defined

e2πizij ¼Q−1
m qνi−jþ1=2t−iþ1=2; e2πivij ¼Q−1

m ti−1=2q−νiþj−1=2;

e2πiwij ¼qνi−jþ1tν
t
j−i; e2πiuij ¼qνi−jtν

t
j−iþ1: ð3:13Þ

One can clearly see from the expression in (3.12) that the
elliptic genus of nM-strings receives contributions from 4n
bosons as well as from 4n fermions coming from the theta
functions in the denominator and numerator respectively.
These have the interpretation of coordinates on the target
space which is the moduli space of n Uð1Þ instantons onR4

in the sigma model description of M-strings [1]. The elliptic
genus can be computed by localization on the target space,
which in this case is the Hilbert scheme of n points on C2,
namely Hilbn½C2�. Localization is done with respect to a
Uð1Þ2 action with generators ϵ1 and ϵ2, and the path
integral turns into a sum over the fixed points of this action
which are labelled by Young tableaux. The coefficients of
ϵ1 and ϵ2 in the theta functions in the numerator are the
weights of the Uð1Þ2 action on the fermions while those in
the denominator are the corresponding ones for the bosons.
The different weights reflect the fact that, while the bosons
are sections of the tangent bundle, the right-moving

2We will ignore prefactors here as well as in the rest of the
paper, since once two domain walls are glued together all
surviving prefactors can be removed by a redefinition of Q, as
in Ref. [1].

3This also leads to an overall ð−1Þjνj factor multiplyingD
0νDν0

which can always be absorbed by shifting Q → −Q.
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fermions transform as sections of the tautological bundle,
and therefore supersymmetry in the right-moving sector is
broken.
We would also like to remark here that the elliptic genera

ZM-str
n satisfy a holomorphic anomaly equation derived in

Ref. [1]. To see this note that the sum in (3.12) is not
modular invariant, as under SLð2;ZÞ transformations each
summand transforms with a different phase factor:

ZM-str
n

�
−
1

τ
;
ϵ1
τ
;
ϵ2
τ
;
m
τ

�

¼ e
2πi
τ ðϵ1ϵ2n2þðm2−ðϵþ=2Þ2ÞnÞZM-str

n ðτ; ϵ1; ϵ2; mÞ: ð3:14Þ

To compensate for this phase factor and make the full
partition function a modular function, one needs to make
the theta function nonholomorphic. This is done by using
its expansion in terms of Eisenstein series

θ1ðτ; zÞ ¼ ηðτÞ3ð2πzÞ exp
�X

k≥1

B2k

ð2kÞð2kÞ!E2kðτÞð2πizÞ2k
�

ð3:15Þ

and making the replacement

E2ðτÞ → Ê2ðτ; τ̄Þ≡ E2ðτÞ −
3

πImðτÞ : ð3:16Þ

From now on we will often suppress the dependence on τ in
the modular forms we use, as well as in ξ�. Using these
modified theta functions one can check easily using (3.12)
that the elliptic genus of n M-strings, which is no longer
holomorphic, satisfies the holomorphic anomaly equation

∂ZM-str
n

∂Ê2

¼ −
ð2πÞ2
12

ðϵ1ϵ2n2 þ ðm2 − ðϵþ=2Þ2ÞnÞZM-str
n ;

ð3:17Þ

where ϵþ ¼ ϵ1 þ ϵ2. Said differently, we are trading here
the modular anomaly of (3.14) with the holomorphic
anomaly of (3.17). More generally, whenever we encounter
in this paper a Jacobi form with a modular anomaly,

Zn

�
−
1

τ
;
z1
τ
;…;

zk
τ

�
¼ e

πi
τ αnðz1;…;zkÞZnðτ; z1;…; zkÞ;

ð3:18Þ

we replace it with a nonholomorphic but modular Jacobi
form with a holomorphic anomaly4

∂Znðτ; τ̄; z1;…; zkÞ
∂Ê2

¼ −
ð2πÞ2
24

αnðz1;…; zkÞZnðτ; τ̄; z1;…; zkÞ: ð3:19Þ

Thus, the concepts modular and holomorphic anomaly are
interchangeable, and whenever we are talking about one of
them one should keep in mind that an analogous statement
holds for the other.
It is instructive to pause here and consider a slight

modification of the above M-string setup. To this end we
look at a geometry which arises by taking the trace of a
single domain wall as shown in Fig. 5. This configuration
describes a six-dimensional supersymmetric Uð1Þ gauge
theory [28] with an adjoint hypermultiplet of mass m of
which the partition function is given by a sum over elliptic
genera which correspond to the domain-wall traces as
follows:

Z6dUð1Þ ¼
X
n

Qn
X
jνj¼n

DM5
νν : ð3:20Þ

The fundamental objects of this theory are known as “little
strings” [29]. From the point of view of the six-dimensional
Uð1Þ gauge theory which arises in the weak coupling limit
of type IIA string theory the string is a solitonic object of
which the moduli space is that ofUð1Þ instantons. Note that
in the compactification of the six-dimensional theory on T2

the string wrapping the torus becomes a Uð1Þ gauge
instanton in four dimensions. Using the explicit definition
of the M5 domain wall formula (3.5) we obtain

X
jνj¼n

DM5
νν ¼

Y
ði;jÞ∈ν

θ1ð ~mþ ϵ1ðνi − jÞ − ϵ2ðνtj − iþ 1ÞÞ
θ1ðϵ1ðνi − jÞ − ϵ2ðνtj − iþ 1ÞÞ

×
θ1ð− ~mþ ϵ1ðνi − jþ 1Þ − ϵ2ðνtj − iþ 1ÞÞ

θ1ðϵ1ðνi − jþ 1Þ − ϵ2ðνtj − iÞÞ ;

ð3:21Þ

FIG. 5. An M2 domain wall with an M5 defect where the X6

direction is taken to be circular.

4We know that this statement holds for the single variable
holomorphic Jacobi forms we consider here, and we also expect it
to be true for the class of meromorphic or multivariate Jacobi
forms that are used in this paper.
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where we have redefined the R-symmetry generator Uð1Þm
to be

~m ¼ mþ ϵ1 − ϵ2
2

: ð3:22Þ

Analogously to the M-string case, the expression (3.21) can
be interpreted as the elliptic genus of a sigma model with
target space Hilbn½C2�. But while in (3.12) the fermions and
bosons transformed as sections of different bundles one
can clearly see upon inspection of theUð1Þ2 weights that in
(3.21) they both are sections of the tangent bundle.
Therefore, supersymmetry in the right-moving sector is
unbroken. Remarkably, in contrast to the M-string setup,
the partition function (3.20) has another representation
which is fundamentally different from the one given in
(3.21). This fact was first noticed for the unrefined case in
Ref. [28] where the authors rewrote the result in terms of
the symmetric product elliptic genus of Ref. [30]. The
underlying reason for this is the equivalence of the Hilbert
scheme of points with the resolution of the singular space
of the n-fold symmetric product of R4:

Hilbn½C2� ¼ ResðSymnðR4ÞÞ: ð3:23Þ

Using instead of the Hilbert scheme the orbifold SymnðR4Þ
as the target space of the sigma model one arrives at an
equivalent formula for the partition function (3.20),

Z6dUð1Þ ¼
X∞
n¼1

QnχðSymnðR4ÞÞ

¼
Y∞

n¼1;k¼0

Y
p1;p2;p3

1

ð1−QnQk
τqp1tp2Q

p3
~m Þcðkn;p1;p2;p3Þ ;

ð3:24Þ

where in the above χðSymnðR4Þ is the elliptic genus of n
strings and the expansion of the elliptic genus of one string
is taken to be

χðR4Þ ¼
X

k≥0;p1;p2;p3
cðk; p1; p2; p3ÞQk

τqp1tp2Q
p3
~m :

ð3:25Þ

Thus, in some sense the n-string result is fully determined
in terms of the one-string result, which is a reflection of the
fact that the n-string sector is obtained by winding single
strings multiple times around the different cycles of T2. It is
remarkable that such a fundamentally different representa-
tion of the elliptic genus exists as the individual terms
appearing in the two expansions (3.20) and (3.24) have a
completely different pole structure in ϵ1, ϵ2 andm as can be
seen from (3.21). Note that in the case of the A1 (2, 0)
theory a symmetric product representation for the M-string

elliptic genus does not exist; this hints at the existence of
bound states of M-strings.

IV. HETEROTIC STRINGS
FROM ORBIFOLDING

Let us recall in this section the basics of the E8 × E8

heterotic string for the geometry considered in Sec. II. To
start, we note that the Hilbert space of n heterotic strings
wrapping the T2 is the symmetric product of the Hilbert
space of a single heterotic string, as heterotic strings do not
form bound states. Said differently, at the level of the free
energy the n-heterotic string result is the same as the
n-times wound single heterotic string. This can be used to
compute the ZHet

n purely from the knowledge of ZHet
1 . To

proceed we thus just have to know the result for one
heterotic string, which we discuss next. Henceforth we will
be working in light cone gauge. For generic twist param-
eters ϵi; i ¼ 1;…; 4 we have (2, 0) SUSY on the world-
sheet. Thus, there are four chiral multiplets with twisted
boundary conditions coming from R4

2345 and R4
78910. When

computing the elliptic genus the supersymmetric side
contributes just a factor of 1, as bosonic and fermionic
degrees of freedom cancel out, but the nonsupersymmetric
side depends on all eight spacetime bosons which organize
themselves into four complex bosons with twisted boun-
dary conditions:

Zbosonsðτ; ϵiÞ ¼ −
η4

θðϵ1Þθðϵ2Þθðϵ3Þθðϵ4Þ
: ð4:1Þ

Furthermore, as the string is charged under the E8 × E8

current algebra there will be also a bosonic path integral
which contributes a factor of the character of E8 × E8,

χE8×E8
¼ ΘE8

ðτ; ~mE8;LÞΘE8
ðτ; ~mE8;RÞ

η16
; ð4:2Þ

where we have introduced the E8-Weyl invariant theta
function of modular weight 4 and level 1:

ΘE8
ðτ; ~mÞ ¼ 1

2

X4
i¼1

θiðτ; ~mÞ8: ð4:3Þ

Combining the factor (4.2) with the contributions from the
eight spacetime bosons (4.1) one arrives at

ZHet
1 ¼ −

ΘE8
ð ~mE8;LÞΘE8

ð ~mE8;RÞ
η12θ1ðϵ1Þθ1ðϵ2Þθ1ðϵ3Þθ1ðϵ4Þ

: ð4:4Þ

To obtain the formula for the elliptic genus of n heterotic
strings we can apply the results of Ref. [30]. First of all, we
expect the full partition function of heterotic strings to be
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ZHet ¼
X
n≥0

QnZHet
n ; ð4:5Þ

where Q ¼ e2πiρ with ρ being the complexified Kähler
parameter of the T2 and ZHet

0 is taken to be 1. We can next
obtain the one-loop free energy5 by taking the logarithm of
the partition function

FHet ¼ logðZHetÞ ¼
X
n≥1

QnFHet
n : ð4:6Þ

Now, following Ref. [30] we can express FHet
n in terms of

FHet
1 through the Hecke transform,

FHet
n ¼ TnFHet

1 ; ð4:7Þ

where the Hecke operator Tn acts on a weak Jacobi form
fðτ; zÞ of weight k as

Tnfðτ; zÞ ¼ nk−1
X
a;d>0
ad¼n

1

dk
X

bðmod dÞ
f

�
aτ þ b

d
; az

�
: ð4:8Þ

Applying this to our setup and noting that FHet
1 ¼ ZHet

1 has
modular weight zero we obtain

ZHet ¼ exp

�X
n≥0

Qn 1

n

X
a;d>0
ad¼n

X
bðmoddÞ

ZHet
1

�
aτþ b

d
;aϵi; a ~m

��
;

ð4:9Þ

which together with (4.5) allows us to compute ZHet
n . Again,

in order for (4.9) to be modular, analogously to theM-string
case one has to introduce some nonholomorphicity; the
resulting holomorphic anomaly can be deduced from the
modular anomaly. In the case of a single string this anomaly
can be read off from (4.4),

ZHet
1

�
−
1

τ
;
~ϵ
τ
;
~m
τ

�

¼ exp

�
−
πi
τ

�X4
i¼1

ϵ2i −
X16
i¼1

m2
i

��
ZHet
1 ðτ; ~ϵ; ~mÞ; ð4:10Þ

which shows that ZHet
1 is a weight zero Jacobi form of index

1=2 in each of the elliptic parameters ϵi and mi. As the
order n Hecke operator transforms an index m Jacobi form
to an index nm Jacobi form we see that the elliptic genus for
n heterotic strings suffers from the anomaly

ZHet
n

�
−
1

τ
;
~ϵ
τ
;
~m
τ

�

¼ exp

�
−
πi
τ
n

�X4
i¼1

ϵ2i −
X16
i¼1

m2
i

��
ZHet
n ðτ; ~ϵ; ~mÞ:

ð4:11Þ

V. REVIEW OF KNOWN RESULTS
FOR E-STRINGS

In this section we recall a geometric setup which gives
rise to the E-string theory, as well as topological string
computations on this geometry that are related to the
computation of the E-string elliptic genus. To do so, we
first start with the F-theory realization of the six-
simensional superconformal field theory of which the
degrees of freedom are the E-string, as well as its
M-theory dual. In a second subsection, we review the
connection between the M-theory picture and topological
strings and the way this connection has been exploited to
compute the E-string free energy as a genus expansion.

A. M- and F-theory realizations

E-strings arise in the Coulomb branch of small instan-
tons [11] in E8 × E8 heterotic string compactifications on
K3 [12,13]. To connect this to the picture of M2 branes
suspended between M9 and M5 branes discussed in Sec. II
one embeds the small instanton in one of the E8 factors and
considers a specific limit of the K3 where its volume is
sent to infinity and one zooms into the neighborhood of the
small instanton. In this limit the K3 can be replaced locally
by R4

78910 with an M5 brane sitting at the origin of R4
78910

and wrapping T2 ×R4
2345. Furthermore, the gauge fields of

the two E8 factors are on two different “end of the world”
M9 planes as discussed in Sec. II. Moving the M5 brane
away from the M9 plane one gains a tensor multiplet of
which thte scalar component parametrizes the distance, and
hence this phase can be interpreted as the Coulomb branch.
On the other hand the phase where one lets the size of the
instanton grow is the Higgs branch.
These transitions have a beautiful F-theory realization

obtained by compactifying F-theory on a elliptic Calabi–
Yau 3-fold [32–34]. Introducing a tensor multiplet by
moving an M5 brane away from an M9 plane translates
to blowing up the base of the elliptic fibration at a point.
This leads locally to the replacement of C2 with its blowup
which can be identified with the bundle Oð−1Þ → P1. For
the Calabi–Yau property to be satisfied the elliptic fibration
over the resulting P1 is chosen to be such that the resulting
elliptic rational surface is the so-called “half-K3” surface.
Alternatively, this surface can also be described as the del
Pezzo 9 surface B9 obtained by blowing up P2 at nine
points. The Calabi–Yau is then locally the anticanonical
bundle over this surface, namely

5This free energy can also be computed through a heterotic
string one-loop amplitude, hence the name. Similar computations
have for example been performed in Ref. [31].
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CY3 ¼ Oð−KÞ → 1

2
K3: ð5:1Þ

In this picture the exceptional strings, which in the
M-theory setup come from M2 branes suspended between
the M9 and the M5 brane, arise from D3 branes wrapping
the base of 1

2
K3. These are pierced by eight 7-branes,

corresponding to the deformation moduli of the elliptic
fibration, and are thus expected to be charged under an E8

current algebra.
Next, we employ the duality between F-theory and

M-theory. This corresponds to compactifying our F-theory
setup on S1 to five dimensions, which is dual to M-theory
on the 1

2
K3 Calabi–Yau manifold. The D3 branes wrapping

n times the base of 1
2
K3 and having Kaluza-Klein (KK)-

momentum k along S1 map in the dual picture to M2 branes
which again wrap the base of 1

2
K3 n times but are now also

wrapping the elliptic fiber k times. In the following section
we utilize the topological string to compute the BPS
degeneracies associated with these states.

B. Results from the topological string on 1
2K3

Let us now review the connection between the M-theory
setup we have arrived at and the refined topological string,
and how the latter can be used to compute the elliptic genus
of n E-strings. We have arrived through various dualities at
the setup

M-theory on ðS1 × C2Þϵ1;ϵ2 × X;

where

X ¼ Oð−KÞ → 1

2
K3 ð5:2Þ

is the local Calabi–Yau 3-fold given by the anticanonical
bundle over the half-K3 surface discussed above. In going
around the circle, one twists the two copies of C in C2

respectively by ϵ1 and ϵ2 and furthermore performs a
rotation of the fiber of X by − ϵ1þϵ2

2
in order to preserve

supersymmetry. In this setup, one can count the number of
BPS configurations of M2 branes wrapping cycles in X.
These are precisely the states that are counted by the
A-model refined topological string partition function on X
[35], so the following statement holds:

ZM-theoryðS1 × C2
ϵ1;ϵ2 × XÞ≡ ZtopðX; ϵ1; ϵ2Þ: ð5:3Þ

Besides depending on ϵ1; ϵ2, the topological string partition
function also depends on the Kähler parameters associated
to the 2-cycles of X. The second-degree homology of the
local half-K3 Calabi–Yau is given by

H2ðX;ZÞ ¼ ΓE8 ⊕ Γ1;1; ð5:4Þ

where Γ1;1 is the two-dimensional hyperbolic lattice gen-
erated by the P1 base of B9, of area t, and the torus fiber,
of area τ; ΓE8 , on the other hand, is the E8 lattice generated
by eight additional 2-cycles of area ðmE8;1;…; mE8;8Þ.
Therefore, the topological string partition function for
this geometry is a function of the 12 parameters
ðϵ1; ϵ2; t; τ; ~mE8

Þ.
At the same time, upon compactification on X, one

obtains an effective five-dimensional gauge theory on
C2 × S1, where S1 plays the role of the thermal circle.
This is the Spð1Þ ≈ SUð2Þ gauge theory with eight
fundamental hypermultiplets of Refs. [36–38], obtained
from the world volume theory of the M5 brane in the
presence of the M9 plane by first reducing along a circle to
obtain a five-dimensional theory and then further compac-
tifying along the thermal circle. The theory has a super-
conformal fixed point at strong coupling where the flavor
group is enhanced to affine E8. The BPS configurations of
M2 branes that are counted by the topological string
partition function give rise to BPS particles of this gauge
theory. From the point of view of the five-dimensional
gauge theory, ðϵ1; ϵ2Þ are fugacities associated to the
Uð1Þ ×Uð1Þ Cartan subgroup of the little group
SOð4Þ ¼ SUð2Þ × SUð2Þ. Furthermore, t corresponds to
the Coulomb branch parameter of the theory (which
descends from the vev of the six-dimensional tensor
multiplet parametrizing the separation between the M5
branes and M9 planes); τ is related to the five-dimensional
gauge coupling as follows:

τ ¼ 2πi
g2YM

; ð5:5Þ

finally, ~mE8
are simply the masses of the eight

hypermultiplets.
Since the gauge theory has its origin from the six-

dimensional theory of the M5 brane, the BPS instantons of
the gauge theory are in one-to-one correspondence with
the states of the E-string wrapping the torus. One is thus led
to the following relation between the refined topological
string (i.e. the five-dimensional BPS index) and the E-string
elliptic genus:

ZtopðX; ϵ1; ϵ2Þ ¼
X∞
n¼0

Qn
t ZE-str

n ðτ; ϵ1; ϵ2; ~mE8
Þ; ð5:6Þ

that is, the coefficient of Qn ¼ expð2πi n tÞ, where t is
interpreted as the string tension, counts the states coming
from n E-strings wrapping the torus.6 It is by exploiting this
connection with topological strings that it has been possible

6Note that we take this sector to include both a single string
wrapping the torus n times and configurations of k strings
wrapping the torus respectively n1;…; nk times, such thatP

k
j¼1 nk ¼ n.
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to perform explicit computations of the E-string elliptic
genus, beginning with the work of Ref. [14] in the context
of unrefined topological strings (i.e. setting ϵ2¼−ϵ1¼gs).
More precisely, in this context one aims at computing the
topological string free energy as a perturbative expansion
which takes the following form:

F ≡ log ðZtopðX; ϵ1; ϵ2ÞÞ ¼
X
n≥0

X
g≥0

Qng2g−2s F n;g: ð5:7Þ

The free energy of a single E-string is known to arbitrary
genus (see the discussion in Sec. VI C); in the case of
several strings, topological string techniques have been
employed to compute the free energy to high genus (for
instance, in Ref. [17] the free energy of up to five E-strings
is computed up to g ¼ 5). Recently, a similar approach was
successfully developed [22] in the refined case (where
ϵ1; ϵ2 are taken to be arbitrary), generalizing techniques that
were employed in the unrefined limit. In the refined case,
the free energy takes the following form:

F ¼
X
n≥0

X
g≥0

X
n≥0

Qnð−ϵ1ϵ2Þg−1ðϵ1 þ ϵ2Þ2lF n;g;l: ð5:8Þ

One then observes that (in the case where ~mE8
are set to

zero) the free energy satisfies the following modular
anomaly equation [which immediately gives the holomor-
phic anomaly equation upon replacing E2ðτÞ with its
modular completion Ê2ðτ; τ̄Þ]:

∂E2
F n;g;l ¼ 1

24

Xn−1
ν¼1

Xg
γ¼0

Xl
λ¼0

νðn − νÞF ν;γ;λF n−ν;g−γ;l−λ

þ nðnþ 1Þ
24

F n;g−1;l −
n
24

F n;g;l−1: ð5:9Þ

This generalizes the modular anomaly equation that was
found in the unrefined case by Hosono et al. [16]; the form
of this expression was determined (up to the n=24 coef-
ficient in front of the last term, which was obtained by
other means) by requiring it to reduce correctly to known
expressions in different limits. It is known that n E-strings
can form bound states and thus admit no simple description
in terms of the Hecke transform of a single string as was the
case for heterotic strings. This is reflected in the F νF n−ν
term of the holomorphic anomaly equation (5.9). As has
been noted in Ref. [15] (see also Ref. [39]) this term shows
that bound states of ν and n − ν strings can pair up to form a
configuration of n E-strings. In Sec. VI we will provide a
simple new derivation of this formula using the M-theory
realization of the E-string.
The modular anomaly equation allows one to fix the

E2-dependent part of the ðn; g;lÞ piece of the topological
string free energy as long as the terms with lower values of
n; g and l are known. It does not fix the E2-independent
piece; however, this is captured by a modular form of

definite weight, and since the vector space of modular
forms of a given weight is finitely generated, it can be
uniquely determined by fixing a finite number of coef-
ficients in the Qτ expansion of F n;g;l. For low values of g
and l, these coefficients can be fixed by imposing
“vanishing conditions,” that is, the fact that certain con-
tributions to the topological string free energy are required
to vanish [22]. Unfortunately, it is known that as one
increases the values of g and l the number of coefficients
that need to be fixed grows faster than the number of
vanishing conditions [22], so one cannot use this method to
compute the free energy to arbitrary order.
The same approach has been employed to compute the

free energy for nonzero values of ~mE8
[22] (although again

the vanishing conditions only allow one to determine the
free energy for small enough values of l and g). It is known
[15] that the contributions to the free energy coming from
the n-string sector can be written in terms of combinations
of level n characters of the affine E8 algebra; furthermore,
these combinations of characters can be written as poly-
nomials in nine Jacobi forms A1; A2; A3; A4; A5; B2; B3;
B4; B6,

7 which are ~mE8
dependent and invariant under

the Weyl group of E8. The subscript in An; Bn indicates the
amount by which they contribute to the E8 level; for
example, level 2 modular invariant combinations of char-
acters of affine E8 can be written as a linear combinations of
A2
1; A2; B2. Furthermore, A1;…;5 are weight-4 Jacobi forms

that reduce to the Eisenstein series E4 in the limit ~mE8
→ 0,

while B2;3;4;6 have weight 6 and reduce to E6 in the same
limit. In the next section we will use the explicit results of
Ref. [22] for the E-string free energy, written in terms of
these Weyl½E8�-invariant Jacobi forms, as input to compute
the elliptic genus for two E-strings to arbitrary powers
of l and g.

VI. ELLIPTIC GENUS OF E- AND
HETEROTIC STRINGS

In this section, we provide evidence that the elliptic
genera of up to two heterotic and exceptional strings can be
written in terms of domain wall contributions, analogously
to the M-string case. Recall that, as discussed in Sec. III, the
elliptic genus for n M-strings could be written in terms of
M5 domain wall contributions as follows:

ZM-str
n ¼

X
jνj¼n

DM5

0ν
DM5

ν0
: ð6:1Þ

This result had a very natural interpretation from the
point of view of the M2 branes suspended between the
M5 branes along the X6 direction. From the point of view of
the M2 branes the M5 branes are codimension-1 operators

7We refer the reader to in the Appendix for more details on this
class of Jacobi forms.
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supported at a point along the X6 direction. In the limit
where the area of the T2 is taken to be very small one is left
with one dimensional quantum mechanics, where X6 plays
the role of time; furthermore, the Hilbert space of n M2
branes is labeled by size n Young diagrams [1,24]. These
states are eigenfunctions of the Hamiltonian Ĥ, with the
eigenvalue given by the number of boxes in the Young
diagram. Furthermore, the M5 defect operators become
quantum mechanical operators that map a certain number
of M2 branes to linear combinations of arbitrary numbers
of M2 branes, so one can interpret the elliptic genus as
expectation value of two M5 domain wall operators
inserted at different times8:

e−ntZM-str
n ¼ h0jD̂M5e−ĤtD̂M5j0i:

Given that the difference between the E-string and the
M-string is simply that in the former case the M2 branes
terminate on an M9 plane, while in the latter they terminate
on an M5 brane, it is natural to ask whether one can find a
similar domain wall formula for the E-string elliptic genus,

where instead of inserting an M5 domain wall operator on
the left we take the product with an appropriate state
jψM9i ¼ DM9;L

ν jνi for the M9 plane at the left end of
S1=Z2. In this section, therefore, we seek an expression for
the E-string elliptic genus of the form

e−n tZE-str
n ¼

X
jνj¼n

h0jD̂M5e−ĤtjνihνjψM9i ¼
X
jνj¼n

DM9;L
ν DM5

ν0
:

ð6:2Þ

Building on results from topological string theory and
exploiting several properties that the elliptic genus of
E-strings is expected to satisfy we are able to uniquely
fix the left M9 domain walls for one and two strings,

DM9;L
□

¼
�
ΘE8

ð ~mE8;LÞ
η8

�
η

θ1ðϵ3Þ
·

1

ξ−ðϵ1Þξþð−ϵ2Þ
ð6:3Þ

and

(6.4)

(6.5)

where and [explicit expressions for which can be
found in Eqs. (6.44) and (6.45)] are certain Jacobi forms of
weight 8 that depend on the E8 Wilson lines as well as
ϵ1; ϵ2. We also find corresponding formulas for the right
M9 domain walls. Combining these domain walls with the
known M5 domain walls, we are able to reproduce the
known elliptic genus for a single E-string and find a novel
closed formula for the two E-string elliptic genus, which
takes the following form:

(6.6)

Once the M9 domain walls have been computed, it is
natural to ask the following question: given that the
heterotic string is given by M2 branes which end on two
M9 planes, is it possible to also write the elliptic genus of
heterotic strings in terms of domain wall expressions,
where now we take both domain walls to be of the M9
type? We find that this is indeed the case; for one heterotic
string, we show that

Zhet
1 ¼ DM9;L

□
ð ~mE8;LÞDM9;R

□
ð ~mE8;RÞ: ð6:7Þ

Similarly, for two heterotic strings we find the identity

(6.8)

8Note that the definition of t we employ here differs by the one employed elsewhere by a Wick rotation and therefore is rescaled by a
factor of 2πi.
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where (…) are two additional terms that are obtained from
the first two by symmetrizing with respect to permutations
of ϵ1; ϵ2; ϵ3 and ϵ4. This formula matches with the ex-
pression one obtains by using the Hecke transform of
the one heterotic string elliptic genus, despite the fact that it
has a very different appearance. In particular, each one of
the terms appearing in our new expression is manifestly
modular and is split into two factors, one which only
depends on the E8;L degrees of freedom and one which only
depends on the E8;R degrees of freedom.
While the computation of elliptic genera in this paper

is limited to the case of one and two E-strings, we offer
some evidence that our approach should work for an
arbitrary number of strings by deriving the E-string
modular anomaly equation, which was recently conjectured
in Ref. [22], from the known holomorphic anomaly
equations for M- and heterotic strings, assuming that these
elliptic genera can all be written in terms of M5 and M9
domain walls.
This section is divided as follows. In Sec. VI A we

provide more details of our approach and of the ingredients
that go into it. In Sec. VI B we show how this leads
to an alternate derivation of the E-string modular anomaly
equation. In Sec. VI C we compute the M9 domain wall
factor associated to a single M9 plane and use it to
reproduce known formulas for the elliptic genus for a
single E-string and a single heterotic string. In Sec. VI D
we turn to the case of two strings. We derive expressions for
the corresponding M9 domain walls, and we use these to
derive a closed formula for the elliptic genus of two
E-strings; furthermore, we obtain a novel expression for
the elliptic genus of two heterotic strings. Finally, in
Sec. VI E we make some additional comments about the
features of the domain wall expressions we obtained.

A. M9 domain walls

The computation of the elliptic genus of the E-strings is
not an easy task, since configurations of several E-strings
form bound states and therefore their elliptic genus cannot
be deduced from the elliptic genus of a single E-string by
means of the Hecke transform. Here we describe in some
detail an alternative approach, which is based on the
computation of M9 domain wall factors. Fortunately, from
the symmetries of the problem one can deduce several
properties that these factors must satisfy which will allow
us to uniquely determine them in the case of n ¼ 1; 2. We
list the expected properties here:

(i) The elliptic genus for n E-strings is expected to
transform with modular weight 0 under the SLð2;ZÞ
transformation

ðt;m;ϵ1;ϵ2;τÞ→
�
t;

m
cτþd

;
ϵ1

cτþd
;

ϵ2
cτþd

;
aτþb
cτþd

�
;

ð6:9Þ

where

�
a b
c d

�
∈ SLð2;ZÞ:

Since the denominator of the M5 domain wall
expression (3.10) by itself is not modular invariant,
each factor of ξ�ðzÞ that appears there must be
matched by an equivalent factor of ξ∓ðzÞ in the M9
domain wall in order to combine them into the
Jacobi form θ1ðτ; zÞ=ηðτÞ, which has well-defined
modular transformation properties.

(ii) The E-string partition function does not depend on
the mass parameter m ¼ ðϵ4 − ϵ3Þ=2. This implies
that the mass-dependent factors in the numerator of
the M5 domain wall must be canceled by identical
factors in the denominator of the M9 domain wall.

(iii) As discussed above, the ~mE8
dependence of the

n E-string free energy (and therefore also the n
E-string elliptic genus) is captured in terms of level n
characters of affine E8, and thus the ~mE8

-dependent
factors in the n E-string elliptic genus can be written
in terms of level n combinations of the Weyl½E8�-
invariant Jacobi forms A1;2;3;4;5; B2;3;4;6 which are
discussed in the Appendix.

(iv) From the modular anomaly equation for the E-string
free energy, Eq. (5.9), one easily derives a modular
anomaly equation for the elliptic genus of
n E-strings in the limit ~mE8

→ 0,

∂E2
ZE-str
n j ~mE8

¼0

¼ −
ð2πÞ2
24

½ϵ1ϵ2ðjνj2 þ jνjÞ − ϵ2þjνj� · ZE-str
n j ~mE8

¼0;

ð6:10Þ

where ϵþ ¼ ϵ1 þ ϵ2. This is most easily satisfied by
requiring that each summand Zν ¼ DM9

ν DM5

ν0
in

Eq. (6.2) satisfy the same equation, so we conjecture
that the following holds:

∂E2
ZE-str
ν j ~mE8

¼0

¼ −
ð2πÞ2
24

½ϵ1ϵ2ðjνj2 þ jνjÞ − ϵ2þjνj� · ZE-str
ν j ~mE8

¼0:

ð6:11Þ

The Weyl½E8�-invariant Jacobi forms A1;2;3;4;5;
B2;3;4;6 satisfy the following modular anomaly
equation:

∂E2
Anðτ; ~mE8

Þ ¼ −n ·
ð2πÞ2
24

�X8
i¼1

m2
E8;i

�
Anðτ; ~mE8

Þ;
ð6:12Þ
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∂E2
Bnðτ; ~mE8

Þ ¼ −n ·
ð2πÞ2
24

�X8
i¼1

m2
E8;i

�
Bnðτ; ~mE8

Þ;
ð6:13Þ

this leads us to guess the following form for the
E-string holomorphic anomaly, for arbitrary values
of ~mE8

:

∂E2
ZE-str
ν ¼ −

ð2πÞ2
24

�
ϵ1ϵ2ðjνj2 þ jνjÞ − ϵ2þjνj

þ jνj
�X8

i¼1

m2
E8;i

��
· ZE-str

ν : ð6:14Þ

(v) Finally, the elliptic genus for n E-strings is expected
to be symmetric under exchange of ϵ1 and ϵ2. This
is guaranteed by the fact that Zνðϵ1; ϵ2Þ and
Zνðϵ2; ϵ1Þ ¼ Zνtðϵ1; ϵ2Þ both appear in the expres-
sion for Zjνjðϵ1; ϵ2Þ.

We also make the assumption that from the E8 degrees
of freedom (which for a single E-string are eight bosons
compactified on the E8 lattice) one obtains a factor of η8n

in the denominator of the elliptic genus of n E-strings.
From this, and from the first three properties listed above,
we can immediately write down the ansatz for the left M9
domain wall,

DM9;L
ν ¼ NL

ν ðτ; ~mE8;L; ϵ1; ϵ2Þ
ηðτÞ8jνjBL

ν ðτ; ϵ1; ϵ2ÞFR
ν ðτ; ϵ1; ϵ2; mÞ ; ð6:15Þ

where9

BL
ν ðτ; ϵ1; ϵ2Þ ¼

Y
ði;jÞ∈ν

ξþðϵ1ðνi − jþ 1Þ

− ϵ2ðνtj − iÞÞξ−ðϵ1ðνi − jÞ
− ϵ2ðνtj − iþ 1ÞÞ ð6:16Þ

and

FR
ν ðτ; ϵ1; ϵ2Þ ¼

Y
ði;jÞ∈ν

θ1ð−m − ϵ1ðνi − jþ 1=2Þ

þ ϵ2ð−iþ 1=2ÞÞ=η ð6:17Þ

are obtained by requiring that they combine correctly with
the bosonic (that is, denominator) and fermionic (numer-
ator) pieces of the M5 domain wall DM5

ν0
[Eq. (3.10)].

Likewise, we take the right M9 domain wall to be
given by

DM9;R
ν ¼ NR

ν ðτ; ~mE8;R; ϵ1; ϵ2Þ
ηðτÞ8jνjBR

ν ðτ; ϵ1; ϵ2ÞFL
ν ðτ; ϵ1; ϵ2; mÞ ; ð6:18Þ

where10

BR
ν ðτ; ϵ1; ϵ2Þ ¼

Y
ði;jÞ∈ν

ξ−ðτ; ϵ1ðνi − jþ 1Þ

− ϵ2ðνtj − iÞÞξþðτ; ϵ1ðνi − jÞ
− ϵ2ðνtj − iþ 1ÞÞ ð6:19Þ

and

FL
ν ðτ; ϵ1; ϵ2Þ ¼

Y
ði;jÞ∈ν

θ1ðτ;−mþ ϵ1ðνi − jþ 1=2Þ

− ϵ2ð−iþ 1=2ÞÞ=ηðτÞ: ð6:20Þ

The transformation that exchanges left and right M5
domain walls leaves ϵ1 and ϵ2 fixed [see Eq. (3.11)].
Therefore, it is natural to expect that

NR
ν ð ~mE8;R; ϵ1; ϵ2Þ ¼ NL

ν ð ~mE8;R; ϵ1; ϵ2Þ ¼ Nð ~mE8;R; ϵ1; ϵ2Þ;
ð6:21Þ

so the only difference between the numerators of the left
and right domain walls is that they depend on the fugacities
for the corresponding E8 group. The nontrivial task is to
compute the numerator factor NL

ν ; later in this section we
will use the remaining properties listed above to uniquely
determine it in the case of one and two E-strings.
Once the M9 domain walls have been computed, it

should also be possible to express the heterotic string
partition function in terms of them (now replacing every
occurrence of mass parameter m with ðϵ4 − ϵ3Þ=2, as is
more appropriate in this context):

Zn
het ∼

X
DM9;L

n ð ~mE8;LÞ ·DM9;R
n ð ~mE8;RÞ: ð6:22Þ

We will show how this works explicitly for one and two
heterotic strings in the following sections. For now, let us
list the properties that the elliptic genus for n heterotic
strings, reviewed in Sec. IV, is known to satisfy:

(i) The elliptic genus for n heterotic strings transforms
with modular weight 0 under the SLð2;ZÞ modular
transformation

9Up to a prefactor t−
∥νt∥2

2 which is needed to ensure that after
gluing the factors of ξ� combine correctly into theta functions. 10Up to a prefactor q−

∥ν∥2
2 .
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ðt; ϵ1; ϵ2; ϵ3; ϵ4; τÞ

→

�
t;

ϵ1
cτ þ d

;
ϵ2

cτ þ d
;

ϵ3
cτ þ d

;
ϵ4

cτ þ d
;
aτ þ b
cτ þ d

�
:

ð6:23Þ

(ii) The elliptic genus for n heterotic strings is invariant
under pairwise exchange of ϵi; ϵj, for any
i; j ¼ 1…; 4.

(iii) The modular anomaly equation for the heterotic
string is given by Eq. (4.11):

∂ZHet
n

∂E2

¼ n ·
ð2πÞ2
24

�X4
i¼1

ϵ2i

−
X8
i¼1

ððmL
E8;i

Þ2 þ ðmR
E8;i

Þ2Þ
�
ZHet
n : ð6:24Þ

B. E-string holomorphic anomaly

The purpose of this section is to demonstrate that the
modular anomaly equation (6.14) for the E-strings can be
easily derived from the modular anomaly equations for
heterotic and M-strings, by using our ansatz for the M9
domain walls, Eq. (6.15). To see this, note that each
summand appearing in the elliptic genus of n M-strings,
Eq. (6.1), has the form

FL
ν · FR

ν

BL
ν · BR

ν
; ð6:25Þ

where the explicit expressions for these factors are unim-
portant for the present discussion. Similarly, from our
domain wall ansatz we expect each summand in the
expression for ZE-str

n to have the form

NL
ν ðτ; ~mE8;L; ϵ1; ϵ2Þ
η8nðBL

ν · BR
ν Þ

ð6:26Þ

and each summand in Zhet
n to have the form

Nð ~mE8;L; ϵ1; ϵ2Þ · Nð ~mE8;R; ϵ1; ϵ2Þ
η16nðBL · BRÞðFL · FRÞ : ð6:27Þ

Note that, if we set ~mE8;R ¼ ~mE8;L, Eq. (6.26) is the square
root of the product between Eqs. (6.25) and (6.27).
Therefore, we expect that

1

ð2πÞ2
1

ZE-str
n

∂ZE-str
n

∂E2

¼ 1

ð2πÞ2
1

2ZM-str
n

∂ZM-str
n

∂E2

þ 1

ð2πÞ2
�

1

2Zhet
n

∂Zhet
n

∂E2

�
j ~mE8 ;R

¼ ~mE8 ;L
:

ð6:28Þ

Indeed, a short calculation reveals that the right-hand side is
given by

r:h:s: ¼ −
n
24

�
ϵ1ϵ2nþ

��
ϵ3 − ϵ4

2

�
2

−
�
ϵ1 þ ϵ2

2

�
2
��

þ n
48

�X4
i¼1

ϵ2i − 2
X8
i¼1

ðmL
E8;i

Þ2
�

¼ −
n
24

�
ϵ1ϵ2nþ

��
ϵ3 − ϵ4

2

�
2

−
�
ϵ3 þ ϵ4

2

�
2
��

þ n
48

�
ðϵ1 þ ϵ2Þ2 þ ðϵ3 þ ϵ4Þ2 − 2ðϵ1ϵ2 þ ϵ3ϵ4Þ − 2

X8
i¼1

ðmL
E8;i

Þ2
�

¼ −
n
24

½ϵ1ϵ2n − ϵ3ϵ4� þ
n
48

�
2ðϵ1 þ ϵ2Þ2 − 2ðϵ1ϵ2 þ ϵ3ϵ4Þ − 2

X8
i¼1

ðmL
E8;i

Þ2
�

¼ n
24

�
ðϵ1 þ ϵ2Þ2 − ðnþ 1Þϵ1ϵ2 −

�X8
i¼1

ðmL
E8;i

Þ2
��

; ð6:29Þ

which is identical to the conjectural E-string modular
anomaly of Eq. (6.14) that was obtained using completely
different techniques.

C. One E-string and one heterotic string

We now turn to the explicit computation of the M9
domain wall for the partition ν ¼ □ and show that the
elliptic genera for a single E-string and the one for a single

heterotic string can both be written in terms of it. The
elliptic genus for a single E-string is known exactly:
it is simply given by the torus partition function for eight
bosons compactified on an internal E8 lattice and four
spacetime bosons,

ZE-str
1 ¼ −

�
A1ð ~mE8;LÞ

η8

�
η2

θ1ðϵ1Þθ1ðϵ2Þ
; ð6:30Þ
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where A1ð ~mE8;LÞ ¼ ΘE8
ðτ; ~mE8;LÞ is the E8 theta function.

If we make the ansatz

ZE-str
1 ¼ DM9;L

□
DM5;R

□0
; ð6:31Þ

where

DM5

□0
¼ θ1ð−m − ϵþ=2Þη−1

ξ−ðϵ1Þξþð−ϵ2Þ
; ð6:32Þ

we immediately see that

DM9;L
□

¼
�
A1ð ~mE8;LÞ

η8

�
η

θ1ð−m − ϵþ=2Þ
·

1

ξþðϵ1Þξ−ð−ϵ2Þ

¼
�
A1ð ~mE8;LÞ

η8

�
η

θ1ðϵ3Þ
·

1

ξþðϵ1Þξ−ð−ϵ2Þ
: ð6:33Þ

Recalling that under left-right exchange ϵ3 ↔ ϵ4,
~mE8;L ↔ ~mE8;R and ξ� ↔ ξ∓ we also find that

DM9;R
□

¼
�
A1ð ~mE8;RÞ

η8

�
η

θ1ðϵ4Þ
·

1

ξ−ðϵ1Þξþð−ϵ2Þ
: ð6:34Þ

It is now straightforward to verify that combining the left
and right M9 domain walls gives

Zhet
1 ¼ −

�
A1ð ~mE8;LÞ × A1ð ~mE8;RÞ

η16

�

×
η4

θ1ðϵ1Þθ1ðϵ2Þθ1ðϵ3Þθ1ðϵ4Þ
; ð6:35Þ

which is precisely the elliptic genus for a single heterotic
string, since

A1ð ~mE8;LÞ × A1ð ~mE8;RÞ ¼ ΘE8×E8
ðτ; ~mE8;L; ~mE8;RÞ:

ð6:36Þ

D. Two E-strings and two heterotic strings

We now turn to the discussion of domain walls for two
strings. Using these domain walls we will be able to deduce
an exact expression for the elliptic genus of two E-strings;
we will also be able to obtain an expression for the elliptic
genus of two heterotic strings which is in agreement with
the orbifolding formula. Before turning to computations,
we would like to highlight a remarkable fact. As discussed
in Sec. IV, the heterotic strings do not form bound states,
and therefore their elliptic genus can be computed by
means of the Hecke transform; on the other hand, the
E-strings, like the M-strings, do form bound states and
therefore do not admit such a simple description.
Nevertheless, we will see that the same building
blocks—the M9 and M5 domain walls—can be used to
compute the elliptic genera for two E-strings as well as for
two heterotic strings.
Following the approach outlined at the beginning of

the section, we start by making the following ansatz for
the two E-string elliptic genus:

(6.37)

where

(6.38)

and

(6.39)

This leads to the following ansatz for the M9 domain walls:

(6.40)

(6.41)

We expect that the two E-string elliptic genus can be written as

(6.42)

To fix the numerator terms we exploit the following facts:
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(i) Modular invariance of ZE-str
2 requires the modular

weight of and to be 8 in order to cancel with the
modular weight of the denominator [since η and
θ1ðzÞ have modular weight 1=2].

(ii) The numerator terms can be written as linear
combinations of the three level-2 Weyl½E8�-invariant
modular forms A2

1; A2 and B2.
(iii) From the modular anomaly equation for ZE-str

2 one
obtains

(6.43)

the mE8;L terms in this equation are consistent with
the fact that can be expressed in terms of level-2
characters of affine E8, while the −ϵ21=12 term
indicates that is a function of ϵ1 and not ϵ2
and furthermore that it transforms with index 2 with
respect to ϵ1 under modular transformations. Since

an analogous conclusion holds for , which is
written in terms of level-2 E8 characters and
index-2 Jacobi forms with elliptic parameter ϵ2.

Concretely, this forces the numerator terms to have the
form

(6.44)

(6.45)

where f1ðτ; ϵÞ; f2ðτ; ϵÞ; f3ðτ; ϵÞ are Jacobi forms of index 2
with elliptic parameter ϵ, respectively of modular weight 0,
2 and 4.

We now resort to the following fact about Jacobi forms
[40]: The weak Jacobi forms with modular parameter τ
and elliptic parameter ϵ of index k and even weight w
form a polynomial ring which is generated by the four
modular forms E4ðτÞ; E6ðτÞ;ϕ0;1ðϵ; τÞ and ϕ−2;1ðϵ; τÞ,
where

ϕ−2;1ðϵ; τÞ ¼ −
θ1ðϵ; τÞ2
η6ðτÞ and

ϕ0;1ðϵ; τÞ ¼ 4

�
θ2ðϵ; τÞ2
θ2ð0; τÞ2

þ θ3ðϵ; τÞ2
θ3ð0; τÞ2

þ θ4ðϵ; τÞ2
θ4ð0; τÞ2

�

are Jacobi forms of index 1, respectively of weight −2
and 0.

Thus, modularity implies that f1; f2; f3 can be written as
follows:

f1ðϵÞ ¼ c1;1ϕ0;1ðϵÞ2 þ c1;2E4ϕ−2;1ðϵÞ2; ð6:46Þ

f2ðϵÞ ¼ c2;1E4ϕ0;1ðϵÞϕ−2;1ðϵÞ þ c2;2E6ϕ−2;1ðϵÞ2; ð6:47Þ

f3ðϵÞ ¼ c3;1E4ϕ0;1ðϵÞ2 þ c3;2E6ϕ0;1ðϵÞϕ−2;1ðϵÞ
þ c3;3E2

4ðτÞϕ−2;1ðϵÞ2: ð6:48Þ

We now can determine the numerical coefficients ci;j as
follows: We use the results for the topological string free
energy for up to n ¼ 2 computed in Ref. [22] to calculate
ZE-str
2 as an expansion in ϵ1 · ϵ2 and ϵ1 þ ϵ2, and match it

against our ansatz (6.42). We find that the terms in the free
energy up to gþ l ¼ 2 are sufficient to uniquely fix all the
coefficients in our expression.11 We find the following
result:

(6.49)

and

11In fact, the form of the numerator is constrained even further if we observe that, when we set ~mE8
→ 0, it should be given by a

genuine holomorphic Jacobi form in ϵ1 or ϵ2 (not just a weakly holomorphic Jacobi form), as one expects from a unitary theory.
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(6.50)

In fact, in Ref. [22] the free energy was computed up to
gþ l ¼ 3; we have checked that our domain wall expres-
sions also match exactly with those coefficients. This

provides a nontrivial check that we have found a formula
for the two E-string elliptic genus which is exact to all
orders in g and l. Given the explicit formula for the two E-
string elliptic genus, Eq. (6.42), one can easily check that
the answer is not what one would have obtained using the
Hecke transform:

ZE-str
2 ðτ; ~mE8; ϵ1; ϵ2Þ ≠

1

2
½ZE-str

1 ðτ; ~mE8; ϵ1; ϵ2Þ2 þ ZE-str
1 ð2τ; 2 ~mE8; 2ϵ1; 2ϵ2Þ

þ ZE-str
1 ðτ=2; ~mE8; ϵ1; ϵ2Þ þ ZE-str

1 ðτ=2þ 1=2; ~mE8; ϵ1; ϵ2Þ�: ð6:51Þ

This was to be expected, since the right-hand side is not supposed to produce the right answer in contexts where the strings
can form bound states.
We now would like to demonstrate that the M9 domain walls can also be used to compute the two heterotic string

partition functions. Note that

(6.52)

and

(6.53)

Here we run into a puzzle: We would naively have guessed that

(6.54)

however, notice that this expression is not invariant under arbitrary exchanges of the four parameters ϵ1;…;4, as we would
expect from the heterotic string. We find instead that the first summand is invariant under arbitrary permutation of ϵ2;3;4
while the second is invariant under any permutation of ϵ1;3;4; furthermore, the two terms are exchanged by ϵ1 ↔ ϵ2. The
most natural remedy for this is to symmetrize the right -hand side of Eq. (6.54). This leads to the following formula for the
elliptic genus for two heterotic strings:

(6.55)

We find by direct comparison that this expression exactly matches with the orbifold formula for the elliptic genus for two
heterotic strings, despite their completely different appearance.12

12We have checked this result up to powers of Q8
τ , with a generic choice of E8 × E8 Wilson lines.
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To highlight the novel properties of formula (6.55), let us
recall here the result of the orbifold formula of Sec. IV
specialized to the case of two heterotic strings:

Zhet
2 ðτ; ~ϵ; ~mE8×E8

Þ ¼ 1

2

�
ðZhet

1 ðτ; ~ϵ; ~mE8×E8
ÞÞ2

þ Zhet
1 ð2τ; 2~ϵ; 2 ~mE8×E8

Þ

þ Zhet
1

�
τ

2
; ~ϵ; ~mE8×E8

�

þ Zhet
1

�
τ þ 1

2
; ~ϵ; ~mE8×E8

��
: ð6:56Þ

One can clearly see from this expression that the left and
right E8 masses are entangled in a nontrivial way. By this
we mean that it is not possible to perform independent
SLð2;ZÞ transformations on the left and right degrees of
freedom, since under an SLð2;ZÞ transformation the last
three terms in Eq. (6.56) transform into each other in a
nontrivial way. In contrast to this expression (6.55) is
manifestly SLð2;ZÞ invariant, and one can perform inde-
pendent modular transformations on the left and right
degrees of freedom.

E. Discussion of results

We have derived expressions for one and two E-strings
(6.42) as well as for one and two heterotic strings (6.42) in
terms of domain wall building blocks. These expressions
lead for the first time to an exact expression for the elliptic
genus for two E-strings and a new representation for the
elliptic genus of two heterotic strings. Our results have a
few unusual and interesting properties on which we want to
comment. First of all, observe that the well-known orbifold
representation for heterotic strings given by (4.9) has a
very simple pole structure in the parameters ϵi. On the other
hand, the individual terms in Eq. (6.55) have a more
complicated pole structure. The agreement with the orbi-
fold formula is a consequence of a nontrivial cancelation
between the poles appearing in these terms.
We also wish to remark that it should be possible to give

a direct physical interpretation to M9 domain wall expres-
sions. This was the case for the M5 brane domain wall
formula, which in Ref. [1] was shown to be equal to the
open topological string partition function for a certain toric
Calabi–Yau 3-fold. It would be interesting to determine
whether the M9 domain wall formulas can also be related to
the computation of the open topological string partition
function on some specific Calabi–Yau geometry. A hint in
this direction comes from the fact that the M9 expressions
we computed have an integral expansion in the parameters
Qτ, q, t andQm, which is consistent with a BPS degeneracy
interpretation of the expansion coefficients.
It remains to comment on the validity of our ansatz

for three or more strings. One supporting argument we

provided is that our domain wall picture leads to the correct
holomorphic anomaly equation for the E-string from those
of the M-string and heterotic string.13 Furthermore, we have
checked that for three heterotic strings the leading term
of the expected result given by the orbifold formula is
reproduced correctly by our ansatz. If this proves to be the
case for any number of strings it should be possible to
compute arbitrary E-string elliptic genera by fixing the
appropriate M9 domain wall expressions through the
knowledge of the heterotic string result. We intend to
pursue this line of research in future work.
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APPENDIX: MODULAR AND JACOBI FORMS

In this Appendix we collect several definitions and
results related to (quasi)modular and Jacobi forms that
we make extensive use of in the main body of the text.

1. Modular forms

We begin by defining an important class of holomorphic
functions of the modular parameter τ, the Eisenstein series,
which have the following series expansion:

E2kðτÞ ¼ 1 −
4k
B2k

X∞
n¼1

σ2k−1ðnÞqn; ðA1Þ

where q ¼ e2πiτ; B2k are the Bernoulli numbers, defined asP∞
k¼0 Bk

xk
k! ¼ x

ex−1; and σkðnÞ ¼
P

djndk. For k > 1 the
Eisenstein series E2k transforms as a holomorphic modular
form of weight 2k, in the sense that

13See also Ref. [41] for a computation of the anomaly
polynomial of E-strings by using contributions from the M5
brane and M9 plane.
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E2k

�
aτ þ b
cτ þ d

�
¼ ðcτ þ dÞ2kE2kðτÞ;

�
a b

c d

�
∈ SLð2;ZÞ: ðA2Þ

For k ¼ 1, the Eisenstein series E2ðτÞ is modular up to an
anomalous term:

E2

�
aτ þ b
cτ þ d

�
¼ ðcτ þ dÞ2E2ðτÞ −

6ic
π

ðcτ þ dÞ;
�
a b

c d

�
∈ SLð2;ZÞ: ðA3Þ

The anomalous term can be removed by defining an
alternative form of the Eisenstein series,

Ê2ðτ; τ̄Þ ¼ E2ðτÞ −
6i

πðτ − τ̄Þ ; ðA4Þ

at the cost of introducing a mild dependence on the
antiholomorphic parameter τ̄. Unlike E2ðτÞ, Ê2ðτ; τ̄Þ trans-
forms as an honest weight-2 modular form:

Ê2

�
aτ þ b
cτ þ d

;
aτ̄ þ b
cτ̄ þ d

�
¼ ðcτ þ dÞ2Ê2ðτ; τ̄Þ;

�
a b

c d

�
∈ SLð2;ZÞ: ðA5Þ

The space of quasiholomorphic SLð2;ZÞ modular
forms, that is, modular forms which are polynomials in
ImðτÞ−1 with coefficients which are holomorphic functions
of τ, is a polynomial ring which is generated by

Ê2ðτ; τ̄Þ; E4ðτÞ; and E6ðτÞ; ðA6Þ

similarly,

E2ðτÞ; E4ðτÞ; and E6ðτÞ ðA7Þ

generate the polynomial ring of SLð2;ZÞ quasimodular
forms, defined simply by taking the holomorphic part of
quasiholomorphic modular forms.
Another function we will make extensive use of is the

Dedekind eta function

ηðτÞ ¼ e
πiτ
12

Y∞
n¼1

ð1 − e2πinτÞ; ðA8Þ

which, up to a phase, transforms as a weight-1=2 modular
form:

ηðτ þ 1Þ ¼ e
πi
12ηðτÞ; ηð−1=τÞ ¼ e−πi=2τ1=2ηðτÞ:

ðA9Þ

2. Jacobi forms

We now turn to a brief discussion of Jacobi forms,
which are functions of a modular parameter τ and an
elliptic parameter z. Under a modular transformation
parametrized by

�
a b
c d

�
∈ SLð2;ZÞ;

Jacobi forms transform as follows:

ϕ

�
aτ þ b
cτ þ d

;
z

cτ þ d

�
¼ ðcτ þ dÞke2πimcz2

cτþd ϕðτ; zÞ; ðA10Þ

also, under translations of z by Zτ þ Z they transform as
follows:

ϕðτ; zþ λτ þ μÞ ¼ e−2πimðλ2τþ2λzÞϕðτ; zÞ; λ; μ ∈ Z:

ðA11Þ

The two numbers k and m are referred to respectively as
the weight and index of the modular form. Jacobi forms
have a Fourier expansion of the form

X
n;r

cðn; rÞe2πinτe2πirz: ðA12Þ

One usually requires the coefficients cðn; rÞ of Jacobi
forms to vanish for r2 > 4mn; imposing the less strict
condition that cðn; rÞ ¼ 0 if n < 0 leads to a larger class
of functions denoted as weak Jacobi forms.
A prominent example of Jacobi form is the Jacobi theta

function

θ1ðτ; zÞ ¼ −ieπiτ=6eπizηðτÞ
Y∞
k¼1

ð1 − e2πikτe2πizÞ

× ð1 − e2πiðk−1Þτe−2πiizÞ; ðA13Þ

which has weight 1=2 and index 1=2; it satisfies the
property that

∂E2
θ1ðτ; zÞ ¼

ð2πizÞ2
24

θ1ðτ; zÞ:

Closely related to θ1ðz; τÞ are the functions

θ2ðτ; zÞ ¼ θ1ðτ; zþ 1=2Þ; ðA14Þ

θ3ðτ; zÞ ¼ eπizþπiτ=4θ1ðτ; zþ 1=2þ τ=2Þ; ðA15Þ
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θ4ðτ; zÞ ¼ −ieπizþπiτ=4θ1ðτ; zþ τ=2Þ: ðA16Þ

In the main text we make use of the following result
concerning weak Jacobi forms of even weight (see for
example Ref. [40]):

“The weak Jacobi forms with modular parameter τ and
elliptic parameter ϵ of index k and even weight w form a
polynomial ring which is generated by the four modular
forms E4ðτÞ; E6ðτÞ;ϕ0;1ðτ; zÞ, and ϕ−2;1ðτ; zÞ, where

ϕ−2;1ðτ; zÞ ¼ −
θ1ðτ; zÞ2
η6ðτÞ and

ϕ0;1ðτ; zÞ ¼ 4

�
θ2ðτ; zÞ2
θ2ðτ; 0Þ2

þ θ3ðτ; zÞ2
θ3ðτ; 0Þ2

þ θ4ðτ; zÞ2
θ4ðτ; 0Þ2

�

are Jacobi forms of index 1, respectively of weight −2
and 0.”

It is important to note that

∂E2
ϕ−2;1ðτ; zÞ ¼

ð2πizÞ2
12

ϕ−2;1ðτ; zÞ;

∂E2
ϕ0;1ðτ; zÞ ¼

ð2πizÞ2
12

ϕ0;1ðτ; zÞ:

Lastly, we define the nth Hecke operator Tn by its action
on a weak Jacobi form fðτ; zÞ of weight k as

Tnfðτ; zÞ ¼ nk−1
X
a;d>0
ad¼n

1

dk
X

bðmod dÞ
f

�
aτ þ b

d
; az

�
: ðA17Þ

Under this transformation, weak Jacobi forms of weight k
and index m are mapped to weak Jacobi forms of weight k
and index nm.

3. Weyl invariant Jacobi forms for E8

We conclude this Appendix by mentioning a class of
multivariate Jacobi forms which are invariant under the
Weyl group of E8. These functions depend on the modular
parameter τ as well as eight parameters m1;…;8

E8
and are

organized in two classes:

A1; A2; A3; A4; A5 and B2; B3; B4; B6: ðA18Þ

In the limit ~mE8
→ 0, these functions reduce to Eisenstein

series:

Aiðτ; ~mE8
Þ → E4ðτÞ; Biðτ; ~mE8

Þ → E6ðτÞ: ðA19Þ

Furthermore, one has

∂E2
Anðτ; ~mE8

Þ ¼ −n ·
ð2πÞ2
24

�X8
i¼1

m2
E8;i

�
Anðτ; ~mE8

Þ;
ðA20Þ

∂E2
Bnðτ; ~mE8

Þ ¼ −n ·
ð2πÞ2
24

�X8
i¼1

m2
E8;i

�
Bnðτ; ~mE8

Þ:
ðA21Þ

It is known that any Jacobi form which is given by a linear
combination of characters of affine E8 representations and
is invariant under the Weyl group of E8 can be written as a
polynomial in A1;2;3;4;5; B2;3;5. The superscript of these
functions indicates the amount by which they contribute
to the level of the affine E8 character. Thus, for example,
any Weyl-invariant Jacobi form which is a combination of
level-2 characters of affine E8 can be written as a linear
combination of A1ðτ; ~mE8

Þ2; A2ðτ; ~mE8
Þ and B2ðτ; ~mE8

Þ.
The simplest of these functions, A1ð ~mE8

; τÞ, is equal to
the E8 theta function

ΘE8
ðτ; ~mE8

Þ ¼
X
~k∈ΓE8

expðπiτ~k · ~kþ 2πi ~mE8
· ~kÞ

¼ 1

2

X4
k¼1

Y8
l¼1

θkðτ;ml
E8
Þ; ðA22Þ

where ~k runs over the points of the E8 lattice ΓE8
. The other

eight E8 Jacobi functions can be defined starting from
A1ð ~mE8

; τÞ, as discussed in more detail in Refs. [21]
and [22].
Finally, it is worth mentioning the E8 × E8 theta func-

tion, which depends on 16 parameters ~mE8×E8
and is

defined as

ΘE8×E8
ðτ; ~mE8×E8

Þ ¼
X

~k∈ΓE8×E8

expðπiτ~k · ~kþ 2πi ~mE8×E8
Þ:

ðA23Þ

Since ΓE8×E8
¼ ΓE8

⊕ ΓE8
, one can pick a basis where

~mE8×E8;1;…; ~mE8×E8;8 ¼ ~mE8;L ðA24Þ

only have nonzero product with the first ΓE8
factor, while

~mE8×E8;9;…; ~mE8×E8;16 ¼ ~mE8;R ðA25Þ

only have nonzero product with the second ΓE8
factor. It is

thus clear that

ΘE8×E8
ðτ; ~mE8×E8

Þ ¼ ΘE8
ðτ; ~mE8;LÞΘE8

ðτ; ~mE8;RÞ
¼ A1ðτ; ~mE8;LÞA1ðτ; ~mE8;RÞ: ðA26Þ
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