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We study glueballs in the holographic gauge theories living in a curved space-time. The dual bulk is
obtained as a solution of the type IIB superstring theory with two parameters, which correspond to the four-
dimensional cosmological constant λ and the dark radiation C, respectively. The theory is in the confining
phase for λ < 0 and small C, then we observe stable glueball states in this theory. However, the stability of
the glueball states is lost when the density of the dark radiation (C) increases and exceeds a critical point.
Above this point, the dark radiation works as the heat bath of the Yang-Mills theory since the event horizon
appears. Thus the system is thermalized, and the theory is in a finite temperature deconfinement phase,
namely in the QGP phase. We observe this transition process through the glueball spectra which varies
dramatically with C. We also examined the entanglement entropy of the system to find a clue of this phase
transition and the role of the dark radiation C in the entanglement entropy.
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I. INTRODUCTION

The holographic approach is a powerful method to study
the nonperturbative properties of the strong coupling gauge
theories [1–3]. In this context, various attempts have been
performed to study the properties of the supersymmetric
Yang Mills (SYM) theory. While most of these approaches
have been performed for the four-dimensional theory
living in the Minkowski space-time, the analysis has been
extended to the theory living in the Friedmann-Robertson-
Walker (FRW) type space-time [4–10]. In this case, two
free parameters, the four-dimensional cosmological con-
stant (λ) and the dark radiation (C), have been introduced in
the asymptotic AdS5 solution.
Due to the parameter λ, the boundary geometry is

changed from the Minkowski to dS4ðAdS4Þ space-time
for λ > 0ðλ < 0Þ. Then this solution opens the way to the
holographic approach to the SYM theory in the curved
space-time. In the present case, it has been cleared that the
dynamical properties of the SYM theory is largely influ-
enced by the geometry of the boundary as shown in [4,5]
and [6] for dS4 and AdS4, respectively. Especially, in the
case of λ < 0 or AdS4 boundary, it has been found that the
theory is in the confining phase [6].
As for the dark radiation, on the other hand, it has been

introduced in the context of the Randall-Sundrum brane-
world cosmology [11,12]. In the context of the brane world
model, this term has been regarded as the projection of the

five-dimensional Weyl term on the four-dimensional brane
[13,14]. From the holographic viewpoint, however, this
term should be identified with the thermal excitation of
SYM fields as observed in the limit of λ ¼ 0 [7–10].
For λ ¼ 0, the bulk configuration withC is expressed by the
Schwaltzschild-AdS5 by a redefinition of the radial coor-
dinate, and then we find the Hawking temperature which is
proportional to C [7]. It is well known that this configu-
ration is dual to the finite temperature SYM theory in
deconfinement phase.
The dark radiation C therefore competes with the

negative λ in the dynamics of the SYM theory. Namely,
C prevents the realization of the confinement phase which
is supported by the negative λ. In this paper, the competi-
tion of these parameters is examined by using r0 and b0,
which are defined by (2.8) and (2.7) in the next section,
instead of λ and C, respectively. So the point mentioned
above could be expressed by a critical line in the parameter
plane of b0 − r0 (see the next section) of the quark
confinement-deconfinement phase transition as has been
discussed in [7,9,10]. As shown in [7], we should notice
that b0 varies with time through the scale factor a0ðtÞ of the
FRW metric even if C is fixed at some finite value. In the
case of negative λ, we have a solution of a0ðtÞ which
oscillates between −1 and þ1. Then the phase transition of
confinement-deconfinement is observed during the time-
interval of this oscillation. We however investigate here the
transition within a small time-interval under the assumption
_a0ðtÞ=a0ðtÞ ≪ 1. In this case, the transition is caused by the
change of C.
In the deconfinement phase, for large b0, the dark

radiation would be identified with the thermal YM fields
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or the exited gluons as mentioned above. On the other hand,
one may wonder what kind of object is identified with this
dark radiation in the confinement phase for small b0.
In order to resolve this point, we here study more about
this phase transition through the glueball spectra since it
may be related to the dark radiation in the confinement
phase with finite b0.
Here we should point out another characteristic point

observed for negative λ case. It is the second boundary in
the infrared side of the bulk as discussed in [10]. In the case
of zero and small b0, in the confinement phase, there is no
special point like horizon in the bulk between the two
boundaries, which are both described by AdS4. It would
be related to the fact that the two AdS4 are connected for
C ¼ 0 at their three-dimensional boundary, which are
described by three-dimensional hyperbolic space H3,
[15,16]. Then the field operators living on each AdS4
space-time would extend to the other AdS4. This behavior
of the field operators would be observed in the bulk in some
way, then we expect to be able to see it through the
holographic analysis.
For the case of C ¼ 0, we actually find that the metric of

the bulk is symmetric under an inversion transformation
(z ¼ r20=r) of the fifth coordinate (r) at a point r ¼ r0. We
call the four-dimensional slice at this point the “domain
wall” since the existing region of the strings and the branes
introduced as probes to investigate the dynamics of the dual
theory is restricted to the range r0 < r < ∞ or 0 < r < r0.

1

This point has been discussed in [10]. Then the bulk is
separated to two regions by this domain wall. Then we
expect to find the equivalence of the theory on the boundary
r ¼ ∞ and the one at r ¼ 0 for C ¼ 0.
For C ≠ 0, the position of the domain walls is changed

depending on the quantities to be studied. The wall for the
static string, which is used to see the string tension
responsible to the quark confinement, and for the entan-
glement entropy are shown as such examples. They are at
the same point for C ¼ 0, then we can see how they vary
with increasing b0. After the transition to the deconfine-
ment phase at large b0, a horizon appears and the second
boundary is hidden behind the horizon.
On the other hand, the dual of the glueballs are examined

through the fluctuation of the bulk fields or as rotating
closed string configurations. When we observe the fluc-
tuation of the fields, the domain wall seems to be
disappearing since the wave function of the fluctuation
spreads out all over the bulk. However, we could see that
the center of the wave function of the glueball state and the
classical configuration of rotating closed string are just on
the domain wall. In this sense, the role of the domain wall is
altered in the glueball case. The glueballs are attracted at

the domain wall and they could spread as the quantum
fluctuations as shown below. The situation depends on the
dark radiation C. The glueballs can be observed in both
theories on the opposite side boundaries.
The outline of this paper is as follows. In the next

section, the bulk solutions for our holographic model are
given, then some important points are briefly reviewed.
In Sec. III, the spectra of glueballs in the case of C ¼ 0 are
shown as an exact form of analytical solution. Also, the
spectrum for C ≠ 0 is estimated by WKB approximation
for the lowest mass of the glueball to see its behavior near
the transition point to the deconfinement phase. In Sec. IV,
the glueballs with higher mass state are examined by
solving the equation of motion for the rotating closed
string with folding form. We could show that the properties
of the solutions for C ≠ 0 are consistent with the one given
in the previous section. In Sec. V, the entanglement entropy
has been examined and we could find the thermal limit
of the dark radiation part in the deconfinement phase for
large volume limit of the considering minimal surface.
Other interesting properties are also given and discussed.
The summary and discussions are given in the final section.

II. GRAVITY DUAL OF DARK ENERGY
AND DARK RADIATION

The holographic dual to the large N gauge theory
embedded in a space-time with dark energy and dark
radiation is solved by the gravity on the following form
of the metric

ds210 ¼
r2

R2
ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ

þ R2

r2
dr2 þ R2dΩ2

5; ð2:1Þ

where

γijðxÞ ¼ δij

�
1þ k

r̄2

4r̄02

�−2
; r̄2 ¼

X3
i¼1

ðxiÞ2; ð2:2Þ

and k ¼ �1, or 0. The arbitrary scale parameter r̄0 of three
spae is set hereafter as r̄0 ¼ 1. The solution is obtained from
ten-dimensional supergravity of type IIB theory [7–10].
A brief review is given in Appendix A.
The resulting solution is obtained as

Ā ¼
��

1 −
λR2

4

�
R
r

�
2
�

2

þ ~c0

�
R
r

�
4
�

1=2

; ð2:3Þ

n̄ ¼ ð1 − λR2

4
ðRrÞ2Þ2 − ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − λR2

4
ðRrÞ2Þ2 þ ~c0ðRrÞ4

q ; ð2:4Þ

~c0 ¼ CR2=ð4a40Þ; ð2:5Þ
1This position of the coordinate has been also noticed as a node

of the wormhole in a slightly different context of holography for
two boundary theories [16].
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where the dark radiation C is introduced as an integral
constant in solving the equation of motion (A6). On the
other hand, the “dark energy” (or cosmological term) λðtÞ is
introduced as follows:�

_a0
a0

�
2

þ k
a20

¼ λ: ð2:6Þ

While it is possible to extend λ to the time dependent form
λðtÞ as in [7], we consider here the case of constant λ for
simplicity. In the following, our discussion would be
restricted to the case of negative constant λ and we assume
very small time derivative of a0ðtÞ. For the sake of the
justification of our assumption for a0ðtÞ, we should say that
the solution a0 ¼ constant is allowed for negative constant
λ when we take k ¼ −1.
The physical meaning of λ is clear, however the dark

radiation C is not familiar. So we explain it here. For λ ¼ 0,
the meaning of C is clearly understood. In this case, the
above five-dimensional metric is rewritten into the AdS-
Schwartzschild form, then we find the Hawking temper-
ature TH as follows [7]:

TH ¼
ffiffiffi
2

p
b0

πR2
; b0 ¼ ~c1=40 R: ð2:7Þ

This implies that the dark radiation C corresponds to the
thermal radiation of SYM fields in the Minkowski space-
time since λ ¼ 0. It is also assured from the VEVof energy
momentum tensor that the dark radiation corresponds to a
perfect fluid of gluons (or radiation) with the temperature
TH [7].

A. Confinement-deconfinement phase transition

Therefore, when the dark radiation C is added in some
way to the YM theory in the confinement phase, the

confinement force is screened and the phase of the theory
is changed to the deconfinement above a critical value
of C. This phenomenon has been observed in the AdS4
space-time by examining the Wilson loop [7]. It has been
observed that the SYM system in the AdS4 is in the
confinement phase [5]. However, as mentioned above, the
phase of the theory is changed to the deconfinement one
with finite temperature by adding C, which satisfies the
condition b0 > r0, where

r0 ¼
R2

2

ffiffiffiffiffi
jλj

p
: ð2:8Þ

In this region, a horizon appears at r ¼ rH which is
given as

rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 − r20

q
: ð2:9Þ

Then in the AdS4 space-time or for λ < 0 the phase
transition occurs at b0 ¼ r0, where the temperature is zero,
namely Tc ¼ 0. We notice that the temperature is zero in
the range of confinement, 0 ≤ b0 ≤ r0, and the temperature
appears for r0 < b0, in the deconfinement region. The
critical point Tc ¼ 0 is represented therefore by the line
b0 ¼ r0 in the plane of λ − b0 as shown in the Fig. 1.
Usually, this kind of transition is studied through the

Hawking-Page transition by using two independent sol-
utions, confinement solution and the one of the deconfine-
ment. Then the Hawking-Page transition has been studied
by comparing the free energy of the theories at a finite
temperature for those two bulk solutions [17–20]. Then we
find a critical temperature as a finite value.
In the present case, the phase transition is examined in

terms of the same solution by varying b0 instead of the
temperature. In this sense, the present model is a new type

A confine
B de confine

a

b

0.5 1.0 1.5 2.0 2.5 3.0

b0

0.5

1.0
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2.0

2.5

3.0

r0

A

B

0.5 1.0 1.5 2.0 2.5 3.0
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1

2
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ns min

FIG. 1 (color online). Left: Phases for (A) quark confinement and (B) deconfinement are shown in r0 − b0 plane. The critical line
r0 ¼ b0 is shown by (a). Right: Minimum value of ns is denoted by ns−min and shown as a function of b0 for R ¼ r0 ¼ 1 along the
vertical line (b) in the left figure. At the critical point b0 ¼ 1, we find a gap between the values of ns−minðb0 → 1−Þ ¼ 2 in the region (A)
and ns−minðb0 → 1þÞ ¼ 0 in the region (B).
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of holographic model. Our purpose is to study through this
model the phase transition phenomenon in more detail.
In this transition, we could consider the QCD string

tension as the order parameter. This point is briefly shown
below under an assumption that the time evolution of the
universe is very slow, or equivalently for _aðtÞ=a0ðtÞ ≪ 1.
Here we should comment on the time dependence of b0 in

the above discussion. While we used b0 given by (2.7)
instead of the parameter C, b0 includes the time-dependent
scale factor a0ðtÞ. So it is possible to see the phase transition
at a fixed C when the enough time interval is taken [7]. We,
however, consider here the transition in a rather small time
interval under the above assumption _aðtÞ=a0ðtÞ ≪ 1. So the
value of C should be changed largely corresponding to the
change of b0 near the transition point.

1. QCD string tension as an order parameter

The potential between quark and antiquark is studied by
the Wilson-Loop for the present case [7]. It is obtained
holographically from the U-shaped (in r − x plane) string
which is embedded in the bulk and its two end points are on
the boundary. Supposing a string whose world volume is
set in ðt; xÞ plane,2 the energy E of this state is obtained as a
function of the distance (L) between the quark and
antiquark according to [5].
Taking the gauge as X0 ¼ t ¼ τ and X1 ¼ x1 ¼ σ for the

coordinates ðτ; σÞ of string world volume, the Nambu-Goto
action in the present background (A4) becomes

SNG ¼ −
1

2πα0

Z
dtdσn̄ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ

�
r
R

�
4

ðĀðrÞa0ðtÞγðxÞÞ2
s

;

ð2:10Þ

where

γðxÞ ¼ 1

1 − x2=4
; ð2:11Þ

and we notice r0 ¼ ∂r=∂x ¼ ∂r=∂σ. Here we notice the
metric n̄ and Ā have time dependence through ~c0 as given
above. As mentioned above, we must remember our
assumption that the time derivative of a0ðtÞ is very small
compared to the time scale of the fields we are considering
in the theory. So we could neglect this time dependence
hereafter.
From the above action, SNG, the string configuration for

large x is obtained by solving the equation of motion. Using
this solution, we can estimate SNG. Then the linear potential
is obtained when the factor ns, which is given as

ns ¼
�
r
R

�
2

Ā n̄; ð2:12Þ

has a minimum at some point of rð¼ rD > 0Þ. Further this
minimum must be positive, nðrDÞ > 0.
In the present case, such a point is found as

rD ¼ ðr40 − b40Þ1=4; ð2:13Þ

where bo ¼ ~c1=40 R and

nsðrDÞ ¼ 2
r20
R2

�
1þ r2D

r20

�
: ð2:14Þ

Then, as shown in the Fig. 1, the positive minimum exists in
the region,

r0 ≥ b0 ≥ 0: ð2:15Þ

We notice that there is a gap for the minimum of ns at the
transition point, rD ¼ 0. From (2.14), it is given as

nsð0Þ ¼ 2r20=R
2; ð2:16Þ

which is finite. On the other hand, for b0 > r0, the horizon
appears at r ¼ rH, which is given as

rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 − r20

q
: ð2:17Þ

Then, as shown in the Fig. 2, the minimum of nsð≥ 0Þ is
given at this point as

nsðrHÞ ¼ 0; ð2:18Þ

r rh c0 1.5

0.5 1.0 1.5 2.0
r

20

10

10

20
ns

FIG. 2 (color online). The ns is plotted as functions of r.
The value of ~c0 is 0.5, 1, 1.5 from the above. There r0 ¼ 1, R ¼ 1
and λ ¼ −4r20=R4 ¼ −4. The red points are minimum points of
ns for ~c0 ¼ 0.5 and 1.0. The green point is the horizon at
~c0 ¼ 1.5.

2Here x denotes one of the three coordinate xi, and we take x1
in the present case.
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for b0 > 1.3 A typical case for ~c0 ¼ 1.5 is shown in the
Fig. 2. For all range of ~c0, the value of minimum of ns is
shown in the Fig. 1. This implies a gap for the string tension
at the critical point. This fact implies the first order phase
transition.
Domain wall.—We comment on the terminology “domain

wall” related to the point rD, where ns takes its minimum.
We call the four-dimensional slice, which is cut at r ¼ rD in
the bulk, a domain wall since the open string configuration
introduced to calculate the string tension as above is
prevented to penetrate this wall [10,21]. Then the bulk is
separated by this wall to two regions in the case of
0 < b0 < r0 as shown in Fig. 3. We could see that each
region is dual to the four-dimensional field theory on each
boundaries at r ¼ ∞ and r ¼ 0 when we consider the
dynamics of the quark and antiquark. However, the situation
would depend on the quantity of the corresponding field
theory as shown below. Here two types of these wall are
shown in Fig. 3. They depart from the common position with
increasing b0 for C ≠ 0. Furthermore, the role of the wall is
altered for the glueball or closed string state. This point is
explained more in the next subsection.

B. Two boundaries

In performing the analysis in the present model, we must
notice the point discussed in [9] that the bulk metric given
here has two boundaries in the confinement region (A)
shown in Fig. 1, λ < 0 and 0 ≤ b0 < r0. The two boundaries
are found at r ¼ ∞ (UV side) and r ¼ 0 (IR side); however,
there is no horizon between them. The reason why the
horizon is absent is understood as follows. Each boundary is

described by AdS4, and its boundary is connected to the one
of the other AdS4. In this sense, these two boundaries are
connected on their boundaries. It is an interesting problem to
see how the two boundary theories are connected at their
boundary. It would be reflected in the bulk, so we could
resolve this point from the holographic approach, however it
is postponed to concentrate on this point and to get a deeper
understanding. Our purpose is to study the role of the dark
radiation in the theory on the UV boundary. As for the IR
boundary, we only give understandable few comments.
The holographic situation for these theories on the two

boundaries depends on the parameter b0 as explained below
according to the horizontal axis b0 in Fig. 3.
b0 ¼ 0.—As discussed in [9], in the case of b0 ¼ 0 and

λ < 0, the bulk can be separated into two regions by a
border called the domain wall, which is set at r ¼ r0. Then
the field theory on each boundary is obtained from each
bulk separated by this wall. Actually, in the present case,
we find that the metrics are symmetric around r ¼ r0 under
the transformation r → z ¼ R2=r. Then we will find the
same boundary four-dimensional theory. In other words,
we could observe the same dynamical properties of the
two field theories at r ¼ ∞ and z ¼ 0.
0 < b0 ≤ r0.—In this region, the two theories show

different properties from each other when the dark radiation
C is added. In fact, in this case, we find different boundary
metric, g0 ≠ ĝ0, where g0 (ĝ0) denotes the metric on the
boundary r ¼ ∞ (r ¼ 0), at the two boundaries. As a
result, the energy momentum tensors are also different in
each boundary as shown below. The point, we should
notice, is that the metric at r ¼ 0, ĝ0, depends on b0. Then
the theories become asymmetric due to the dark radiation.
On this point, we give a brief comment below.

(i) For r ¼ ∞: The boundary metric g0 is not altered by
b0 and is given as

ds2 ¼ −dt2 þ a20ðtÞγi;jdxidxj: ð2:19Þ

We notice here that the above metric depends only
on λ, but it does not include the dark radiation C or
b0. This point is important. The dark radiation is
instead observed as a perfect fluid of the gauge fields
as seen in the energy momentum tensor hTμνi [7].
The role of this fluid is to screen the confining

force between colored charges. However, the con-
fining force is overwhelming in the region 0 <
b0 ≤ r0, where quark confinement is observed.

(ii) For r ¼ 0: On the other hand, at r ¼ 0, the metric ĝ0
is deformed by the dark radiation b0. It is given as
follows [9]:

ds2 ¼ −α1dt2 þ α2a20ðtÞγi;jdxidxj: ð2:20Þ

α1 ¼
ðr40 − b40Þ2
ðr04 þ b40Þr40

; α2 ¼
r04 þ b40

r40
: ð2:21Þ

A confine

B de confine
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

b0

0.5

1.0

1.5

2.0

2.5

3.0

r0

FIG. 3 (color online). Two dual bulks are shown in in r − b0
plane. The domain wall is shown by the curve
(a) rD ¼ ðr40 − b40Þ1=4 for r0 ¼ 1. The curve (c) denotes the
horizon rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r20 þ b20

p
. The curve (b) rc ¼ ðr40 þ b40Þ1=4 is

explained in Sec. V. The vertical line shows the critical line for the
confinement-deconfinement phase transition.

3Notice that we set r0 ¼ R ¼ 1 in Fig. 2.
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The tt component of this metric becomes zero at the
critical point, b0 ¼ r0. Then the event horizon
appears. As for the energy momentum tensor
hTIR

μνi on the boundary r ¼ 0, which is given in
[9], the perfect fluid part disappears.
This fact implies that the dark radiation works as a

four-dimensional matter which couples to the grav-
ity to reform the four-dimensional metric ĝð0Þμν.
Then the bulk would be dual to the pure SYM
living in this deformed FRW space-time.

r0 < b0.—In the region of r0 < b0, the IR boundary
hides behind the horizon, which appears at rH for r0 < b0.
Then we consider the region from a horizon rH to r ¼ ∞.
In this case, the bulk is simply dual only to the theory at the
boundary r ¼ ∞. The theory is in the deconfinement phase
with finite temperature. So we expect dynamical properties
which are similar to the case of AdS5-Schwartzschild
bulk. However, as shown in Fig. 3, the domain wall for
the entanglement entropy appears above the horizon. So we
expect a slightly different thermodynamic properties in the
present case compared to the one of AdS5-Schwartzschild
finite temperature theory.
In the following, we study the phase transition property

through glueball spectra and entanglement entropy. After
the transition to the deconfinement phase at b0 > r0, the
theory we consider is restricted to the one at the boundary
r ¼ ∞. Then the glueball mass and entanglement entropy
are observed from the UV boundary theory.

III. GLUEBALLS FROM BULK FIELD
FLUCTUATIONS

In the confinement phase, 0 ≤ b0 < r0, we could expect
the existence of a glueball state in the dual theory. It is
studied by solving the equation of motion of the field
fluctuations in the bulk [22–30]. This is performed here by
separating to two cases of the parameter b0.

A. b0 ¼ 0 case

In this case, C ¼ 0, then the corresponding glueball state
is studied by solving the field equation of the quantum
fluctuation of the bulk fields in the following background,

ds210 ¼ ds25 þ R2dΩ2
5

ds25 ¼
r2

R2

�
1þ r20

r2

�
2

~gμνdxμdxν þ
R2

r2
dr2

~gμνdxμdxν ¼ ð−dt2 þ a20ðtÞγijðxÞdxidxjÞ: ð3:1Þ

Graviton 2þþ: As for the glueball spectrum, many
attempts have been made by solving the linearized field
equations of bulk field fluctuations in various background
configurations. Here we consider the field equation of
the traceless and transverse component of the metric
fluctuation, which is denoted by hij. Its linearized equation
is given in the Einstein frame metric as

1ffiffiffiffiffiffi−gp ∂Mð
ffiffiffiffiffiffi
−g

p
gMN∂NhijÞ ¼ 0; ð3:2Þ

where we assumed as hij ¼ hijðx0; xi; rÞ, thenM;N are the
five dimensional (ðx0; xi; rÞ) suffices.4 This equation is
equivalent to the massless scalar field equation. As shown
in [29], this equation is common to 2þþ; 1þþ and the one
of the nonactive5 dilaton 0þþ [31], which are dual to the
glueball of FμνFμν. While it is usually used to derive the
type IIA theory, the NS-NS part is common with the one
of the type IIB theory. Then the masses of these three spin
states degenerate.
By setting as hij ¼ pijχðxμÞϕðrÞ,6 we impose for the

four-dimensional part of the wave function, χðxμÞ, the
following eigenvalue equation,

1ffiffiffiffiffi
~g4

p ∂μ

ffiffiffiffiffi
~g4

p
~gμν∂νχðxμÞ ¼ m2χðxμÞ; ð3:3Þ

where ~g4 ¼ − det ~gμν. Then, we get for ϕðrÞ the following
equation:

∂2
rϕþ g2ðrÞ∂rϕþ

�
R
r

�
4m2

A2
ϕ ¼ 0; ð3:4Þ

g2ðrÞ ¼ ∂rðlog ½ðr=RÞ5A4�Þ; ð3:5Þ

AðrÞ ¼ 1þ
�
r0
r

�
2

: ð3:6Þ

When Eq. (3.3) is regarded as the one for the free field
in AdS4 space-time, the eigenvalue ofm2 has been obtained
as

m2 ¼ jλjnðnþ 3Þ; ð3:7Þ

for scalar (n ≥ 0) in [32] and for spin two tensor (n ≥ 1)
in [33]. In the following, we could obtain the mass spectra
of (3.7) for the glueball of 2þþ in AdS4. This fact implies
the correctness of the holographic approach also to the
theory living in AdS4.
General solution.—In the present case, we can solve

analytically the equation (3.4). Changing r to a dimension-
less variable x ¼ r=r0, the above equations are rewritten as

∂2
xϕþ g2ðxÞ∂xϕþ m̄2

x4A2ðxÞϕ ¼ 0; ð3:8Þ

4In the string frame metric case, this equation is written as
1ffiffiffiffi−gp ∂Mð ffiffiffiffiffiffi−gp

e−2ΦgMN∂NhijÞ ¼ 0 as given in [23].
5Here, “active” means that the dilaton background solution is

nontrivial as in the present case.
6pij denotes projection operator onto the traceless and trans-

verse components.
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g2ðrÞ ¼
1

x

�
5 −

8

x2AðxÞ
�
; ð3:9Þ

AðxÞ ¼ 1þ
�
1

x2

�
; ð3:10Þ

where m̄ ¼ R2m=r0. Equation (3.8) has two regular sin-
gularity at x ¼ 0 and x ¼ ∞. We solve this equation as
follows. First, by setting the following form for ϕ,

ϕ ¼ AaxbPðxÞ; ð3:11Þ

it is possible to write the equation for PðxÞ as follows,

yð1 − yÞ∂2
yPþ ðγ − ½αþ β þ 1�yÞ∂xP − αβP ¼ 0;

ð3:12Þ

where y ¼ −x2, and

α ¼ b
2
; β ¼ 2þ b

2
; γ ¼ b − 2a − 1: ð3:13Þ

As for a and b, we have four sets of solutions,
(i) a ¼ 1

2
ð−3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ m̄2

p
Þ, b ¼ 2a,

(ii) a ¼ 1
2
ð−3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ m̄2

p
Þ, b ¼ 2aþ 4,

(iii) a ¼ 1
2
ð−3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ m̄2

p
Þ, b ¼ 2a,

(iv) a ¼ 1
2
ð−3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ m̄2

p
Þ, b ¼ 2aþ 4.

The solution of (3.12) is given by Gauss’s hypergeo-
metric function as

PðyÞ ¼ Fðα; β; γ; yÞ; ð3:14Þ

and its behavior is well known. So we obtain the solution in
the four forms of hyper-geometric function. Among them,
we find that the solution (ii) and (iv) satisfy (3.8). Then the
other two, (i) and (iii), are not the solution. Furthermore, we
can show that the solution (ii) (denoted by ϕ2) is equivalent
to the one of (iv), then we get only one solution, ϕ2, at
this stage.
The other independent solution of (3.8) is given as

ϕ5 ¼ QðxÞϕ2ðxÞ; ð3:15Þ

then from (3.4), we obtain the equation of QðxÞ as

∂2
xQþ ðg2ðxÞϕ2 þ 2∂xϕ2Þ∂xQ ¼ 0: ð3:16Þ

Dividing this equation by ϕ2∂xC, we find

log ðϕ2
2∂xQÞ ¼ −

Z
g2dx: ð3:17Þ

This is solved as

∂xQ ¼ q̄0
ϕ2
2

x3

ð1þ x2Þ4 ; ð3:18Þ

where q̄0 is an integral constant. Finally, we get

Q ¼
Z

dx
q̄0
ϕ2
2

x3

ð1þ x2Þ4 : ð3:19Þ

Here it is possible to add an arbitrary constant to the
right-hand side of (3.19). However, it is not necessary since
it is absorbed into the coefficient of ϕ2 of the general
solution. It is given as follows,

ϕ ¼ α2ϕ2 þ α5ϕ5; ð3:20Þ
where α2 and α5 are constants. Further, we consider that q̄0
is absorbed into α5 hereafter. They are determined by the
boundary conditions on the two boundaries, r ¼ ∞ and
r ¼ 0, as follows.

1. Glueball (normalizable) solution

In the limit of r → 0, the above solutions are expanded as

ϕ2 ¼ x4
�
1 −

32þ m̄2

12
x2 þOðx4Þ

�
→ 0; ð3:21Þ

ϕ5 ¼ − 1
4

�
1þ m̄2

4
x2 þ ðq4 þ q4L ln xÞx4 þ � � �

�
→ const:

q4 ¼ −
ð8þ m̄2Þð32þ m̄2Þ

36
; ð3:23Þ

where q4L is a constant. From (3.22), we find that ϕ5 is non-
normalizable since ϕ5 is a constant at r ¼ 0. This is
understood asZ

dr
ffiffiffiffiffiffiffi
gð5Þ

p jϕ5j2 ∼
Z
r→0

dr
1

r3
jϕ5j2; ð3:24Þ

where the factor 1=r3 appears from ffiffiffiffiffiffiffigð5Þ
p near r ¼ 0 in the

integral measure of the wave function. On the other hand,
we find

ϕ2 → const ð3:25Þ
in the limit of r → ∞. This implies that this wave function
includes the source of the field operators of the theory on
the boundary r ¼ ∞. The normalizable modes are also
found for special values of m2 given below. In this case, it
behaves as

ϕ2 →
p4

x4
þ � � � ð3:26Þ

with a constant p4, thus the wave function ϕ2 is
normalizable.
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Then we take ϕ ¼ ϕ2 as the wave function for the
glueball, and we find that this solution is actually normal-
izable under the condition,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ m̄2

p
¼ 5þ 2n; n ¼ 0; 1; 2;…: ð3:27Þ

Thus we get the following mass spectra for the glueball
considered here,

m2 ¼ 4ðnþ 1Þðnþ 4Þ r
2
0

R4
¼ jλjðnþ 1Þðnþ 4Þ;

n ¼ 0; 1; 2;…: ð3:28Þ

This resulting formula is compared with the above formula
(3.7). This coincides with the case of spin two tensor.7

Namely, the lowest glueball mass is m0 ¼ 2
ffiffiffi
λ

p
, which is

also obtained here by the WKB approximation with high
accuracy as shown below.
The analysis for the glueball mass given above is

performed for the theory on the boundary r ¼ ∞. In the
present case of b0 ¼ 0, it is parallel to perform the same
analysis for the theory at the boundary r ¼ 0. The only
thing we should do is to change the variable r to z ¼ r20=r,
then we will find the same mass eigenvalues also in the
theory at z ¼ ∞. When the dark radiation is added, the
symmetric situation is broken and the analysis becomes
complicated as shown below.

B. 0 ≤ b0 < r0 case : WKB approximation

When the finite value of C is introduced, it is impossible
to solve analytically the equation of motion for the
fluctuation mode of the bulk fields. So we consider here
an alternative method to find the glueball spectra. The most
popular and convenient one is the WKB method which has
been used by many people [21,23–29].
b0 ¼ 0 case.—First, we perform this method to obtain

the mass for the case ofC ¼ 0, then its results are compared
with the one given in the previous section to assure that this
approximation is good.
The equation (3.4) has two regular singularities at

r ¼ 0;∞. Here, we try to find the eigenfunctions in the
region of 0 ≤ r ≤ ∞ through WKB approximation [23,26].
By factorizing ϕ as

ϕ ¼ e−
1
2

R
drg2ðrÞfðrÞ; ð3:29Þ

Eq. (3.4) is rewritten as

−∂2
rf þ VðrÞf ¼ 0; V ¼ 1

4
g22 þ

1

2
∂rg2 −

m2

A2

�
R
r

�
4

:

ð3:30Þ
This is equivalent to the one dimensional Schrödinger
equation with the potential V and the zero energy eigen-
value. For an appropriate massm, we can see that V has two
turning points, r1 and r2ð> r1Þ, to give [23]Z

r2

r1

ffiffiffiffiffiffiffi
−V

p
dr ¼

�
nþ 1

2

�
π ð3:31Þ

with an integer n. From this equation we obtain the discrete
glueball mass mn, where n denotes the node number of the
eigenfunction. The potential for the zero node is shown in
the Fig. 4. In this case, we have

R
r2
r1

ffiffiffiffiffiffiffi
−V

p
dr ¼ π=2 and the

lowest mass with 4 percent numerical error compared to the
correct eigenvalue obtained through an analytical solution
given above.
0 < b0 < r0 case.—According to the procedure given

above, we find the following equations for this case for
glueball of 2þþ. By setting as hij ¼ pijχðxμÞϕðt; rÞ, where
χðxμÞ is assume to be satisfied (3.3) and ϕðrÞ is replaced by
ϕða0ðtÞ; rÞ since the coefficients of the equation are written
by using a0ðtÞ. Then, we get for ϕða0ðtÞ; rÞ the following
equations:

∂2
rϕþ ḡ2ðrÞ∂rϕþ

�
R
r

�
4m2

Ā2
ϕ ¼ J; ð3:32Þ

ḡ2ðrÞ ¼ ∂rðlog ½ðr=RÞ5n̄Ā3�Þ; ð3:33Þ

J ¼ −
�
R
r

�
4 ϕ

χĀ2

�
∂2
t þ 3

_a0
a0

∂t

�
χ

þ
�
R
r

�
4 1

χn̄2

�
∂2
t þ 3

_a0
a0

∂t

�
ðχϕÞ−

−
�
R
r

�
4 1

χ

�∂tðn̄Þ
n̄3

− 3
∂tðĀÞ
Ā

�
∂tðχϕÞ: ð3:34Þ

1 2 3 4
r

3

2

1

1

2

Vs

FIG. 4 (color online). The Schrödinger potentials VðrÞ for
r0 ¼ R ¼ 1 and jλj ¼ 4 is shown for the graviton with
m ¼ 2

ffiffiffiffiffijλjp ¼ 4.0, r1 ¼ 0.4903 and r2 ¼ 2.0395.

7In order to reproduce masses of the candidate for the tensor
glueballs f2 (1270 and 1525 MeV), we need

ffiffiffiffiffijλjp ¼
0.71 ∼ 0.84 GeV. However, it would be difficult to find a realistic
situation for these kinds of analyses in our world. So we postpone
performing an estimation of this kind until a future paper.
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The left-hand side of (3.32) has a similar form to (3.8), so
we expect a stable glueball state. However, the term on the
right-hand side, J, arises because of nonzero C. In spite of
its complicated form, J is simplified when ∂tða0ðtÞÞ ¼ _a0
is neglected according to our approximation adopted above.
In this case, we find

J ¼
�
R
r

�
4
�
1

Ā2
−

1

n̄2

�
Ω2ϕ; ð3:35Þ

where

−Ω2 ¼ ∂2
t χ

χ
: ð3:36Þ

Furthermore, we simplify the situation so that the
derivative with respect to the spacial coordinate for χ
can be neglected. In this approximation, the WKB approxi-
mation would be useful especially for the ground state.
Then we may set

Ω2 ¼ m2; ð3:37Þ
and we obtain

∂2
rϕþ ḡ2ðrÞ∂rϕþ

�
R
r

�
4m2

n̄2
ϕ ¼ 0: ð3:38Þ

Notice that the last term of the left-hand side is changed
from Ā to n̄. This point is the main and important difference
from the case of C ¼ 0. Due to this replacement, we find
the glueball mass decreases with C and it tends to zero at
the transition point ~c1=40 ¼ r0=R, where confinement is lost
from. Of course, this equation is reduced to (3.8) for C ¼ 0.
Equation (3.38) has two regular singularities at r ¼ 0;∞.

Then, we perform the analysis through WKB approxima-
tion in the region of 0 ≤ r ≤ ∞. By factorizing ϕ as

ϕ ¼ e−
1
2

R
drḡ2ðrÞfðrÞ; ð3:39Þ

Eq. (3.4) is rewritten as

−∂2
rf þ V̄ðrÞf ¼ 0; V̄ ¼ 1

4
ḡ22 þ

1

2
∂rḡ2 −

m2

n̄2

�
R
r

�
4

:

ð3:40Þ
As shown above for C ¼ 0 case, for an appropriate massm,
we can see that V̄ has two turning points, r1 and r2ð> r1Þ,
which give

Z
r2

r1

ffiffiffiffiffiffiffi
−V

p
dr ¼

�
nþ 1

2

�
π ð3:41Þ

with an integer n. We show the numerical results for the
lowest mass eigenvalue of n ¼ 0 to see the effect of the
dark radiation C.

1. The results of numerical analysis for n ¼ 0

The glueball mass mg of the ground state is obtained by
WKB method as mentioned above. More specifically,mg is
calculated using (3.40) and (3.41) with n ¼ 0. Numerical
value of mg is plotted as a function of b0 in Fig. 5.
The results are well fitted by

mg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15.97ð1 − b40Þ

q
≈ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b40

q
: ð3:42Þ

As expected, mg decreases and vanishes at the critical
point b0 ¼ 1.
Finally, we give the following comments of WKB

analysis given here.
(1) The dark radiation C is related to b0 as

b40 ¼ CR3=ð4a40Þ: ð3:43Þ

In the present analysis, a0 is assumed to be almost
constant. And μ ¼ 1=R is fixed to be 1 in the present
subsection. So the variation of b0 corresponds to the
one of C, which corresponds to the dark radiation
energy density.

(2) It should be worthwhile to mention that there exist
solutions of (3.40) and (3.41) even above the critical
point. For example, the lightest mass is given by
mg ¼ 0.031 with n ¼ 3 when b0 ¼ 1.005. However
the two turning points of this mode are seen at r1 ¼
0.086 and r2 ¼ 0.252, and rH ¼ 0.100 > r1 so that
r1 is hidden behind the horizon. In general, all the
wave functions corresponding to the glueball are
not well defined in the region rH < r < ∞ since the
region of rH > r > 0 is needed. In other word, these
modes might be unstable and might be swallowed
into the region r < rH in the final step. In this sense,
they correspond to the quasinormal mode in [20].

FIG. 5 (color online). The mass mg is plotted against b40.
The mass mg is defined by (3.40) and (3.41) with n ¼ 0. There
r0 ¼ 1, R ¼ 1 and λ ¼ −4r20=R4 ¼ −4. The fitted curve is given
by mg ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b40

p
.
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(3) We should notice that the glueball mass studied
above is the one for the theory at the boundary
r ¼ ∞. For the theory at r ¼ 0, we could see the
spectra by using the operator written by ĝ0. This is
abbreviated here and in the next section.

IV. GLUEBALLS AS ROTATING CLOSED STRING

In this section, we show the classical stable configuration
of glueballs corresponding to the state of large quantum
number. Then we support the above results for the C
dependence of the glueball mass. The quantum fluctuations
around the classical configuration can be neglected in this
case. Flavored mesons are given by an open string whose
two end points are on the D7 brane. On the other hand, the
glueball with higher spin would be represented by a
rotating closed string in the bulk. Such a rotating string
is formulated according to [30,34–39] as follows.
In performing the analysis, we need only the five-

dimensional bulk part of the metric, which is rewritten as

ds25 ¼
r2

R2
ð−n̄2dt2 þ Ā2ds2ð3ÞÞ þ

R2

r2
dr2; ð4:1Þ

ds2ð3Þ ¼ a20ðtÞγijðxÞdxidxj ð4:2Þ

¼ a20ðtÞ
�

dp2

1þ p2=r̄2
þ p2dΩ2

ð2Þ

�
; ð4:3Þ

dΩ2
ð2Þ ¼ dθ̄2 þ sin2θ̄dϕ̄2; ð4:4Þ

where Ωð2Þ denotes the metric of S2 with two angle
coordinates θ̄ and ϕ̄, and

p ¼ r̄

1 − r̄2

4r̄02
: ð4:5Þ

Here, we consider a closed string, which rotates around the
podal axis of S2 at a fixed value of θ̄.
Ansatz pðrÞ and ϕ ¼ ωt.—For simplicity, we consider

the solution of the form given by pðrÞ and ϕ ¼ ωt. In this
case, we have the induced metric for the string as

Gττ ¼
r2

R2
Ā2ðrÞ

�
−
n̄2

Ā2
þ ω2p2sin2θ̄a20ðtÞ

�
; ð4:6Þ

Gσσ ¼
R2

r2
þ r2

R2
Ā2

p02

1þ p2
a20ðtÞ; ð4:7Þ

where ω is a constant and the prime denotes the derivative
with respect to r. Then we have the following Nambu-Goto
action for the closed string,

Sstring ¼
Z

dtL ð4:8Þ

¼ −
1

2πα0

Z
dtdr

r2

R2
Ā2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n̄2

Ā2
− ω2p2sin2θ̄a20ðtÞ

��
p02

1þ p2
a20ðtÞ þ Ā−2

�
R
r

�
4
�s
: ð4:9Þ

From this, the spin Js and the energy Es of this string are
formally given as

Js ¼
∂L
∂ω ¼ 1

2πα0

Z
dra20

r2

R2
Ā2ωp2sin2θ̄

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20ðtÞp02=ð1þ p2Þ þ Ā−2ðRrÞ4
n̄2=Ā2 − ω2p2sin2θ̄a20ðtÞ

s
; ð4:10Þ

Es ¼ ω
∂L
∂ω − L

¼ 1

2πα0

Z
dr

r2

R2
n̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20ðtÞp02=ð1þ p2Þ þ Ā−2ðRrÞ4
n̄2=Ā2 − ω2p2sin2θ̄a20ðtÞ

s
:

ð4:11Þ

Solution

b0 ¼ 0 case.—In this case, we could find a solution of
constant r as shown below. The Lagrangian is rewritten by
supposing r ¼ rðpÞ as

L ¼ − −
1

2πα0

Z
dp

r2

R2
Ā2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ω2p2sin2θ̄a20ðtÞÞ

�
a20ðtÞ
1þ p2

þ _r2

Ā2

�
R
r

�
4
�s
;

ð4:12Þ

where _r ¼ ∂pr. Then imposing r ¼ constant (_r ¼ 0), the
equation of motion for r is given as

∂r

�
r2

R2
Ā2

�
¼ 0: ð4:13Þ

The solution is found as
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r ¼ r0: ð4:14Þ

The spin and the energy of this closed string configu-
ration are given by using the above equations (4.10)
and (4.11) as

Js¼
1

2πα0
4a0l2

ω

r20
R2

Z
1=l

−1=l
dp

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þp2Þð1− l2p2Þ

p ; ð4:15Þ

Es ¼
1

2πα0
4a0

r20
R2

Z
1=l

−1=l
dp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ p2Þð1 − l2p2Þ

p ; ð4:16Þ

where l ¼ ωa0 sin θ̄.
For small p, by approximating as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
∼ 1, we can

estimate the above Js and Es as follows.
Substituting the above closed string solution, we find

Js ¼
Kl2

ω

Z
1=l

−1=l
dp

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − l2p2Þ

p ¼ Kπ
2lω

; ð4:17Þ

Es ¼ K
Z

1=l

−1=l
dp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − l2p2Þ

p ¼ Kπ
l
: ð4:18Þ

K ¼ 1

2πα0
4a0

r20
R2

: ð4:19Þ

Then we obtain

Js ¼ α0glueballE
2
s ; α0glueball ¼ α0

R2

r20
sin θ̄: ð4:20Þ

We could find the relation

α0glueball ¼
1

2
α0meson; ð4:21Þ

where α0meson represents the slope parameter of the flavored
mesons [30].
b0 ≠ 0 case.—In this case, there is no solution of

constant r. And it is difficult to find any analytic solution
of the equations of motion, then we perform numerical
analysis in this case. For simplicity, we set as r0 ¼ R ¼ 1
and a0 ¼ 0.5, then the equations are solved by varying the
value of b0 in the range of 0 ≤ b0 < 1 to obtain the
corresponding solution of pðrÞ. A typical configuration
of the solution is shown in the Fig. 6 for b0 ¼ 0.84
and ω ¼ 1.0.
We notice that the center of the rotating string (rD0 ) exists

in the region of 0 < r < rD, where rD denotes the domain
wall given above and it separates the bulk to the two regions
corresponding to the two theories which are living in the
boundaries at r ¼ ∞ and r ¼ 0. rD0 depends on ω. As
ω → 0, then rD0 → rD. In the present case, the closed string
solution appears in the region corresponding to the boun-
dary r ¼ 0. So we may consider that the glueball given here

would be observed only in the theory at r ¼ 0 boundary.
However, as shown in the previous section, the wave
function of the glueball extends in the both region even
if the center of the function is at some point in the region of
0 < r < rD. In this sense, we could observe the glueball
state in both boundaries.
In the next, we show how this closed string configuration

varies with b0. Two quantities, (i) the position of its center
(rD0 ) and (ii) the length of glueball (L), are examined, and
the Δr=rD ¼ ðrD − rD0 Þ=rD and L are shown in the
Fig. 7(left).
From this figure, we find that the string configuration

shrinks to zero size when b0 approaches to the critical
value, b0 → 1. As for the point rD0 , it approaches to a point
near the boundary r ¼ 0 but it doesn’t touch the boundary.
Further, by changing the value of ω, we can see the

Regge behaviors

Js ¼ α0gE2
s ; ð4:22Þ

where α0g depends on b0. Further, α0g is related to the string
tension k as

α0g ¼ 1=ð8kÞ: ð4:23Þ

The results for k are shown in the Fig. 7(right) for
various b0.
The string tension k comes to zero as b0 → 1. This is

well described by the line

k ¼ 0.11ð1 − b40Þ: ð4:24Þ

For a state with spin one (J ¼ 1), we have its mass as

m ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b40

q
; ð4:25Þ

which is the same one obtained in the previous section from
WKB approxiamtion.
Through the analyses of this and the previous section, we

could see the existence of glueball state in the confinement
region, 0 ≤ b0 ≤ r0, and it disappears with its mass at the

1.0 0.5 0.0 0.5 1.0
p

r

rD

rD '

0.2

0.4

0.6

0.8

1.0

FIG. 6 (color online). The glueball solution pðrÞ at b0 ¼ 0.84
and ω ¼ 1.0, where rD ¼ 0.841.
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critical point b0 ¼ r0. From this, we can say that we can
set the order parameter of this transition as the tension of
the QCD string.

V. ENTANGLEMENT ENTROPY
AND DARK RADIATION

Here we study the entanglement entropy near the
transition region to find an expected sign of the phase
transition. As shown in [40] and [41], the holographic
entanglement entropy is given by

SEE ¼ AreaðγAÞ
4Gð5Þ

N

; ð5:1Þ

where γA denotes the minimal surface whose boundary is
defined by ∂A and the surface is extended into the bulk.

Gð5Þ
N ¼ Gð10Þ

N =ðπ3R5Þ denotes the five-dimensional Newton

constant reduced from the ten-dimensional one Gð10Þ
N .

Domain wall for minimal surface rc: From (A4), the
spatial part of the bulk metric is rewritten as

ds2space ¼
1

R2

�
r2 þ 2r20 þ

r4c
r2

�
ds2FRW3

þ R2

r2
dr2 þ R2dΩ2

5;

ð5:2Þ

where

ds2FRW3
¼ a20ðtÞγ2ðdp2 þ p2dΩ2

2Þ; ð5:3Þ

p ¼ r̄
r̄0
; γ ¼ 1=ð1 − p2=4Þ; ð5:4Þ

and rc is defined as

rc ≡ ðb40 þ r40Þ1=4: ð5:5Þ

Notice that, in this section, p in (5.4) is different from (4.5).
As mentioned in Sec. II, the point r ¼ rc is called the
domain wall since the solution of the minimal surface
cannot penetrate this point. Namely the solution is
restricted to the region rc < r < ∞ or 0 < r < rc.
As for the part of 0 < r < rc, the coordinate is rewritten

in a similar form to the one of rc < r < ∞ by the following
change of the variable. Change r to z as

z ¼ r2c=r; ð5:6Þ

then the spatial part of the bulk metric (5.2) becomes

ds2space ¼
1

R2

�
z2 þ 2r20 þ

r4c
z2

�
ds2FRW4

þ R2

z2
dz2 þ R2dΩ2

5:

ð5:7Þ

It is obvious that the solution would be obtained in the side
zc < z < ∞ in the same form with the one given for rc <
r < ∞ by changing r to z. Thus it is convenient to use the
transformation (5.6). In b0 < r0, there is a domain wall
at z ¼ rc.

A. Minimal surface configuration

Here we consider an entangling surface at z ¼ 0 as a ball
with the radius p0. Then the area of the minimal surface
with this boundary is given by

SArea
4π

¼
Z

zðp¼0Þ

0

dzLðzÞ; ð5:8Þ

where

LðzÞ≡ pðzÞ2B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp0ðzÞ2 þ R2

z2

s
; ð5:9Þ
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FIG. 7 (color online). Left: The string length L of the glueball and the ratio Δr=rD ¼ ðrD − rD0 Þ=rD versus b40 for ω ¼ 1.0.
L ¼ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdr=dpÞ2
p

dp. Right: The string tension k of the glueball versus b40.
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and

B≡ a20γ
2

R2

�
z2 þ r4c

z2
þ 2r20

�
: ð5:10Þ

By solving the variational equations from (5.8), we can
get the minimal surface pðzÞ. The numerical solutions for
the confinement phase (b0 < r0) and deconfinement phase
(r0 ≤ b0) are shown in Fig. 8, where p0 denotes the ball
radius on γA,

p0 ≡ pðz ¼ 0Þ ≤ 2: ð5:11Þ

The upper bound comes from its definition.
In the confinement phase, the solutions for pðrÞ at small

r are obtained in the same form with the one given in the
left-hand side of the Fig. 8 by replacing z by r.
On the other hand, in deconfinement phase, horizon

(z ¼ zh ≡ r2c=rh) appears in the small r side from the
domain wall (z ¼ rc) as shown in the right-hand side of the
Fig. 8. This relation is understood from

z4H − r4c ¼ 2b20r
2
0

�
zh
rc

�
4

≥ 0; ð5:12Þ

then the domain wall rc is smaller than the horizon zh.
The solutions of small z side could not pass the domain
wall, then they are away from the horizon. However, the
solutions in the small r side, which are obtained by
replacing z by r in the right of the Fig. 8, then the horizon
is given by rH ¼ r2c=zH ¼ 1.46. Then the upper two
solutions for p0 ¼ 1.33 and p0 ¼ 1.99 shown in the figure
cross the horizon. When we reject such solutions as

acausal, the upper bound (5.11) is modified by the value
depending on b0. In this sense, the phase transition is
reflected in the theory at boundary r ¼ 0.
In the next, we try to find the sign of the phase transition

in the theory at z ¼ 0. In this case, we use the bound (5.11)
at any value of b0.

B. Asymptotic solution for pðzÞ and divergent terms

The solution pðzÞ is expanded around z ¼ 0 as

p ¼ p0 þ p2z2 þ p4z4 þ p4Lz4 log z…; ð5:13Þ

where p0 ¼ pðz ¼ 0Þ and p4 are arbitrary constants. p2 is
determined as

p2 ¼ −
ð1 − ðp2

0=4Þ2ÞR4

2a20p0r4c
;

p4L ¼ −
ð1 − ðp2

0=4Þ2ÞR8 _a20
4a40p0r8c

;

ð5:14Þ

where we used (2.6) with k ¼ −1. When the time depend-
ence of _a0ðtÞ=a0ðtÞ is small ( _a0 ∼ 0), p4L ∼ 0.
By using (5.13) and (5.14), the integrand (5.9) is

expanded around z ¼ 0 as

LðzÞ ¼ 16a20p
2
0r

4
c

ðp2
0 − 4Þ2R

1

z3
þ 64a20p

2
0r

2
0 − ðp2

0 þ 4Þ2
2ðp2

0 − 4Þ2R
1

z
þOðzÞ:

ð5:15Þ

Then, the area of the minimal surface of the region with
radius p ¼ p0 is given by

p

z z
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FIG. 8 (color online). Left: Embedded solutions for pðzÞ for p0 ¼ 0.62, 1.33 and 1.99 with r0 ¼ R ¼ 1; a0 ¼ 0.5, b0 ¼ 0.18. The
green line is the domain wall rc ¼ 1.14. Right: Embedded solutions for pðzÞ for p0 ¼ 0.62, 1.33 and p0 ¼ 1.99 with
r0 ¼ R ¼ 1; a0 ¼ 0.5, b0 ¼ 2.5. The green line is the domain wall rc ¼ 1.82 and the dashed blue line is the event horizon zH ¼ 2.26.
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SArea
4π

¼
Z

zðp¼0Þ

ϵ
dzLðzÞ ð5:16Þ

¼ 8a20r
4
cp2

0

ðp2
0 − 4Þ2R

1

ϵ2
−
64a20p

2
0r

2
0 − ðp2

0 þ 4Þ2R4

2ðp2
0 − 4Þ2R

× log

�
ϵ

p0

�
þ Sfinite; ð5:17Þ

where the first and second term is the UV (ϵ → 0) divergent
terms, and Sfinite is a finite terms for UV limit (z ¼ ϵ → 0).
Then, from (5.1) and the relation R4 ¼ 4πgsα02N, the
entanglement entropy becomes

SEE ¼ γ1
Areað∂AÞ

4πϵ2
þ γ2 log

�
p0

ϵ

�
… ð5:18Þ

γ1 ¼
N2r4c
R4

; ð5:19Þ

γ2 ¼ N2

�
1þ Areað∂AÞ

4π

�
_a0
a0

�
2
�
; ð5:20Þ

where k0 ¼ p0=ð1 − p2
0=4Þ and Areað∂AÞ denote the

proper area of the surface A which is defined as

Areað∂AÞ ¼ 4πk20a0ðtÞ2: ð5:21Þ

The second term of (5.20) is the effect of the curvature of
FRW4 [42].
When the time dependence of a0ðtÞ is small ( _a0 ∼ 0),

γ2 ∼ N2, which is the degree of freedom in the dual field
theory.

C. Behavior of the finite part Sfinite
Next we observe the behavior of the finite part Sfinite of

the entanglement entropy. On the boundary z ¼ 0, this
quantity is calculated by using the common formula in all
the range of b0.
In the Fig. 9, Sfinite=V is shown for p0 ¼ 1.99; V ¼

2488; a0 ¼ 0.5; R ¼ r0 ¼ 1. Here, Sfinite is normalized by
the volume V of the sphere with radius p ¼ p0 in FRW4

space (5.7). It is given as

V ¼ a30

Z
p0

0

γ3p2dp ¼ 1

2
a30

�
4p0ð4þ p2

0Þ
ðp2

0 − 4Þ2 þ log
2 − p0

2þ p0

�
:

ð5:22Þ
From the figure, we can’t see any abrupt change near the
transition point. However, its b0 dependence changes from
the small to the large b0. For small ~b0 region,

Sfinite=V ¼ 0.97b40 þ 4.01; ð5:23Þ

and large b0 region.

Sfinite=V ¼ 2.05b30 þ 0.32b0: ð5:24Þ

Here notice that we set R ¼ 1 in the above formula. This
implies that the increasing behaviour of the entropy in the
two regions seems to be dominated by different dynamical
origin in each region. The transition from the one at small b0
to the larger one seems smooth. The values are obtained at
p0 ¼ 1.99. This means the entanglement entropy is esti-
mated for large volume limit. In this case, we would expect
that the entanglement entropy approaches to the usual
thermal entropy of the system when it has temperature.
In the present case, the first term of (5.24) indicates S ∝ T3,
the behavior of the thermal entropy with the temperature T.
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FIG. 9 (color online). A dotted line is Sfinite=V with b40 at p0 ¼ 1.99; V ¼ 2488; a0 ¼ 0.5; r0 ¼ R ¼ 1. Sfinite can be fitted by
Sfinite=V ¼ 0.97b40 þ 4.01 at small b0 region and Sfinite=V ¼ 2.05b30 þ 0.32b0 at large b0 region, respectively.
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Actually, in deconfinement phase (b0 ≥ r0), the
Hawking temperature Th appears with the event horizon
at rH, and it is calculated as Appendix (B1). Then we plot
Th dependence of finite part of the entanglement entropy
Sfinite for b40 > 1 in Fig. 10. As expected, we find the
behavior, Sfinite ∝ T3

h for the region of large temperature as
shown in [43]. This point is assured by the behavior of
the thermal entropy which is shown in Appendix B.
In the confinement phase (b0 < r0), however, Sfinite

increases with b40 as shown in Fig. 9. This behavior will
be discussed in the future.

VI. SUMMARY AND DISCUSSION

We have examined the gravity dual of the SYM theory in
the FRW type space-time, which is controlled by two
essential ingredients, the four-dimensional cosmological
constant λ and the dark radiation C. For negative λ and
C ¼ 0, the SYM theory is in the confinement phase. On the
other hand, the theory is in the deconfinement phase with
finite temperature for λ ¼ 0 and finite C. This implies that
the dark radiation works as a thermal bath of the SYM
system. When both the negative λ and C are existing at the
same time, they compete each other, and we can observe
the phase transition from the confinement to the deconfine-
ment phase when the value of C increases from very
small value.
Here, through the glueball spectra and the entanglement

entropy, we have studied how this phase transition is
observed by varying the magnitude of C. As for the
glueball, we could show the exact form of the glueball
spectra in the case of C ¼ 0 by solving the equation
analytically, and we could assure that the result is consistent
with the one of the free fields in the AdS4 space-time. The
latter was given in field theory many years ago [32,33].

When the dark radiation C is added in this system, it
becomes difficult to obtain the analytical result. Then we
adopted WKB approximation and examined the lowest
glueball mass numerically, and we find that the mass
decreases with increasing dark radiation in the region of
confinement phase. Then, near the critical point, the mass
of the glueball seems to be vanishing. This behavior is also
observed by solving the classical closed string state in the
bulk. This is corresponding to the high mass glueball state
with higher spin. In this analysis, however, we must be
careful in the region of small mass which is realized near
the critical point since the quantum corrections would be
important in this region. In any case, the glueball state
disappears above the critical value of the dark radiation.
Then the system moves to the high temperature deconfine-
ment phase, where the temperature is given by the Hawking
temperature whose value is determined by the dark
radiation C.
In the analysis of the glueball, we give a comment related

to the two boundaries which exist in the confinement
region. The two theories on each boundary are symmetric at
C ¼ 0, and then the mass spectra are the same with each
others. However, when the dark radiation is added, it works
differently in the two boundaries. As a result, we find two
different theories for C ≠ 0. Here, we have examined the
mass m, which is defined in the theory at the boundary
r ¼ ∞. It would be possible to see the mass defined on the
boundary r ¼ 0 by using ĝ00m2 and z ¼ r20=r. To study
more on this point is postponed as a future work.
As for the entanglement entropy, its behavior is

described in a symmetric form in both boundaries in the
confinement phase. However, in the deconfinement phase
or large C region, in the theory on the boundary r ¼ 0, the
size of the connected minimal surface is restricted by the
value of C when the surface is restricted to the causal
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FIG. 10 (color online). A dotted line is Sfinite=V with Th at p0 ¼ 1.99; a0 ¼ 0.5; V ¼ 2488; R ¼ r0 ¼ 1. Sfinite can be fitted by
Sfinite ¼ 20.4T3

h þ 9.06Th for large Th.
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region. In other words, the large-sized surface is discon-
nected since the small-sized part is cut off by the horizon.
So we have examined the entanglement entropy observed

from r ¼ ∞ boundary in order to find a sign of the phase
transition near the critical point. While we could not find a
clear transition sign at the critical point, we could observe
thermal entropy for large volume area in the deconfinement
phase. The entanglement entropy grows like T3

H at large TH.
On the other hand, in the confinement phase, the entangle-
ment entropy increases with the dark radiation linearly.
On this point, we will discuss in the future.
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APPENDIX A: BRIEF REVIEW OF THE MODEL

First, we briefly review our model [7–9]. We start from
the ten-dimensional type IIB supergravity retaining the
dilatonΦ, axion χ and selfdual five form field strength Fð5Þ,

S ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffi
−g

p

×

�
R −

1

2
ð∂ΦÞ2 þ 1

2
e2Φð∂χÞ2 − 1

4 · 5!
F2
ð5Þ

�
; ðA1Þ

where other fields are neglected since we do not need them,
and χ is Wick rotated [44]. Under the Freund-Rubin ansatz
for Fð5Þ, Fμ1…μ5 ¼ −

ffiffiffiffi
Λ

p
=2ϵμ1…μ5 [45,46], and for the ten-

dimensional metric as M5 × S5,

ds210 ¼ gMNdxMdxN þ gijdxidxj

¼ gMNdxMdxN þ R2dΩ2
5;

we consider the solution. Here, the parameter is set
as ðμ ¼Þ1=R ¼ ffiffiffiffi

Λ
p

=2.
While the dilaton Φ and the axion χ play an important

role when the bounadary of M5 is given by Minkowski
space-time [45–47], we neglect them here since we study
the case of (A)dS4 boundary. Then the equations of motion
of noncompact five dimensional part M5 are written as8

RMN ¼ −ΛgMN: ðA3Þ
While this equation leads to the solution of AdS5, there are
various AdS5 forms of the solutions which are discrimi-
nated by the geometry of their four-dimensional boundary
as shown below.

1. Solution

A class of solutions of the above equation (A3) is
obtained in the following form of metric [9],

ds210 ¼
r2

R2
ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ

þ R2

r2
dr2 þ R2dΩ2

5; ðA4Þ

where

γijðxÞ ¼ δij

�
1þ k

r̄2

4r̄02

�−2
; r̄2 ¼

X3
i¼1

ðxiÞ2; ðA5Þ

and k ¼ �1, or 0. The arbitrary scale parameter r̄0 is set
hereafter as r̄0 ¼ 1. For the undetermined noncompact
five-dimensional part, the following equation is obtained
from the tt and rr components of (A3) [11,12],�

_a0
a0

�
2

þ k
a20

¼ −
Λ
4
A2 þ

�
r
R
A0
�

2

þ C
a40A

2
; ðA6Þ

where _a0 ¼ ∂a0=∂t, A0 ¼ ∂A=∂r, and

A ¼ r
R
Ā;

∂tða0ðtÞAÞ
_a0ðtÞ

¼ r
R
n̄: ðA7Þ

The constant C is given as an integral constant in obtaining
(A6), and we could understand that it corresponds to the
thermal excitation of N ¼ 4 SYM theory for a0ðtÞ ¼ 1,
and it is called as dark radiation [11,12].
At this stage, two undetermined functions, Āðr; tÞ and

a0ðtÞ, are remained. However the equation to solve them is
the Eq. (A6) only. Therefore, we could determine a0ðtÞ by
introducing the four-dimensional Friedmann equation,
which is independent of (A3). However it should be
realized on the boundary where various kinds of matter
could be added in order to form the presumed FRW
universe as in [9]

�
_a0
a0

�
2

þ k
a20

¼ Λ4

3
þ κ24

3

�
ρm
a30

þ ρr
a40

þ ρu

a3ð1þuÞ
0

�
≡ λðtÞ;

ðA8Þ

where κ4 (Λ4) denotes the four-dimensional gravitational
constant (cosmological constant). The quantities ρm and ρr
denote the energy density of the nonrelativistic matter and

8The five-dimensional M5 part of the solution is obtained by
solving the following reduced Einstein frame five-dimensional
action,

S ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ 3ΛÞ; ðA2Þ

which is written in the string frame and taking α0 ¼ gs ¼ 1 and
the opposite sign of the kinetic term of χ is due to the fact that the
Euclidean version is considered here [44].
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the radiation of four-dimensional theory, respectively.
The most right-hand side expression λðtÞ in (A8) is given
as a simple form of the most left-hand side of (A8) given by
using a0ðtÞ. Then the remaining function Aðt; rÞ is obtained
from (A6) in terms of λðtÞ. The last term ρu in the middle of
(A8) represents an unknown matter with the equation of
state, pu ¼ uρu, where pu and ρu denote its pressure and
energy density, respectively. It is important to be able to
solve the bulk equation (A6) in this way by relating its
left-hand side to the Friedmann equation defined on the
boundary [9] since we could have a clear image for the
solution.
Finally, the solution is obtained as

Ā ¼
��

1 −
λR2

4

�
R
r

�
2
�

2

þ ~c0

�
R
r

�
4
�

1=2

; ðA9Þ

n̄ ¼
ð1 − λR2

4
ðRrÞ2Þð1 −

λþa0
_a0
_λ

4μ2
ðRrÞ2Þ − ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − λR2

4
ðRrÞ2Þ2 þ ~c0ðRrÞ4

q ; ðA10Þ

where

~c0 ¼ CR2=ð4a40Þ: ðA11Þ

APPENDIX B: THERMAL ENTROPY

In the deconfinement phase, the horizon appears at
r ¼ rH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20 − r20
p

, then the Hawking temperature
THðb0Þ in this case is obtained as

THðb0Þ ¼
rHð1þ r2

0
þb2

0

r2H
Þ

πR2ĀðrHÞ
; ðB1Þ

which approaches to TH given by (2.7) for r0 → 0. Then the
Euclidean action in this case is estimated as

βF ¼ I ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ 3ΛÞ

¼ −
Λ
2κ25

V3

THðb0Þ
Z

∞

rH

dr

�
r
R

�
3

n̄Ā3; ðB2Þ

V3 ¼ 4πa30

Z
dp

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p ; ðB3Þ

where V3 denotes the three dimensional volume of the
thermal system.
Then the regularized free energy F is obtained as

follows,

Z
∞

rH

dr

�
r
R

�
3

n̄Ā3 ¼ ar4H þ br2H þOðr0HÞ; ðB4Þ

where the coefficients a; b are written by r0 and R. Then we
can see at large b0

F ∝ T4
H; then S ∝ T3

H ðB5Þ

as in the case of r0 ¼ 0, namely in the Minkowski space-
time case.

APPENDIX C: DOMAIN WALL rc FOR
MINIMAL SURFACE

In Sec. V, the minimal surface is defined. It is obtained
by finding the profile of the surface as a solution of
the variational equation of the function (5.8), which is
rewritten as

SArea
4π

¼ 2

Z
pðz¼0Þ

0

dpLðpÞ; ðC1Þ

where

LðpÞ≡ p2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2z0ðpÞ2

z2

s
;

z0ðpÞ ¼ ∂z
∂p ðC2Þ

and

B≡ a20γ
2ðpÞ
R2

�
z2 þ r4c

z2
þ 2r20

�
: ðC3Þ

Here pð0Þ≡ p0 < 2, and then we expect the maximum of
zðpÞð≡zcÞ is realized at the limit of p0 → 2. As a result, the
minimal surface could not penetrate zc, which is obtained
as follows.
At the limit of p0 → 2, SArea can be approximated as

SArea
2π

¼
Z

p0

0;z¼zc;∂z=∂p¼0

dpp2B3=2

þ
Z

zc

0;p¼p0;∂p=∂z¼0

dzp2B
R2

z
ðC4Þ

¼
Z

p0

0

dpp2

�
a20γ

2

R2
fðzcÞ

�
3=2

þ
Z

zc

0

dzp2
0a

2
0γ

2ðp0ÞgðzÞ; ðC5Þ

where

fðzcÞ ¼ z2c þ
r4c
z2c

þ 2r20; ðC6Þ

gðzÞ ¼ zþ r4c
z3

þ 2
r20
z
: ðC7Þ
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Here we notice that the first term is dominant for p0 → 2
since it increases with the volume of A. On the other hand,
the second term increases with the surface of A. We could
see that the first term has its minimum at zc ¼ rc from the
form of fðzcÞ given above. Then we could understand that
the value rc corresponds to the domain wall for the minimal
surface.

Another point to be noticed is that rc is larger than the
point of horizon rH in the deconfinement phase. Then the
minimal surface bounded at r ¼ 0 could penetrate
the horizon since it could stretch up to the domain wall
rcð> rHÞ. On the other hand, the surface bounded at
r ¼ ∞ could not touch rH since it starts from the
opposite side.
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