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We study the anomalous dimensions for scalar operators in Aharony-Bergman-Jafferis-Maldacena theory
in the SUð2Þ sector. The operators we consider have a classical dimension that grows as N in the large N
limit. Consequently, the large N limit is not captured by summing planar diagrams—nonplanar
contributions have to be included. We find that the mixing matrix at two-loop order is diagonalized using
a double coset ansatz, reducing it to the Hamiltonian of a set of decoupled oscillators. The spectrum of
anomalous dimensions, when interpreted in the dual gravity theory, shows that the energy of the fluctuations
of the corresponding giant graviton is dependent on the size of the giant. The first subleading corrections to
the largeN limit are also considered. These subleading corrections to the dilatation operator do not commute
with the leading terms, indicating that integrability may not survive beyond the large N limit.
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I. INTRODUCTION

Integrability has proven to be a powerful tool in
analyzing the spectrum of anomalous dimensions in
N ¼ 4 Super Yang-Mills theory in the planar limit [1,2].
An interesting question is whether or not there are other
large N limits that are also integrable. This question
has been the focus of a number of recent studies [3–14].
At this point there is evidence that suggests certain large N
limits, that are not captured by simply summing the planar
diagrams, do enjoy integrability.
The studies described above have all focused on N ¼ 4

super Yang-Mills theory. In this paper we extend existing
studies by exploring a large N but non-planar limit of the
ABJM theory, which is an N ¼ 6 superconformal Chern-
Simons-matter theory with gauge group UðNÞ ×UðNÞ on
R1;2 and Chern-Simons levels k and −k. Almost all of the
results that have been obtained in the planar limit ofN ¼ 4
super Yang-Mills theory hold in an appropriately modified
form for the ABJM theory [15]. Further, the technology
needed to study operators with anomalous dimensions that
grow as N (called “heavy operators”) has been developed
[16–18]. It is thus very natural to search for possible large
N but non-planar limits of ABJM theory that enjoy
integrability. This is the primary motivation for the study
reported in this paper.
We confine attention to the SUð2Þ sector of theory and

work at two loops. In this case, relying on results of [18],
we are able to give a simple description, which employs
restricted Schur polynomials. Concretely, [18] proved that
a basis for the operators in this sector of the theory is
provided by restricted Schur polynomials in the adjoints

(of one of the UðNÞ factors) constructed out of the
bifundamental scalars fields. The delicate point, resolved
in [18], involves demonstrating that the finite N constraints
are correctly accounted for. Our polynomials employ two
adjoints, called ϕ11 and ϕ12 below. The number of ϕ11

fields is n11 and the number of ϕ12 fields is n12. As we show
in Sec. II, the structure of the one loop dilatation operator
for ABJM theory differs from that of N ¼ 4 super Yang-
Mills theory. The operators we consider are labeled by
Young diagrams with Oð1Þ rows or columns and a total
of OðNÞ boxes. For these operators we can employ the
displaced corners approximation of [6]. This requires
n12 ≫ n11. In this approximation, the leading terms in
the dilatation operator are diagonalized using a double
coset ansatz [8] and the results of spring field theory [7].
The dilatation operator reduces to a set of decoupled
oscillators. There are subleading terms of size n11

n12
relative

to the leading contribution, which represent corrections to
the large N limit. These subleading terms are not diagon-
alized by the ansatz of [8], so that a careful treatment of
these terms would indicate whether the large N but non-
planar integrability is a property only of the large N limit.
Our study shows that these subleading terms do not
commute with the leading order, so that they are not
diagonalized by the ansatz of [8]. Although this does
not prove that the system is not integrable, it does suggest
that the integrability we have found is only a property of the
large N limit. Given similar results obtained in the planar
limit of the theory [19,20], this is not surprising. In last
section we summarize our results and point out some
interesting directions in which this study can be extended.
There are a number of further works related to our study,

with relevant background. Large N but non-planar limits of
the half-BPS sector have been explored in [21–24]. In
particular, [25] lays the foundation for the description of
membranes in ABJM using a group theoretic perspective.
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See also [26,27] for background from the N ¼ 4 super
Yang-Mills theory which is relevant for our study.

II. SUð2Þ DILATATION OPERATOR
IN ADJOINT VARIABLES

We are studying an N ¼ 6 Chern-Simons gauge theory
withUðNÞ ×UðNÞ gauge group. The generalized restricted
Schur polynomials, introduced and studied in [17] provide
a basis for the local operators of any quiver gauge theory
with gauge group built from unitary group factors. In
constructing our local operators we will use scalar fields
A1; A2 both transforming in the ðN; N̄Þ ofUðNÞ ×UðNÞ, as
well as B†

1; B
†
2 which transform in the ðN̄; NÞ. Given these

transformation properties, it is clear that the fields

ϕ11
a
b ¼ A1

a
αB

†
1
α
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b; ϕ22
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αB

†
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b

transform in the adjoint of the first UðNÞ and as a singlet of
the second. In general, the description of the theory in terms
of these adjoint fields does not correctly capture the finiteN
physics. Indeed, as explained in [18], the constraints on
local operators at finite N arising from the fact that the
adjoints are N × N matrices is a subset of the full set of
constraints, arising because both AI and B†

I are N × N
matrices. However, if we restrict to the so called SUð2Þ
sector in which only ϕ11 and ϕ12 are used, the finite N
constraints resulting from the description employing
adjoint scalars ϕ11 and ϕ12 agree with the constraints
obtained from the original variables. The description
employing adjoints has the advantage that the restricted
Schur polynomials of [16] provides a suitable basis, and the
technology to work with these operators is well developed
(see for example [6]). The restricted Schur polynomials we
use are

χR;frg;αβðϕ11;ϕ12Þ

¼ 1

n11!n12!

X
σ∈Sm1þm2

Trfrg;αβðΓRðσÞÞ

× Trðσðϕ11Þ⊗n11ðϕ12Þ⊗n12Þ; ð2:1Þ

where we are considering an operator constructed using n11
ϕ11 fields and n12 ϕ12 fields. frg denotes an irreducible
representation of Sn11 × Sn12 ⊂ Sn11þn12 . It is useful to think
of frg as a pair of Young diagrams, one with n11 boxes and
one with n12 boxes. The irreducible representation frgmay
appear more than once upon restricting the representation R
of Sn11þn12 to the Sn11 × Sn12 subgroup. The multiplicity
labels α; β distinguish between these different copies. The
trace Trfrg;αβðΓRðσÞÞ is an instruction to trace only over the
frg subspace within the carrier space of R. Further, row
indices are traced over the α copy of frg while the column
indices are traced over the β copy. To implement the
restricted trace we introduce intertwining operators
PR;frg;αβ defined so that

TrRðPR;frg;αβΓRðσÞÞ ¼ Trfrg;αβðΓRðσÞÞ; ð2:2Þ

where the trace on the lhs now runs over the full carrier
space of R. Our conventions for the action of the symmetric
group in the space V⊗n11þn12 on which the multilinear
operators ðϕ11Þ⊗n11ðϕ12Þ⊗n12 act are as follows

ðσÞIJ ¼ δi1jσð1Þ…δ
in11þn12
jσðn11þn12Þ

: ð2:3Þ

The two-point function of these operators is [16]

hχR;frg;αβðϕ11;ϕ12ÞχS;fsg;γδðϕ11;ϕ12Þ†i

¼ δRSδr11s11δr12s12δαγδβδ
f2RhooksR

hooksr11hooksr12
: ð2:4Þ

We will need this result below.
The dilatation operator, acting in this SUð2Þ sector, is

given by [19]

D ¼ −
�
4π

k

�
2

∶Tr
�
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2A1B
†
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†
2Þ
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2

∂
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∂
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1
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∂
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∂
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2

��
∶: ð2:5Þ

A straightforward application of the chain rule allows us to rewrite this in terms of adjoint fields as1

1For the ABJ theory with gauge group UðNÞ × UðMÞ, assumingM > N, the only change in this formula is that the factor of N in the
third last line of (2.6) would be replaced by anM. The ϕij would continue to beN × N matrices. IfN < M our description changes as we
would need to form UðMÞ adjoints.
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We now turn to the problem of evaluating the action of the
dilatation generator on the operators (2.1). The evaluation
uses the technology developed in [4,6]. The matrix deriv-
atives are straightforward to evaluate; in manipulating the
resulting expressions, the identity

Trðρ · α · βϕ⊗nÞ ¼
Yn
A¼1

ϕ
lβ−1ðAÞ
lðαρÞðAÞ

is extremely useful. To express the result of the action of D
as a linear combination of restricted Schur polynomials, a
key ingredient is the identity

Trðτϕ⊗n11
11 ϕ⊗n12

12 Þ ¼
X

R;frg;αβ

dRn11!n12!
dr11dr12n!

χR;frg;αβðτÞχR;frg;βα;

where the sum over R runs over all irreducible representa-
tions of Sn11þn12 and frg is summed over all irreducible
representations of Sn11 × Sn12 . This identity is derived in
[28] in the context of UðNÞ gauge theory and it applies
without change to our description in terms of adjoints. We
are interested in operators with a bare dimension of orderN.
We achieve this large dimension by taking n12 order N and
n11 order

ffiffiffiffi
N

p
. For these operator, not all terms in (2.6) have

the same size at large N. The sizes of the different terms
follow by noting that differentiating with respect to ϕ12

produces orderN terms while differentiating with respect to
ϕ11 produces order

ffiffiffiffi
N

p
terms. Consequently, in the first

term of (2.6) the terms with j ¼ 2 dominate; the terms with
j ¼ 1 are suppressed by a relative factor of

ffiffiffiffi
N

p
. Apart from

the leading term, we will also study this first subleading
contribution in this paper. The second term in (2.6) also
contributes at the leading order. The third and fourth terms
in (2.6) are subleading, suppressed by 1

N and will con-
sequently not be considered further in our study. It would
not be consistent to evaluate these terms without also
including the 1

N correction to the leading terms. Finally, it is
useful to express our result in terms of operators normalized
so that

D
ÔR;frg;αβÔ

†
S;fsg;γδ

E
¼ fRδRSδr11s11δr12s12δαγδβδ: ð2:7Þ

Clearly then

ÔR;frg;αβðϕ11;ϕ12Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fRhooksR
hooksr11hooksr12

s
χR;frg;αβðϕ11;ϕ12Þ:

ð2:8Þ

The normalization in (2.7) has been chosen so that the
leading contribution to the dilatation operator most closely
resembles the result obtained in [4] for N ¼ 4 super Yang-
Mills theory. Note that operators labeled by Young dia-
grams R with different shapes are not normalized in the
same way. Clearly, from (2.7) it follows that the ratio of
their normalizations is given by the ratios of the factors of
the boxes that do not agree between the two labels. For
operators with a dimension of order N and number of rows
(or columns) of order 1, this ratio is always equal to 1 plus 1

N
corrections. Putting these ingredients together, we find

DÔR;frg;αβ ¼
X

S;fsgγδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShooksShooksr11hooksr12
fRhooksRhookss11hookss12

s
MR;frg;αβ;S;fsg;γδÔS;fsg;γδ

≡ X
S;fsgγδ

DR;frg;αβ;S;fsg;γδÔS;fsg;γδ; ð2:9Þ

where
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MR;frg;αβ;S;fsg;γδ ¼ −
�
4π

k

�
2X

R0

cRR0dSn11n12
ds11ds12dR0 ðn11 þ n12Þ

× ½ðn12 − 1ÞTrR⊕S½IS0R0 ð1; n11 þ 2Þ½ð1; n11 þ 1Þ; PR;frgαβ�IR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ��
þ ðn11 − 1ÞTr½IS0R0 ð1; 2Þ½ð1; n11 þ 1Þ; PR;frgαβ�IR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ��
þ NTr½IS0R0 ½ð1; n11 þ 1Þ; PR;frgαβ�IR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ��
þ Tr½IS0R0 ðPR;frgαβ − ð1; n11 þ 1ÞPR;frgαβð1; n11 þ 1ÞÞIR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ���: ð2:10Þ

To obtain this result, the sum over the symmetric group
appearing in (2.1) is evaluated using the fundamental
orthogonality theorem of group representation theory.
The sum that appears after the derivatives act is a sum
over Sn11þn12−1 ⊂ Sn11þn12, so that the sum is nonzero as
long as one of the representations subduced by R upon
restricting to Sn11þn12−1 agrees with one of the representa-
tions subduced by S under the same restriction. The sum
then produces the maps IS0R0 and IR0S0 , which map between
subspaces of the carrier spaces of R and S. We have used
cycle notation for elements of the symmetric group. To
completely spell out our notation, note that each element of
the symmetric group is in the representation inherited from
the subspace it acts in. Thus, for example,

TrR⊕S½IS0R0 ð1; n11 þ 2ÞIR0S0 ð1; n11 þ 1Þ�
¼ TrR⊕S½IS0R0ΓRðð1; n11 þ 2ÞÞIR0S0ΓSðð1; n11 þ 1ÞÞ�;

where ΓSðσÞ is the matrix representing σ in irreducible
representation S.
The formulas (2.9) and (2.10) are the key results of this

section. These are exact in the sense that we have not used
any simplifications of the large N limit to obtain this result.
We now consider the eigenproblem of D, which as we
explain in the next section, can be solved in a specific limit,
after exploiting simplifications of large N. At large N the
last line in (2.10) is subleading and will therefore be
dropped in what follows.2

III. DISPLACED CORNERS APPROXIMATION

It is perhaps useful to begin with a discussion of some
of the intricacies inherent in the problem of diagonalizing
(2.9). The key difficulty in constructing the restricted Schur
polynomials (2.1) is in the construction of the intertwining
operators PR;frg;αβ. To compute the two-point function
(2.4), after summing over the free field Wick contractions,
we simply need to take a product of two of these
intertwining operators and then compute their trace, which
is a relatively simple computation. Indeed, the result
depends only on the dimensions of the representations R

and frg which appear. The expression in (2.9) involves
computing commutators of the intertwining operators with
symmetric group elements and then tracing over a product
of these commutators. This is a much more sophisticated
operation for which the explicit form ofPR;frg;αβ is required.
Fortunately there is a limit in which we can construct
PR;frg;αβ in a straightforward way: this is the displaced
corners limit of [6] (see also [5]). The idea is simply that for
the vast majority of restricted Schur polynomials
χR;frg;αβðϕ11;ϕ12Þ that can be written down, the distance
between the last box in each row ofR is orderN. Here by the
distance between boxes a and b we mean the smallest
number of boxes that one needs to pass through when
moving, in the Young diagram, from box a to box b. When
the distance between the last box in the different rows ofR is
order N, the action of the symmetric group simplifies
dramatically, which greatly simplifies the construction of
PR;frg;αβ. To guarantee this simplification it is necessary to
assume in addition thatn12 ≫ n11; for further discussion and
all the details see [6]. In this paper we accomplish n12 ≫ n11
by scaling n12 as N and n11 as

ffiffiffiffi
N

p
as we take N → ∞. Our

results would seem to holdwith n11 scaled asNα with α < 1,
but due to the formidable technical computations needed,we
have not managed to explore this important point in detail.
For a Young diagram Rwith p rows, the maps IS0R0 and IR0S0

can be identified with elements of uðpÞ. The action of the
symmetric group elements appearing in (2.9), on these
maps, is easy to evaluate. The intertwining operators
themselves take a factorized form

PR;frg;αβ ¼ pr11αβ1r12 ; ð3:1Þ

wherepr11αβ projects onto Sn11 irreducible representation r11
and 1r12 projects onto Sn12 irreducible representation r12. The
concrete construction of these intertwining operators,
together with detailed examples, is given in [6].
Since we have to take n12 ≫ n11 we know that the terms

in (2.6) with j ¼ 2will dominate. This is indeed the case: in
(2.10) the terms with coefficient n12 − 1 come from the
j ¼ 2 term of (2.6) while the terms with coefficient n11 − 1
come from j ¼ 1. In this sectionwewill restrict our attention
to large N, which implies that we should keep only the
leading order in n11

n12
. This amounts to keeping only the terms

in (2.10) that have coefficient n12 − 1 or coefficient N
2The last line in (2.10) corresponds to the third and fourth

terms in (2.6).
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Dð0ÞÔR;frg;αβ ¼
X

S;fsgγδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShooksShooksr11hooksr12
fRhooksRhookss11hookss12

s
Mð0Þ

R;frg;αβ;S;fsg;γδÔS;fsg;γδ

≡ X
S;fsgγδ

Dð0Þ
R;frg;αβ;S;fsg;γδÔS;fsg;γδ; ð3:2Þ

where

Mð0Þ
R;frg;αβ;S;fsg;γδ ¼ −

�
4π

k

�
2X

R0

cRR0dSn11n12
ds11ds12dR0 ðn11 þ n12Þ

× ½ðn12 − 1ÞTr½IS0R0 ð1; n11 þ 2Þ½ð1; n11 þ 1Þ; PR;frgαβ�IR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ��
þ NTr½IS0R0 ½ð1; n11 þ 1Þ; PR;frgαβ�IR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ���: ð3:3Þ

We will return to the term with coefficient n11 − 1 in the next section. In the displaced corners approximation, using the
simplifications just outlined, we obtain

Dð0Þ
R;frg;αβ;S;fsg;γδ ¼ −

�
4π

k

�
2

ffiffiffiffiffiffi
fS
fR

s X
R0

cRR0

ðn11 − 1Þ! ðN þ r12iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hooksr11hookss11

q

× ½TrðEð1Þ
kk pr11αβE

ð1Þ
ii ps11γδÞδr012;i;s012;k þ TrðEð1Þ

ii pr11αβE
ð1Þ
kk ps11γδÞδr012;i;s012;k

− ðTrðEð1Þ
kk pr11αδÞδβγ þ TrðEð1Þ

kk pr11γβÞδαδÞδR;Sδr11;s11δr12;s12 �: ð3:4Þ

In this last formula, r12i is the length of row i of Young
diagram r12, R0 is obtained from R by dropping the last box
in row i and S0 is obtained from S by dropping the last box

in row k. Dð0Þ
R;frg;αβ;S;fsg;γδ is diagonalized by the double

coset ansatz [8].
To motivate what follows, recall that the label frg ¼

fr11; r12g and that r12 can be obtained by removing a total
of n11 boxes from R. Denote the number of rows in R by p.
If we remove a1 boxes from the first row, a2 from the
second and so on up to ap from row p, then the vector
~n11 ¼ ða1; a2;…; apÞ plays an important role: in the
displaced corners approximation, operators with different
~n11 do not mix at one loop [6]. Of course, we have
a1 þ a2 þ � � � þ ap ¼ n11. The vector ~n11 can be used to
define a group H which is a product of symmetric groups

H ¼ Sa1 × Sa2 × � � � × Sap: ð3:5Þ

According to the double coset ansatz [8], each eigenfunc-
tion of the dilatation operator is in one-to-one correspon-
dence with an element of the double coset HnSn11=H.
These double coset elements can also be put into corre-
spondence with graphs whose edges are oriented and hence
with open strings states that obey the Gauss law, providing
a convincing connection with the dual D-brane plus open
string excited states; for background see [8,29]. The graph

has a total of p nodes and there are n11 oriented edges
stretching between the nodes. For this reason we will refer
to these operators as Gauss graph operators and to the
associated oriented graphs as Gauss graphs. The Gauss
graph operators are [8]

OR;r12ðσÞ ¼
jHjffiffiffiffiffiffiffiffi
n11!

p
X
j;k

X
r11⊢n11

X
μ1;μ2

ffiffiffiffiffiffiffi
dr11

q
Γðr11Þ
jk ðσÞ

× Br11→1H
jμ1

Br11→1H
kμ2

ÔR;frg;μ1μ2 ; ð3:6Þ

where σ ∈ HnSn11=H, Γðr11Þ
jk ðσÞ is the matrix representing

σ in the irreducible representation r11 of Sn11 and the

branching coefficients Br11→1H
jμ1

resolve the projector from
irreducible representation r11 of Sn11 to the trivial repre-
sentation of H,

1

jHj
X
γ∈H

Γðr11Þ
jk ðσÞ ¼

X
μ

Br11→1H
jμ Br11→1H

kμ : ð3:7Þ

Note that these operators are not normalized. We have
computed the norm of these operators in the Appendix.
The action of the dilatation operator is most easily

written in terms of parameters read from the Gauss graphs.
Following [30], a useful combinatoric description of a
Gauss graph is obtained by dividing each string into two
halves with a label for each half. Using the orientation of

HEAVY OPERATORS IN SUPERCONFORMAL CHERN- … PHYSICAL REVIEW D 90, 126009 (2014)

126009-5



the string, label both the outgoing and the ingoing string
endpoints with an integer 1; 2;…; n11. A permutation is
then determined by how the halves are joined and con-
versely, given a permutation, we can reconstruct the graph.
A graph is not associated to a unique permutation because
the strings leaving the ith node are indistinguishable, and
the strings arriving at the ith node are indistinguishable. As
a result, graphs are in one-to-one correspondence with
elements of the double cosetHnSn11=H. Divide the integers
1; 2;…; n11 into p sets, Si i ¼ 1; 2;…; p such that the
symmetric group that is the ith factor in H permutes the
elements of Si. In the graph corresponding to σ, the number
of oriented edges stretching from node i to node j is

nþijðσÞ ¼
X
k∈Si

X
l∈Sj

δðσðkÞ; lÞ: ð3:8Þ

The number of strings stretching in the opposite direction,
between the same two nodes, is

n−ijðσÞ ¼
X
k∈Si

X
l∈Sj

δðσðlÞ; kÞ: ð3:9Þ

The total number of strings stretching between the two
nodes is nijðσÞ ¼ nþijðσÞ þ n−ijðσÞ.
The action of the dilatation operator is naturally written

in terms of an operator Δij defined as follows: Δij is a sum
of three terms,

Δij ¼ Δþ
ij þ Δ0

ij þ Δ−
ij: ð3:10Þ

To define the action of each of the above terms, we need to
introduce two new Young diagrams: ðr12Þ�ij: ðr12Þþij is the
Young diagram obtained from r12 by removing the last box
from row j and adding it to the end of row i, while ðr12Þ−ij is
the Young diagram obtained from r12 by removing the last
box from row i and adding to the end of row j. R�

ij are
defined in the same way. The actions we need to define are3

Δ0
ijOR;r12ðσÞ ¼ −ð2N þ r12i þ r12j − 3ÞOR;r12ðσÞ

Δþ
ijOR;r12ðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ r12i − 1ÞðNþ r12j − 1Þ

q
ORþ

ij ;ðr12ÞþijðσÞ

Δ−
ijOR;r12ðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ r12iÞðNþ r12j þ 2Þ

q
OR−

ij;ðr12Þ−ijðσÞ:
ð3:11Þ

Recall that r12k is the number of boxes in row k of Young
diagram r12. A computation very similar to that of [8] now
shows

Dð0ÞOR;r12ðσ1Þ ¼ −
�
4π

k

�
2 X
γ1;γ2∈H

δðγσ1γ−1σ−12 Þ

×
X
i<j

ðN þ r12;iÞnijðσ1ÞΔijOR;r12ðσ2Þ:
ð3:12Þ

In the large N limit we can introduce continuous variables
xi defined by

xi ¼
r12;i − r12;pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ r12;p

p : ð3:13Þ

In terms of this continuous variable, the leading contribu-
tion to the action of the dilatation operator (3.12) becomes

Dð0ÞOR;r12ðσ1Þ ¼−
�
4π

k

�
2 X
γ1;γ2∈H

δðγσ1γ−1σ−12 Þ

×
X
i<j

ðNþ r12;iÞnijðσ1Þ

×
��

d
dxi

−
d
dxj

�
2

−
ðxi− xjÞ2

4

�
OR;r12ðσ2Þ:

ð3:14Þ

After diagonalizing nijðσÞ this is a sum of decoupled
oscillators, which is an integrable system.

IV. SUBLEADING TERM

In this section we will consider the subleading correction
contained in

Dð1ÞÔR;frg;αβ ¼
X

S;fsgγδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShooksShooksr11hooksr12
fRhooksRhookss11hookss12

s

×Mð1Þ
R;frg;αβ;S;fsg;γδÔS;fsg;γδ

≡ X
S;fsgγδ

Dð1Þ
R;frg;αβ;S;fsg;γδÔS;fsg;γδ; ð4:1Þ

where

Mð0Þ
R;frg;αβ;S;fsg;γδ

¼ −
�
4π

k

�
2X

R0

cRR0dSn11n12
ds11ds12dR0 ðn11 þ n12Þ

× ðn11 − 1ÞTr½IS0R0 ð1; 2Þ½ð1; n11 þ 1Þ; PR;frgαβ�
× IR0S0 ½ð1; n11 þ 1Þ; PS;fsgγδ��: ð4:2Þ

These terms correspond to the terms with j ¼ 1 in (2.6).
Evaluating the above trace in the displaced corners
approximation, we find

3The Oð1Þ corrections added to N in the expressions which
follow must be retained. After cancelations, these terms give the
leading contribution.
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Dð1Þ
R;frg;αβ;S;fsg;γδ ¼ −

�
4π

k

�
2

ffiffiffiffiffiffi
fS
fR

s X
R0

cRR0

ðn11 − 2Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hooksr11hookss11

q

×

� ffiffiffiffiffiffiffiffi
r12b
r12k

r
TrðEð1Þ

kk E
ð2Þ
bi pr11αβE

ð1Þ
ib ps11γδÞδr012;b;s012;k þ TrðEð1Þ

id E
ð2Þ
id pr11αβE

ð1Þ
kk ps11γδÞδr012;i;s012;k

−
�
TrðEð1Þ

kb E
ð2Þ
bk pr11αδÞδikδr11s11δβγδR;S þ

ffiffiffiffiffiffiffiffi
r12k
r12i

r
TrðEð2Þ

ki pr11γβE
ð1Þ
ik ps11γδÞ

�
δr12;s12

�
: ð4:3Þ

We have not managed to perform the sums needed to
rewrite the action of Dð1Þ on Gauss graph operators. It is
however straightforward to study this problem numerically,
for specific choices of n11 and p.
The numerical study we will discuss is focused on

operators labeled by Young diagrams R that have a total
of p ¼ 3 long rows, and n11 ¼ 3. The results of this
example are rather typical. A total of 21 operators can
be defined, so that the dilatation operator is a 21 × 21
dimensional matrix. Acting on this space,Dð0Þ decomposes
into a block diagonal matrix with a total of ten blocks. Each
block can be labeled by the vector ~n11. The possible blocks
together with their dimension and allowed s labels are

(4.4)

It is a simple exercise to write down the complete set of
partially labeled Young diagrams [6] and write down the
action of the symmetric group on these states. We need to
explicitly consider all 3 ϕ11 boxes as well as a single ϕ12

box when constructing the dilatation operator numerically.
Within this space, the projectors pr11γβ are 81 × 81 dimen-
sional matrices. The only representation that carries a
nontrivial multiplicity label is the representation in
the ~n11 ¼ ð1; 1; 1Þ subspace. The multiplicity free projec-
tors can immediately be written down as

pr11~n11 ¼
dr11
3!

X
σ∈S3

χr11ðσÞΓ~n11ðσÞ; ð4:5Þ

with χr11ðσÞ an S3 character. The matrix Γ~n11ðσÞ represents
σ ∈ S3 in the displaced corners approximation and inside
the ~n11 subspace. To construct the projectors for the

representation in the ~n11 ¼ ð1; 1; 1Þ subspace, we need
to resolve this subspace into two Uð3Þ states in the

representation. The two states are described by the
Gelfand-Tsetlin patterns that have the same inner multi-
plicity. For our problem here, the two states are2

64
2 1 0

1 1

1

3
75

2
64
2 1 0

2 0

1

3
75 ð4:6Þ

and are easily constructed using Uð3Þ Clebsch-Gordan
coefficients. The detailed computation appears in
Appendix C of [6].
We find that Dð1Þ not diagonal in the Gauss graph basis

and it does not commute with Dð0Þ. Further, it does not
reduce to a block diagonal matrix and indeed, it mixes
operators from different ~n11 sectors. Thismixing is expected
and has a natural interpretation in the gravity dual.
Specifying ~n11 specifies how many oriented edges start
and terminate at each node. Interpreting the nodes as giant
gravitons and the oriented edges as open strings attached to
the giant graviton system, ~n11 can only change as a result of
open string splitting and joining. Thus, themixingwe see is a
signal of open string splitting and joining. This interpreta-
tion is also natural given the fact that Dð1Þ is a correction to
the largeN limit, so that we should indeed be seeing the first
effects of string splitting and joining when this correction is
included. Finally, a remarkable feature of Dð0Þ is the
appearance of the integers nijðσÞ when the diagonalization
problem is solved. Numerically we find that the eigenvalues
of Dð1Þ are again integers suggesting there may be a nice
combinatorial description of the problem, presumably
exploiting the combinatorics of string splitting and joining.

V. DISCUSSION

In the SUð2Þ sector of the ABJM theory we have
managed to diagonalize the two loop dilatation operator
by employing the double coset ansatz. This problem was
already considered in [16] where the dilatation operator
was already evaluated, but not diagonalized. One of the
results we have reported, is precisely the solution of this
diagonalization problem. The main progress achieved in
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this paper follows from our rewriting of the dilatation
operator, in terms of adjoint variables. This gives a useful
organization of the dilatation operator and in particular, has
allowed us to cleanly identify two terms that contribute at
the leading order at large N and two that are subleading.
With this organization in hand, the eigenproblem of the
dilatation operator is a straightforward exercise that can be
achieved using existing techniques. The leading terms are
diagonalized by the double coset ansatz, reducing the
problem to the diagonalization of a collection of decoupled
oscillators, which is an integrable system. We find a new
“conservation law”: the dilation operator does not mix
operators with different ~n11 quantum number. The resulting
spectrum of anomalous dimensions differs from the cor-
responding spectrum in N ¼ 4 super Yang-Mills theory in
an important quantitative way. In the N ¼ 4 super Yang-
Mills theory, the frequencies of the decoupled oscillators
are set by the eigenvalues of the matrix nijðσÞ which can be
read straight from the permutation labeling the Gauss
graph. From (3.14) we see that for ABJM the frequencies
of the decoupled oscillators are set by the eigenvalues of
ð1þ r12;i

N ÞnijðσÞ. Thus, the frequencies depend both on the
matrix nijðσÞ, determined by the Gauss graph, and on r12;i
which are the row lengths of the Young diagram r12. Each
row of r12 corresponds to a giant graviton. The number of
boxes in the ith row of r12 determines an R charge which
corresponds to the angular momentum of the giant grav-
iton. Since the giant expands to a definite size by balancing
a Lorentz type force (trying to expand the giant) with
tension (trying to shrink the giant), the angular momentum
of the giant sets the size of the giant. Consequently, our
result implies that the excitation spectrum of the giant
graviton picks up a dependence on the size of the giant
graviton. The fact that the spectrum of the anomalous
dimensions in N ¼ 4 super Yang-Mills theory is indepen-
dent of the parameters of the Young diagram associated to
the giant graviton system, matches the fact that the
spectrum of small fluctuations around the giant is inde-
pendent of the size of the giant [31]. This independence of
the size of the giant is understood as follows [29]: as the
radius of the giant increases, there is an increase in the
energy of fluctuations due to blueshifting, as well as a
decrease in the energy of the states because the fluctuations
now move on a bigger sphere. These two effects precisely
cancel producing a size independent spectrum. For the
ABJM case, our results predict that although these two
effects still operate, they do not precisely cancel so that the
spectrum does pick up a dependence on the size of the
giant. This is consistent with the small fluctuation spectrum
around a giant graviton performed in [32]. By perturbing
around the near-maximal giant and the “small” giant these
authors find a spectrum that is size dependent.
In this paper we have also given a simple formula for the

normalization of the Gauss graph operators. This will be a

useful technical input when computing the effects of Gauss
graph operator mixing, at subleading orders in a large N
expansion.
Finally, we have also evaluated the largest of the

subleading (in 1
N) terms. Although we have not managed

an analytic result, a numerical study has lead to some
interesting conclusions. The subleading correction does not
commutewith the leading order dilatation operator. Further,
it allows mixing between operators with different ~n11
quantum numbers, so that it spoils the conservation law
that was present at large N. This is naturally interpreted as a
consequence of open string splitting and joining. The
discussion of [19,20] suggests that the failure of this
conservation law may be an indication that integrability
does not persist beyond the large N limit. A numerical
diagonalization of this term shows that it has integer
eigenvalues, suggesting that there may be a nice combi-
natorial description waiting to be developed.
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APPENDIX: NORMALIZATION OF THE GAUSS
GRAPH OPERATORS

The two-point function of Gauss graph operators is

hOR;rðσÞ†OR;rðσÞi ¼
X

γ1;γ2∈H
δðσ−1γ1σγ−12 Þ: ðA1Þ

The right-hand side of the above equation is simply
counting the number of solutions γ1; γ2 ∈ H to

σ ¼ γ1σγ
−1
2 : ðA2Þ

Using γ1 and γ2 we are able to swap the endpoints of the
open strings. If we swap the labels of strings that have the
same start and endpoints, we leave σ unchanged and hence
have a solution to (A2). In this way, for n strings stretching
from the same start point to the same endpoint, we will pick
up a factor of n!. Denote the number of oriented line
segments stretching from node i to node j by nij and the
number of segments stretching from node i back to node i
by nii. We have

hOR;rðσÞ†OR;rðσÞi ¼
Yp
i¼1

nii!
Yp

k;l¼1;l≠k
nkl! ðA3Þ
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