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The sum over planar multiloop diagrams in the NSþ sector of type 0 open strings in flat spacetime has
been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N
limit. With SUðNÞ Chan-Paton factors, the sum over planar open string multiloop diagrams describes the
’t Hooft limit N → ∞ with Ng2s held fixed. By including only planar diagrams in the sum the usual
mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and
Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization
procedure is needed. In this article the renormalization is achieved by suspending total momentum
conservation by an amount p≡P

n
i ki ≠ 0 at the level of the integrands in the integrals over the moduli and

analytically continuing them to p ¼ 0 at the very end. This procedure has been successfully tested for the 2
and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the
coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those
results in two directions. First, we generalize the renormalization method to an arbitrary n-gluon planar
loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully
renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the
physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy
scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at
high energies, we compute the full dependence on the scattering angle which shows the existence of a
smooth connection between the Regge and hard scattering regimes.

DOI: 10.1103/PhysRevD.90.126008 PACS numbers: 11.25.-w, 11.25.Db

I. INTRODUCTION

Ever since ’t Hooft’s original suggestion that the large N
limit of gauge theories should possess a dual string
description [1] there has been an enormous amount of effort
to find the corresponding dual description for large N QCD.
With the advent of the AdS/CFT correspondence [2–4]
much has been learned about the nonperturbative regime of
gauge field theories, however, the precise string picture dual
to QCD in the large N limit still remains undelivered.
A different approach for resolving nonperturbative issues

such as confinement in gauge theory has been put forward
by Thorn [5,6] where the strategy is to perform the
summation of open string multiloop diagrams instead of
field theoretic multiloop diagrams, delaying the α0 → 0
limit for only after computing the sum.1 It is important to
recall that ’t Hooft’s limit corresponds to summing all the
planar Feynman diagrams of the field theory, and that these
diagrams are the α0 → 0 limit of the planar open string
multiloop diagrams order by order in the perturbative
expansion. The main idea is that, since the perturbative
expansion in string theory has far fewer diagrams than the

field theory one, the multiloop sum could be more tractable
for string diagrams rather than field theory diagrams.
In [5,6] this program was initiated using type 0 strings

mainly for two reasons: (i) the spectrum of type 0 strings is
purely bosonic and the one of large N QCD is straightfor-
ward to obtain from the low energy limit of the open sector
of the type 0 theory, and (ii) the presence of a tachyon in its
closed string spectrum could produce the desired instability
to drive its perturbative vacuum to the true (large N) QCD
vacuum [11–14]. If the stabilization indeed occurs, it
should manifest after the multiloop summation is
performed.
The first tests of type 0 open string theory as a viable

model for the multiloop diagram summation of [5,6] were
performed in [15] where it was obtained the correct running
coupling behavior of the limiting gauge theory by studying
the planar 2 and 3-gluon amplitudes at one-loop. At this
point is it important to stress a crucial fact: since only planar
diagrams participate in the multiloop sum of [5,6] the usual
cancellation of loop UV divergences, which occurs for
example among the planar and Moebius strip diagrams by
choosing a specific gauge group for the Chan-Paton
factors,2 no longer takes place and a renormalization
procedure is necessary to manage these infinities. For*frojasf@ift.unesp.br

1More recent developments in this program have been reported
in [7–9]. For other directions on the connections between string
amplitudes and field theory Feynman diagrams see [10].

2For the type I superstring for example, the Chan-Paton gauge
group is SO(32).
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the 2 and 3 gluon cases the renormalization was achieved
by an analytic continuation which consists in suspending
total momentum conservation by an amount p before
performing the integrals over the moduli (referred to as
the Goddard-Neveu-Scherk or GNS regularization for short
in [15]), i.e. one takes

P
n
i ki ¼ p ≠ 0 at the level of the

integrands, where ki are the momenta of the n external
gluons. Only after performing the integrations one analyti-
cally continues the answer to p ¼ 0.
As an example of how this procedure works, consider the

planar 1-loop amplitude for two external gluons in bosonic
string theory. The amplitude is proportional to

MBose
2 ¼

Z
π

0

dθ½sin θ�2α0k1·k2−2; ð1Þ

where k1 and k2 are the momenta of the external gluons.
From here we see that, since for gluons we have k2i ¼ 0, the
exponent above is 2α0k1 · k2 ¼ α0ðk1 þ k2Þ2 ¼ 0 due to
total momentum conservation k1 þ k2 ¼ 0. We therefore
have

MBose
2 ¼

Z
π

0

dθ½sin θ�−2; ð2Þ

which diverges due to the infinite contributions to the
integral coming from the regions where θ ∼ 0 and θ ∼ π.
These are spurious divergences that typically occur in open
string loop diagrams that usually come as integral repre-
sentations outside their domain of convergence. Therefore,
one needs to analytically continue the integrals in order to
get rid of the spurious infinities leaving only the physical
ones such as infrared and collinear divergences. The usual
way would be to integrate by parts in (1) to extend its
domain of convergence as a function of the complex
variable k1 · k2. This is indeed not hard to do here, but it
is impractical for higher point amplitudes that involve
multidimensional integrals over many θ variables. Already
for the 3-gluon amplitude this gets very intricate.
Our method is to suspend momentum conservation at the

level of the integrands by taking
P

n
i ki ¼ p ≠ 0, and then

to analytically continue the result to p ¼ 0 at the end. This
way we now have 2α0k1 · k2 ¼ α0ðk1 þ k2Þ2 ¼ α0p2 instead
of zero. The amplitude (1) now reads

MBose
2 ¼

Z
π

0

dθ½sin θ�α0p2−2 ¼ Γð1=2ÞΓðα0p2=2 − 1=2Þ
Γðα0p2=2Þ

¼ −
πα0p2

4
þOðp4Þ; ð3Þ

where, for Reðα0p2Þ > 1, we recognize it in the second
equal sign as the integral representation for the Euler beta
function that has a smooth p → 0 limit as shown. Even
better, from the power series expansion in p, we see that the
continuation to p → 0 gives MBose

2 ¼ 0, which is very

welcome for the 2-gluon amplitude at 1-loop since gauge
invariance must also hold order by order in perturbative
string theory, this is, the gluon mass must not receive loop
corrections.
For the 3-gluon amplitude for the planar one loop the

procedure also works but it is considerably more compli-
cated than the 2 gluon case (see Sec. 4.2 in [15]). Based on
these results, it does not seem obvious that the procedure
continues to work for higher point amplitudes.
One of the main results of the present article is that we

show that the analytic continuation procedure does extend
to an arbitrary number of external gluons (planar loop
n-gluon amplitude) and we also give the full details of the
computation for 4 gluons, providing a novel renormalized
expression for the amplitude which is completely free of
spurious and UV divergences. As a result, the renormalized
amplitude we give contains physical divergences only and,
for example, is ready to provide the correct field theory
limit by taking α0 → 0 without worrying about the known
spurious infinities that arise from the usual integral repre-
sentations of stringy loop amplitudes.3 We also show that
the UV divergences and all the spurious ones can be
regulated altogether by means of a single counterterm using
the regulator p≡P

iki ≠ 0. After this is done, we ana-
lytically continue the amplitude to p ¼ 0 and arrive at the
final renormalized expression.
The second part of this article concerns the high energy

limit for the scattering of type 0 open strings. Here we
extend our analysis of [17] by studying the high energy
regime of the planar one-loop amplitude for 4 gluons at
fixed scattering angle (hard scattering). One of the main
results of this second part is that we explicitly show that the
hard-scattering and Regge regimes are smoothly connected
since there is an overlapping region in the moduli where the
two approaches yield the same results. Note also that, since
all the Mandelstam variables come multiplied with a factor
of α0, the hard scattering regime is exactly equivalent to the
tensionless limit (α0 → ∞) with external particles held at
fixed momenta.
By carefully analyzing all dominant regions we extract

the leading behavior of the amplitude providing its com-
plete kinematic dependence. This includes the exact
dependence on the scattering angle that multiplies the
usual exponentially decaying factor. Although in order
to compare our results with those of [17] we focus on the
particular polarization structure ϵ1 · ϵ4ϵ2 · ϵ3 (the dominant
one in the Regge regime), our results are general and can be
straightforwardly extended to all the other polarization
structures.

3At the level of an n-point amplitude the spurious divergences
are the ones that arise from the integration regions where all or all
but one vertex operators get arbitrarily close to each other in
moduli space. See Sec. 9.5 in J. Polchinski’s, “String theory.
Vol. 1: An introduction to the bosonic string,” [16] for a more
detailed discussion.
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For the planar loop amplitude the leading behavior we
obtain for large α0jsj with fixed λ≡ −t=s (fixed angle) is

M ∼ FðλÞe−α0jsjfðλÞ
�

1

ln α0jsj
�

γ−1
ð−α0sÞ3=2 ð4Þ

where fðλÞ≡ λ lnð−λÞ þ ð1 − λÞ lnð1 − λÞ and the function
FðλÞ is given by

FðλÞ≡
Z

π

0

dθ
Z

∞

0

dr
rsin2θðr2 þ 2r cos θ þ 1Þ−1

r2ð1 − λÞ2 þ 2rð1 − λÞ cos θ þ 1
:

ð5Þ

The usual case occurs when γ ¼ 1 which corresponds to
a space-time filling D-brane, but for smaller dimensional
D-branes the behavior gets softened (since γ > 1) by the
logarithmic factor above. The λ ∼ 0 analysis of FðλÞ allows
us to see that there exists a smooth connection between the
hard scattering and Regge regimes; to our knowledge this is
also a new result and it is explained in detail in Sec. IV C.
In [17] we studied the one-loop correction to the open

string Regge trajectory αðtÞ ¼ 1þ α0tþ g2ΣðtÞ and also
extracted its field theory limit in order to deepen our
understanding of the suitability of type 0 open strings as an
“uplifted” tensionful model (α0 ≠ 0) of Yang-Mills theory.
In [17], by using the regulator p ¼ P

4
i ki for the 4-gluon

amplitude and carefully taking the α0 → 0 limit in the
renormalized expression we obtained for ΣðtÞ using the
analytic continuation procedure previously mentioned, we
were able to recover the known answer for the one-loop
gluon Regge trajectory in dimensionally regularized Yang-
Mills theory [18–21].
The high energy behavior of one-loop open string

amplitudes has been studied since the very early days of
string theory [22–25], and more recently in [26]. In [22]
Alessandrini, Amati, and Morel studied the high energy
limit at fixed angle (hard scattering) for the one-loop
nonplanar amplitude of four open string tachyons. The
same high energy regime for an arbitrary number loops in
the bosonic open string was studied in the late 1980s by
Gross and Mañes [27]. One of their main conclusions was
that, similarly to the study of closed strings in [28], the
amplitude for four external open string tachyons had a
dominant saddle point at all genus, implying that the
leading behavior can be obtained by analyzing the con-
tribution to the amplitude around these saddle points.
Moreover, extending the closed string semiclassical analy-
sis of [28] to the open string case, the authors of [27] found

that the open string planar amplitude does not possess
saddle points in the interior of moduli space. Therefore, the
only regions that could potentially give the dominant
behavior at high energies and fixed angle are the boundaries
of the moduli space. This conclusion extends immediately
to type 0 open strings because the relevant dependence on
the external momenta is identical in both, the bosonic and
the type 0 string models.
The organization of this paper is as follows. In Sec. II we

familiarize the reader on the computation of the annulus
amplitude for external gluons in type 0 open string theory,
and we introduce the analytic continuation procedure to
regulates both UV and spurious divergences. We show the
calculation of the 2-gluon amplitude [15] as a simple
example of the method, and give the full details of our
procedure for the 4-gluon case. In Sec. III we give the
systematics of the generalization for an arbitrary number of
external gluons. Once having obtained the full renormal-
ized expression for the 4-gluon amplitude, in Sec. IV we
compute its tensionless limit, i.e. the high energy regime at
fixed-angle (hard scattering). By taking s ≫ t and compar-
ing this with the α0 → ∞ limit of the Regge behavior of the
4-gluon amplitude found in [17], we find perfect agreement
with our results, thus, explicitly showing the smooth
connection between the hard and Regge regimes. In
Appendix A we show a different procedure to project
out massless scalars circulating in the loop based on an
orbifold projection [17], and in Appendix B we provide
the explicit form of the counterterms needed in the
4-gluon case.

II. ONE LOOP PLANAR AMPLITUDE
AND RENORMALIZATION

We start with a very brief discussion about the basic
elements of type 0 theories. These are ten dimensional
string theories that are obtained by the GSO projection

1

2
ð1þ ð−1ÞFÞ ð6Þ

on the open string sector, and

1

2
ð1þ ð−1ÞFþ ~FÞ ð7Þ

on the closed string sector, where F is the worldsheet
fermion number. The closed string spectrum is

type 0A∶ ðNS−; NS−Þ ⊕ ðNSþ; NSþÞ ⊕ ðRþ; R−Þ ⊕ ðR−; RþÞ
type 0B∶ ðNS−; NS−Þ ⊕ ðNSþ; NSþÞ ⊕ ðRþ; RþÞ ⊕ ðR−; R−Þ
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Although there are no fermions in the spectrum, these
projections produce modular invariant partition functions
[29–31]. Note also that, although the GSO projection
eliminates the open string tachyon from the spectrum,
there remains a closed string tachyon from the ðNS−; NS−Þ
sector. However, the doubling of R-R fields has an
stabilizing effect on the closed string tachyon by giving
its mass-squared a positive shift [11]. The approach
proposed by Thorn suggests that this instability could also
be resolved by the planar multiloop summation of type 0
open string diagrams [5,6,15,32].
In this article we are mainly interested in the open string

sector of the type 0 model. Its free spectrum, after the GSO
projection (6) is α0M2 ¼ 0; 1; 2;…. The lowest mass state
is ϵ · b−1=2j0; ki with k2 ¼ 0 and k · ϵ ¼ 0. This massless
gauge state will be called the “gluon” in the rest of this
article.
By projecting out the states with odd fermion worldsheet

number, the tachyon of the NS sector is removed and the
low energy excitations of a Dp-brane correspond to
massless gauge fields and scalars only [11]. This result
also holds if one considers a stack of N parallel like-
charged Dp-branes. Thus, the world volume theory of this
configuration of Dp-branes in type 0 theories describes a
pure glue UðNÞ gauge theory in p spacetime dimensions
coupled to ð9 − pÞ massless adjoint scalars [11,33]. If one
is only interested in pure Yang-Mills theory, these scalars
can be removed by using orbifold projections or by using
the non-Abelian D-branes procedure of [32].

A. Analytic continuation

With the metric signature f−þþ � � �g the Mandelstam
variables are conventionally defined as s ¼ −ðk1 þ k2Þ2,
t ¼ −ðk2 þ k3Þ2, and u ¼ −ðk2 þ k4Þ2. The integral
expression for the M-point planar one-loop amplitude is
plagued with divergences in various “corners” of the
integration region. We will examine these in detail in
Secs. II B and II C. These infinities simply arise from
the use of an integral representation outside its domain of

convergence [34]. The point we would like to stress here is
that, since these divergences are a direct consequence of
momentum conservation, if we allow for

P
M
i¼1 ki ≡ p ≠ 0,

we can regulate and track the effects of all of these
divergences. Finally, we analytically continue the integrals
to p ¼ 0 at the very end of our calculations. Wewill see that
this technique leads to physically meaningful consequences
such as gauge invariance because it allows us to prove that
massless vector bosons remain massless at one loop
[15,17,35]. In [35] Minahan shows that such prescription
does not violate conformal nor modular invariance. It will
also prove to be important when we study the high energy
regime at fixed scattering angle in Sec. IV. This technique
was proposed and used long ago by Peter Goddard [36] and
André Neveu and Joel Scherk [34] in the early days of
string theory. The variable p that represents the temporary
“suspension” of momentum conservation is referred to, in
this article, as the Goddard-Neveu-Scherk or GNS regulator
for short [15].
We will first begin by writing the full type 0 open string

planar one-loop amplitude for the scattering ofM “gluons”
[15]. The open string coupling g is normalized so that in the
α0 → 0 limit it is related to the QCD strong coupling gs by
αsN ¼ g2sN=4π ¼ g2=2π. Thus g is held fixed in the large
N limit. We should also clarify that an overall group theory
factor of trðTa1Ta2Ta3Ta4Þ, coming from the SUðNÞ Chan-
Paton factors, is implicit in all of our expressions for the
planar amplitudes. Having said this, the properly normal-
ized M-gluon amplitude is ðg ffiffiffiffiffiffiffi

2α0
p ÞM times

MM ¼ 1

2
ðMþ

M −M−
MÞ ð8Þ

whereMþ andM− come from the 1 and ð−1ÞF respective
parts of the GSO projection in (6). The difference between
these two expressions realizes the projection onto states
with even fermion worldsheet number.
The complete expressions for M� are

M�
M ¼

Z
dw
w

YM
i¼2

dyi
yi

w−1=2
�

−1
4πα0 lnw

�
D=2

exp

�
α0
X
i<j

ki · kj
ln2yi=yj
lnw

�

× hP̂ðy1Þ � � � P̂ðyMÞi�
Q

rð1� wrÞ8Q
nð1 − wnÞ8

Y
i<j

�
2i
θ1ð−i ln

ffiffiffiffiffiffiffiffiffiffiffi
yi=yj

p
;

ffiffiffiffi
w

p Þ
θ01ð0;

ffiffiffiffi
w

p Þ
�2α0ki·kj

: ð9Þ

Here, n ¼ 1; 2;…, r ¼ 1=2; 3=2;…. We use the notation
and conventions of [15]. The Koba-Nielsen variables yi are
integrated over the range:

0 < w < yM < yM−1 < � � � < y2 < y1 ¼ 1: ð10Þ

The presence of the factor ð −1
4πα0 lnwÞD=2 in (9) comes from

the fact that we are allowing the open string ends to be
attached to a stack of N coincident Dp-branes for
p ¼ D − 1. In the planar one-loop calculation, this amounts
to integrating over only the first D components of the loop
momentum and setting the remaining components to zero.
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If we take the α0 → 0 limit at this point, we will not
obtain the M-gluon amplitude in pure Yang-Mills theory,
but Yang-Mills coupled to 10 −D adjoint massless scalars
[11]. The scalar excitations arise from the vibrations of the
string in the directions perpendicular to the D-brane. In
order to have just gluons circulating in the loop we need to
project out these scalars. There is not a unique way to
achieve this and the procedure we use here is the projection
proposed in [32]. A different procedure to eliminate the
scalars from the loops is by introducing an orbifold
projection as explained in [17]. We briefly show in
Appendix A that the orbifold projection produces the same
answer in the field theory limit (i.e. α0 → 0) as one we use
here, but their effects differ as α0 departs from zero. The
projection [32] produces an extra factor of ð1∓w1=2Þ10−D−S

in the integrand above, where S is the number of scalars
remaining after the projection, which we also need to
include. If one is interested in large N QCD, there are
certainly no adjoint massless scalars in the spectrum, so we

would need S ¼ 0. However, we will leave S arbitrary in
order to make our expressions more general.
The factors in (9) that contain the Jacobi θ1 function can

be expressed in terms of an infinite product representation
as

Y
i<j

y
2α0ki·kj
j

Y
i<j

�
2i
θ1ð−i ln

ffiffiffiffiffiffiffiffiffiffiffi
yi=yj

p
;

ffiffiffiffi
w

p Þ
θ01ð0;

ffiffiffiffi
w

p Þ
�2α0ki·kj

¼
Y
i<j

��
1−

yj
yi

�Y
n

ð1−wnyi=yjÞð1−wnyj=yiÞ
ð1−wnÞ2

�
2α0ki·kj

:

ð11Þ

Following [15], the gluon vertex operator is
V ¼ eik·xðϵ · P þ ffiffiffiffiffiffiffi

2α0
p

k ·Hϵ ·HÞ≡ eik·xP̂. The h� � �i cor-
relator involves a finite number of P (bosonic) and H
(fermionic) worldsheet fields and it is determined by its
Wick expansion with the following contraction rules:

hPðylÞi ¼
ffiffiffiffiffiffiffi
2α0

p X
i

ki

�
−
lnðyi=ylÞ
lnw

þ 1

2

yi þ yl
yl − yi

þ
X∞
n¼1

�
yiwn

yl − yiwn −
ylwn

yi − ylwn

��

hPμðyiÞPνðylÞi ¼ hPμðyiÞihPνðylÞi þ ημν
�
−

1

lnw
þ yiyl
ðyi − ylÞ2

þ
X∞
n¼1

�
yiylwn

ðyl − yiwnÞ2 þ
yiylwn

ðyi − ylwnÞ2
��

hHμðyiÞHνðyjÞiþ ¼ ημν
X
r

ðyj=yiÞr þ ðwyi=yjÞr
1þ wr

hHμðyiÞHνðyjÞi− ¼ ημν
X
r

ðyj=yiÞr − ðwyi=yjÞr
1 − wr : ð12Þ

The two types of traces over the br oscillators are distinguished with the � superscript: for þ odd and even G-parity states
contribute with the same sign, whereas − denotes the contributions with opposite signs. In the F 2 picture, the difference of
the two traces, which amounts to taking Mþ −M− (8), projects out all the odd G-parity states; the open string tachyon
being one of them.
In the cylinder variables θi ¼ π ln yi= lnw and ln q ¼ 2π2= lnw, the planar one-loop amplitude is

Mþ
M ¼ 2M

�
1

8π2α0

�
D=2

Z YM
k¼2

dθk

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
PþðqÞ

Y
l<m

½ψðθm − θl; qÞ�2α0kl·kmhP̂1P̂2 � � � P̂Miþ ð13Þ

M−
M ¼ 2M

�
1

8π2α0

�
D=2

Z YM
k¼2

dθk

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
P−ðqÞ

Y
l<m

½ψðθm − θl; qÞ�2α0kl·kmhP̂1P̂2 � � � P̂Mi− ð14Þ

where

PþðqÞ≡ q−1ð1 − w1=2Þ10−D−S
Q

rð1þ q2rÞ8Q
nð1 − q2nÞ8 ð15Þ

P−ðqÞ≡ 24ð1þ w1=2Þ10−D−S
Q

nð1þ q2nÞ8Q
nð1 − q2nÞ8 ð16Þ

TYPE 0 OPEN STRING AMPLITUDES AND THE … PHYSICAL REVIEW D 90, 126008 (2014)

126008-5



ψðθ; qÞ ¼ sin θ
Y
n

ð1 − q2ne2iθÞð1 − q2ne−2iθÞ
ð1 − q2nÞ2 ð17Þ

P̂ ¼ ϵ · P þ
ffiffiffiffiffiffiffi
2α0

p
k ·Hϵ ·H; ð18Þ

Fig. 1 shows the one-loop planar diagram (annulus) for the
M ¼ 4 case. The expressions for P�ðqÞ above include the
aforementioned factor of ð1∓w1=2Þ10−D−S that accounts for
the projection that leaves S massless scalars circulating in
the loop. As an example, consider the more familiar case
with D3-branes and 6 adjoint massless scalars. In this case
D ¼ 4; S ¼ 6, gives ð1∓w1=2Þ10−D−S ¼ 1 yielding the

usual partition function. The average h� � �i is evaluated
with contractions:

hPli ¼
ffiffiffiffiffiffiffi
2α0

p X
i

ki

�
1

2
cot θil þ

X∞
n¼1

2q2n

1 − q2n
sin 2nθil

�
ð19Þ

hPiPli − hPiihPli ¼
1

4
csc2θil −

X∞
n¼1

n
2q2n

1 − q2n
cos 2nθil

ð20Þ

hHiHjiþ ≡ χþðθjiÞ ¼
1

2 sin θji
− 2

X
r

q2r sin 2rθji
1þ q2r

¼ 1

2
θ2ð0Þθ4ð0Þ

θ3ðθjiÞ
θ1ðθjiÞ

ð21Þ

hHiHji− ≡ χ−ðθjiÞ ¼
cos θji
2 sin θji

− 2
X
n

q2n sin 2nθji
1þ q2n

¼ 1

2
θ3ð0Þθ4ð0Þ

θ2ðθjiÞ
θ1ðθjiÞ

: ð22Þ

We have abbreviated θji ¼ θj − θi and space-time indices
were suppressed. Finally the range of integration is

0 ¼ θ1 < θ2 < � � � < θN < π: ð23Þ

To see the GNS regulator at work, consider the one-loop
2-gluon function studied in [15] which controls the mass
shifts of the gluon in perturbation theory. For the coefficient
of ϵ1 · ϵ2, the bosonic part of the string amplitude is4:

MBose
2 ¼

Z
1

0

½dq��
Z

π

0

dθ

�
sin θ

Y∞
n¼1

1 − 2q2n cos 2θ þ q4n

ð1 − q2nÞ2
�
2α0k1·k2

�
1

4
csc2θ −

X∞
n¼1

n
2q2n

1 − q2n
cos 2nθ

�
ð24Þ

where we use ½dq�� as a shorthand for dqq ð−πln qÞð10−DÞ=2P�ðqÞ
since this factor is not relevant for the discussion below.
Momentum conservation implies 2k1 · k2 ¼

ðk1 þ k2Þ2 ¼ 0, thus

MBose
2 ¼

Z
1

0

½dq�
Z

π

0

dθ

�
1

4
csc2θ −

X∞
n¼1

n
2q2n

1 − q2n
cos 2nθ

�
ð25Þ

from where we see that the first term is clearly divergent in
the θ ∼ 0; π regions. However, by using the GNS regulator

we will show that this is a spurious divergence due to an
integral representation outside its domain of convergence.
In order to analytically continue the amplitude, we suspend
momentum conservation in the intermediate steps by using
the regulator p ¼ P

iki, so that now we have 2k1 · k2 ¼ p2

instead of 2k1 · k2 ¼ 0. This makes integral perfectly
convergent for Reðα0p2Þ > 1. We then analytically con-
tinue to p → 0 at the end. Notice that there is only one
angular integration in the two gluon function. This will
allow us to perform the analytic continuation to p ¼ 0
rather straightforwardly as we shall now see. This is in
contrast with four and higher point functions where the
angular integrals becomes multidimensional and techni-
cally more complicated. Writing (24) again, but this time
with the p regulator turned on, reads

FIG. 1 (color online). The one-loop planar diagram with four
external states. Notice that all states are located at only one of the
two boundaries of this topology, namely, the outer boundary. A
nonplanar diagram would have particles attached to both outer
and inner boundaries

4We are omitting here all constant prefactors in the amplitude
for convenience.
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MBose
2 ¼

Z
1

0

½dq�
Z

π

0

dθ½sin θ�α0p2

�Y∞
n¼1

1 − 2q2n cos 2θ þ q4n

ð1 − q2nÞ2
�α0p2�

1

4
csc2θ −

X∞
n¼1

n
2q2n

1 − q2n
cos 2nθ

�
ð26Þ

Expanding the infinite product up to first order in p2 is enough for our purposes. Doing this and performing a resummation
yields

�Y∞
n¼1

1 − 2q2n cos 2θ þ q4n

ð1 − q2nÞ2
�α0p2

¼ 1þ α0p2
X∞
m¼1

1

m
2q2m

1 − q2m
ð1 − cos 2mθÞ þOðp2Þ ð27Þ

therefore

MBose
2 ¼

Z
1

0

½dq�
�
1

4

Z
π

0

dθ½sin θ�α0p2−2 −
X∞
n¼1

n
2q2n

1 − q2n

Z
π

0

dθ½sin θ�α0p2

cos 2nθ

þ α0p2
X∞
m¼1

1

m
2q2m

1 − q2m
1

4

Z
π

0

dθ½sin θ�α0p2−2ð1 − cos 2mθÞ

− α0p2
X∞
m;n¼1

1

m
2q2m

1 − q2m
n2q2n

1 − q2n

Z
π

0

dθ½sin θ�α0p2

cos 2nθð1 − cos 2mθÞ
�

ð28Þ

Without the regulator, the only problematic term here is the first one, since putting p2 ¼ 0 in the integrand shows a linear
divergence in the θ integration. However if we assume that Reðα0p2Þ > 1 we have

1

4

Z
π

0

dθ½sin θ�α0p2−2 ¼ 1

4

Γð1=2ÞΓðα0p2=2 − 1=2Þ
Γðα0p2=2Þ ¼ −

πα0p2

4
þOðp4Þ ð29Þ

Thus, taking the right-hand side to be the analytic continuation of the left-hand side as p → 0, we have a convergent
expression. The rest of the integrals are completely convergent even if we set p2 ¼ 0 directly in their integrands. Thus, we
now have a new expression which we take to be the analytic continuation of (24) to p → 0, that reads

MBose
2 ¼

Z
1

0

½dq�
�
−
πα0p2

4
þ α0p2

X∞
n¼1

2q2n

1 − q2n
n
π

2n
þ α0p2

1

4

X∞
m¼1

1

m
2q2m

1 − q2m
2πmþα0p2

X∞
m¼1

1

m
2q2m

1 − q2m
X∞
n¼1

n
2q2n

1 − q2n
π

2
δn;m

�

¼ πα0p2

Z
1

0

½dq�
�
−
1

4
þ
X∞
n¼1

q2n

1 − q2n
þ
X∞
m¼1

q2m

1 − q2m
þ
X∞
n¼1

2q4n

ð1 − q2nÞ2
�

¼ πα0p2

Z
1

0

½dq�
�
−
1

4
þ
X∞
n¼1

2q2n

ð1 − q2nÞ2
�

ð30Þ

which shows that, not only the limit p → 0 is finite, but that it is actually zero. This is very welcome here since the vanishing
of the two-gluon function guarantees that the gluon remains massless in perturbation theory, which is a consequence of
gauge invariance.
The complete two-gluon amplitude is [15] given by

Mþ
2 ∼ πα0p2

Z
½dq�þ

�
−
1

2
þ 4

X∞
n¼1

q2n

ð1 − q2nÞ2 þ 4
X∞
r¼1=2

q2r

ð1þ q2rÞ2
�

ð31Þ

M−
2 ∼ πα0p2

Z
½dq�−

�
4
X∞
n¼1

q2n

ð1 − q2nÞ2 þ 4
X∞
n¼1

q2n

ð1þ q2nÞ2
�

ð32Þ

which shows that the analytically continued result to p → 0 for the full two-gluon function is indeed zero.
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To motivate the general result for the M-gluon amplitude
for the planar loop, let us consider the four gluon function. In
order to be able to compare the calculations we do in this
article with the results of [17] we will focus on a particular
polarization structure, namely the coefficient of ϵ1 · ϵ4ϵ2 · ϵ3.
The main reason to do this is that the coefficient of this factor
is the one that dominates in the Regge limit (s → −∞ with t
fixed) at tree and one-loop levels. At tree level, the 4-gluon
amplitude for the type 0 string (for the polarization above
and omitting numerical coefficients) is

Mtree
4 ¼ g2

Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ : ð33Þ

At one-loop the general form of the 4-gluon amplitude is
given by

M4 ¼
1

2
ðMþ

4 −M−
4 Þ ð34Þ

with

Mþ
4 ¼ 24

�
1

8πα0

�
D=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
q−1ð1 − w1=2Þ10−D−S

Q∞
r ð1þ q2rÞ8Q∞
n ð1 − q2nÞ8

Z Y4
k¼2

dθk
Y
i<j

½ψðθjiÞ�2α0ki·kjhP̂1P̂2P̂3P̂4iþ

ð35Þ

M−
4 ¼ 24

�
1

8πα0

�
D=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
24ð1þ w1=2Þ10−D−S

Q∞
r ð1þ q2nÞ8Q∞
n ð1 − q2nÞ8

Z Y4
k¼2

dθk
Y
i<j

½ψðθjiÞ�2α0ki·kjhP̂1P̂2P̂3P̂4i−:

ð36Þ

Picking out the combination that multiplies ϵ1 · ϵ4ϵ2 · ϵ3 from the correlator gives

hP̂1P̂2P̂3P̂4i → ϵ2 · ϵ3ϵ1 · ϵ4ðhP2P3ihP1P4i − hP2P3ihH1H4i22α0k1 · k4
− hP1P4ihH2H3i22α0k2 · k3 þ 4α02hH2H3ihH1H4ihk1 ·H1k2 ·H2k3 ·H3k4 ·H4iÞ

→ ϵ2 · ϵ3ϵ1 · ϵ4ðhP2P3ihP1P4i − hP2P3ihH1H4i22α0k1 · k4
− hP1P4ihH2H3i22α0k2 · k3 þ 4α02hH2H3ihH1H4iðk1 · k2k3 · k4hH1H2ihH3H4i
− k1 · k3k2 · k4hH1H3ihH2H4i þ k1 · k4k2 · k3hH2H3ihH1H4iÞ

→ ϵ2 · ϵ3ϵ1 · ϵ4ððhP2P3i þ α0thH2H3i2ÞðhP1P4i þ α0thH1H4i2Þ
þ hH2H3ihH1H4iðα02s2hH1H2ihH3H4i − α02ðsþ tÞ2hH1H3ihH2H4iÞÞ: ð37Þ

We will call this combination of contractions hTi, hence
hTi≡ ðhP2P3i þ α0thH2H3i2ÞðhP1P4i þ α0thH1H4i2Þ

þ hH2H3ihH1H4iðα02s2hH1H2ihH3H4i − α02ðsþ tÞ2hH1H3ihH2H4iÞ ð38Þ

thus, the correlator becomes

hP̂1P̂2P̂3P̂4i → ϵ1 · ϵ4ϵ2 · ϵ3hTi: ð39Þ

As pointed out before, the expressions (35) and (36) diverge
in various corners of integration region over the θk variables.
We already encountered a divergence of the linear type in the
2-gluon amplitude due to the behavior of ðcsc θÞ2 near the
endpoints θ ∼ 0; π. We showed that this divergence was
spurious and it was healed by suspending momentum
conservation in

P
M
i¼1 pi ¼ p ≠ 0 temporarily. After that,

we were able to identify the integral in (29) as the Euler Beta
function which allowed us to analytically continue the left-
hand side to the complete complex p-plane. Undoubtedly,

for the three and higher point amplitudes a closed form is
practically impossible to obtain. However, our approach to
the problem will not be to attempt this, but to extract the
divergent contributions from the singular regions and track
the consequences of these seemingly divergent terms. What
we will find is that the analytic continuation to p ¼ 0 of the
linearly divergent terms precisely combine and give the tree
amplitude following the steps of [34]. Although the coef-
ficient of this term is an infinite number (which can also be
viewed due to the presence of the closed string tachyon
which introduces a singularity in the q ∼ 0 region), the fact
that it is proportional to the tree amplitude allows us
reinterpret it as a renormalization of the string coupling
constant. We will then find that the logarithmically divergent
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corners, when continued to p ¼ 0 also produce terms
proportional to the tree amplitude, although in this case
the coefficient in front of it is a finite number and these
corners will simply correct the coupling by a finite amount.
We will now make these statements more explicit with the
following calculations.

B. Linear divergences

We will now extract the leading divergences in the θk
integrations at fixed q and show that they are linear
divergences in the relevant angular variables. We construct
the necessary counterterms to cancel these infinities and
show that after analytic continuation, the limit p → 0 of the
angular integrals is finite.5 We will follow closely the
analysis done by Neveu and Scherk [34] adapted for our
case, open string massless vector external states (“gluons”)
in the type 0 model, and show that not only the limit is
finite, but also that its continuation to p → 0 gives precisely
the tree amplitude. This allows us to absorb the corre-
sponding counterterms into the open string coupling.
For the M-point planar one-loop amplitude, the integra-

tion region in
R Q

kdθk is given by 0 < θ2 < θ3 < � � � <
θM < π, which is an ðM − 1Þ-simplex that has M vertices
and M!=2!ðM − 2Þ! edges. For example, the integration
region over the θk variables for the 4-point amplitude is
shown in Fig. 2. The leading divergences are linear and
arise from each of theM vertices in theM-gluon amplitude
as we will show next.
We can study the vertices of the (M − 1)-simplex by

remembering that they correspond to the configuration in
parameter space where all the vertex operators coincide (see
Fig. 3 which shows the 4-point case). For instance, we can

examine the one where θM ∼ θM−1 ∼ � � � ∼ θ2 ∼ 0 by study-
ing the θM ∼ 0 limit and performing the changes

θj−1 ≡ θjθ̂j−1 j ¼ 3; � � �M: ð40Þ

For the 4-gluon amplitude, and keeping only the most
divergent terms in the θk integrations, we have

Y
i<j

ψðθjiÞ2α0ki·kj ≃ θα
0p2

4 θ̂2α
0k4·p

3 ð1 − θ̂3Þ2α0k4·k3ð1 − θ̂3θ̂2Þ2α0k4·k2 θ̂2α
0k2·k1

2 ð1 − θ̂2Þ2α0k3·k2 ð41Þ

where we have also only kept the leading terms in p in the exponents. Also

hTiþ ≃ 1

4θ24
ð1þ α0tÞ 1

4θ32
ð1þ α0tÞ þ 1

2θ4

1

2θ32

�
ðα0sÞ2 1

2θ2

1

2θ43
− α02ðsþ tÞ2 1

2θ3

1

2θ42

�

≃ 1

16θ44θ̂
2
3ð1 − θ̂2Þ

�ð1þ α0tÞ2
1 − θ̂2

þ ðα0sÞ2
θ̂2ð1 − θ̂3Þ

−
α02ðsþ tÞ2
1 − θ̂3θ̂2

�
ð42Þ

thus Z
ϵ

0

dθ4

Z
θ4

0

dθ3

Z
θ3

0

dθ2
Y
i<j

ψðθjiÞ2α0ki·kjhTiþ

≃ 1

16

Z
ϵ

0

dθ4θ
α0p2−2
4

Z
1

0

dθ̂3θ̂
2α0k4·p−1
3 ð1 − θ̂3Þ2α0k4·k3

Z
1

0

dθ̂2θ̂
2α0k2·k1
2 ð1 − θ̂2Þ2α0k3·k2−1ð1 − θ̂3θ̂2Þ2α0k4·k2

×

�ð1þ α0tÞ2
1 − θ̂2

þ ðα0sÞ2
θ̂2ð1 − θ̂3Þ

−
α02ðsþ tÞ2
1 − θ̂3θ̂2

�
ð43Þ

FIG. 2 (color online). The 3-simplex above shows the region of
integration at fixed q for the 4-point amplitude. Edges and
vertices correspond to the places where spurious and real
divergences can occur.

5By angular integrals we mean the integration over all the θk variables, or in other words, everything except the integration over q
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from which we see that, if we put p ¼ 0 directly in the
integrand, the leading divergence near θ4 ¼ 0 is linear. It is
worth noticing that in this corner of the integration region
the integral factorizes and shows a pole at α0p2 ¼ 1 which
corresponds to the propagation of a closed string tachyon
disappearing into the vacuum. In contrast to superstring
theories where this kind of divergences are absent due to
supersymmetry, the planar one-loop diagram in the type 0

model is not divergence free, but it is renormalizable [37].
The cancellation of these divergences is achieved with the
introduction of counterterms just as in the early days of the
dual resonance models. We now proceed to cancel this and
all of the other linear divergences which come from all the
vertices of the simplex6 with one single counterterm. We
subtract and add back the following counterterm:

Cþ
4 ≡ 24

�
1

8π2α0

�
D=2

Z
1

0

½dq�þ

×
Z Y4

k¼2

dθk
Y
i<j

½sin θji�2α0ki·kjhTiþC ð44Þ

where hTiþC is simply hTiþ evaluated at q ¼ 0. Following
Neveu and Scherk [34], we will now prove that the analytic
continuation to p ¼ 0 of Cþ

4 goes to the tree amplitude
(33). Making the change of integration variables

rðθ3Þ ¼
sin θ43
sin θ3

xðθ2Þ ¼
sin θ2 sin θ43
sin θ3 sin θ42

ð45Þ

and solving for the various sine functions we need in the
integrand, yields

sin θ43 ¼
r sin θ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 2r cos θ4 þ 1
p sin θ42 ¼

r=x sin θ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=xÞ2 þ 2r=x cos θ4 þ 1

p
sin θ32 ¼

r=xð1 − xÞ sin θ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=xÞ2 þ 2r=x cos θ4 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2r cos θ4 þ 1

p sin θ3 ¼
sin θ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 2r cos θ4 þ 1
p

sin θ2 ¼
sin θ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr=xÞ2 þ 2r=x cos θ4 þ 1
p ð46Þ

Thus,

Y
i<j

½sin θji�2α0ki·kj ¼ r2α
0k1·pþα0p2 ½sin θ4�α0p2ðr2 þ 2r cos θ4 þ 1Þα0k3·p

�
r2

x2
þ 2r

x
cos θ4 þ 1

�
α0k2·p

x−α
0sþ2α0k2·pð1 − xÞ−α0t ð47Þ

dθ3dθ2 ¼ r½sin θ4�2ðr2 þ 2r cos θ4 þ 1Þ−1
�
r2

x2
þ 2r

x
cos θ4 þ 1

�−1
x−2drdx ð48Þ

hTiþC ¼ 1

16
csc2θ4csc2θ32ð1þ α0tÞ2 þ 1

4
csc θ4 csc θ32

�ðα0sÞ2
4

csc θ2 csc θ43 −
α02ðsþ tÞ2

4
csc θ3 csc θ42

�

¼ 1

16
r−2½sin θ4�−4ðr2 þ 2r cos θ4 þ 1Þ

�
r2

x2
þ 2r

x
cos θ4 þ 1

��
ð1þ α0tÞ2 x2

ð1 − xÞ2 þ ðα0sÞ2 x
1 − x

− α02ðsþ tÞ2 x2

1 − x

�
:

ð49Þ

Therefore,

FIG. 3 (color online). Configuration corresponding to the
moduli region where all vertex operators come arbitrarily close
to each other.

6The edge-type divergences will be taken care of in the next section when we deal with logarithmic divergences.
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Z Y4
k¼2

dθk
Y
i<j

½sin θji�2α0ki·kjhTiþC

¼ 1

16

Z
1

0

dx
Z

∞

0

dr
Z

π

0

dθ4r2α
0k1·pþα0p2−1½sin θ4�α0p2−2x−α

0sð1 − xÞ−α0tðr2 þ 2r cos θ4 þ 1Þα0k3·p

×

�
r2

x2
þ 2r

x
cos θ4 þ 1

�
α0k2·p

�
ð1þ α0tÞ2 x2

ð1 − xÞ2 þ ðα0sÞ2 x
1 − x

− α02ðsþ tÞ2 x2

1 − x

�
: ð50Þ

The strategy is to do the integrals in the following order: first we do the integration over θ4, then the one over r and at the
end, after the analytic continuation to p → 0 has been achieved, we perform the integral over x. It is because of this that we
have used −α0sþ 2α0k2 · p → −α0s since we can always choose −α0s to be positive enough such that the integral over x in
convergent. Let us now focus on the integrals over r and θ4. For this purpose, define

I ≡
Z

∞

0

drr2α
0k1·pþα0p2−1

Z
π

0

dθ4½sin θ4�α0p2−2ðr2 þ 2r cos θ4 þ 1Þα0k3·p
�
r2

x2
þ 2r

x
cos θ4 þ 1

�
α0k2·p

ð51Þ

As p → 0, the only nonzero contributions to the integral come from only two corners [34]: θ4 ∼ π and r is near either r ¼ 1
or r ¼ x. Each corner gives the same answer which is π, therefore:

I → 2π as p → 0. ð52Þ

Therefore,

Z Y4
k¼2

dθk
Y
i<j

½sin θji�2α0ki·kjhTiþC ¼ 2π

16

Z
1

0

dxx−α
0sð1 − xÞ−α0t

�
ð1þ α0tÞ2 x2

ð1 − xÞ2 þ ðα0sÞ2 x
1 − x

− α02ðsþ tÞ2 x2

1 − x

�

¼ −
π

8

Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ ð53Þ

from where we see that this is precisely proportional to the tree amplitude (33). Therefore, after analytic continuation to
p ¼ 0, the counterterm Cþ

4 becomes:

Cþ
4 ¼ −

π

4

Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Tree

�
1

8πα0

�
D=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
q−1ð1 − w1=2Þ10−D−S

Q∞
r ð1þ q2rÞ8Q∞
n ð1 − q2nÞ8

As mentioned before, the counterterm is the product of the
tree amplitude and a divergent factor. This infinity comes
from the divergent region q ¼ 0 in the expression above7

which signals the presence of the tachyon in the closed
string sector. This counterterm was originally introduced in
[34] and [38] to precisely cancel this type of divergence,
and the fact that it is proportional to the tree amplitude here
allows us to absorb this divergence into a coupling constant
renormalization. The remarkable feature of this counter-
term is that it allows to cancel both, the q ¼ 0 singularity,
and the spurious linear divergences of the θk integrations at
the same time. This is a consequence of the functional form

of the correlator hP̂1 � � � P̂Mi since the θ−2 divergent terms
that arise from the csc2 θ functions only come from the
q ¼ 0 part of Wick expansion of hP̂1 � � � P̂Mi. We thus now
have a new expression free of both, the spurious linear
divergences8 in the θk variables, and the UV one coming
from q ¼ 0. Therefore, our expressions for theþ part of the
amplitude need the replacement

Mþ
4 → Mþ

4 − Cþ
4 : ð54Þ

Now we need to address the M−
4 part of the amplitude.

Notice in (14) that the presence of D-branes, which brings
the extra logarithmic factor ð−πln qÞð10−DÞ=2, makes the

7There is also a divergence from the q ∼ 1 region. However,
this will get explicitly canceled by the M−

4 part of the full one-
loop amplitude. This is simply a consequence of the projection
onto even G-parity states.

8There are still more divergent regions (edges of the 3-simplex)
which need to be taken care of. Their removal is the focus of the
following section.
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q-integration completely finite near q ¼ 0 as long asD < 8
and hence there is no need for a counterterm for the M−

4

part of the amplitude.9 However, we still need to deal
with the same linear and logarithmic divergences in the θk
integration as in theMþ

4 case. For the leading divergences,
the natural choice would be the same one we used for the
Mþ

4 case, but now with hP̂1 � � � P̂Miþ replaced by
hP̂1 � � � P̂Mi−. However, we have not been able to obtain
the analytic continuation to p ¼ 0 for such an expression.
The main difficulty comes from the fact that the
hP̂1 � � � P̂Mi− correlators involve cot θji functions
which change sign in the integration region
0 < θ2 < � � � < θM < π. This did not happen for the þ
correlators since they contain sin θji functions instead.
However, since we only need to cancel the linear

divergences, we simply choose the same correlator as
before, i.e. hP̂1 � � � P̂Miþ. Thus, we only need to adapt
the counterterm for the M− part of the amplitude by
integrating with the ½dq�− measure. This means that we
choose:

C−
4 ≡ 24

�
1

8π2α0

�
D=2

Z
1

0

½dq�−

×
Z Y4

k¼2

dθk
Y
i<j

½sin θji�2α0ki·kjhTiþC: ð55Þ

Summarizing, we now write M�
4 as:

M�
4 ¼ M�

4 − C�4 þ C�4 : ð56Þ

The last term will be discarded later on since we are going
to absorb it into a coupling constant renormalization. The
full expression for the first two terms is then:

M�
4 − C�4

¼ 24
�

1

8π2α0

�
D=2

Z
1

0

½dq��
Z Y4

k¼2

dθk

×
Y
i<j

½ψðθjiÞ2α0ki·kjhTi� − ½sin θji�2α0ki·kjhTi�C �: ð57Þ

The expression above is completely free of both, the
spurious linear divergences in the θk integrations and the
UV divergence from the q ∼ 0 region. However, it still has
logarithmic divergences in the θk integration which we take
care of in the next section. We will show that they are also
spurious divergences and can be also canceled with the
introduction of suitable counterterms. Moreover, after
analytic continuation to p ¼ 0, we will show that the
corresponding counterterms are again proportional to the

tree level amplitude which amounts to a finite renormal-
ization of the coupling.

C. Logarithmic divergences

The expression (57) is the starting point to continue our
treatment of the divergences of the original “bare” ampli-
tude. Our task now is to study the last type of divergences in
the θk integrals left in (57), which are logarithmic.
Logarithmic divergences in the angular integrations

come from the regions where all vertex operators but
one come together in parameter space. It is a well-known
fact that these divergences correspond to loop corrections to
the mass of the external states.10 Since we are dealing with
massless string states, we expect these divergences to be
completely absent after continuation to p ¼ 0 because the
massless vector string states must remain massless in
perturbation theory due to gauge invariance. We will indeed
find this result for the 4-gluon amplitude. The mechanics of
the procedure is very well illustrated by the 4-gluon
amplitude and will allow us to see how to extend it for
an arbitrary number of gluons.
Recall that for the M-gluon amplitude the integration

region over θk is an ðM − 1Þ-simplex, which has
M!=ð2!ðM − 2Þ!Þ edges (see Fig. 2 for the 4-gluon ampli-
tude in which case there are 6 edges). Each of these edges

FIG. 4 (color online). The edge corresponding to θ3 ∼ θ2 ∼ 0 is
shown as the highlighted line in the figure. This region corre-
sponds to a loop insertion in one of the external states which
forces the propagator for state number 4 to be evaluated on-shell
producing a divergence

9For D ¼ 8 and D ¼ 9 however, these subleading divergences
are still present, but they can be taken care of by a renormalization
of α0.

10See, for instance, subsection 9.5 in [16] for a more detailed
discussion.
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correspond to processes where an open string loop is
inserted between two string states. If one of these states
correspond to one of theM external states, then we have the
situation where an internal propagator gets evaluated on-
shell, producing an infinity. Before proceeding with the
analysis of these infinities, let us do some counting first. We
see that there are

M!

2!ðM − 2Þ! −M ¼ M
2
ðM − 3Þ ð58Þ

edges left which do not correspond to radiative corrections
to the external legs. Therefore, the number of edges that
correspond to a loop insertion in the internal channels of the
M-gluon amplitude has to be given by Eq. (58). On the
other hand, we know that the number of planar channels in
an M-point string amplitude is M=2ðM − 3Þ which pre-
cisely matches the number above.

Let us now focus on the 4-gluon amplitude. This has four
(out of six) edges that should correspond to an open string
loop inserted for each external leg.11 We now study one of
them, namely the edge θ3 ∼ θ2 ∼ 0 which is highlighted in
Fig. 4. This corresponds to the region where the vertex
operators associated with external states 1, 2 and 3 get close
together in parameter space and it reflects a radiative
correction to the mass of the external leg 4. To analyze
this region, it is convenient to make the change θ2 ≡ θ3θ̂2
and study the small θ3 behavior, namely

Y
i<j

ψðθjiÞ2α0ki·kj ≃ ψðθ4Þ−2α0k4·pθ2α
0k4·pþα0p2

3 θ̂−α
0s

2 ð1 − θ̂2Þ−α0t

ð59Þ

and also

hTi≃ ðP14 þ α0thH1H4i2Þð1þ α0tÞ 1

4θ232
þ hH1H4i2

1

2θ32

�ðα0sÞ2
2θ2

−
α02ðsþ tÞ2

2θ3

�

¼ 1

4θ23

�
P14

ð1þ α0tÞ
ð1 − θ̂2Þ2

þ hH1H4i2
�
α0tð1þ α0tÞ
ð1 − θ̂2Þ2

þ ðα0sÞ2
θ̂2ð1 − θ̂2Þ

−
α02ðsþ tÞ2
ð1 − θ̂2Þ

��
: ð60Þ

From
Q

4
k¼2 dθk ¼ dθ3θ3dθ̂2 and Eqs. (59) and (60), we see that the leading behavior of the integral over the three angles

separates into three independent integrals. The integration over the θk variables in (57) becomesZ Y4
k¼2

dθk

�Y
i<j

ψðθjiÞ2α0ki·kjhTi� −
Y
i<j

½sin θji�2α0ki·kjhTi�C
�

≃ 1

4

Z
π

0

dθ4

Z
ϵ

0

dθ3

Z
1

0

dθ̂2ψðθ4Þ−2α0k4·pθ2α
0k4·pþα0p2−1

3 θ̂−α
0s

2 ð1 − θ̂2Þ−α0t

×

�
ðP14 − P14CÞ

ð1þ α0tÞ
ð1 − θ̂2Þ2

þðhH1H4i2 − hH1H4i2CÞ
�
α0tð1þ α0tÞ
ð1 − θ̂2Þ2

þ ðα0sÞ2
θ̂2ð1 − θ̂2Þ

−
α02ðsþ tÞ2
ð1 − θ̂2Þ

��
: ð61Þ

If we take p ¼ 0 in the integrand, i.e. if we go back to the original calculation before the introduction of the GNS regulator,
we see the logarithmic divergence Z

ϵ

0

dθ3θ−13 : ð62Þ

Notice that

P14 − P14C ¼ Oð1Þ and hH1H4i2 − hH1H4i2C ¼ Oð1Þ ð63Þ
as θ4 → 0; π, thus there are no linear divergences near this edge either, which is simply a consequence of the subtraction made
in the previous subsection that was introduced precisely to get rid of this type of divergences. Therefore, we need to subtract
(61), evaluated at p ¼ 0, from (57) and we will have a new expression which is free from all linear and the one logarithmic
divergence that arises from the θ3 ∼ θ2 ∼ 0 edge.12 Let us write this new expression in terms of the original θ variables asZ

π

0

dθ4

Z
θ4

0

dθ3

Z
θ3

0

dθ2

�Y
i<j

ψðθjiÞ2α0ki·kjhTi� −
Y
i<j

½sin θji�2α0ki·kjhTi�C − B4

�
ð64Þ

12We will also take care of the other three edges, but we will see that the treatment is exactly the same.

11The other two edges evidently correspond to loop insertions in each of the two planar channels: s and t. The t-channel is the relevant
one in the Regge limit as studied in [17].
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where B4 denotes the integrand corresponding to the loop insertion on leg 4 which, in the new variables, is

B4 ¼
1

4
θ2α

0k4·pþα0p2−1
3 θ̂−α

0s
2 ð1 − θ̂2Þ−α0t

�
ðPðθ4Þ − Pðθ4ÞCÞ

ð1þ α0tÞ
ð1 − θ̂2Þ2

þ ðχ2þðθ4Þ − χ2þðθ4ÞCÞ
�
α0tð1þ α0tÞ
ð1 − θ̂2Þ2

þ ðα0sÞ2
θ̂2ð1 − θ̂2Þ

−
α02ðsþ tÞ2
ð1 − θ̂2Þ

��
: ð65Þ

Now that we have taken care of the divergence by subtracting the counterterm B4, let us see what is the result of the analytic
continuation to p ¼ 0 when we add this term back. With the GNS regulator put back on, we now need to computeZ

π

0

dθ4

Z
θ4

0

dθ3

Z
1

0

dθ̂2ψðθ4Þ−2α0k4·pB4ðθ4:θ3; θ̂2Þ ð66Þ

and then we need to perform on this expression the analytic continuation to p ¼ 0. The integral over θ3 isZ
θ4

0

dθ3θ
2α0k4·pþα0p2−1
3 ¼ θ2α

0k4·pþα0p2

4

2α0k4 · pþ α0p2
→

θ2α
0k4·p

4

2α0k4 · p
ð67Þ

as p → 0. We will now solve for the rest of the integrals. We will find that the integral over θ4 precisely vanishes as
Oðα0k4 · pÞ, canceling the 1

2α0k4·p
pole in (67), thus giving a finite result which is exactly what we desire. Proceeding this way,

we have

1

8α0k4 · p

Z
π

0

dθ4

Z
1

0

dθ̂2ψðθ4Þ−2α0k4·pθ2α
0k4·p

4 θ̂−α
0s

2 ð1 − θ̂2Þ−α0t

×

�
ðPðθ4Þ − Pðθ4ÞCÞ

ð1þ α0tÞ
ð1 − θ̂2Þ2

ðχ2þðθ4Þ − χ2þðθ4ÞCÞ
�
α0tð1þ α0tÞ
ð1 − θ̂2Þ2

þ ðα0sÞ2
θ̂2ð1 − θ̂2Þ

−
α02ðsþ tÞ2
ð1 − θ̂2Þ

��
: ð68Þ

We start with computing first the integral over θ4 for the Pðθ4Þ − Pðθ4ÞC contribution:

IP ≡
Z

π

0

dθ4ψðθ4Þ−2α0k4·p
�
−
X∞
n¼1

2q2n

1 − q2n
n cos 2nθ4

�
θ2α

0k4·p
4 : ð69Þ

If we set p ¼ 0 in the integrand we see that the integral is convergent and it is actually zero. However, we take the opportunity
here to remind ourselves that we need to know the precisely way on how it goes to zero as a function of p, since we have a
factor ofOðp−1Þ multiplying this quantity. Expanding the factor θ2α

0k4·p
4 in powers of p and using the small p expansion (27)

in the integrand we have

IP ¼ −
X∞
n¼1

2q2n

1 − q2n
n
Z

π

0

dθ4ψðθ4Þ−2α0k4·p cos 2nθ4θ2α
0k4·p

4

¼ −
X∞
n¼1

2q2n

1 − q2n
n
Z

π

0

dθ½sin θ�−2α0k4·p½1þ 2α0k4 · p ln θ þOðp2Þ� cos 2nθ4

×

�
1 − 2α0k4 · p

X∞
m¼1

1

m
2q2m

1 − q2m
ð1 − cos 2mθÞ þOðp2Þ

�
ð70Þ

The Oð1Þ term in p can be analytically continued to p ¼ 0 by integrating by parts as

Z
π

0

sinzθ cos 2nθ ¼ −
z
2n

Z
π

0

½sin θ�z−1 cos 2nθ sin 2nθ

≃ −
z
2n

Z
π

0

½sin θ�−1 cos 2nθ sin 2nθ as z ∼ 0; therefore

≃ −
zπ
2n

: ð71Þ
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The rest of the terms already have an explicit factor of p in front, so we can simply put p ¼ 0 in their integrands obtaining:

IP ≃ −
X∞
n¼1

2nq2n

1 − q2n

�
π

2n
2α0k4 · pþ 2α0k4 · p

Z
π

0

dθ cos 2nθ

�
ln θ −

X∞
m¼1

1

m
2q2m

1 − q2m
ð1 − cos 2mθÞ

��

≃ −
X∞
n¼1

2q2n

1 − q2n
n2α0k4 · p

�
π

2n
−
Sið2πnÞ

2n
þ
X∞
m¼1

1

m
2q2m

1 − q2m
π

2
δn;m

�

≃ 2α0k4 · p
X∞
n¼1

q2n

1 − q2n

�
−π þ Sið2πnÞ − 2q2n

1 − q2n
π

�
:

The new term in the sum, Sið2πnÞ, where SiðzÞ≡ R
z
0 sinðtÞ=tdt is the sine integral, makes the sum converge rather fast at fixed

q so there is nothing potentially dangerous coming from this term. Hence, the small p behavior of the Pðθ4Þ − Pðθ4ÞC
contribution is

¼ 1

8α0k4 · p
ð1þ α0tÞ2α0k4 · p

X∞
n¼1

q2n

1 − q2n

�
−π þ Sið2πnÞ − 2q2n

1 − q2n
π

� Z
1

0

dθ̂2θ̂
−α0s
2 ð1 − θ̂2Þ−α0t−2

¼ 1

4
ð1þ α0tÞ

X∞
n¼1

q2n

1 − q2n

�
−π þ Sið2πnÞ − 2q2n

1 − q2n
π

�
Γð1 − α0sÞΓð−1 − α0tÞ

Γð−α0s − α0tÞ

¼ π

4

X∞
n¼1

q2n

1 − q2n

�
1 −

Sið2πnÞ
π

þ 2q2n

1 − q2n

�
Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Tree

ð72Þ

from where we see that this counterterm is also proportional to the tree amplitude.
Before going on and compute the integral over θ4 for the χðθ4Þ2 − χðθ4Þ2C term in (66), let us first calculate the integral

over θ̂2 that multiplies it. This isZ
1

0

dθ̂2θ̂
−α0s
2 ð1 − θ̂2Þ−α0t

�
α0tð1þ α0tÞ
ð1 − θ̂2Þ2

þ ðα0sÞ2
θ̂2ð1 − θ̂2Þ

−
α02ðsþ tÞ2
ð1 − θ̂2Þ

�
¼ α0

Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ ½−t − sþ sþ t� ð73Þ

¼ 0: ð74Þ

Thus the integral over θ4 of the hH1H4i� term in (61) does
not need to be computed since its factor in front vanishes
identically. The immediate question is whether we would
have obtained the same result if we had kept p ≠ 0 when
we performed the Wick contractions on hTi. The answer is
yes, although it is not totally obvious since if this factor
vanishes as OðpÞ, then we do have a nonvanishing
contribution from this term due to the Oðp−1Þ pole coming
from the θ3 integration [see Eq. (67)]. Luckily, it is easy to
show that the cancellation that occurs in (73) is of order
Oðp2Þ. This fact ensures that the fermionic part of
logarithmic counterterms really vanishes after analytic
continuation to p ¼ 0. Had the expression in (73) been
OðpÞ instead, the 1=p factor in (67) would have rendered a
nonzero contribution, which would have probably spoiled
the use of the GNS regulator as an useful renormalization
scheme.
We start by writing all the kinematical invariants in terms

of the Mandelstam variables s and t when total momentum
conservation is not satisfied, but instead we haveP

iki ¼ p, this is

2k3 · k4 ¼ −sþ 2pðk1 þ k2Þ þ p2

2k2 · k4 ¼ sþ t − 2k2 · p ð75Þ
with similar expressions for 2k1 · k4 and 2k1 · k3. Using
(75) we have that (73), after some algebra becomes

α0s
Γð−α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ

�
2α0k4 · p2α0k2 · p

α0sþ α0t
− α0p2

2α0k2 · p
α0sþ α0t

�
ð76Þ

which is indeed of order Oðp2Þ as required.
After all these intermediate calculations, we can finally

write the continuation of (66) to p ¼ 0, which is

¼ π

4

X∞
n¼1

q2n

1 − q2n

�
1 −

Sið2πnÞ
π

þ 2q2n

1 − q2n

�

×
Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ i:e:;

∝
π

4

X∞
n¼1

q2n

1 − q2n

�
1 −

Sið2πnÞ
π

þ 2q2n

1 − q2n

�
× fTreeg ð77Þ
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thus, its complete kinematic dependence is exactly the
same as the tree amplitude. Therefore, this counterterm can
also be absorbed into a (finite) coupling renormalization.

We are now ready to write the complete finite expression
for the planar one-loop amplitude, where momentum
conservation is exact. This reads

Z
π

0

Y4
i¼2

Θðθiþ1 − θiÞdθi
�Y
i<j

ψðθjiÞ2α0ki·kjhTi� −
Y
i<j

½sin θji�2α0ki·kjhTi�C −
X4
k¼1

BkðθiÞ
�
: ð78Þ

The BkðθiÞ counterterms are listed in Appendix B.
We close this section by pointing out that these divergences in the angular integration at fixed q do not always occur when

computing one-loop string amplitudes. Take for example the planar one-loop amplitude for M gluons in the type I
superstring:

Aloop ¼ 16π3g4K
Z

1

0

dq
q

Z
1

0

dνi
YM−1

i¼1

θðνiþ1 − νiÞ
Y
i<j

�
sin πνji

Y∞
n¼1

1 − 2q2n cos 2πνji þ q4n

ð1 − q2nÞ2
�

2α0ki·kj
ð79Þ

where K ¼ Kðki; ϵjÞ is the kinematical coefficient that
depends on the external momenta ki and polarizations ϵi
only and it can be found, for example, in [39].
For this expression, we can clearly see that there are no

singular regions in the angular integrals as opposed to the
amplitudes we studied above.

III. RENORMALIZED M-GLUON
AMPLITUDE

Summarizing our results from the previous section, the
complete renormalized expression for the one-loop 4-gluon
amplitude which is free of spurious divergences is

Mren
4 ≡

Z
1

0

dq
q

�
−π
ln q

�
5−D=2

½ΔIðqÞ − ΔCðqÞ − ΔBðqÞ�

ð80Þ

where

ΔI ≡
Z Y4

k¼2

dθk
Y
i<j

ψðθjiÞ2α0ki·kjðPþhTiþ − P−hTi−Þ ð81Þ

ΔC≡ ðPþ − P−Þ
Z Y4

k¼2

dθk
Y
i<j

½sin θji�2α0ki·kjhTiþC

ð82Þ

ΔB≡ ðPþ − P−Þ
X
k

Z Y4
k¼2

dθkBk ð83Þ

with P� given in (15) and (16). The counterterm integrands
Bk are given in Appendix B.
Also, in all of the expressions above, the GNS regulator

p ¼ P
M
i¼1 pi can be already removed, i.e. momentum

conservation is exact at this stage meaning p ¼ 0. This
is precisely what we were after. In particular, with p ¼ 0,
we have

Y
i<j

ψðθjiÞ2α0ki·kj ¼
�
ψðθ43Þψðθ21Þ
ψðθ42Þψðθ31Þ

�
−α0s

�
ψðθ41Þψðθ32Þ
ψðθ42Þψðθ31Þ

�
−α0t

:

ð84Þ

The expression for ΔB is more cumbersome because it is
the sum of four terms which correspond to the four different
edges that contribute with logarithmic divergences in the θ
integrals. We list them in the appendix in Eq. (B1).
Notice that both ΔC and ΔB are directly proportional to

ðPþ − P−Þ, which is itself independent of the angular
integrals since it only depends on the q variable. This is
a nice feature because it allows us to see explicitly the
cancellation of the open string tachyon in all these
expressions through the GSO projection, i.e. the “abstruse
identity” in this case.
Note also that because of the form of these counterterm

integrands, none of them are singular in the θ4 ∼ π, θ2 ∼ θ3
region which is the dominant region as s → −∞ with t
fixed. Thus, it was this reason why it was not necessary to
deal with these divergences in [17] where the planar one-
loop correction to the leading Regge trajectory was
obtained. The fact that they are also nonsingular in the
remaining edge, namely θ2 ∼ 0, θ3 ∼ θ4 suggests that they
do not contribute either to the regime where t is large and s
is held fixed.
Inspecting Eqs. (80) through (83), it is natural to

conjecture that this structure will remain valid for an
arbitrary number of external gluons. The analytic continu-
ation to p ¼ 0 of the ΔC counterterm was proven that it
successfully cancels the leading divergences for the scat-
tering of an arbitrary number of external tachyons in [34]. It
is thus plausible to believe that, since it worked for the 2, 3

FRANCISCO ROJAS PHYSICAL REVIEW D 90, 126008 (2014)

126008-16



and 4 gluon amplitudes, it will continue to do so for an
arbitrary number of external gluons.13 It would be interest-
ing to show this explicitly for the 5-point case.
Also, the fact that there is a match between the number of

edges and the number of loop insertions in internal
channels plus the number of external legs [see Eq. (58)],
suggests that theΔB counterterms can be constructed in the
same systematic way we used here for the 4-point case.
As mentioned in the introduction, the expression that

contains all the relevant information in the high energy
regime in terms of the external momenta, is the factor

Y
i<j

ψðθjiÞ2α0ki·kj ¼
�
ψðθ43Þψðθ2Þ
ψðθ42Þψðθ3Þ

�
−α0s

�
ψðθ4Þψðθ32Þ
ψðθ42Þψðθ3Þ

�
−α0t

:

ð85Þ

It will be convenient to write this asY
i<j

ψðθjiÞ2α0ki·kj ¼ e−α
0sðVs−λVtÞ ¼ eα

0jsjVλ ð86Þ

where λ≡ −t=s, and Vλ ≡ Vs − λVt with

Vs ≡ ln
ψðθ43Þψðθ2Þ
ψðθ42Þψðθ3Þ

Vt ≡ ln
ψðθ4Þψðθ32Þ
ψðθ42Þψðθ3Þ

: ð87Þ

Thus, the hard scattering limit s → −∞ with λ≡ −t=s held
fixed corresponds to the regions where Vλ is maximized.

IV. THE TENSIONLESS LIMIT

Note that since all the Mandelstam variables in the string
amplitude come multiplied with a factor of α0, the

tensionless limit (α0 → ∞) with s and t held fixed is
exactly equivalent to the hard scattering limit (high energy
at fixed angle), namely, s; t ≫ α0−1 with the ratio s=t
held fixed.
Recall that the amplitude above has physical resonances

in both the s and t channels, i.e. the integral representation
(80) has open-string poles whenever α0s ¼ 0; 1; 2;… [and
also when α0t ¼ 0; 1; 2;…]. Thus, in order to avoid these
poles for computing the high energy limit, we take α0s and
α0t both to→ −∞. Note that a similar situation also appears
at tree level string scattering. For example, if we take the
hard scattering limit in the Veneziano amplitude

Aðs; tÞ ¼ Γð−α0s − 1ÞΓð−α0t − 1Þ
Γð−α0s − α0t − 2Þ ; ð88Þ

we would also “hit” all the poles at α0s ¼ n and α0t ¼ n for
large values of the positive integer n as we take α0s and α0t
to infinity. Note also that, although the usual integral
representation of the Veneziano amplitude

Aðs; tÞ ¼
Z

1

0

x−α
0s−2ð1 − xÞ−α0t−2 ð89Þ

only converges for Reðα0sÞ < −1 [and Reðα0tÞ < −1], the
hard scattering limit obtained by evaluating this integral for
α0s → −∞ with λ fixed gives the same answer as the one
computed from (88) which defines the analytic continu-
ation of (89) to the full complex plane.

A. Hard scattering limit through one loop

We now focus on the hard scattering limit of the 4-gluon
amplitude for type 0 strings. We start by writing the fully
renormalized amplitude for NSþ spin structure, Mþ

4 .
This reads

Mþ
4;ren ¼ 2

�
1

8πα0

�
D=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
PþðqÞ

Z Y4
k¼2

dθk½e−α0sVλhP̂1P̂2P̂3P̂4iþ − e−α
0sV0

λ hĈ1Ĉ2Ĉ3Ĉ4i − Bþ�

where V0
λ is by definition Vλ in Eq. (87) with all the Jacobi

theta functions evaluated at q ¼ 0, i.e.

V0
λ ¼ ln

�
sin θ43 sin θ2
sin θ42 sin θ3

�
− λ ln

�
sin θ4 sin θ32
sin θ42 sin θ3

�
: ð90Þ

The counterterm Bþ is the sum of the þ terms in (B1)
(Appendix B).
The s → −∞ limit with λ fixed can now be extracted by

finding the regions where Vλ ≡ Vs − λVt is a maximum

and integrating Vλ around these dominant regions. As it
was first observed by Gross and Manes for the open
superstring in flat space [27], all the dominant critical
points for the one-loop planar amplitude lie on the
boundary of the integration region. Since the exponential
dependence on the external momenta in the type 0 model is
the same as for the superstring, this also holds true here.
Thus, we will study all possible boundary regions that
produce a contribution which are not exponentially sup-
pressed. We will see that there are many regions that are not
exponentially suppressed, therefore, we need to compare all
the relevant contributions and extract the leading one that
dominates at high energies.13For an evaluation for the 3-point case, see Ref. [15].
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An important point is that Vλ ≤ 0 throughout the entire
integration region 0 < q < 1, 0 < θ2 < θ3 < θ4 < π.
Therefore, the dominant regions as jsj → ∞ at fixed λ
(hard scattering) are the ones where Vλ ∼ 0. Although we
do not provide an analytic proof here that Vλ ≤ 0 every-
where, we have strong numerical evidence that this is
indeed the case.
In order to study the dominant regions better, we note

that

lnψðθÞ ¼ ln sin θ þ 2
X∞
n¼1

1

n
q2n

1 − q2n
ð1 − cos 2nθÞ ð91Þ

and defining

x≡ sin θ43 sin θ2
sin θ42 sin θ3

ð92Þ

we can write Vλ as

Vλ ¼ ln x − λ lnð1 − xÞ þ 2
X∞
n¼1

1

n
q2n

1 − q2n
ðSn − λTnÞ ð93Þ

where

Sn ≡ 2 cos nðθ2 − θ43Þ½cos nðθ42 þ θ3Þ − cos nðθ2 þ θ43Þ�
Tn ≡ 2 cos nðθ42 þ θ3Þ½cos nðθ2 − θ43Þ − cos nðθ2 þ θ43Þ�:

ð94Þ

From (93) we immediately recognize that, at q ¼ 0, one
recovers the tree level factor, namelyZ

1

0

dxe−α
0sVλ ¼

Z
1

0

dxe−α
0sðln x−λ lnð1−xÞÞ

¼
Z

1

0

dxx−α
0sð1 − xÞ−α0t

¼ Γð1 − α0sÞΓð1 − α0tÞ
Γð2 − α0s − α0tÞ : ð95Þ

Because of this fact, and motivated by the analysis in [34],
the integrals are more easily analyzed by going to the
following variables14:

rðθ3Þ ¼
sin θ43
sin θ3

; xðθ2Þ ¼
sin θ43 sin θ2
sin θ42 sin θ3

ð96Þ

The variable x allows us to see that
Q

i<jψðθjiÞ2α0ki·kj has a
critical point of the second kind at the boundary surface
q ¼ 0 and along the plane defined by

sin θ43 sin θ2
sin θ42 sin θ3

¼ 1

1 − λ
≡ xc ð97Þ

since

∂Vλ

∂θi





q¼0;x¼xc

¼ ∂x
∂θi

∂Vλ

∂x





q¼0;x¼xc

¼ 0 i ¼ 2; 3; 4 ð98Þ

which is obtained from

∂Vλ

∂x





x¼xc;q¼0

¼
�
1

x
þ λ

1− x
þ 2

X∞
m¼1

1

m
q2m

1−q2m

�∂Sm
∂x − λ

∂Tm

∂x
��

x¼xc;q¼0

¼ 2
X∞
n¼1

1

n
q2n

1−q2n

�∂Sn
∂θi

∂θi
∂x − λ

∂Tn

∂θi
∂θi
∂x

�




q¼0

¼ 0: ð99Þ

From Eqs. (93) and (99) we see that we have found a
stationary point at q ¼ 0 since as q → 0 the function Vλ

becomes independent of q. Expanding Vλ about ðx; qÞ ¼
ðxc; 0Þ gives

Vλðx; qÞ≃ −λ lnð−λÞ − ð1 − λÞ lnð1 − λÞ

þ ð1 − λÞ3
2λ

ðx − xcÞ2 þ 2q2ðS1 − λT1Þ: ð100Þ

Thus, as s → −∞ the integral over q is dominated by the
region q ∼ 0 provided that Sn − λTn is not too close to zero.
Since the expression ðSn − λTnÞ depends on the angular
variables θi which are integrated over the range 0 < θi < π,
this factor could get arbitrarily close to zero in certain
regions, even for large jsj. Then, the small q approximation
ceases to be valid and one has to integrate over the whole
range 0 < q < 1 in order to obtain the correct leading
behavior. We will study these regions separately and show
that they produce subleading behavior, so we can simply
avoid those regions for now.
The first two terms in (100) are independent of the

integration variables θk and q, so we can take them out of
the integrals as

e−α
0sVλ ≈ eα

0s½λ lnð−λÞþð1−λÞ lnð1−λÞ�e−α0s½
ð1−λÞ3

2λ ðx−xcÞ2þ2q2ðS1−λT1Þ�:

ð101Þ

14This change of variables was first used by Neveu and Scherk
[34] when they were studying the one-loop planar amplitude for
“mesons” in the original dual resonance models. This allowed
them to prove that the leading divergence at one-loop was
proportional to the Born term (tree amplitude), thus providing
evidence of renormalizability in those models. Since the counter-
term used in [34] arises from the divergence at q ∼ 0, and proved
to be proportional to the tree amplitude, it was very likely that
these set of variables was also useful in our calculations for the
type 0 string.
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Since λ < 0, the term inside the square brackets of the first
exponential is positive definite giving the overall exponen-
tial suppression expf−α0jsjfðλÞg where fðλÞ ¼ λ lnð−λÞ þ
ð1 − λÞ lnð1 − λÞ for the amplitude as α0s → −∞. This is
the well-known exponential falloff characteristic of stringy
amplitudes in the hard scattering limit. Moreover, it is
identical to the tree level behavior. The reason is that, as
q → 0, the hole of the annulus shrinks to a point thus
making it indistinguishable from the disk amplitude. We
now rewrite (101) as

e−α
0sVλ ≈ e−α

0jsjfðλÞe−α0s½
ð1−λÞ3

2λ ðx−xcÞ2þ2q2ðS1−λT1Þ� ð102Þ

where

fðλÞ≡ λ lnð−λÞ þ ð1 − λÞ lnð1 − λÞ ð103Þ

S1 − λT1 ¼ 2ðsin2θ2 þ sin2θ43Þ − 2λðsin2θ4 þ sin2θ32Þ
− 2ð1 − λÞðsin2θ42 þ sin2θ3Þ: ð104Þ

It is also important to stress that, at leading order, the
combination S1 − λT1 must be evaluated at the value
where the cross ratio x extremizes Vλ i.e.: at

x ¼ xc ¼ s
sþt ¼ ð1 − λÞ−1. Therefore, we can simplify

(104) using (92) with the replacement

λ → −
sin θ4 sin θ32
sin θ43 sin θ2

ð105Þ

which yields

ðS1 − λT1Þx¼xc ¼ −8 sin θ32 sin θ3 sin θ42 sin θ4: ð106Þ

From the fact that for the planar amplitude the θi variables
are ordered, i.e. 0 ≤ θ2 ≤ θ3 ≤ θ4 ≤ π, we see that
ðS1 − λT1Þx¼xc is a negative number. We have mentioned
earlier that we only have numerical evidence that Vλ

negative-definite in the integration region. However, from
(106) and (100) we see analytically that this is true at least
along the surface x ¼ sin θ2 sin θ43

sin θ42 sin θ3
¼ xc which will dominate

at the end. After writing the integrals in the new set of
variables given in (96) we can make this more explicit as
we will show next.
Now we go ahead and estimate the leading behavior of

(90) that comes from the x ∼ xc; q ∼ 0 saddle point. We
rewrite (90) here for convenience,

Mþ
4;ren ¼ 2

�
1

8πα0

�
D=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
PþðqÞ

Z Y4
k¼2

dθk½e−α0sVλhP̂1P̂2P̂3P̂4iþ − e−α
0sV0

λ hĈ1Ĉ2Ĉ3Ĉ4i − Bþ�: ð107Þ

The approximations for the exponentials inside the square
brackets near the critical surface are given in (102). From
there, we also see that the integration over x is well
approximated by a Gaussian in the α0s → −∞ limit. The
integration over q is dominated by the endpoint q ¼ 0
which demands that we expand the rest of the integrand as a
power series in q. As we will see below, we need to expand
the integrand beyond leading order in q in order to extract
the correct leading behavior. The expansions we need are

Pþ ¼ q−1ð1 − w1=2Þ10−D−Sð1þ 8qþOðq2ÞÞ ð108Þ

hP̂1P̂2P̂3P̂4iþ ¼ a0 þ a1qþOðq2Þ ð109Þ

BþðqÞ ¼ b1qþOðq2Þ ð110Þ

where a0 ¼ hĈ1Ĉ2Ĉ3Ĉ4i, which, in terms of the original θk
variables is given by

16a0 ¼ csc2θ32csc2θ4ð1þ α0tÞ2 þ csc θ4 csc θ32½ðα0sÞ2 csc θ2 csc θ43 − ðα0uÞ2 csc θ3 csc θ42� ð111Þ
and with a similar (but more cumbersome) expression for a1. With these expansions, and integrating over the new variables
ðθ; r; xÞ we have

Mþ
4;ren ≃ 2

�
1

8πα0

�
D=2

π20−2D−2Se−α
0jsjfðλÞ

Z
R
dθdrdxjJje−α0sð1−λÞ

3

2λ ðx−xcÞ2

×
Z

ϵ

0

dq
q2

�
−1
ln q

�
γ

½a0ðe−2α0sq2ðS1−λT1Þ − 1Þ þ qða1 þ 8a0Þe−2α0sq2ðS1−λT1Þ þ b1qþ � � �� ð112Þ

where γ ≡ 15 − 3D=2 − S and jJj is the Jacobian for the transformation dθ3dθ2 ¼ jJjdrdx which reads

jJj ¼ x−2r½sin θ4�2ðr2 þ 2r cos θ4 þ 1Þ−1
�
r2

x2
þ 2r

x
cos θ4 þ 1

�−1
: ð113Þ
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The integration region R in (112) is 0 < θ < π,0 < r < ∞,
0 < x < 1 but avoiding the places where Sn − λTn gets
arbitrarily close to zero for all λ. By inspection, these
regions correspond to the four vertices and four of the six
edges in Fig. 2. We already mentioned that they correspond
to tadpole diagrams and to loop insertions in external legs,
which are also boundary regions of the moduli we are
integrating over. According to the discussion in [27], we
should also study these regions and extract their contribu-
tions. We shall do this at the end of this section and show
that they produce subleading contributions in the hard
scattering limit, thus, they can be neglected. Note also that
the Bþ counterterm in (107) is not being multiplied by an
exponential factor with dependence in q as is the case for
hP̂1P̂2P̂3P̂4iþ. This implies that in the large α0s limit it is
exponentially suppressed so we can neglect it.15 Thus, in
order to extract the leading contributions from the boundary
region defined by q ¼ 0, we now need to estimate the
integrals

I1 ¼
Z

ϵ

0

dq
q2

�
−1
ln q

�
γ

ðe−βq2 − 1Þ ð114Þ

I2 ¼
Z

ϵ

0

dq
q

�
−1
ln q

�
γ

e−βq
2 ð115Þ

as β → ∞ limit. Note that the −1 term inside the paren-
theses in I1 is a result of the inclusion of the Neveu-Scherk
counterterm. After the change y ¼ βq2, for I1 we have

I1 ¼
1

2
β1=2

�
2

ln β

�
γ
Z

βϵ2

0

dyy−3=2ðey − 1Þ
�
1 −

ln y
ln β

�
−p

≃ 1

2
β1=2

�
2

ln β

�
γ
Z

βϵ2

0

dyy−3=2ðey − 1Þ≃ −
ffiffiffiffiffiffi
πβ

p �
2

ln β

�
γ

ð116Þ

which is the leading term of I1 as an expansion in powers of
ðln βÞ−1. Similarly for I2, we make the change u ¼ − ln q
yielding

I2 ¼
Z

∞

− ln ϵ
duu−γ exp½−β exp½−2u��

¼ ðln βÞ1−γ
Z

∞

− ln ϵ= ln β
dξξ−γ exp½− exp½ð1 − 2ξÞ ln β��:

ð117Þ

As β → ∞ we see that the exponential factor
exp½− exp½ð1 − 2ξÞ ln β�� effectively cuts the integration
range to 1=2 < ξ < ∞ therefore, for small but fixed ϵ
we have

I2 ≃ ðln βÞ1−γ
Z

∞

1=2
dξξ−γ ¼ 1

γ − 1

�
2

ln β

�
γ−1

: ð118Þ

With these approximations for the q integration, the
amplitude in (112) now becomes

Mþ
4;ren ≃ 2

�
1

8πα0

�
D=2

π20−2D−2Se−α
0jsjfðλÞ

Z
R
dθdrdxe−α

0sð1−λÞ
3

2λ ðx−xcÞ2 jJj

×
�
−

ffiffiffiffiffiffiffiffiffiffiffi
2πα0s

p �
2

ln α0jsj
�

γ

ðS1 − λT1Þ1=2a0 þ
1

p − 1

�
2

ln α0jsj
�

γ−1
ða1 þ 8a0Þ

�
:

As mentioned above, the x integral is very well approxi-
mated by a Gaussian in the α0s → −∞ limit. Thus, at
leading order, we have

Z
1

0

dxe−α
0sð1−λÞ

3

2λ ðx−xcÞ2hðxÞ≃ hðxcÞ
Z

∞

−∞
dxe−α

0sð1−λÞ
3

2λ ðx−xcÞ2

≃ hðxcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πλ

α0sð1 − λÞ3
s

ð119Þ

where hðxÞ simply tracks the complete dependence on the
original θk variables of the rest of the integrand in (107).
Therefore, we now have

Mþ
4;ren≃2

�
1

8πα0

�
D=2

π20−2D−2Se−α
0jsjfðλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πλ

α0sð1−λÞ3
s

×

�
−

ffiffiffiffiffiffiffiffiffiffiffi
2πα0s

p �
2

lnα0jsj
�

γ
Z
R
dθdrjJjðS1−λT1Þ1=2a0

þ 1

γ−1

�
2

lnα0jsj
�

γ−1Z π

0

dθ
Z

∞

0

drjJjða1þ8a0Þ
�
:

ð120Þ

The integrals over r and θ cannot be evaluated in closed
form, but we can simplify the expression above a bit further
by inspecting the leading terms in the large α0s limit with
λ ¼ −t=s held fixed. We first notice that both functions a0
and a1 contain ðα0sÞ2 terms, therefore it would seem that
the first of the integrals in (107) would dominate in the
large α0s limit. This is, however, not true. From (119) we

15This is also true for the hĈ1Ĉ2Ĉ3Ĉ4iþ term in (107), but we
need to keep this term to ensure convergence of the integral at
q ¼ 0.
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see that the integrands in (107) need to be evaluated at
x ¼ sin θ43 sin θ2

sin θ42 sin θ3
¼ xc ¼ ð1 − λÞ−1. The full expression for the

factor jJja0 in terms of the new variables θ; r; x that enters
in both integrands is given by

16jJja0 ¼ r−1½sin θ�−2x−2
�
ð1þ α0tÞ2 x2

ð1 − xÞ2

þ ðα0sÞ2 x
1 − x

− α02ðsþ tÞ2 x2

1 − x

�
ð121Þ

From here, we can readily see that the coefficient of ðα0sÞ2
inside the square brackets above is

x
ð1 − xÞ2 ð1 − xð1 − λÞÞ2 ð122Þ

which vanishes precisely at the value x ¼ xc ¼ ð1 − λÞ−1.
Therefore, a0 really contributes linearly in s in the hard
scattering limit, not quadratically. On the other hand, the

factor jJja1 which enters in the second integral in (107),
when evaluated at x ¼ xc, becomes

jJja1 ¼ x−2ðr2 þ 2r cos θ þ 1Þ−1
�
r2

x2
þ 2r

x
cos θ þ 1

�−1

×

�
ðα0sÞ2ð1 − λÞrsin2θ þ α0s

2rλ
gðr; θÞ

�
ð123Þ

where

gðr; θÞ≡ 1þ 2r2ð2 − 2λþ λ2Þ þ r4ð1 − 2λÞ
þ 2rð2 − λÞð1þ r2 − λr2Þ cos θ
þ 2r2ð1 − λÞ cos 2θ ð124Þ

thus, the contribution from a1 does goes as a1 ∼ ð−α0sÞ2 in
the hard scattering limit and dominates over the one from
a0. Therefore, the leading behavior of the renormalized
Mþ

4;ren amplitude is

Mþ
4;ren ≃ 2

�
1

8πα0

�
D=2 π20−2D−2S

γ − 1
e−α

0jsjfðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πλ

α0sð1 − λÞ3
s �

2

ln α0jsj
�

γ−1 Z π

0

dθ
Z

∞

0

drjJja1

≃ 2

�
1

8πα0

�
D=2 π20−2D−2S

γ − 1
e−α

0jsjfðλÞ ffiffiffiffiffiffiffiffiffiffiffi
−2πλ

p �
2

ln α0jsj
�

γ−1
ð1 − λÞ3=2ð−α0sÞ3=2FðλÞ ð125Þ

where

FðλÞ≡
Z

π

0

dθ
Z

∞

0

dr
rsin2θðr2 þ 2r cos θ þ 1Þ−1

ðr2ð1 − λÞ2 þ 2rð1 − λÞ cos θ þ 1Þ :

ð126Þ

We can now write a more succinct expression for the final
behavior of the renormalized Mþ part of the amplitude in
the hard scattering limit as

Mþ
4;ren ≃GðλÞe−α0jsjfðλÞ

�
1

ln α0jsj
�

γ−1
ð−α0sÞ3=2 ð127Þ

with

GðλÞ≡ 2

�
1

8πα0

�
D=2 2γ−1π20−2D−2S

γ − 1

× ð−2πλÞ1=2ð1 − λÞ3=2FðλÞ: ð128Þ

Note that, since in the hard scattering limit both s and
t are large compared to α0−1, we have lnð−α0sÞ ¼
lnð−α0tÞð1þOð 1

lnð−α0tÞÞÞ, thus at leading order we can
write (127) also as

Mþ
4;ren ≃GðλÞe−α0jsjfðλÞ

�
1

ln α0jtj
�

γ−1
ð−α0sÞ3=2: ð129Þ

This form will be useful when we compare these results
with the Regge behavior of the amplitude which is done in
Sec. IV C.
We now repeat the analysis of the q ∼ 0 region for the

NS− spin structure, i.e. theM− part of the amplitude. This
one reads

M−
4;ren ¼ 2

�
1

8πα0

�
D=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2
P−ðqÞ

×
Z Y4

k¼2

dθk½e−α0sVλhP̂1P̂2P̂3P̂4i−

− e−α
0sV0

λ hĈ1Ĉ2Ĉ3Ĉ4i − B−�: ð130Þ

From here we see that the only differences with respect to
the Mþ case lie on the partition function P−ðqÞ and the
correlator hP̂1P̂2P̂3P̂4i−. The exponential factors are the
same as before. From Eqs. (20) and (22) we have

P−ðqÞ ¼ 24 þOðq2Þ ð131Þ

hP̂1P̂2P̂3P̂4i− ¼ hP̂1P̂2P̂3P̂4i−q¼0 þOðq2Þ: ð132Þ
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Expanding about the critical surface ðx; qÞ ¼ ðxc; 0Þ again, the amplitude (130) becomes

M−
4;ren ≃ 2

�
1

8πα0

�
D=2

e−α
0jsjfðλÞ24

Z Y4
k¼2

dθke−α
0sð1−λÞ

3

2λ ðx−xcÞ2
Z

ϵ

0

dq
q

�
−π
ln q

�ð10−DÞ=2

× ½e−2α0sq2ðS1−λT1ÞhP̂1P̂2P̂3P̂4i−q¼0 − hĈ1Ĉ2Ĉ3Ĉ4i þ e−2α
0sq2ðS1−λT1ÞOðq2Þ�: ð133Þ

We again recall that the integral over the θk variables is
dominated by the two dimensional surface

x ¼ sin θ43 sin θ2
sin θ42 sin θ3

¼ ð1 − λÞ−1 ¼ xc: ð134Þ

The integral over the cross ratio x then becomes a Gaussian
which, at leading order, demands that we evaluate the
expression inside the square brackets above at
sin θ43 sin θ2
sin θ42 sin θ3

¼ ð1 − λÞ−1. It will be again convenient to sep-

arate the s2 part of hP̂1P̂2P̂3P̂4i−q¼0 as

hP̂1P̂2P̂3P̂4i−q¼0 ¼ As2 þ Bsþ C ð135Þ

and, from Eqs. (20) and (22), we obtain

A≡ 1

16
cot θ4 cot θ32½λ2 cot θ4 cot θ32 − cot θ2 cot θ43

− ð1 − λÞ2 cot θ3 cot θ42�: ð136Þ
Evaluating this expression on the critical surface implies
that we make the replacement λ ¼ − sin θ4 sin θ32

sin θ43 sin θ2
. Remark-

ably, one can see that A vanishes in this case, yielding

hP̂1P̂2P̂3P̂4i−q¼0 → Bsþ C ð137Þ

on the critical surface. The coefficient of s2 of the counter-
term hĈ1Ĉ2Ĉ3Ĉ4i also vanishes on this surface as derived in
Eqs. (121) and (122). Given these facts, we can now
estimate the contributions from the rest of the terms in
(133) as follows. The integration over the first term inside
the square brackets in (133) has the same form as (115),
thus together with the s factor coming from the correlator
(137) it behaves as sðlog α0jsjÞD=2−4. Due to the lack of the
exponential factor in front it, the contribution from the
counterterm hĈ1Ĉ2Ĉ3Ĉ4i is exponentially suppressed. This
was expected here since this counterterm is not necessary to
make the behavior of the M− amplitude convergent near
the q ¼ 0 region.16 We can also estimate the contribution
from all the rest of terms in the expansion in powers of q by
recalling that the exponential factor expf−2α0sq2ðS1 −
λT1Þg in (133) cuts off the effective range of the q integral

to ϵ ∼ s−1=2. Thus, since we have an expansion in even
powers of q, the integral will produce a contribution
∼s−1=2 × ðs−1=2Þ2n−1ðlog α0jsjÞD=2−4 ¼ s−nðlog α0jsjÞD=2−4

with n ≥ 1. The maximum power of s that could come from
the correlator hP̂1P̂2P̂3P̂4i− is s2. Thus, even if there are
no cancellations of these terms on the critical surface, the
leading behavior coming from Oðq2Þ terms in (133) is
sðlog α0jsjÞD=2−4. Finally, from (119), we already know that
the integral over the cross ratio x produces an overall factor
of s−1=2. Thus, putting everything together, we have that the
leading behavior of M−

4 − C4 is

M−
4;ren ∼ e−α

0jsjfðλÞ
�

1

log α0jsj
�

D=2−4
ð−α0sÞ1=2 ð138Þ

which is definitely subleading with respect to Mþ
4;ren in

(127).
We now turn to the study of the contributions from other

regions that we have not analyzed yet. As mentioned
before, the asymptotic behavior is governed by critical
points of the second kind, i.e. the boundary regions of the
integrated moduli. Thus, we also need to examine the
region where q → 1. To this end it is convenient to perform
the Jacobi imaginary transformation q ¼ expf2π2= lnwg,
which maps the q ∼ 1 region to w ∼ 0. Using the corre-
sponding transformations on the θ1ðνjτÞ function, we have

θ1

�
iθ lnw
2π

;
ffiffiffiffi
w

p �
¼ −i

�
−2π
lnw

�
1=2

exp

�
−θ2 lnw
2π2

�
θ1ðθ; qÞ

ð139Þ

θ01ð0;
ffiffiffiffi
w

p Þ ¼
�
−2π
lnw

�
3=2

θ01ð0; qÞ ð140Þ

gives

ψðθ; qÞ ¼ θ1ðθ; qÞ
θ0ð0Þ ¼ i

−2π
lnw

exp

�
θ2 lnw
2π2

�

×
θ1ðiθ lnw=2π;

ffiffiffiffi
w

p Þ
θ01ð0;

ffiffiffiffi
w

p Þ

¼ π

− lnw
exp

�
−
θðπ − θÞ lnw

2π2

�
ð1 − wθ=πÞ

×
Y∞
n¼1

ð1 − wnþθ=πÞð1 − wn−θ=πÞ
ð1 − wnÞ2 : ð141Þ

16This counterterm is however necessary to cancel spurious
divergences from certain regions in the θk integrals. The con-
tributions from these regions will be analyzed separately at the
end of this section.
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We are thus interested in the small w behavior of lnψ , therefore

lnψ ¼ ln

�
π

− lnw

�
−
θðπ − θÞ lnw

2π2
þ lnð1 − wθ=πÞ þ

X∞
n¼1

ln
ð1 − wnþθ=πÞð1 − wn−θ=πÞ

ð1 − wnÞ2

¼ ln

�
π

− lnw

�
−
θðπ − θÞ lnw

2π2
þOðwÞ: ð142Þ

Keeping the first two terms is a good approximation as long
as θ is not too close to zero or π. Using the approximation
(142) we have

jVλj ≈




 lnwsπ2

X
i<j

θjiðπ − θjiÞki · kj þOðwÞ




 ð143Þ

where the first term in (142) has vanished due to momen-
tum conservation. We can readily see that at w ¼ 0 the
function Vλ increases logarithmically with w. Since the
overall sign of Vλ is negative, we see that the contribution
from this region will be exponentially suppressed with
respect to the one from q ∼ 0 already computed. We have
thus analyzed both boundaries, q ¼ 0 and q ¼ 1, and found
that the first one dominates.
The last pending task in this section is to estimate the

contribution from the regions of integration we have
avoided until now. As mentioned earlier, the regions where
Sn − λTn get arbitrarily close to zero invalidate the power
series expansion in q and the full integral over q must be
performed in order to obtain the correct asymptotic
behavior coming from these places. This is a very com-
plicated problem since the analytic approximations turn out
to be difficult to analyze, however, we can estimate their
contributions and show that they are subleading with
respect to the one from q ∼ 0. A crucial point is that,
following [27], all the stationary points for the planar
amplitude lie on the boundary of the integration region.
Since we are now away from either q ¼ 0 and q ¼ 1 and
focusing on all possible stationary regions that could come
from the

R
dθk integral, all we need to analyze are the

boundary regions in the θk variables. These are the faces,
edges and vertices of the 3-simplex shown in Fig. 2.
Recall that in the hard scattering limit the important

factor is the one given in Eq. (86) which wewrite again here

Y
i<j

ψðθjiÞ2α0ki·kj ¼ eα
0jsjVλ ð144Þ

where

Vλ ¼ ln x − λ lnð1 − xÞ þ 2
X∞
n¼1

1

n
q2n

1 − q2n
ðSn − λTnÞ:

ð145Þ

From the expression for Vλ we see that a maximum can also
occur for any value of q provided that x ∼ xc ¼ s

sþt and
Sn − λTn ∼ 0. Notice that it is not possible to have an
endpoint-like contribution from the ln x − λ lnð1 − xÞ term
in (145) for fixed λ because, since λ < 0, this termdoes not get
arbitrarily close to zero in the integration range 0 < x < 1.
Therefore, this term will again provide with a stationary
surface only from x ¼ xc ≡ ð1 − λÞ−1. Thus, nowwe need to
analyze all possible boundary regions that could make Sn −
λTn vanish. After careful examinations, this will occur in the
regions where all or all but one of the vertex operators
coincide. The regions where all four vertex operator coincide
correspond to the four vertices in Fig. 2. These are:

θ2 ¼ θ3 ¼ θ4 ¼ 0 ð146Þ

θ2 ¼ θ3 ¼ 0; θ4 ¼ π ð147Þ

θ2 ¼ 0; θ3 ¼ θ4 ¼ π; and ð148Þ

θ2 ¼ θ3 ¼ θ4 ¼ π ð149Þ

Let us analyze one of the regions where all four vertex
operators collapse, say, the vertex (146). It is convenient here
to make the changes θ4 ¼ ϵ, θ3 ¼ ϵη3, θ2 ¼ ϵη2 with ϵ small
and expand everything in powers of ϵ. In [27] the authors also
analyze these regions and point out that the asymptotic
behavior of the amplitude does not depend on ϵ only for
the superstring. The reason for this is that the regions in
moduli spacewhere ϵ ∼ 0 produce divergences that are due to
the presence of tachyons which are absent in the superstring.
Due to the form of Sm − λTm there will only be even

powers in ϵ. In this case we have

Sm − λTm ¼ 8m2

s
ððsþ tÞη2 − ðsþ tη2Þη3Þϵ2 þOðϵ4Þ:

ð150Þ

The important point is that, since we have to evaluate this
expression at the critical surface x ¼ xc, we have

x ¼ sin θ43 sin θ2
sin θ42 sin θ3

¼ ð1 − η3Þη2
η3ð1 − η2Þ

þOðϵ2Þ

¼ 1

1þ t=s
→ η2 ¼

sη3
sþ t − tη3

þOðϵ2Þ: ð151Þ
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Plugging this into (150) makes the entire coefficient
multiplying ϵ−2 in (150) to vanish. Therefore, on the
critical surface we have Sm − λTm ∼Oðϵ4Þ. The exponen-
tial factor (145) then has its largest contribution to the
integral for sϵ4 ∼ 1, which implies that the effective range
for each variable θi is ϵ ∼ s−1=4. Because we have a triple
integral over these angles, the total contribution from the
measure is ∼s−3=4. Since x is Oð1Þ in ϵ, the small corner
studied here still contains the two dimensional plane
x ¼ xc ¼ 1

1þt=s, which we already know contributes with

a factor of s−1=2e−α
0jsjfðλÞ. Recall that the s−1=2 factor comes

from the Gaussian approximation of the cross-ratio along
this plane. The rest of the integrand only involves the
contractions hP̂1P̂2P̂3P̂4i. Note that our expression for the
gluon amplitude includes counterterms that eliminate all
possible divergences in the θ integrals. In particular, the
corner of the integration region we are considering here is
precisely one of the places that originally produced
divergences. These were taken care by the counterterm17

that involves taking the hP̂1P̂2P̂3P̂4i correlator at q ¼ 0.
Thus, starting from Eq. (90), we see that we need to
estimate the contribution of

e
−2α0s

P
∞
n¼1

1
n

q2n

1−q2n
ðSn−λTnÞhP̂1P̂2P̂3P̂4i − hĈ1Ĉ2Ĉ3Ĉ4i ð152Þ

from the region in consideration. In this region we have that
sðSn − λTnÞ ∼Oð1Þ, therefore the prefactor of the first term
above is a number of order one. Now, expanding
hP̂1P̂2P̂3P̂4i in powers of ϵ gives

hP̂1P̂2P̂3P̂4i ¼ α1ϵ
−4 þ α2ϵ

−2 þOð1Þ ð153Þ

where the coefficient α1 above turns out to be

α1 ¼
s2

16η2ðη3 − 1Þðη2 − η3Þ
−

s2ðλ − 1Þ2
16ðη2 − 1Þðη2 − η3Þη3

þ ðsλ − 1Þ2
16ðη2 − η3Þ2

: ð154Þ

Notice that this coefficient lacks q dependence, which
means that the hĈ1Ĉ2Ĉ3Ĉ4i term will have the exact same
coefficient in its expansion in powers of ϵ. Now, since we
must demand the expression above to satisfy the condition
(151) in order to lay on the critical surface, it is somewhat
remarkable that the s2 term in both coefficients β1 and β2
vanishes. As we will now show, this makes this contribu-
tion be smaller than the one computed from the q ∼ 0
region, therefore it is subleading. Had not this been the

case, this region would have dominated in the hard
scattering regime and the entire leading behavior would
have been much harder to obtain. Moreover, it is the q ∼ 0
region the one that provides the correct asymptotic behav-
ior for s ≫ t which matches with the Regge limit at high t
as we will show in the next section.
All in all, the total contribution from this corner has the

following structure: (i) the cross-ratio x contributes with a
factor of s−1=2e−α

0jsjfðλÞ as seen above; (ii) since the relevant
range for each θi variable is Δθ ∼ s−1=4, the triple integral
provides a factor of s−3=4; (iii) the rest of the integrand,
namely the correlators hP̂1P̂2P̂3P̂4i and hĈ1Ĉ2Ĉ3Ĉ4i,
behave as sϵ−4 ∼ s2 on the plane x ¼ xc. Therefore, the
total estimate is s−1=2e−α

0jsjfðλÞ × s−3=4 × s2 ¼ s3=4e−α
0jsjfðλÞ

which definitely smaller than the one obtained in (127)
which came from the q ∼ 0 region. It also straightforward
to show, after suitable changes of variables, that the other
three vertices (147), (148), and (149) give an identical
contribution.
A final estimation we need to obtain is the one from the

regions that correspond to a 3-particle coincidence, that is,
the regions where all but one of the vertex operators
coincide in the moduli space. There are four of these
regions and they correspond to four of the edges in the
integration domain depicted in Fig. 2. All of the edges
corresponding to a loop insertion on an eternal leg will
produce an important contribution in the hard scattering
limit. These are : θ2 ¼ θ3 ¼ 0, θ2 ¼ θ3 ¼ θ4, θ2 ¼ π −
θ4 ¼ 0 and θ3 ¼ θ4 ¼ π. Let us focus on the first one. In
this case it is again convenient to define θ2 ¼ η2ϵ and θ3 ¼
ϵ and expand for small values of ϵ. In this case we have

x ¼ η2 þOðϵÞ ð155Þ

and the analogous condition to (151) here is η2 ¼ ð1 − λÞ−1
at leading order. Expanding Sn − λTn in powers of ϵ yields

Sn − λTn ¼ 2nðη2ð1 − λÞ − 1Þ sinð2nθ4ÞϵþOðϵ2Þ ð156Þ

from where see that the OðϵÞ term vanishes on the critical
surface. The Oðϵ2Þ does not vanish there, consequently,
Sm − λTm ¼ Oðϵ2Þ. This implies that now the effective
range of each θi variable in this corner of the integration
region is Δθi ∼ ϵ ∼ s−1=2. Expanding again hP̂1P̂2P̂3P̂4i
gives

hP̂1P̂2P̂3P̂4i ¼ β1ϵ
−2 þOð1Þ: ð157Þ

It will be again convenient to write the leading coefficient
β1 as a polynomial in s as

β1 ¼ b0 þ b1sþ b2s2: ð158Þ

As before, we single out the coefficient of the s2 term b2 for
which we obtain

17This counterterm has a two-fold purpose since it also cancels
the divergence

R dq
q2 for small q which is reinterpreted as a

renormalization of the coupling. This is the only divergence in
the q integration as long as the Dp-brane has p < 7.
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b2 ¼ ð1þ η2ðλ − 1ÞÞ2 θ2ð0; qÞ
4θ3ð0; qÞ2θ3ðθ4; qÞ2θ4ð0; qÞ4

16ðη2 − 1Þ2η2θ1ðθ4; qÞ2θ01ð0; qÞ2
ð159Þ

where θlðθi; qÞ denotes the lth Jacobi Theta function
evaluated at ðθi; qÞ. From here we see immediately that
this coefficient vanishes if η2 ¼ ð1 − λÞ−1, which is pre-
cisely the value that η2 acquires on the critical surface
x ¼ xc ¼ ð1 − λÞ−1. Therefore, when we evaluate
hP̂1P̂2P̂3P̂4i on that surface we have

β1 ¼ b0 þ b1s ð160Þ

and likewise for hĈ1Ĉ2Ĉ3Ĉ4i since in that case the only
difference is that the Jacobi Theta functions need to be
evaluated at q ¼ 0, giving the result

csc2θ4
ð1þ η2ðλ − 1ÞÞ2
16ðη2 − 1Þ2η2

ð161Þ

which also vanishes for the same value η2 ¼ ð1 − λÞ−1. With
these two results, we see that the biggest contribution from the
correlators goes like∼ϵ−2s ∼ s2. Since x ¼ Oð1Þ, the critical
plane is again contained in the corner we are analyzing,
producing again a factor of s−1=2e−α

0jsjfðλÞ. The since θ2 < θ3,
in this corner we also have that dθ2dθ2 isOðϵ2Þ thus giving a
factor of s−1. Putting everything together, we have that
the corner θ3 ∼ θ2 ∼ 0 produces a total contribution
∼s2 × s−1=2e−α

0jsjfðλÞ × s−1 ¼ s1=2e−α
0jsjfðλÞ. It is also

straightforward to check that the other two remaining corners
produce the same answer. Therefore, we see again that these
regions produce subleading behavior with respect to (127).
Summarizing, we have analyzed all the regions that

produce dominant contributions in the high energy regime
at fixed angle. These contributions correspond to the
regions comprised of all possible stationary points of Vλ

[see Eqs. (86) and (87)]. Our analysis yields that the leading
contribution, among all the dominant regions, comes from
the boundary

q ¼ 0 with x ¼ ð1 − λÞ−1 ð162Þ

where x was defined in (92). Therefore, quoting the result
from (129), the behavior of the renormalized 4-point
amplitude in the hard scattering regime is

MHard
4 ≃GðλÞe−α0jsjfðλÞðlog α0jtjÞ1−γðα0jsjÞ3=2: ð163Þ

GðλÞ only depends on the scattering angle as a function of λ
and is given by

GðλÞ≡ 2g2
�

1

8πα0

�
D=2 2γ−1π20−2D−2S

γ − 1

× ð−2πλÞ1=2ð1 − λÞ3=2FðλÞ ð164Þ

with

FðλÞ≡
Z

π

0

dθ
Z

∞

0

dr
rsin2θðr2 þ 2r cos θ þ 1Þ−1

ðr2ð1 − λÞ2 þ 2rð1 − λÞ cos θ þ 1Þ
ð165Þ

where this last expression is the same one found in [40].
The expression for FðλÞ given in (165) is convergent in the
entire range −∞ < λ < 0 and it only diverges when λ
approaches zero, in which case, it diverges logarithmically
in λ. We will see that this is precisely what is needed in
order to recover the Regge behavior from the hard scatter-
ing limit.
In conclusion, the amplitude is exponentially suppressed

at high energies as expected for stringy amplitudes in this
regime, but we also have an extra logarithmic falloff
product of the presence of the D-branes. The full depend-
ence in λ contained in the function GðλÞ will be crucial in
order to make contact with the results in [17] because
taking the −t=s ¼ λ → 0 limit in (163) should reproduce
the high t limit of the Regge behavior. We will show in
Sec. IV C that this limit is indeed recovered.

B. Comparison with tree amplitude

At arbitrary energies, the tree amplitude for this polari-
zation is

Mtree
4 ¼ −g2ϵ1 · ϵ4ϵ2 · ϵ3

Γð1 − α0sÞΓð−α0tÞ
Γð−α0s − α0tÞ ð166Þ

where we have only omitted numerical factors for
simplicity. Using Stirling’s approximation Γð1þ xÞ≃
xxe−xð2πxÞ1=2, the α0s → −∞ limit with −t=s≡ λ held
fixed is

MTree
4 ∼ −g2ϵ1 · ϵ4ϵ2 · ϵ3

ffiffiffiffiffiffi
2π

p
ð−α0sÞ1þα0tð−α0tÞ−1=2−α0tð1þ t=sÞ1=2þα0sþα0t

∼ −g2ϵ1 · ϵ4ϵ2 · ϵ3
ffiffiffiffiffiffi
2π

p
ð−α0sÞ1=2ð−λÞ−1=2ð1 − λÞ1=2e−α0jsjfðλÞ ð167Þ

where fðλÞ≡ λ lnð−λÞ þ ð1 − λÞ lnð1 − λÞ ≥ 0. The ratio of the one-loop amplitude to the tree one in this regime is

M1-loop

Mtree
∼ −α0s

�
2

ln jα0tj
�

15−3D=2−S
: ð168Þ
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Therefore, having computed the exact leading power of s
multiplying the exponential falloff allows us to assert that
the planar one-loop amplitude dominates over the tree
amplitude.

C. Recovery of the Regge behavior at high t

Recall that the Regge limit is obtained by taking s to be
large compared to α0−1 while keeping t fixed, whereas the
hard scattering regime is obtained by taking both s and t
large compared to α0−1 while maintaining the ratio λ ¼
−t=s fixed. Therefore, we expect that when s is large

compared to t in the hard scattering limit (163), this
matches with the Regge limit when t ≫ α0−1. The Regge
limit in the type 0 model was obtained in [17] with the
result

MRegge
4 ∼−g2ϵ1 · ϵ4ϵ2 · ϵ3ð−α0sÞ1þα0tΓð−α0tÞ logð−α0sÞΣðtÞ

ð169Þ

where ΣðtÞ is given by

ΣðtÞ ¼ Cg2
Z

1

0

dq
q

�
−π
ln q

�ð10−DÞ=2 Z π

0

dθ

�
ð−ψ2½lnψ �00Þα0t α0t

½lnψ �00 ðPþXþ − P−X−Þ

−
1

4
ðPþ − P−Þ½ð−ψ2ðθÞ½lnψ �00Þα0t − 1�½− lnψ �00

�
ð170Þ

giving the one-loop correction to the Regge trajectory. The
functions P� and ψ are given in Eqs. (15) through (17). X�
are defined in terms of the Jacobi Theta functions θiðθ; qÞ

XþðqÞ ¼ 1

4
θ4ð0Þ4θ3ð0Þ4 −

E
π
θ4ð0Þ4θ3ð0Þ2 þ

E2

π2
θ3ð0Þ4

ð171Þ

X−ðqÞ ¼ −
1

4
θ4ð0Þ4θ3ð0Þ4 þ

E2

π2
θ3ð0Þ4 ð172Þ

E ¼ π

6θ3ð0Þ2
�
θ3ð0Þ4 þ θ4ð0Þ4 −

θ0001 ð0Þ
θ01ð0Þ

�
ð173Þ

where we denote θið0; qÞ≡ θið0Þ. Using the infinite
product representations

θ3ð0Þ ¼
Y
n

ð1 − q2nÞ
Y
r

ð1þ q2rÞ2 ð174Þ

θ4ð0Þ ¼
Y
n

ð1 − q2nÞ
Y
r

ð1 − q2rÞ2 ð175Þ

θ0001 ð0Þ
θ01ð0Þ

¼ −1þ 24
X
n

q2n

ð1 − q2nÞ2 ð176Þ

one can write X� explicitly in terms of q. The sums over n
are over positive integers and those over r are over half odd
integers. As mentioned above, we need to take the limit
α0t ≫ 1 in (169). Using Stirling’s approximation Γð−α0tÞ ∼ffiffiffiffiffiffi
2π

p ð−α0tÞ−1=2−α0teα0t and the fact that for large α0t the one-
loop trajectory function becomes [17]

ΣðtÞ ∼ α0t½logð−α0tÞ�1−γ ð177Þ

we have that

MRegge
4 ∼

α0t≫1
g2ϵ1 · ϵ4ϵ2 · ϵ3ð−α0sÞ1þα0tð−α0tÞ1=2−α0t

× eα
0t logð−α0sÞ½logð−α0tÞ�1−γ: ð178Þ

We now expect to recover this result by taking the s ≫ t
limit in (163). This amounts to take the λ → 0 limit of FðλÞ
defined in (165) and then putting this back into (163). For
convenience, we write this integral here again

FðλÞ ¼
Z

∞

0

dr
Z

π

0

dθ
rsin2θðr2 þ 2r cos θ þ 1Þ−1

ðr2ð1 − λÞ2 þ 2rð1 − λÞ cos θ þ 1Þ :

ð179Þ

This integral converges in the whole range−∞ < λ < 0 but
it gets larger and larger as λ approaches zero. Recall that
λ ¼ −t=s so this is precisely the limit we want to study. By
putting λ ¼ 0 in the integrand of (179), we see that the only
singular region is the one given by θ ∼ π and r ∼ 1. There is
an alternative way to note that this is the relevant region in
the Regge limit. Recall that the saddle point which
dominates in the high energy limit is given by
x ¼ ð1 − λÞ−1. From the definitions (96) we note that the
region θ ∼ π and r ∼ 1 corresponds18 to x ¼ r sin θ2

sin θ42
∼ 1

which is precisely the location of the dominant saddle as
λ → 0. This perfectly matches with the fact that the
Regge behavior of the amplitude is obtained from
the region θ2 ∼ θ3, θ4 ∼ π for which we have
x ∼ 1 − θ32ðπ − θ4Þ csc2 θ3. Thus, in the integrand above,
let us replace ð1 − λÞ by x−1 for notational convenience.
Therefore, since the relevant region for integral above is

18Recall that the original θ4 variable was renamed θ here.
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given by r → x → 1, we focus on the corner r ∼ x, θ ∼ π, thus

FðλÞ ∼
Z

xþδ

x−δ
dr

Z
π

π−ϵ
dθ

ðπ − θÞ2
ððx − 1Þ2 þ xðπ − θÞ2Þððr=x − 1Þ2 þ ðπ − θÞ2Þ

∼ 2

Z
ϵ

0

θ

ðx − 1Þ2 þ xθ2
¼ −2 ln j1 − xj þ lnðð1 − xÞ2 þ ϵ2Þ: ð180Þ

Therefore, as λ → 0 for fixed ϵ, we have

FðλÞ ∼ −2ðlnð−λÞ − lnð1 − λÞÞ ∼ 2 lnð−α0sÞ: ð181Þ

Putting this result back into (164) gives

GðλÞ≃ 4g2
�

1

8πα0

�
D=2 2γ−1π20−2D−2S

γ − 1
ð−2πλÞ1=2 lnð−α0sÞ:

ð182Þ

The exponential factor e−α
0jsjfðλÞ in (163) can also be

written as

e−α
0jsjfðλÞ ¼ ð−λÞλα0sð1 − λÞα0sð1−λÞ

¼ ð−λÞ−α0tð1þ t=sÞα0sð1 − λÞα0t ð183Þ

which in the s ≫ t (λ → 0) limit then becomes

e−α
0jsjfðλÞ → ð−λÞ−α0teα0t: ð184Þ

Plugging all these approximations back into the full hard
scattering amplitude in (163) yields

MHard
4 ∼

s≫t
g2ϵ1 · ϵ4ϵ2 · ϵ3

�
1

8πα0

�
D=2 2γþ1π20−2D−2S

γ − 1

× ð−2πλÞ1=2 lnð−α0sÞð−λÞ−α0teα0t
× ðlog α0jtjÞ1−γðα0jsjÞ3=2: ð185Þ

Finally, replacing λ ¼ −t=s here one obtains

MHard
4 ∼

s≫t
g2ϵ1 · ϵ4ϵ2 · ϵ3 lnð−α0sÞð−α0sÞ1þα0t

× ð−α0tÞ1=2−α0teα0tðlog α0jtjÞ1−γ ð186Þ

which matches exactly with the expected result (178).

V. DISCUSSION AND CONCLUSIONS

As pointed out in the introductory section, considering
only the planar diagrams in the multiloop summation UV
divergences in the open string channel do not cancel among
string diagrams (as it happens between the planar and
Moebius strip diagrams for example) and a renormalization
scheme is necessary. Moreover, since the one-loop expres-
sion for the amplitude is given in terms of an integral
representation over the moduli, spurious divergences arise

due to fact that the original integrals run over regions
outside of their domain of convergence. For the case in
study here, we show that all these spurious divergences and
the UV ones can be regulated altogether by means of a
single counterterm built out of suspending total momentum
conservation before evaluating the integrals over the
moduli. Namely, for p≡P

iki ≠ 0, we first isolate the
divergent parts, introduce the necessary counterterms, and
we analytically continue the integrals to p ¼ 0 at the very
end. As a result, we provide a novel expression for the n-
gluon planar loop amplitude in type 0 theories which are
completely free of all the spurious and UV divergences. If
one is interested in the low energy limit, this new
expression is now ready to give the correct field theory
limit without having to be worried of the artifacts intro-
duced by the spurious singularities originally present in the
string loop amplitude.
We also studied in detail the high energy at fixed-angle

limit (hard scattering) of the 4-gluon planar one-loop
amplitude in these models using the renormalization
procedure described above. Since all the Mandelstam
variables come multiplied with a factor of α0, the hard
scattering regime is equivalent to taking the tensionless
limit (α0 → ∞) with the external states held at fixed
momenta.
To extract the complete leading behavior of the ampli-

tude and provide its full dependence on the kinematic
invariants, it was necessary to carefully analyze all dom-
inant regions. Apart from the usual exponential drop off, we
also obtained the exact dependence on the scattering angle
that multiplies the exponentially decaying factor which
shows the existence of a smooth connection between the
Regge and hard scattering regimes. Although we focus on
the polarization structure that dominates in the Regge limit
in order to correlate our results with those of [17], our
answers here are fully general and can be easily extended to
all the other polarization structures. Note that, contrary to
the case of superstring amplitudes where the entire polari-
zation structure can be factored out of the integration over
the moduli (at least through one-loop), “gluon” amplitudes
in type 0 theories are more convoluted since this factori-
zation is, in general, not possible.
It would be interesting to see if the smooth connection

between the Regge and hard scattering regimes found here
is also present for nonplanar amplitudes. In this case the
amplitude is dominated by a saddle point which is located
away from the boundaries at q ¼ 0 and q ¼ 1, i.e. in the
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interior of the moduli. The saddle is given by the equation
θ4ð0; qÞ=θ4ðπ; qÞ ¼ ð1 − λÞ1=4 where θ4ðθ; qÞ is the fourth
Jacobi theta function. As λ → 0 the only solution for the
saddle equation above is q ¼ 0, thus moving the saddle to
the boundary. Also, the high energy (α0jtj ≫ 1) limit of the
Regge regime is again dominated by the q ∼ 0 region.
Therefore, we should also expect a smooth transition
between the hard and Regge behaviors for the 1-loop
nonplanar diagram, although it would be nice to obtain this
explicitly.
As pointed out in [15], summing the planar open string

diagrams to all loops by keeping the closed string tachyon
(i.e. using type 0 strings) causes a natural instability that
could potentially explain confinement in gauge theories.
Other indications of this phenomenon were also suggested
in type 0 models in the context of the AdS/CFT corre-
spondence [11–14,41,42]. Therefore, strings theories with
tachyons in their closed string sector is a desirable feature.
In a recent paper [43], the scattering of closed strings off
D-branes was studied in the high-energy Regge regime. At
the one-loop level for planar diagrams they found that the
dominant region is also the one we found in this work,
namely the region where the inner boundary of the annulus
shrinks to a point. Moreover, they were able to perform the
sum of the leading contributions in this regime to all loops
by means of an eikonal summation, yielding a nonzero
result in terms of the vacuum expectation value of closed
string vertex operators. Since each term in the sum comes
from the region for the propagation of closed strings in the
IR limit, we believe that a similar analysis can be performed
in string theories with tachyons in their closed string sector
(for instance, for the type 0 model studied here).
Performing this sum could capture some of the effects
of the closed string tachyons.

Finally, regarding the connections between higher spin
theories [44–46] and the tensionless limit of string theory
[47,48], it would also be interesting to see if our results
could be relevant for the construction of higher point
vertices in higher spin theories using the methods of cutting
loop amplitudes.
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APPENDIX A: ORBIFOLD PROJECTION

We discuss very briefly the alternative procedure for
eliminating the massless scalars circulating the loop by
projecting them out using an orbifold projection. It basi-
cally consists in demanding that we keep only the states
that are even under aIn, bIr → −aIn, −bIr for the components
I ¼ Dþ S;Dþ Sþ 1;…; 10 of the worldsheet oscillators.
Thus, for the case when one has pure Yang-Mills theory in
the α0 → 0 limit, i.e. S ¼ 0 (no adjoint massless scalars), we
demand this condition for all the transverse components to
the D-brane. This implies that in the partition functions in
Eqs. (15) and (16) now get modified as follows:

Pþ → q−1
1

2

�Q
rð1þ q2rÞ8Q
nð1 − q2nÞ8 þ qð10−D−SÞ=4

�
−π
4 ln q

�ðDþS−10Þ=2Q
rð1þ q2rÞDþS−2Q

nð1þ q2nÞ10−D−SQ
nð1 − q2nÞDþS−2Q

rð1 − q2rÞ10−D−S

�
ðA1Þ

P− → 24
1

2

�Q
nð1þ q2nÞ8Q
nð1 − q2nÞ8 þ

�
−π
ln q

�ðDþS−10Þ=2Q
nð1þ q2nÞDþS−2Q

rð1þ q2rÞ10−D−SQ
nð1 − q2nÞDþS−2Q

rð1 − q2rÞ10−D−S

�
: ðA2Þ

It is worth noticing that in the case of the maximal number
of scalars circulating the loop, i.e. Dþ S ¼ 10, the modi-
fied partition functions become

Pþ → q−1
Q

rð1þ q2rÞ8Q
nð1 − q2nÞ8 ðA3Þ

P− → 24
Q

nð1þ q2nÞ8Q
nð1 − q2nÞ8 ðA4Þ

which are identical to the partition functions in the case
without orbifold projections.19

In [17] we computed the one-loop to the leading Regge
trajectory using the projection procedure suggested in [32].
If we use the new partition functions for the orbifold
projection, the new Regge trajectory is given by

19Which in turn coincides with the non-Abelian D-brane
projections in the Dþ S ¼ 10 case as well.
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ΣðtÞ ¼ −
4g2α02−D=2

ð8π2ÞD=2

Z
1

0

dq
q

�
−π
ln q

�ð10−DÞ=2 Z π

0

dθ

�
ð−ψ2ðθÞ½lnψ �00Þα0t α0t

½lnψ �00 ðPþXþ − P−X−Þ

−
1

4
ðPþ − P−Þ½ð−ψ2ðθÞ½lnψ �00Þα0t − 1�½− lnψ �00

�
ðA5Þ

with the P� functions defined above and the rest is the same as before.
The low energy (field theory) limit of (A5) is governed by the contributions from the q ∼ 1 region. Thus, it is more

convenient to go back to the original w variable where w ¼ e2π
2= log q and expand in powers of w ∼ 0. Performing the Jacobi

transform to write the new partition functions as functions of w gives

Porbþ ¼ 1

2w1=2

�
−2π
lnw

�
4
�Q

rð1þ wrÞ8Q
nð1 − wnÞ8 þ

Q
rð1þ wrÞDþS−2Q

rð1 − wrÞ10−D−SQ
nð1 − wnÞDþS−2Q

nð1þ wnÞ10−D−S

�

Porb
− ¼ 1

2w1=2

�
−2π
lnw

�
4
�Q

rð1 − wrÞ8Q
nð1 − wnÞ8 þ

Q
rð1 − wrÞDþS−2Q

rð1þ wrÞ10−D−SQ
nð1 − wnÞDþS−2Q

nð1þ wnÞ10−D−S

�
ðA6Þ

we see that the low energy limit α0 → 0 is not modified since this regime is governed by the w ∼ 0 behavior which does not
change as we can see by expanding the new partition functions in this limit, where

Porb
� ∼

1

w1=2

�
−2π
lnw

�
4

½1� ðDþ S − 2Þw1=2 þOðwÞ�

which is the same asymptotic behavior that the non-Abelian D-brane construction provides.

APPENDIX B: COUNTERTERMS FOR LOGARITHMIC DIVERGENCES

The expression for the B� counterterm is more cumbersome because it is the sum of four terms which correspond to the
four different edges that contribute with logarithmic divergences in the θ integrals. We list them here:

B�
1 ¼ 1

4
θα

0ðsþtÞ
42 θ−α

0s
43 θ−α

0t−1
32 ½ðPðθ4Þ − Pðθ4ÞCÞð1þ α0tÞθ−132

þ ðχ2þðθ4Þ − χ2þðθ4ÞCÞðα0tð1þ α0tÞθ−132 þ ðα0sÞ2θ−143 − α02ðsþ tÞ2θ−142 Þ�

B�
2 ¼ 1

4
ðπ − θ3Þα0ðsþtÞθ−α0s43 ðπ − θ4Þ−α0t−1½ðPðθ2Þ − Pðθ2ÞCÞð1þ α0tÞðπ − θ4Þ−1

þ ðχ2þðθ2Þ − χ2þðθ2ÞCÞðα0tð1þ α0tÞðπ − θ4Þ−1 þ ðα0sÞ2θ−143 − α02ðsþ tÞ2ðπ − θ3Þ−1Þ�

B�
3 ¼ 1

4
ðπ − θ42Þα0ðsþtÞθ−α0s2 ðπ − θ4Þ−α0t−1½ðPðθ3Þ − Pðθ3ÞCÞð1þ α0tÞðπ − θ4Þ−1

þ ðχ2þðθ3Þ − χ2þðθ3ÞCÞðα0tð1þ α0tÞðπ − θ4Þ−1 þ ðα0sÞ2θ−12 − α02ðsþ tÞ2ðπ − θ42Þ−1Þ�

B�
4 ¼ 1

4
θα

0ðsþtÞ
3 θ−α

0s
2 θ−α

0t−1
32 ½ðPðθ4Þ − Pðθ4ÞCÞð1þ α0tÞθ−132

þ ðχ2þðθ4Þ − χ2þðθ4ÞCÞðα0tð1þ α0tÞθ−132 þ ðα0sÞ2θ−12 − α02ðsþ tÞ2θ−13 Þ� ðB1Þ

therefore, with these definitions, B� ¼ P
4
i¼1 B

�
i . Note that, because of the form of these counterterm integrands, none of

them is singular in the θ4 ∼ π, θ2 ∼ θ3 region which is the dominant region in the large −s fixed t limit, therefore they will
not contribute to the one-loop correction to the Regge trajectory. This is why it was not necessary to include them in [17].
The fact that they are also nonsingular in the remaining edge, namely θ2 ∼ 0, θ3 ∼ θ4 suggests that they do not contribute to
the regime where t is large and s is held fixed either.
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