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In this paper we refine a conjecture relating the time-dependent size of an Einstein-Rosen bridge (ERB)
to the computational complexity of the dual quantum state. Our refinement states that the complexity is
proportional to the spatial volume of the ERB. More precisely, up to an ambiguous numerical coefficient,
we propose that the complexity is the regularized volume of the largest codimension one surface crossing
the bridge, divided byGNlAdS. We test this conjecture against a wide variety of spherically symmetric shock
wave geometries in different dimensions. We find detailed agreement.
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I. INTRODUCTION

The two sides of the Penrose diagram of an eternal anti–
de Sitter (AdS) black hole are connected by an Einstein-
Rosen bridge (ERB). The ERB grows with time: classically
it grows forever. On the other hand, the dual boundary
theories very quickly come to thermal equilibrium. All
evolution seems to stop at the scrambling time t�. The
scrambling time is a short time, only logarithmically greater
than the light transit time across the black hole. This leads
to a puzzle: if the quantum state of the two sides stops
evolving, how can the continuing growth of the ERB, over
long periods of time, be described in the dual theory?1

The answer, of course, is that the quantum state does not
stop evolving. Subtle quantum properties continue to
equilibrate long after a system is scrambled. These proper-
ties can be summarized in a quantity called computational
complexity, or just complexity. In the sense that we will use
the term, complexity of classical systems cannot get very
large. Consider a system of K classical bits in the initial
state ð00000…Þ. Suppose our goal is to get to some other
state. The number of simple operations (one or two c-bit
operations) required to accomplish the task will never be
larger than K. K is also the maximum entropy of the c-bit
system.
In quantum mechanics the situation is different. Entropy

is only the tip of a gigantic complexity iceberg. For K
qubits the maximum entropy is still K. But for almost all

states the number of two-qubit gates needed to achieve the
state is exponential in K [6]. Until recently this difference
between classical and quantum complexity has not played a
large role in formulating physical principles, but this may
be changing (see also [7]).
In [8], a conjecture was made that the complexity of a

state is proportional to the length of the ERB. Here we will
refine this conjecture slightly: we propose that the total
complexity, measured in gates, is

CðtL; tRÞ ¼
VðtL; tRÞ
GNlAdS

; ð1:1Þ

where V is the spatial volume of the ERB. This volume is
defined using the maximum volume codimension one
surface bounded by the CFT spatial slices at times tL; tR
on the two boundaries. Equation (1.1) should be under-
stood up to an order one factor of proportionality, since we
do not know how to define gate complexity more precisely
than this.
A simple check on this proposal can be carried out using

the time evolution of the thermofield double state jTFDi
corresponding to the analytic eternal two-sided black hole
[9]. In particular, in Sec. II, we will see that this formula has
the right time dependence and scaling with temperature.
In Sec. IV, we will examine the conjecture in a less trivial

setting. Building on [10,11], Refs. [12,13] constructed a
wide class of shock wave geometries dual to perturbations
of the thermofield double state. The complexity of such
states is easy to estimate, so we are able to check (1.1) for a
large class of spherically symmetric states. A preliminary
version of this check was carried out in [14].
The conjecture (1.1) was partially inspired by the

connection [1] between time evolution, the length of the
Einstein-Rosen bridges, and the tensor network description
of quantum states. There should be a close connection
between the circuit complexity defined in this paper and the
minimal size of the tensor network description of a state.

1Another way to put the question is the following: are there
properties of the gauge theory wave function that can serve as
clocks, and for how long can they continue to record the time?
There are a number of more or less standard answers. The ∼N2

part of the vertical entanglement (see Sec. II B) can be used as a
clock, but it reaches its maximum after a multiple of the light-
crossing time [1,2]. The decay of local correlation between the
left and right conformal field theories (CFTs) may also be used
[3–5]. These correlations exponentially decay for a time of order
S, but then become noisy with an amplitude of order e−S. It is a
special feature of quantum mechanics that there are properties of
the wave function that are monotonic for much longer times.
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We will comment briefly about this after reviewing proper-
ties of complexity in Sec. III.
For the convenience of the reader we will list some

assumptions, conventions, and notations that occur
throughout the paper.

(i) D refers to the space-time dimension of the bulk
theory.

(ii) We will often work in units such that the AdS radius
lads is equal to unity.

(iii) Our discussion of precursors will be limited to
the case of black holes with Schwarzschild radius
of order the AdS scale R ∼ lAdS. For such black
holes, the temperature of the black hole is of
order T ∼ 1=lAdS.

(iv) Earlier papers [8,14] focused on the length of
the Einstein-Rosen bridge denoted by d. In this
paper the focus is on the spatial volume of the ERB
called V.
For long, symmetric wormholes, V and d are

related by the cross-sectional area A of the ERB. The
area is of order the entropy of the black hole in
Planck units. Thus, up to factors of order 1 we
have V ¼ Ad ¼ SlD−2

p d.
(v) Complexity can refer to an operator or to a state.

In either case it is measured in gates. It is denoted
by C.

(vi) As usual, the two sides of the eternal black hole will
be called left and right. This notation also refers to
the two CFTs describing the boundaries.

(vii) The Killing time in a two-sided black hole is denoted
by τ. In the right side τ increases from past to future
in the usual way. On the left side τ increases from
future to past. In the Einstein-Rosen bridge τ is
spacelike and increases from left to right.

(viii) The boundary time t increases from past to future on
both sides.

(ix) The notation rm indicates a certain value of the
(timelike) radial Schwarzschild coordinate inside the
black hole where the function (to be defined)
rD−2

ffiffiffiffiffiffiffiffiffiffiffiffijfðrÞjp
has a maximum.

(x) We will use vD to represent the value of this
maximum: vD ¼ ωD−2rD−2

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijfðrmÞj
p

where ωD−2
is the volume of a unit D − 2 sphere.

(xi) The symbol t� is used for the time 1
2πT log S. This is

the scrambling time for black holes with T ∼ 1.
(xii) We use tf to denote the folded time interval

associated to a state, defined below.

II. EINSTEIN-ROSEN BRIDGES

A. Black hole geometry

The metric of a Schwarzschild AdS black hole has the
form

ds2 ¼ −fðrÞdτ2 þ fðrÞ−1dr2 þ r2dΩ2
D−2 ð2:1Þ

where fðrÞ is given by

fðrÞ ¼ r2 þ 1 −
μ

rD−3 : ð2:2Þ

For D > 3, the parameter μ is determined by the mass as
μ ¼ 16πGNM=ðD − 2ÞωD−2, with ωD−2 being the volume
of a ðD − 2Þ-sphere. In the D ¼ 3 case corresponding to a
BTZ black hole, the function is fðrÞ ¼ r2 − 8GNM.
In Eq. (2.1) the time coordinate τ runs from past to the

future on the right side of the Penrose diagram and from
future to past on the left side. We will introduce a boundary
time t which strictly runs from past to future on both sides.
Thus

t ¼ τ right side

t ¼ −τ left side: ð2:3Þ

Let us review the boundary-bulk duality for wave
functions. In the dual CFT the system is described by a
single state that depends on two times, tL; tR. The sub-
scripts L;R represent left, right. The instantaneous state is
written

jΨðtL; tRÞi:
There are two commuting Hamiltonians that generate
independent time translations,

i∂tL jΨi ¼ HLjΨi
i∂tR jΨi ¼ HRjΨi: ð2:4Þ

The thermofield double state (TFD) is an eigenvector of
HR −HL with eigenvalue zero, but it evolves nontrivially
with HR þHL.
From the bulk viewpoint jΨi represents a Wheeler–De

Witt wave function covering a patch of the space-time
geometry. The patch contains all spacelike surfaces which
terminate on the boundaries at times tL; tR [15]. This is
illustrated in Fig. 1.

FIG. 1 (color online). The yellow region is the Wheeler–De
Witt patch for the times tL; tR. The brown curve indicates a
spacelike surface connecting the two boundaries.
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We will be interested in the volume, VðtL; tRÞ, of the
ERB that connects the two boundaries at the times tL
and tR.

B. The size of an ERB

The size of an ERB is not a self-evident idea. In [8]
and [14] a naive definition was proposed: the construc-
tion involved connecting the boundaries by ðD − 2Þ-
dimensional surfaces similar to the Ryu-Takayanagi
surfaces [16,17] used by Hartman and Maldacena [1]
to study the evolution of vertical entanglement.2 In the
special case of BTZ this reduces to geodesics connecting
the two boundaries.
In retrospect this was not a good idea for a number of

reasons. One serious defect is that existence is not guar-
anteed. The extremal ðD − 2Þ-dimensional surfaces are
saddle points, and it is possible to conceive of long
asymmetric wormholes with no extremal surface connect-
ing the two asymptotic regions. Concretely, because such
surfaces are not topologically stable, they could slip off the
transverse ðD − 2Þ sphere when the ERB becomes long. Or
they could run into the singularity. Also, the proposal fails
to scale properly with temperature when the black hole is
continued away from the Hawking-Page transition point.
There is, however, another simple candidate for the

definition of the ERB size, which does not suffer from
these problems. Consider the brown curve in Fig. 1
connecting tL and tR. Taken literally, each point along
the curve in the Penrose diagram represents a ðD − 2Þ
sphere. The curve itself is a ðD − 1Þ-dimensional spatial
volume. Surfaces of this type fill the spatial volume of the
ERB. Moreover, the extremal surfaces are maxima of the
volume, not saddle points. For AdS black holes in Einstein
gravity, we believe that the volume of such surfaces is
always bounded from above (apart from a UV divergence
near the boundary), so the existence of a maximum
volume surface is guaranteed.3

1. Infinite time

Consider the black hole geometry described in (2.1). The
first step in constructing a maximal volume surface con-
necting tL and tR is to understand an especially simple limit
in which the two boundary times are taken to infinity. This
is illustrated in Fig. 2 where the blue curve represents the
limiting configuration. The simplifying feature is the
τ-translation symmetry of the geometry. For the infinite-
time ERB the volume extends over an infinite range of τ,
and is therefore translationally invariant. Moreover the
system is also rotationally invariant. It follows that the
surface of maximum volume is located at a fixed value of r.
Its volume per unit τ is equal to

dV
dτ

¼ ωD−2rD−2
ffiffiffiffiffiffiffiffiffiffiffiffi
jfðrÞj

p
: ð2:5Þ

To find the maximal volume surface, we must maximize
the rhs over r between r ¼ 0 and the horizon radius. From
(2.2), it is easy to see that the function has a maximum at
some rm. We denote the maximum by vD:

vD ¼ ωD−2rD−2
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrmÞj

p
: ð2:6Þ

For an AdS-scale black hole with μ ∼ 1, rm is also order
unity. For a high-temperature black hole μ ≫ 1, we find
rD−2
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijfðrmÞj
p ¼ μ=2 and thus (restoring lAdS)

vD ¼ 8πGNlAdS
D − 2

MðhighTÞ: ð2:7Þ

2. Finite time

In the Appendix to this paper we present formulas for the
volumes of symmetric ERBs connecting the boundaries at
finite time, and we show how to compute them using a
geodesic equation. Here we will give a simplified argument
that captures the main features. The basic idea, articulated
in a closely related setting by [1], is that if the ERB is long,
the maximum volume surface tends to hug the surface
defined by the infinite-time limit. In the case of the
unperturbed TFD state it stays close to the infinite-time
limit until τL is approximately equal to −tL and τR ≈ tR. It
follows that the regularized volume of the bridge for
jtL þ tRj ≫ β is given by

VðtL; tRÞ ¼ vDjtL þ tRj ðlarge tL þ tRÞ ð2:8Þ

Let us now perform a sanity check of the conjecture
(1.1). Using (2.7), and noting thatM ∝ ST, we find that the
complexity of a high-temperature TFD state increases as

CðtL; tRÞ ∝ STjtL þ tRj: ð2:9Þ

This is precisely the behavior one would expect based on a
quantum circuit model of complexity [8,18]: the rate of

FIG. 2 (color online). Maximum volume surface for
infinite tL;R.

2For the definition of vertical entanglement see [8,14].
3In Gauss-Bonnet, there is no global maximum, but for small

Gauss-Bonnet parameter, there is still a local maximum.
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computation measured in gates per unit time is proportional
to the product ST. The entropy appears because it repre-
sents the width of the circuit and the temperature is an
obvious choice for the local rate at which a particular qubit
interacts.
We note that V is a function of ðtL þ tRÞ as a

consequence of the symmetry generated by the difference
of Hamiltonians ðHR −HLÞ. Time reversal symmetry of
the TFD geometry implies that it should be an even
function. For early time, i.e., tL þ tR ≪ β, the volume is
quadratic in ðtL þ tRÞ. A useful formula to have in mind is
the length of geodesics in BTZ. These are not codimen-
sion-one surfaces, but the qualitative behavior of the
length is similar to the higher-dimensional volume, and
the exact formula can be worked out (here, for horizon
radius ¼ lAdS):

dðtL þ tRÞ ¼ 2 log

�
cosh

1

2
ðtL þ tRÞ

�
: ð2:10Þ

III. COMPUTATIONAL COMPLEXITY

A. Properties of complexity

Although it is not essential, we will assume that the black
hole can be modeled as a collection of 2K qubits. The
Hilbert space of the two-sided system is HL ×HR with
each factor having dimension 2K . We take K ¼ S.
Any unitary operator V in the 2K dimensional Hilbert

space of the left-side black hole has a computational
complexity CV, which was defined4 to be the number of
two-qubit gates in the smallest quantum circuit that
approximately generates V [8,14,20]. For example the unit
operator has zero complexity. Simple products of all the
qubits have complexity of orderK. Operators of complexity
C ¼ K logK can scramble an initial product state.
Quantum complexity can grow far beyond the scram-

bling complexity. However it is bounded by an exponential
of K. The maximum complexity satisfies

log Cmax ∼ K: ð3:1Þ

Generating an operator with exponential complexity
requires an exponential time. But in a technical sense,
exponential complexity is not rare. It can be shown [6] that
almost all unitary operators have complexity satisfying
(3.1). Nevertheless, our discussion will be restricted to
shorter time-scales during which the complexity is much
smaller than maximal.
If ULðtÞ and URðtÞ are the time evolution operators for

the two sides, their complexity will increase with jtj.
Typically, apart from a short transient at early time, the
complexity will grow linearly, the proportionality factor
being K or the entropy.

CðtÞ ¼ Kt: ð3:2Þ
We expect this behavior to continue until the complexity
reaches Cmax. Then it fluctuates around Cmax for an extremely
long, doubly exponential, quantum recurrence time.
So far, we have discussed the complexity of oper-

ators. We can also define the complexity of a quantum
state. To do that we need to define a fiducial state of
zero complexity. For the 2K qubit system, we can take it
to be the state

j0i≡ j00000000…00i:
The complexity of a general state jψi is defined as the
complexity of the least complex unitary operator which
will give jψi when applied to j0i.
The TFD state is close to being maximally entangled.

To an approximation that we will discuss later, it can be
identified with a product of Bell pairs in which each pair
is shared between the left and right systems. This is
illustrated in Fig. 3. It takes one gate to act on a pair of
qubits in the state j00i to turn it into a Bell pair. To
create K Bell pairs requires K gates. Therefore the
complexity of the TFD is K.
After an early-time transient period, the complexity of

the state

jΨðtL; tRÞi ¼ UðtLÞUðtRÞjTFDi ð3:3Þ
will grow like

FIG. 3 (color online). Qubit model for the TFD state. The TFD
consists of a product of Bell pairs shared between the left and
right sides.

4Patrick Hayden has pointed out that a better definition of
complexity may be the minimal depth of a quantum circuit, rather
than the minimum number of gates, needed to generate V. The
minimum depth would be identified with the complexity per
qubit. There are some cases where it is important to use circuit
depth rather than number of gates. An example is the complexity
needed to scramble. There are circuits with only K gates which
can scramble. However, despite the small number of gates the
depth of these circuits is logK. This subtlety is not important in
this paper.

A smoother but closely related notion of complexity was
defined by Nielsen and collaborators [19], based on geodesic
length in a Riemannian “complexity geometry.” We thank
Nathaniel Thomas for helpful explanations of complexity
geometry.
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CðtL; tRÞ ¼ KjtL þ tRj ð3:4Þ
until it becomes maximal. Identifying the temperature as
the conversion between time in the CFT and time in the
analog qubit system, we find that this agrees with the
complexity derived from the volume of the ERB in (2.9).
The numerical coefficient of proportionality is ambiguous
(and possiby dimension dependent), because complexity
itself is ambiguous up to a numerical factor. However, the
relative normalization of complexity and ERB volume can
be fixed once and for all by comparing (3.4) and (2.8). We
will use this below.

B. Complexity of a precursor

In this section, and in most of the rest of the paper, we
will restrict our attention to black holes with temperature of
order the AdS scale.
A precursor is a unitary operator of the form,

WðtÞ ¼ U†ðtÞWUðtÞ: ð3:5Þ
Although it has the form of a Heisenberg operator, we think
of it as an operator in the Schrödinger picture. As t grows,
either positively or negatively, the complexity of WðtÞ
grows. This requires some explanation. If W is the unit
operator then the complexity does not grow since theU and
U† cancel. In [8] it was explained that the chaotic nature of
the dynamics destroys the cancellation when an operatorW
is inserted even ifW itself is very simple; say a single qubit.
The reason of course is the butterfly effect. This was
illustrated in Fig. 1 in [8] which we reproduce as Fig. 4. The
insertion of W disrupts the time-reversed evolution
described by U† and quickly causes the trajectories to
diverge. For this reason it was argued that for t ≫ t� the
complexity of WðtÞ is just twice the complexity of UðtÞ. A
more refined guess would take into account the partial
cancellation that should take place until the butterfly effect
kicks in. As we will see the time-scale for the delay is the
scrambling time. Therefore a refinement of the estimate

would be that the complexity ofWðtÞ for t > t� is given (to
accuracy of order K) by

CWðtÞ ¼ 2Kðt − t�Þ: ð3:6Þ

We can illustrate the behavior in (3.6) in the Hayden-
Preskill circuit model [18]. The reader is referred to [14] for
the details of the model. Let us begin with a very simple
state of K qubits, namely

jψð0Þi ¼ j00000…i: ð3:7Þ
We focus on a particular qubit labeledWa. After n < log2K
parallel time steps the qubit Wa will have interacted, either
directly or indirectly, with 2n qubits. Let us call that subset
A. The remaining K − 2n qubits have had no contact with
Wa. The evolution operator is a product of gates. It factors
into an operator for the subset A and another factor for the
complement of A, which we call B.

jψðnÞi ¼ UBðnÞUAðnÞj00000…i: ð3:8Þ
The operators UA and UB are built out of nonoverlapping
sets of qubits and commute with each other.
Next, act with the qubit operator Wa. Then run the

system back with the operator U†
AU

†
B. The B operators

cancel and the result is

jψð2nÞi ¼ U†
AðnÞWaUAðnÞj00000…i: ð3:9Þ

This resulting state is a tensor product of A and B states.
The A factor is scrambled, but the B factor has all qubits
in the state 0. For example when n ¼ log2K − 3 at least
seven-eighths of the qubits are unaffected by the evolu-
tion. Obviously not much complexity has been generated
during this time. However as soon as n ¼ log2 K the entire
system becomes fairly scrambled. This happens rather
suddenly. Once that point has passed, the complexity
begins to grow linearly with time. Thus we see that the

FIG. 4 (color online). In the left panel the operation U†ðtÞIU is illustrated. The letters i and f represent initial and final states. The
backtracking trajectories illustrate the cancellation ofU andU†. In the right panel the unit insertion is replaced by the insertion ofW. The
backtracking of trajectories takes place for a limited time until the butterfly effect kicks in at the scrambling time.
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growth of complexity is delayed by 2 log2 K, i.e., twice the
scrambling time. This is the circuit analog of (3.6).

C. A note on tensor networks

Hartman and Maldacena [1] have proposed a tensor
network (TN) picture to illustrate the evolution of ERBs.5

Figure 5 shows the evolution of the Hartman-
Maldacena TN for the ERB in the case of a 1þ 1-
dimensional boundary theory (D ¼ 3). As time increases,
more layers along the τ direction are added to the TN.
Near the left and right boundaries the network shows the
familiar scale-invariant pattern associated with geometry
of AdS [21]. At the horizon the pattern changes to reflect
the τ-translation invariance of a long ERB. The wave
function of the boundary state, obtained by contracting all
the internal indices in the TN, evolves because the
network keeps growing. In many ways the evolution of
the network resembles the evolution of a quantum circuit,
the width of the circuit being the number of layers in the θ
direction and the depth being the number of layers in the τ
direction.
For a given boundary state the associated TN is not

unique (this is also true of quantum circuits). It is tempting
to identify the complexity of the boundary state with the
number of nodes of the smallest tensor network that can
generate the state.
There is an upper limit on the complexity of a state of a

system of K qubits, exponential in K. What happens when
the depth of the tensor network exceeds some exponential
length? The bounded nature of complexity implies that the
state generated by the TN can be constructed by a smaller
TN. In some sense there is an upper bound on the size of the
TN. This implies a breakdown in the classical geometric
description of an ERB when the time becomes exponential
in the entropy S.

IV. COMPLEXITY AND SHOCK WAVE
GEOMETRIES

In what follows we will test the conjecture C ∝ V by
considering evolutions more general than those generated
by HL and HR. In particular we consider perturbed
geometries generated by applying thermal-scale operators
WLðtLÞ as discussed in [12,13]. In the qubit model the
W-operators may be thought of as one-qubit traceless Pauli
operators with complexity of order unity.
Let t1; t2; t3;…; tn be a series of left-side times, typically

not in time order. We consider the state

jΨðtL; tRÞi ¼ URðtRÞULðtLÞWLðtnÞ
×WLðtn−1Þ…WLðt1ÞjTFDi: ð4:1Þ

Using the fact that HL −HR annihilates jTFDi, we can
rewrite this using L operators only, as

jΨðtL; tRÞi ¼ ULðtLÞWLðtnÞWLðtn−1Þ…WLðt1Þ
×U†

Lð−tRÞjTFDi: ð4:2Þ
Since the operators are generally out of time order, the
evolution can be represented by a time fold [22,23] as
shown in Fig. 6. Note that there are two kinds of
insertions illustrated in Fig. 6. Some insertions—the
ones at t1; t2; t3; t4 and t6—occur at fold points or switch-
backs. Others like the one at t5 are “through going.”
This time-fold diagram represents a recipe for making

the state jΨðtL; tRÞi: beginning with the TFD, evolve
forwards and backwards with the Hamiltonian, inserting
local operators at the locations of the red dots. This recipe
gives us an upper bound on the complexity of the state
jΨðtL; tRÞi, namely the total folded time interval tf:

CðΨÞ
K

≤ tf ≡ jt1 þ tRj þ jt2 − t1j þ jt3 − t2j þ � � �
þ jtL − tnj: ð4:3Þ

How tight do we expect this bound to be? If the time tf is
less than exponential in the entropy, we expect the bound to

FIG. 5 (color online). Evolution of the ERB tensor network. The red curves depict the RT surface for computing vertical entanglement.
The tensor network fills the volume of the ERB.

5The Hartman-Maldacena tensor networks cannot resolve
distances on scales smaller than lads. The tensors do not act in
a space of a single qubit but rather on the entire Hilbert space of
anN × N matrix theory. The TN picture makes the most sense for
black holes of radius R ≫ lads.
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be tight, except for the partial cancellations described in
Sec. III B. These cancellations occur at each switchback.
We therefore have

CðΨÞ
K

¼ tf − 2nsbt�; ð4:4Þ

where nsb is the number of switchbacks, and we have
assumed that jti − ti−1j > t�.
In the next section, we will use this formula to check the

conjecture of [8,14,20]. This conjecture, with our refine-
ment, states that the complexity is proportional to the
volume of the ERB. References [12,13] showed how to
construct geometries dual to perturbed TFD states (4.2), so
checking C ∝ V amounts to a concrete maximal surface
problem in these geometries. Before we begin this calcu-
lation, we will emphasize three points:

(i) We can normalize the relationship between com-
plexity and volume using the pure TFD state as
discussed in Sec. III A. This allows us to check the
agreement for states of the form (4.2) including the
coefficient of proportionality.

(ii) We are restricting our attention to black holes with
temperature of order the AdS scale. For such black
holes, thermal scale perturbations are approximately
as large as the entire system. This partially justifies
our use of spherically symmetric shock wave geom-
etries. It is simple to generalize (4.4) for localized
perturbations of a large spatially extended system.
However, the corresponding maximal surface prob-
lem becomes significantly harder, and will be left to
future work [24].

(iii) We will verify the relationship C ∝ V for large
jti − ti−1j, ignoring corrections that are Oð1Þ in
the time differences, i.e. OðKÞ in terms of the total
complexity. Wewill, however, retain terms involving
t�, which are ∼K logK.

A. Finding the maximal surface

It is convenient to write the metric (2.1) in Kruskal
coordinates,

ds2 ¼ −
4fðrÞ
f0ðRÞ2 e

−f0ðRÞr�ðrÞdudvþ r2dΩ2
D−2 ð4:5Þ

uv ¼ −ef0ðRÞr�ðrÞu=v ¼ −e−f0ðRÞt; ð4:6Þ

where R is the horizon radius and dr� ¼ f−1dr is a
tortoise coordinate. Adding a thermal-scale perturbation
far in the past on the left leads to a null shock wave
along the u ¼ 0 horizon [12]. Adding a perturbation far
in the future leads to a shock along v ¼ 0. A sequence
of perturbations as in (4.2) leads to a geometry with a
long wormhole crossed by intersecting null shocks.
These geometries were worked out in [13]. A folded
time axis with n folds leads to a geometry with n
alternating shocks. A sample Kruskal diagram is shown
in Fig. 7.6

This geometry is obtained by pasting together portions of
the eternal AdS black hole metric across the horizons u ¼ 0
or v ¼ 0 with null shifts in the v or u directions of
magnitude

αi ¼ 2 exp

�
−
2π

β
ðt� � tiÞ

�
: ð4:7Þ

Here, the sign depends on whether the shock is left
moving or right moving. We will take this as the precise
definition of t�, but we note that it leads to t�≈
β
2π logN

2.
A maximal-volume surface connecting tL and tR is also

drawn in Fig. 7. It is formed from nþ 1 pieces of maximal
surface in the unperturbed geometry, connected at the n
locations where the surface crosses a shock. To each
intersection point, we assign two different Kruskal coor-
dinates. One is the location in the Kruskal system to the
right of the shock, and the other is the location in the
Kruskal system to the left. These are related by null shifts of
magnitude αi.
Let us begin by considering a folded time axis with only

switchback insertions, i.e. no through-going insertions. To
keep the notation simple, we will also focus on a specific
case with an odd number n of total insertions, with t1 <
−tR and tn < tL. This is the case drawn in Fig. 7. For odd i
we have the “þ” sign in the definition of α, and for even i
we have the “−” sign. The combined volume of the nþ 1
segments is

FIG. 6 (color online). Time fold with six insertions. The
insertions at t1; t2; t3; t4 and t6 occur at switchback points. The
insertion at t5 does not.

6Notice that we are sending in all shocks along either u ¼ 0 or
v ¼ 0. In reality, they will be at finite u; v, but if the relative boost
between adjacent shocks is large, we can take them to be along
the horizon.
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V ¼ VðtR; v1Þ þ Vðv1 þ α; u2Þ þ � � �
þ Vðun−1 − αn−1; vnÞ þ VðtL; vn þ αnÞ: ð4:8Þ

Using the formulas of the Appendix, and assuming all
volumes are large (i.e. jtiþ1 − tij > t�), we find

2πV
βvD

¼ logð−v1e−2πtR=βÞ þ log½u2ðv1 þ α1Þ� þ � � � ð4:9Þ

þ log½vnðun−1 − αn−1Þ�
þ log½ðvn þ αnÞe2πtL=β� þOð1Þ: ð4:10Þ

Here and below,Oð1Þ represents a contribution that isOð1Þ
in terms of the various time variables. To ensure that the
piecewise-maximal surface is actually maximal, we
extremize this formula over the intersection points. This
leads to vi ¼ −αi=2 for odd i and ui ¼ αi=2 for even i.
Plugging in the definition of αi, we find

V ¼ vDð−tR − 2t1 þ 2t2 − � � � þ −2tn þ tL − 2nt�Þ
þOð1Þ: ð4:11Þ

For the configuration of times specified above, this is
simply

V ¼ vDðtf − 2nt�Þ þOð1Þ ð4:12Þ

in precise agreement with the conjecture (1.1) and the
formula (4.4). Different configurations of the times ftig
lead to different � assignments for αi. The formula (4.11)
changes, but (4.12) remains valid.
What is the effect of through-going insertions? We have

seen that the shocks associated to switchback insertions
already lead to an ERB volume that agrees with the

complexity. In order for C ∝ V to be correct, through-going
insertions must not significantly change the volume of
the ERB.
In fact, this is the case. The shock sourced by a through-

going insertion will run parallel to the shock associated with
one of the adjacent switchback points; its only effect will be
to slightly increase the strength of this adjacent shock. Let
us illustrate this in the simplest case, with two shocks at
times t1; t2, as in Fig. (8). Suppose that we want to compute
the volume of the bridge at tL ¼ tR ¼ 0, and the times
satisfy t1 < t2 < 0. In the region that the maximal-volume
surface crosses the shocks, and in the boost frame appro-
priate to that surface, the shocks are very close together and
running parallel. Parallel shocks superpose, so we can
simply add the metrics together, obtaining a single effective
shock with null shift α1 þ α2. The volume is therefore
proportional to logðα1 þ α2Þ ¼ log α1 þOð1Þ. The effect
of the through-going insertion is therefore to increase the
complexity by a small amount, at most of order K.

B. A maximal entanglement reflection principle

There are features of the behavior of VðtL; tRÞ which
surprised us when we first discovered them. They also
happen to be features of the geodesic distance dðtL; tRÞ for
BTZ black holes. In the case of geodesic distance we can
write down a simple analytic formula for dðtL; tRÞ in shock
wave geometries. We will illustrate the points for the case
of a single shock wave created at (negative) time t1.

dðtL; tRÞ ¼ 1þ 2 log

�
cosh

tL þ tR
2

þ qeð2jt1jþtL−tRÞ=2
�
:

ð4:13Þ

The first point is seen by setting tL ¼ tR. We note that the
result is an even function of tL þ tR, i.e.,

FIG. 7 (color online). Kruskal diagram for an ERB dual to the TFD state perturbed by out-of-time-order operators at the left boundary.
The blue curve represents the maximal-volume surface crossing the ERB. Each point of intersection with a shock has two sets of ðu; vÞ
coordinates: one in the patch to the left, and one in the patch to the right. These are related by null shifts determined by the strength of
each shock.
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dðtL þ tRÞ ¼ dð−tL − tRÞ: ð4:14Þ

The second surprising feature can be seen by fixing tL, say
at tL ¼ 0, and noting that dð0; tRÞ decreases with tR for a
fairly long period of time. The same two features are also
found in the volume function VðtL; tRÞ.
This first feature is surprising because the insertion

of the shock wave at t1 explicitly breaks the time-reversal
symmetry. It is not obvious why the complexity should be
an even function of ðtL þ tRÞ. The second feature is even
more surprising when we interpret V as complexity; why
should the complexity decrease as a function of tR?
Neither of these features are accidental. They are

related to properties of the TFD state. The maximally
entangled model for the TFD is a product of K Bell pairs.
Such a state has the property that acting with any unitary
operator on the left side is equivalent to acting with a
reflected operator on the right side. Thus, if the TFD
were maximally entangled, acting with WL on the left at
t ¼ 0 would be equivalent to acting with the correspond-
ing WR on the right side at t ¼ 0:

WLðt ¼ 0ÞjTFDi ¼ WRðt ¼ 0ÞjTFDi: ð4:15Þ

If we use the symmetry of jTFDi under transformations
generated by HR −HL we can generalize this to

WLðt1ÞjTFDi ¼ WRð−t1ÞjTFDi: ð4:16Þ

This reflection principle is illustrated in Fig. 9.
The TFD state is not exactly maximally entangled, but

for shock wave geometries generated by very low-mass
perturbations with very large time separations between, it
seems that maximal entanglement is a good approximation.
From the bulk geometry, this is clear: in Fig. 9, if we focus
on the geometry near the t ¼ 0 slice, very early shocks sent
in from the left are almost indistinguishable from very late
shocks sent in from the right.
Note that the formula (4.16) can be used to move

operators from L to R, or vice versa, in multishock
states. This means that all multishock states can be
represented, in the approximation described above, in

terms of perturbations purely on the left. This is why we
have focused on such perturbations throughout the paper.
Let us consider the two surprising features described

above, in light of the reflection principle. First, take the
state

URðtÞULðtÞWLðt1ÞjTFDi ð4:17Þ

corresponding to tL ¼ tR ¼ t. Using (4.16), we write

URðtÞULðtÞWLðt1ÞjTFDi ¼ URðtÞULðtÞWRð−t1ÞjTFDi:
ð4:18Þ

By time reversal and left-right interchange this is equal to

URð−tÞULð−tÞWLðt1ÞjTFDi: ð4:19Þ

Thus comparing (4.17) and (4.19) it would follow that V is
a symmetric function of t even though the time-reversal
symmetry is broken by the insertion of Wðt1Þ.
Now let us consider the second feature: the decrease

of complexity with increasing tR for a certain period of
time. According to (4.16) the state URðtRÞWLðt1ÞjTFDi
satisfies

URðtRÞWLðt1ÞjTFDi ¼ URðtRÞWRð−t1ÞjTFDi: ð4:20Þ

A left-right flip and a time reversal relates this state to

URðtRÞWRð−t1ÞjTFDi → ULð−tRÞWLðt1ÞjTFDi: ð4:21Þ

The decrease of complexity with tR in the state
UðtRÞWLðt1ÞjTFDi is thus mapped to an increase of
complexity with tL in the flipped state. This increase with
tL, following the action of WLðt1Þ, is the expected
behavior.7

FIG. 8 (color online). Folded time axis and geometry for two
shocks with t1 < t2 < tL. The t2 insertion is through going, and
the associated shock runs right beside the stronger t1 shock.

FIG. 9. For a maximally entangled state there is an equivalence
between acting with unitary operators on the left and right. The
two shock wave geometries shown in the figure would be
equivalent.

7Note that the decrease with tR only lasts until tR ¼ jt1j − 2t�.
One can see an example of this in (4.13). At tR ¼ jt1j − 2t� there
is a crossover between the two terms and d begins to increase
with tR. This is also the expected behavior from the reflection
principle.
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V. CONCLUSION

Quantum computational complexity—thought of as a
property of the state of a system—is an extremely subtle
quantity; given a state, there are very few tools to compute
its complexity. All the ordinary quantities that we are
familiar with stop evolving by the scrambling time when
the system reaches local equilibrium. Nevertheless the
computational complexity of a state is well defined and
continues to increase long after ordinary equilibrium is
reached. It only saturates at the classical recurrence
time ∼eS.
For ordinary purposes computational complexity is far

too subtle to be relevant for any real experiment on a
chaotic system. However it appears to play a fundamental
role in encoding properties of the interiors of black holes.
More generally it may be important for describing phe-
nomena behind any event horizon, including cosmic
horizons.
The assumption that ERB volume, VðtL; tRÞ, is deter-

mined by the complexity of the dual CFT state, together
with some assumptions about the growth of complexity
with time leads to a detailed conjecture for how VðtL; tRÞ
behaves in spherically symmetric shock wave geometries.
This conjecture was checked for all such geometries in all
dimensions.
One might wonder whether the equivalence between

folded time and ERB volume is simply a geometric fact
having nothing to do with chaos and complexity. The
smoking gun implicating these properties is the partial
cancellation occurring at switchback points. Quantum
circuits allow us to see that the complexity of a precursor
WðtÞ is overestimated by the sum of the complexities of the
evolution operators in (3.5). The Hayden Preskill circuit
model [18] gives a precise value for the overestimate (3.6).
The value agrees with our guess in (3.6), and more
importantly, it agrees with the calculation of ERB volumes
in shock wave geometries.
The occurrence of the scrambling time in the formula

is a clear indication that the effect is connected with
chaos and complexity. The fact that the same cancellation
occurs—in just the right way—for the length of ERBs is
quite remarkable.
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APPENDIX: MAXIMAL VOLUME SURFACES IN
THE ETERNAL BLACK HOLE

In this Appendix, we will present formulas for the
volumes of maximal surfaces in the unperturbed AdS
black hole. The analysis in the main text required the
lengths of three types of surfaces, shown in Fig. 10.
The volumes of the surfaces shown in the left and center

panel are divergent, because of the infinite volume near the
boundary of AdS. As usual, we define regularized volumes
by subtracting an infinite but state-independent constant.
The results, when the regularized volumes are large, are

VðtL; tRÞ ¼ vDjtL þ tRj þOð1Þ ðA1Þ

Vðtl; vRÞ ¼
β

2π
vD logðvRe2πtL=βÞ þOð1Þ ðA2Þ

VðuL; vRÞ ¼
β

2π
vD logðuLvRÞ þOð1Þ; ðA3Þ

where Oð1Þ represents a contribution which does not
increase as the volume becomes large. The quantity vD
was defined in (2.6). We will illustrate in detail the
derivation of the third equation. Very similar computations
(for codimension-two surfaces) have been carried out
by [1,2,25].
Codimension-one surfaces with ðD − 2Þ-sphere sym-

metry are simply geodesics in the metric ds2 ¼
−r2ðD−2ÞfðrÞdt2 þ r2ðD−2Þf−1ðrÞdr2. Such curves are
described by rðλÞ; tðλÞ, where λ is a length parameter.
Derivatives with respect to λ will be represented by dots.
The conserved quantity corresponding to time-translation

FIG. 10 (color online). The dark blue curves are the maximal surfaces defining VðtL; tRÞ, VðtL; vRÞ, and VðuL; vRÞ. The pale blue
curve is the limiting infinite-time maximal surface.
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invariance is E ¼ r2ðD−2ÞfðrÞ_t, and the parametrization
constraint is r2ðD−2Þ _r2 ¼ fðrÞ þ E2r−2ðD−2Þ.
In order to demonstrate (A3), we consider a maximal

surface connecting ðuL; 0Þ to ð0; vRÞ. We will use the boost
symmetry to set uL ¼ vR. The surface connecting the
points is characterized by an energy E. The volume is

VðEÞ¼2

Z
rh

rturnðEÞ

dr
_r
¼2

Z
rh

rturnðEÞ

r2ðD−2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þr2ðD−2ÞfðrÞ

q ; ðA4Þ

where rturn is the turning point at which the denominator
vanishes, and rh is the horizon radius.
To find the volume as a function of uL ¼ vR, we will

compute uLðEÞ and compare to VðEÞ. Denoting the order-
one value of u ¼ v at r ¼ rturn as uturn, we use the definition
of the Kruskal coordinates (4.6) to obtain

loguLðEÞ ¼ log uturnðEÞ

þ f0ðrhÞ
2

Z
rh

rturnðEÞ
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ r2ðD−2ÞfðrÞ

q
− E

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ r2ðD−2ÞfðrÞ

q :

ðA5Þ

The integrands in (A4)–(A5) are both regular near the upper
limit of integration. However, as we increase E, the turning
point approaches rm, where fðrÞr2ðD−2Þ has an extremum.
Near this point, both integrals develop logarithmic diver-
gences, representing a long surface running close to
r ¼ rm. Since rm is finite and positive, it is clear that
the divergences of the two integrals are proportional to each
other. Working out this coefficient of proportionality,
recalling β ¼ 4π=f0ðrhÞ and our choice of boost frame
uL ¼ vR, one finds (A3).
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