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We derive the Euclidean time formulation for the equilibrium canonical ensemble of the type IIA and
type IIB superstrings, and the spinð32Þ=Z2 heterotic string. We compactify on R8 × T2, and twist by the
Neveu-Schwarz sector antisymmetric 2-form B-field potential, spontaneously breaking supersymmetry at
low temperatures, while preserving the tachyon-free low-energy gravitational field theory limit. We verify
that the super partners of the massless dilaton-graviton multiplet obtain a mass which is linear in the
temperature. In addition, we show that the free energy for the superstring canonical ensemble at weak
coupling is always strongly convergent in the ultraviolet, high-temperature, regime dominated by the
highest mass level number states. We derive the precise form of the exponential suppression as a linear
power of the mass level, which erases the exponential Hagedorn growth of the degeneracies as the square
root of mass level number. Finally, we close a gap in previous research giving an unambiguous derivation
of the normalization of the one-loop vacuum energy density of the spinð32Þ=Z2 perturbative heterotic string
theory. Invoking the O(32) type IB-heterotic strong-weak duality, we match the normalization of the one
loop vacuum energy densities of the T-dual O(32) type IA open and closed string with that of the
spinð32Þ=Z2 heterotic string on R9 × S1, for values of the compactification radius, R½Oð32Þ�, RIB ≫ α01=2,
with RIA < α01=2. We show that the type IA thermal solitonic winding spectrum is a simple model for finite
temperature pure QCD, transitioning above the critical duality phase transformation temperature to the
deconfined ensemble of thermally excited IB gluons.
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I. INTRODUCTION

In this paper we will examine the consequences of
T-duality transformations on the Euclidean time coordinate
X0. It is clear that a Wick rotation on the Minkowskian
time coordinate maps the noncompact SOð9; 1Þ Lorentz
invariant background of a given supersymmetric string
theory to the corresponding SOð10Þ invariant background,
with an embedding time coordinate of Euclidean signature.
The Euclidean metric SOð10Þ invariant background
arises naturally in any formulation of equilibrium string
statistical mechanics in the canonical ensemble, the ensem-
ble characterized by fixed temperature and fixed spatial
volume ðβ; VÞ.
The Polyakov path integral [1] over connected world

surfaces can be formulated precisely in a target spacetime
of fixed spacetime volume, giving the one-loop string
vacuum functional, W, in the SOð10Þ invariant back-
ground. An explicit, first principles, derivation [2] of the
Diff × Weyl invariant sum over connected one-loop
string vacuum graphs in the Euclidean target spacetime,
providing an expression for the one-loop Helmholtz
free energy of the bosonic string canonical ensemble,

Fðβ; VÞ≡ −W=βV, was derived by J. Polchinski in
1986 [2]. Partial results, and conjecture, for the behavior
of the superstring canonical and microcanonical ensembles
appear in the pioneering paper by J. Atick and E. Witten
in 1989 [3]. The challenges in consistent formalism, and
the significant physical implications of string statistical
mechanics are discussed at length in [3].1 R. Brandenburger
and C. Vafa [5] soon after conjectured a framework for
the superstring microcanonical ensemble, pointing to its
fascinating consequences for the future of superstring
cosmology. There is an extensive literature with various
conjectures and partial results on superstring statistical
mechanics, and it is beyond the scope of this paper to
provide an adequate review [6].
This paper fills in some of the gaps in the derivation of

the superstring canonical ensemble’s one-loop vacuum
energy density at finite temperature in the previous papers
[2,3], bringing to completion the derivations we sketched
in [7,8]. Our emphasis is on a derivation of the superstring
one-loop free energy that preserves the world-sheet
sWeyl × sDiff gauge symmetries. In addition, we verify
consistency of the low-energy field theory limit of the
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1There are some typos in both [2] and [3,4] in the expressions
for the string free energy, but they do not take away from the
pioneering elegance of these early papers.
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superstring free energy with the known properties of the
canonical ensemble of finite temperature supergravity and
super Yang-Mills gauge theory [4]. Namely, we verify
the T10 growth of the free energy, and the spontaneous
breaking of target space supersymmetry with a mass to
the super partners of the massless fields that is linear in
the temperature, and without the appearance of thermal
tachyonic modes. Thus, our result is a derivation of
the free energy of the equilibrium superstring canonical
ensemble.
The appearance of a tachyonicmode in the string thermal

spectrum would be an indication that the world-sheet
conformal field theory is no longer at a fixed point of
the two-dimensional renormalization group: the tachyon
indicates a relevant flow, and the appearance of thermal
tachyons have plagued all previous attempts to describe an
equilibrium string canonical ensemble, including [2,3]. An
equilibrium statistical mechanics of strings requires that
any fixed point belong to a fixed line parametrized by
inverse temperature β [9]. Target spacetime supersymmetry,
and its spontaneous breaking at low temperature along the
line of fixed points parametrized by β, introduces new
features into the derivation, requiring consistency with both
world-sheet and target spacetime gauge symmetries.
Remarkably, we will find as a direct consequence of the
extended target space T-duality transformations, combined
with the weak-strong coupling heterotic-type IB-type IA
string dualities, that a physically sensible equilibrium string
statistical mechanics in the canonical ensemble exists for
all of the six superstring ensembles. The mathematical
derivations and results we present in this paper are no
longer in complete clash with physics intuition, even if
avenues for further research remain.
The Euclidean time formulation for the equilibrium

string canonical ensemble occupying a fixed spatial vol-
ume, V, describes the ensemble of first quantized single
string mass eigenstates in equilibrium with a heat bath at a
fixed temperature T. In the absence of a tachyon, or
massless tadpoles, the vacuum energy density varies along
the line of fixed point conformal field theories of the world-
sheet renormalization group; the integrable coupling along
this fixed line is simply the inverse temperature β. More
precisely, since every ten-dimensional perturbative string
theory has at least one flat direction of the superpotential,
parametrized by the dilaton, in addition to possible con-
formally coupled Yang-Mills, and supergravity p-form
background gauge potentials, the fixed point belongs in
a multidimensional phase space of the world-sheet RG
parametrized by any additional target spacetime moduli.
Infrared stability of the canonical ensemble of single string
mass eigenstates requires the absence of low-temperature
tachyonic and massless tadpole modes.
In Sec. II, we note that there is a unique modular

invariant expression for the finite temperature one-loop
orientable closed type IIA and type IIB string vacuum

amplitudes, which both spontaneously breaks target
space supersymmetry without the appearance of thermal
tachyons. The generic constant background field available
in every string theory is the Neveu-Schwarz sector
antisymmetric tensor potential which couples to the
fundamental closed string [10,11], and in the absence
of D-branes and Ramond-Ramond fields, it is the only
available background gauge field, coupling to the
fundamental F string. Hence, we turn on a constant
Neveu-Schwarz antisymmetric 2-form potential, jB09j≡
tanh πα≃ πβC=β, for small α, that is linear in the temper-
ature for small T, asymptoting to unity at temperatures
approaching the string scale. Here, βC refers to the thermal
duality transformation scale, given by the string scale.
This step enables the spontaneous breaking of target
spacetime supersymmetry, without the presence of a
tachyonic mode in the string mass spectrum, and gives
a unique result for the one-loop vacuum energy density
that both meets all of the two-dimensional gauge
symmetries of the type IIA and type IIB superstring
theories, in addition to the target spacetime dualities
for compactification on a torus, T2 × R8, twisting by the
given B09-field.
To understand why it is natural to consider a

temperature-dependent background for the NS 2-form
gauge potential, recall that finite temperature non-
Abelian gauge theory is formulated in Axial gauge,
where we set the Euclidean time component of the vector
potential to zero, A0 ¼ 0, and this gauge choice provides
precisely the correct number of propagating modes in
finite temperature gauge theory, as was discovered in the
early papers [12], while preserving a (D − 1)-dimensional
gauge invariance for D-dimensional finite temperature
Yang Mills gauge theory. The constant background
for the 2-form gauge potential in string theories is the
analog of such an axial gauge choice; even in Yang-Mills
gauge theory, one could alternatively set A0 equal to a
constant, instead of zero, and the consequence would
be to alter the thermal background in which we quantize
finite temperature gauge theory, retaining the same
number of physical, transverse, propagating modes.
Our temperature-dependent constant B-field background
achieves the same physics for finite temperature string
theory: the number of propagating modes in the anti-
symmetric 2-form tensor gauge potential are truncated to
the requisite physical degrees of freedom in a quantum
finite temperature string theory in D target spacetime
dimensions, and the remnant tensor gauge invariance is
(D − 2) dimensional.
Given our result for the one-loop superstring vacuum

energy density, we isolate, in turn, the high-temperature
asymptotic behavior at temperatures far above the string
scale in Sec. III, and the low-energy supergravity field
theoretic limit of finite temperature field theory in Sec. IV.
In particular, we verify the T10 growth of the field theoretic
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free energy at temperatures much lower than the string
scale. And conversely, we establish the absence of a
Hagedorn phase transition in the perturbative type II
superstring theories, confirming the strong UV conver-
gence of the one-loop vacuum energy density for either
type II superstring canonical ensemble. The corresponding
analysis for the closed bosonic string is presented in the
Appendix, and forms a useful paradigm for the low- and
high-temperature analysis of the type II superstrings in the
main text.
Sec. V is devoted to an analysis of the spinð32Þ=Z2

heterotic string compactified on a twisted torus, T2 × R8,
where the coordinates of the torus are Euclidean time
and space, ðX0; X9Þ, and with a temperature-dependent
B-field background, a constant antisymmetric tensor
potential B09. We should clarify that it is natural—and
physical, when considering string thermodynamics to
allow thermal backgrounds for all of the available gauge
potentials that couple to the strings: the NS 2-form gauge
potential that couples to the fundamental closed string is
the most universal of the background gauge fields,
common to all of the superstring theories. In addition,
we include the usual variety of Wilson line backgrounds
for the vector potential, namely, the Yang-Mills gauge
potential, and this plays the role first outlined at some
length in [13,14], enabling an approach in the moduli
space to distinct enhanced symmetry points with different
anomaly-free non-Abelian gauge group. In Secs. VA and
V B, we examine the high- and low-temperature regimes
of the one-loop vacuum energy density, respectively,
demonstrating that the free energy of the spinð32Þ=Z2

heterotic string theory is finite at the string scale, namely,
at what used to be known as the Hagedorn temperature,
and thermal duality enables a straightforward procedure
to examine the behavior of the ensemble at temperatures
above the string scale. The expression for the one-loop
vacuum energy density is also strongly convergent in the
ultraviolet.
In Sec. VI, we analyze the type IB open and closed

unoriented superstring theory compactified on the
twisted torus, and focus on the one-loop oriented string
graph, which yields the low-energy finite temperature
Yang Mills gauge theory limit [4,15], when we set the
mass level number to zero, and work in the large radius
(low-temperature) limit. This ensemble matches with
beautiful accuracy the behavior of a thermal gas of
gluons—and upon inclusion of the torus graph, would
describe the thermalized gluon-graviton ensemble. At
temperatures above the string scale, the dynamics of the
type IB string theory is accessible by a thermal duality
transformation to the type IA string at finite temper-
ature. We show that the finite temperature ground state
of this theory is characterized by a tower of thermal
winding strings, and appears to be a good match to the
confinement phase of non-Abelian gauge theories at low

type IA temperatures. Thus, it is plausible to characterize
the thermal duality phase transformation as a thermal
deconfinement phase transition in the non-Abelian
gauge theory. Finally, in Sec. VII, we fill in a remnant
gap in our analysis of heterotic string thermodynamics,
by deducing the unknown normalization of the one-loop
vacuum energy density of the spinð32Þ=Z2 heterotic
string. We obtain this long sought-after normalization
constant by invoking a matching calculation of the
weakly coupled low-energy O(32) type IA and heterotic
strings, at large radius for both the spinð32Þ=Z2 heterotic
string and the type IB superstring theories. Sec. VIII
provides the conclusions and observations and sugges-
tions for future work.

II. EQUILIBRIUM TYPE II SUPERSTRING
CANONICAL ENSEMBLE

In common with the heterotic string, and all closed
oriented strings, the ten-dimensional type IIA and
type IIB superstrings have a massless NS antisym-
metric tensor field, and we will denote this as Bmn.
Compactifying on a 2-torus, with compact coordinates
X0, X9, and with embedding metric, Gmn, and the
antisymmetric 2-form, Bmn, in generic Minkowskian
signature backgrounds, the Polyakov world-sheet action
takes the form [16]:

S ¼ 1

4πα0

Z
d2ξ

ffiffiffi
g

p ½gabGmn∂aXm∂bXn

þ iϵabBmn∂aXm∂bXn�; ð2:1Þ

In the absence of a 2-form background, since the Jacobi
theta function Θ11ð0; τÞ vanishes identically due to the
zero mode in the (1,1) spin structure sector, the
expressions for the IIA and IIB one-loop vacuum energy
densities would be identical. In the presence of a
background Bmn NS 2-form potential, the vacuum
energy density of the type IIA and IIB superstrings
will differ. Upon compactification on the circle of
radius β=2π, the timelike zero mode spectrum is given
by [17,18]:

p0
L ¼ 2πn0

β
þ w9ðG09 þ B09Þβ

2πα0
;

p0
R ¼ 2πn0

β
−
w9ðG09 þ B90Þβ

2πα0
; ð2:2Þ

where ðn0; w0Þ are, respectively, the momentum and
windings about the compact Euclidean time coordinate
X0, shifted by the constant antisymmetric tensor NS 2-
form potential, and likewise for ðp9

L; p
9
RÞ. Complexifying

the pair of coordinates ðX0; X9Þ, and with G00 ¼ G99 ¼ 1,
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B00 ¼ B99 ¼ 0; B09 ¼ −B90 ¼ B, and B ¼ j tanhðπαÞj,
where α≡ ðβC=βÞ ¼ α01=2T is dimensionless, and the
contribution to the path integral from the ðn; wÞth sector
is therefore

exp

�
−πτ2

�
4π2α0n20

β2
þ α0n29

R2
9

þ w2
9ð1þ tanhðπαÞÞ2β2

4π2α0

þ w2
0ð1þ tanhðπαÞÞ2R2

9

α0

��

× exp ½−πτ2ðn0w9 þ n9w0Þ
× 4ð1þ tanhðπαÞÞ�: ð2:3Þ

Suppressing the oscillator contributions, the thermal
ground state energy in the NS-NS sector for physical
states satisfying the level matching constraint takes the
form

ðmassÞ2L ¼ ðmassÞ2R ¼ 4

α0

�
−
1

2
þ 1

2

�
4π2α0n20

β2
þ α0n29

R2
9

þ 1

α0
ð1þ tanhðπαÞÞ2

�
w2
9

β2

4π2
þ w2

0R
2
9

���

þ 4

α0

�
1

2
ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ

�
:

ð2:4Þ

Note that if we take the noncompact zero temperature
limit, R9 → ∞, and T → 0, the B field disappears from
the expression for the one-loop vacuum energy, and we
recover the supersymmetric ten-dimensional type IIA
(IIB) superstring.
Thermal duality transformations are a little more com-

plicated in the presence of a B field, and it is helpful to
review the type IIA-type IIB T-duality transformations,
also known as the simplest of the mirror maps for generic
Calabi-Yau manifolds [19]. The 2-torus is a complex
manifold, and in terms of the Euclidean signature Wick
rotated complex coordinates, and suppressing the fermionic
terms in the world-sheet action with world-sheet (2, 2)
supersymmetry, we have the marginal deformed world-
sheet action,

S ¼ 1

4πα0

Z
fgij̄ð∂xi∂̄xj̄ þ ∂xj∂̄xīÞ

− iBij̄ð∂xi∂̄xj̄ − ∂xj∂̄xīÞg; ð2:5Þ

and we can parametrize the marginal deformations by two
real numbers:

B ¼ 1

2
Bij̄dx

i ∧ dxj̄;

J ¼ 1

2
gij̄dx

i ∧ dxj̄: ð2:6Þ

As shown in [11,16], for generic ten-dimensional one-loop
scattering amplitudes, the B field does not appear directly
in correlation functions, but only in the normalization
of the string path integral through the e−S term in the
Polyakov path integral. Upon compactification on a suit-
able manifold, shifts in B appear in the mass level
expansions, resulting from twisted Jacobi theta functions,
and, in addition, in momentum and winding mode number
summations.
We note in passing an important relation between

the T dualities of the twisted two-torus, and the simplest
example of mirror symmetry in a Calabi-Yau manifold.
As elucidated at length in [19], note that shifts of B by an
integer, 2πn, leave the action invariant, and correlation
functions invariant due to an SLð2;ZÞ symmetry gen-
erated by σ ¼ 1

4πα0 ðBþ iJÞ. Thus, the moduli space of
marginal deformations of this theory are parametrized
by the group SLð2;ZÞ × SLð2;ZÞ, where the additional
SLð2;ZÞ describes the complex structure of the torus.
In the absence of B, we have a rectangular domain of
lengths R9, R0, and η ¼ i R9

R0
, σ ¼ i

α0 R9R0, dividing the
complex plane by translations 2πR9, 2πR0. Remarkably,
the R0 ↔ α0=R0 generates the Z2 mirror map for the
2-torus: the interchange of the SLð2;ZÞ’s; and the addi-
tional Z2 symmetry are generate by complex conjuga-
tion, namely, interchange of the two real coordinates,
plus a change in the sign of B: inversion in the upper
half-plane, ðσ; ηÞ ↔ ð−σ;−ηÞ. Together with the modular
group for complex structure, the two Z2 symmetries
generate the full target space modular group. Thus,
choosing R0 to be β=2π, and R9 the radius of the
compact coordinate X9, the thermal duality transforma-
tion that relates finite temperature type IIA and type IIB
strings is an Abelian subset of the mirror map for the
2-torus.
In order to understand the stringent constraints on

the expression for the one-loop string vacuum amplitude
in the finite temperature vacuum imposed by modular
invariance, recall that the type II string mass level expan-
sion results from a generic combination of the four,
holomorphic and anti–holomorphic, Jacobi theta func-
tions, weighted by, a priori, undetermined phases. Thus,
upon compactifying either type II superstring on R8 × T2,
and twisting by the antisymmetric 2-form potential,
jB09j≡ tanhðπαÞ, the general result for the one-loop
vacuum energy density, ρ≡ −W=V8ð2πR9βÞ, of the
canonical ensemble of the type II superstrings takes
the form
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ρII ¼ −ð4π2α0Þ−5
Z
F

d2τ
4τ22

· ðτ2Þ−3½ηðτÞη̄ðτ̄Þ�−6 ×
1

4

�
eπτ2α

2

ηðτÞ
Θ11ðα; τÞ

��
eπτ̄2α

2

η̄ðτ̄Þ
Θ̄11ðα; τ̄Þ

�

×

�
Θ00ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ00ð0; τÞ
ηðτÞ

�
3

−
Θ01ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ01ð0; τÞ
ηðτÞ

�
3

−
Θ10ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ10ð0; τÞ
ηðτÞ

�
3
�

×

�
Θ̄00ðα; τ̄Þ
eπτ2α

2

ηðτ̄Þ

�
Θ̄00ð0; τ̄Þ
η̄ðτ̄Þ

�
3

−
Θ̄01ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄01ð0; τ̄Þ
η̄ðτ̄Þ

�
3

−
Θ̄10ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄10ð0; τ̄Þ
η̄ðτ̄Þ

�
3
�

×
X∞

ni;wi¼−∞
exp

�
−πτ2

�
4π2α0n20

β2
þ α0n29

R2
9

þ w2
9ð1þ tanhðπαÞÞ2β2

4π2α0
þ w2

0ð1þ tanhðπαÞÞ2R2
9

α0

��

× exp ½−πτ2ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ�

� ð4π2α0Þ−5
Z
F

d2τ
4τ22

· ðτ2Þ−3½ηðτÞη̄ðτ̄Þ�−6 ×
1

4

�
eπτ2α

2

ηðτÞ
Θ11ðα; τÞ

��
eπτ̄2α

2

η̄ðτ̄Þ
Θ̄11ðα; τ̄Þ

�

×

�
Θ11ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ11ð0; τÞ
ηðτÞ

�
3
��

Θ̄11ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄11ð0; τ̄Þ
η̄ðτ̄Þ

�
3
�

×
X∞

ni;wi¼−∞
exp

�
−πτ2

�
4π2α0n20

β2
þ α0n29

R2
9

þ w2
9ð1þ tanhðπαÞÞ2β2

4π2α0
þ w2

0ð1þ tanhðπαÞÞ2R2
9

α0

��

× exp ½−πτ2ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ�: ð2:7Þ

where the choice of phase, ∓, for the (1, 1) spin structure
distinguishes the result for the type IIA and type IIB one-
loop finite temperature vacuum energy density.
We choose the twist in the argument of the Jacobi

theta functions: πα≡ πðβC=βÞ ¼ πα01=2T, vanishing as we
approach the zero temperature supersymmetric vacuum. In
addition, as T → TC, the characteristic of the Jacobi theta
functions approaches π, reversing the sign of Θ01 and Θ10,
and leaving Θ00 with the same sign. This implies that as
tanhðπαÞ runs from ½0; π�, the expression above interpolates
smoothly from the vanishing one-loop vacuum energy
density of the supersymmetric type IIA string at zero
temperature, and a combination of Jacobi theta functions
that superficially resembles that of the tachyonic and
nonsupersymmetric type 0A string’s vacuum energy den-
sity, except that the would-be thermal tachyon’s mass has
been shifted up to mass level zero, at πα ¼ π, and likewise
for the type IIB string. In addition, the spacetime fermions
at mass level zero in the type IIA superstring, acquire a
mass which is linear in the temperature, as a consequence
of the cross term for momentum and winding modes, which
is linear in the temperature-dependent B field. Finally,
in the high-temperature regime, note that the function
tanhðπαÞ → þ1 asymptotically, as β → βC, so that the
one-loop vacuum energy density depends on temperature
only through the explicit temperature dependence of the
winding mode summation, and the B-field background
is of primary significance in the low-temperature behavior
of the Jacobi theta functions below TC.
In addition, we find that modular invariance has simul-

taneously forced the unique combination of world-sheet

fermionic spin structures displayed in the expression above,
up to shifts of the twisting parameter α by an integer,
corresponding to an element of the SLð2;ZÞ target space
duality group [19]. A modular invariant expression for the
one-loop vacuum energy density at finite temperature was
absent in all previous analyses of the type II superstring
finite temperature vacuum energy density [3,8], and the
correct result for the type IIB one-loop vacuum energy
density at finite temperature was essential prior to the
analogous analysis for the type IB superstring. This is due
to the absence of a sharp world-sheet self-consistency
criterion such as one-loop modular invariance for open
string amplitudes. With the results derived in this section,
we shall also be able to invoke self-consistency between
the type IIB and type IB one loop amplitudes using the
orientifold projection to arrive at the expression for the one-
loop vacuum energy density of the type IB superstring [18].

III. HIGH T CONVERGENCE OF STRING
VACUUM ENERGY DENSITY

In order to perform the world-sheet modular integral, as
for the closed bosonic string theory analyzed in the
Appendix, we make a change of variable, y ¼ 1=τ2, and
calculate the result in the noncompactR9 → ∞ limit for both
the IIA and IIB strings, distinguished by the distinct mass
level degeneracy functions, namely, the fIIAðIIBÞm ðαÞ, in the
presence of the nonvanishing contribution of the Ramond-
Ramond sector, andwith the correctmeasure formoduliwith
ten noncompact target spacetime coordinates, and corre-
sponding world-sheet superconformal algebras [10],
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ρIIAðIIBÞ ¼ −ð4π2α0Þ−5
X∞
m¼0

fIIAðIIBÞm ðαÞ
X∞

n;w¼−∞

Z þ1=2

−1=2
dτ1

×
Z

1=
ffiffiffiffiffiffiffi
1−τ2

1

p

0

dyy9=2e−2πm=y

× e
−2π

�
4π2α0n2

0

β2
þ α0n2

9

R2
9

þ 1

α0ð1þ tanhðπαÞÞ2½w2
9
β2

4π2
þw2

0
R2
9�
�
1
y

× e−2πðn0w9þn9w0Þ4ð1þ tanhðπαÞÞ1y; ð3:1Þ
where jBj is the non-negative constant background field
in the Neveu-Schwarz 2-form potential, parametrized as
tanhðπαÞ, with domain (0, 1). Here, we have parametrized
α ¼ T=TC. At low temperatures, the fmðαÞ are B-field-
dependent degeneracy functions, unlike the integer degener-
acies at zero field: bIIAðIIBÞm , at mass level number m of
the IIA or IIB string mass level expansion. Each has a
polynomial dependence on the hyperbolic functions of α.
Namely, the functions, fmðαÞ, are implicit polynomial func-
tions of the B field, with argument given as follows:
fmðαÞ≡ fmð1þ tanhðπαÞÞ. In the high-temperature limit
—since the hyperbolic tangent asymptotes to unity, as T →
TC, the polynomials become pure numbers: fmðαÞ → fmð2Þ,
as at zero temperature, where fmð0Þ≡ bm, the zero temper-
ature degeneracy at stringmass levelm. The partition function
is therefore finite at temperatures approaching the string scale.
Recall that it is type IIA–type IIB thermal duality, or, R0 ↔
1=R0 duality, is one of the two Z2 maps that generate
the SLð2;ZÞ × SLð2;ZÞ target space duality group of the
torus [19], thereby also covering the temperature range
above TC by means of a thermal duality transformation
contained within the T-duality group of the torus ðX0; X9Þ.
The expression for the partition function given here is also
manifestly invariant under the other Z2 map, which inter-
changes R9 ↔ β=2π, while changing the sign of B09, which
leaves jBj ¼ tanhðπαÞ unchanged.
Our next step is to perform the modular integrals

explicitly, substituting the high-temperature UVasymptotic
expansion for the Whittaker functions that arise upon
integrating over the world- sheet modulus y ¼ 1=τ2, which

maps the domain of the integral to ½0; u�, where we have
parametrized u ¼ ð1 − τ21Þ−1=2. The integral over y can be
recognized as an integral representation2 of the Whittaker
function, W−13=4;9=4ðA=uÞ (GR 3.471.2) [20,21],Z

u

0

dyyν−1e−
A
y ¼ A

ν−1
2 u

νþ1
2 e−

A
2uW−νþ1

2
;ν
2
ðA=uÞ; ν ¼ 11=2:

ð3:2Þ
Notice that the argument of the exponential in the integrand
above is always large everywhere in the τ1 domain in the
high energy domainm ≫ 0 so that theWhittaker function is
an exact integral representation of themodular integral, valid
for the full range of values of the temperature, namely,
0 ≤ β ≤ ∞. By inspection, it is also evident that the integral
is bounded for all values of the target spacetime moduli,
namely, R9, β, and jBj, as ensured by SLð2;ZÞ duality of the
moduli space of the 2-torus [19]. Hence, prior to performing
the τ1 integration, we can substitute the asymptotic expan-
sion for the Whittaker function (GR 9.227) [20,21],

Wðλ;μÞðzÞ∼ e−z=2zλ
�
1þ

X∞
k¼1

1

k!
z−k

�
μ2 −

�
λ−

1

2

�
2
�

×

�
μ2 −

�
λ−

3

2

�
2
�
� � �

�
μ2 −

�
λ− kþ 1

2

�
2
��

; ð3:3Þ

where z ¼ A=u. We have also expanded u in the convergent
power series expansion valid for τ1 < 1. To proceed, we note
that since the hyperbolic tangent asymptotes to unity for large
temperatures of order, and above the string scale, the
degeneracy functions asymptote to their explicit values,

fðIIÞm ð1þ πÞ, and the mass level expansion is corrected by
numerical factors:

IðmÞ ¼ 1

4

X∞
w¼−∞

A−1
Z þ1=2

−1=2
dτ1ð1 − τ21Þ−11=8

× e−
1
2
Að1−τ2

1
Þ1=2W−13

4
;9
4
ðA½1 − τ21�1=2Þ: ð3:4Þ

The term-by-term integrals over τ1 can be evaluated by
substituting the asymptotic expansion for the Whittaker
function valid at large mass level number,

Iðm;wÞ≡ 1

4
A−1

�Z
2=

ffiffi
3

p

0

−
Z

1

0

�
duu

11
4
−3ð1 − 1=u2Þ−1=2e−1

2
A=uW−13

4
;9
4
ðA=uÞ

¼ 1

4
A−1

X∞
r¼0

X∞
k¼0

A−kð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ� × 1

k!
ð−1Þkþ1Ck

�Z
2=

ffiffi
3

p

0

−
Z

1

0

�
duu

3
4
−1−2rþke−A=u;

¼ 1

4
A−1

X∞
r¼0

X∞
k¼0

A−kð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ� × 1

k!
ð−1Þkþ1Ck

× ½Wð−7−4kþ8rÞ=8;ð3þ4k−8rÞ=8ð
ffiffiffi
3

p
A=2Þ −Wð−7−4kþ8rÞ=8;ð3þ4k−8rÞ=8ðAÞ�;

C0 ¼ −1; Ck ≡
��

13

4

�
2

−
�
9

4

�
2
���

17

4

�
2

−
�
9

4

�
2
�
� � �

��
9þ 4k

4

�
2

−
�
9

4

�
2
�
; ð3:5Þ

2As in the Appendix, in what follows, (GR #) denotes the corresponding equation number for a mathematical identity from the text [20].
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for all k ≥ 1. Iterating the substitution of the asymptotic expansion for large argument of theWhittaker functions, we find an
explicit exact result for the finite temperature vacuum energy density of the type II strings:

ρIIAðIIBÞ ¼ −ð4π2α0Þ−5 1
4

X∞
m¼0

fIIAðIIBÞm ð1þ πÞ
X∞
n¼−∞

X∞
w¼−∞

X∞
r¼0

1

r!
½ð−1=2Þð−3=2Þ � � � ð−rþ 1=2Þ�

×
X∞
k¼0

A−1−k 1

k!
ð−1ÞkCk

X∞
j¼0

1

j!
ð−1ÞjCðj;k;rÞ½ð

ffiffiffi
3

p
A=2Þð−7−4k−4jþ8rÞ=8e−

ffiffi
3

p
A=4 − ðAÞð−7−4k−4jþ8rÞ=8e−A=2�;

C0 ¼ −1; Ck ≡
��

13

4

�
2

−
�
9

4

�
2
���

17

4

�
2

−
�
9

4

�
2
�
� � �

��
9þ 4k

4

�
2

−
�
9

4

�
2
�
;

Cð0;0;0Þ ¼ −1; Cðj;k;rÞ ≡
��

11þ 4k − 8r
8

�
2

−
�
3þ 4k − 8r

8

�
2
���

19þ 4k − 8r
8

�
2

−
�
3þ 4k − 8r

8

�
2
�
� � �

×
��

3þ 4jþ 4k − 8r
8

�
2

−
�
3þ 4k − 8r

8

�
2
�
: ð3:6Þ

The result is Oðe−AÞ, providing the exponential suppression as a linear power of mass level number m. Thus, following an
analytic evaluation of the integrals over world-sheet moduli, ðτ1; τ2Þ, we find that the numerical correction, IðmÞ, to the
degeneracies, bm, in the mass level expansion, is an exponential suppression which is linear as a function of mass level
number m. The exponent A at arbitrary mass level m is given by

e−A ¼ exp

�
−2π

�
mþ

	
2πα0n20
β2

þ α0n29
2πR2

9

þ 1

2πα0
22
�
w2
9

β2

4π2
þ w2

0R
2
9

�
��
exp ½−2πðn0w9 þ n9w0Þ4ð2Þ�: ð3:7Þ

Thus, the Oðe−mÞ term arising from the modular integral erases the Oðe ffiffiffi
m

p Þ growth of the degeneracies, bðIIÞm at large mass
level number, m [6,22]. Notice that while the numerical factors in the exponent function differ from the low-temperature
form, this expression—and consequently, the partition function—are still manifestly invariant under both of the Z2 maps
that generate the target space duality group of the torus.
As a consequence, the convergence of the type II string vacuum energy density in the ultraviolet regime, namely, at high

mass level numbers, is extremely rapid, and for all values of the target spacetime moduli: ðR9; βÞ, an exponential
suppression with increasing m:

ρIIAðIIBÞ ¼ −ð4π2α0Þ−5 1
4

X∞
m¼0

X∞
n¼−∞

X∞
w¼−∞

fIIAðIIBÞm ð1þ πÞ
X∞
r¼0

1

r!
½ð−1=2Þð−3=2Þ � � � ð−rþ 1=2Þ�

×
X∞
k¼0

A−ð15þ12kÞ=8 1

k!
ð−1ÞkCk

X∞
j¼0

1

j!
ð−1ÞjCðj;k;rÞ½ð

ffiffiffi
3

p
=2Þð−7−4k−4jþ8rÞ=8e−

ffiffi
3

p
A=4 − e−A=2�Ar−j=2: ð3:8Þ

It is instructive to examine the exponent A for the leading
target spacetime moduli-dependent corrections in the non-
compact limit R9 → ∞, and at temperatures well above the
string scale. In this limit the spatial momentum and spatial
winding mode numbers dominate the summations in the
vacuum energy density,

ρIIAðIIBÞ ≃ −ð4π2α0Þ−5 1
4

X∞
m¼0

X∞
n9¼−∞

X∞
w9¼−∞

fIIAðIIBÞm ð1þ πÞ

×
X∞
r¼0

1

r!
½ð−1=2Þð−3=2Þ � � � ð−rþ 1=2Þ�Ar

×
X∞
k¼0

A−ð15þ12kÞ=8 1

k!
Ck

X∞
j¼0

1

j!
ð−1ÞjþkCðj;k;rÞ

× ½ð
ffiffiffi
3

p
=2Þð−7−4k−4jþ8rÞ=8e−

ffiffi
3

p
A=4 − e−A=2�A−j

2

ð3:9Þ

where, in this limit, we can approximate the exponent, A, as
the variable:

A≃ 2πm

�
1þ α0n29

2πmR2
9

þ 22w2
9

4π2mα0T2

�
: ð3:10Þ

Expressing the series as the sum of two like-sign infinite
series, it is apparent that successive terms in each are
suppressed by a factor of 1=m, in addition to the overall
exponential suppression. This will lead to very rapid
convergence. This is also true for the summation over
m: there is a well-known square root exponential growth as

a function of mass levelm of the degeneracies, bðIIA−IIBÞm , at
large mass level numbers [6,7], but rapid convergence of
the free energy is driven by the variable A, which provides
an exponential suppression linear as a function of mass
level number. Note that in the high-temperature large radius
approximation given by Eq. (3.10), the target space duality
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invariance is no longer manifest, since we have explicitly
ignored thermal duality and R9 ↔ 1=R9 duality, by taking
the limits T,R9 → ∞.

IV. LOW T BEHAVIOR IN THE FIELD
THEORETIC SUPERGRAVITY LIMIT

We have shown that the presence of the background
antisymmetric 2-form potential gives a stable, tachyon-
free, and massless tadpole-free ensemble of thermal
gravitons at temperatures below the string scale, when
we explicitly truncate the mass level expansion to the
m ¼ 0 term, and perform the modular integral preserving
modular invariance, a part of the world-sheet gauge
invariance. The finite temperature graviton ensemble arises
from the infinite summation over thermal momentum
modes, namely, the tower of Matsubara thermal excita-
tions, and the exponent, A, takes the simple form:

A≃ 4π2α0n2
0

β2
þ ðn0w9 þ n9w0Þ 4ð1þtanhðπαÞÞ

α0 . Namely, we have

the expected sum over Matsubara modes, in addition to
the B-field (linear) temperature-dependent addition,
which is subleading at low temperatures. As a simple
check, we verify the expected T10 growth with low
temperatures, of the vacuum energy density truncating
to the, mass level zero, low-energy supergravity field

theoretic limit. As before, by truncating the exponent
function A as appropriate for the zero-temperature-large-
radius limit, the expression—and consequently, the result
for the field theoretic one-loop vacuum energy density—
will no longer be invariant under the target space dualities.
It is rather easy to give the result of the τ1 integration in

explicit closed form, following a change of variable,
x2 ¼ 1 − τ21, jτ1j ≤ 1=2, jxj ≤ 1, and use of the power
series representation of the Whittaker function, with
ν ¼ 5, as is appropriate in the low-temperature regime,
β → ∞:

IðmÞ ¼ 1

4

X∞
n0¼−∞

A
ν−1
2

�Z
1

0

−
Z ffiffi

3
p

=2

0

�
dxx−

νþ1
2
þ1ð1 − x2Þ−1=2

× e−
1
2
AxW−νþ1

2
;ν
2
ðAxÞ; ð4:1Þ

and substitute the power series representation for the
Whittaker function [GR 9.237] [21], valid for β → ∞,
including the complete infinite sum over thermal momen-
tum modes, n0, and taking the m ¼ 0, massless field limit,
namely, expanding about the origin A ¼ 0. The integrand
takes the standard special function form of an infinite
power series, plus logarithmic, plus finite polynomial
correction [21]:

Wλ;μðzÞ ¼
ð−1Þ2μzμþ1

2e−
1
2
z

Γð1
2
− μ− λÞΓð1

2
þ μ− λÞ×

	X∞
k¼0

Γðμþ k− λþ 1
2
Þ

k!ð2μþ kÞ! zk
�
Ψðkþ 1Þ þΨð2μþ kþ 1Þ−Ψ

�
μþ k− λþ 1

2

�
− ln z

�

þ ð−zÞ−2μ
X2μ−1
k¼0

�
Γð2μ− kÞΓðk− μ− λþ 1

2
Þ

k!
ð−zÞk

�

; where z¼ Ax; λ¼ −

νþ 1

2
; μ¼ ν

2
: ð4:2Þ

We now carry out these steps systematically. The infinite summation on thermal momentum mode number, n0,
can be carried out explicitly, expressible in terms of Riemann zeta functions. We restrict to the target spacetime bosonic
fields at mass levelm ¼ 0. Note that it is only their target spacetime super partners that receive a mass linear in temperature.
Thus,

ρIIAðIIBÞ0 ðβÞ ¼ −
1

4
· ð4π2α0Þ−νbIIAðIIBÞ0

X∞
n0¼−∞

Z
1ffiffi
3

p
=2
dxx−

νþ1
2
þ1ð1 − x2Þ−1=2Aν−1

2 exp

�
−
A
2
x

�
W−νþ1

2
;ν
2
ðAxÞ

¼ −
1

4
· ð4π2α0Þ−νfIIAðIIBÞ0 ðπα01=2TÞ

X∞
n0¼−∞

Z
1ffiffi
3

p
=2
dxxð1 − x2Þ−1=2Aν ð−1Þνe−Ax

Γð1ÞΓðνþ 1Þ

×

	X∞
k¼0

Γðνþ 1þ kÞ
k!ðνþ kÞ! ðAxÞk½Ψðkþ 1Þ − lnðAxÞ� þ ð−AxÞ−ν

Xν−1
k¼0

�
Γðν − kÞΓðkþ 1Þ

k!
ð−AxÞk

�


¼ −2 · ð4π2α0Þ−ν ð−1Þ
νfIIAðIIBÞ0 ðπα01=2TÞ

ðνÞ!
X∞

n0¼−∞

Z
1ffiffi
3

p
=2
dxð1 − x2Þ−1=2

×

	X∞
k¼0

1

k!
× Aνþkxkþ1 exp ½−Ax�½Ψðkþ 1Þ − lnA − ln x� þ

Xν−1
k¼0

ð−1Þk−νΓðν − kÞ exp ½−Ax�Akxk−νþ1



: ð4:3Þ

Substituting the Taylor expansions for lnðxÞ, and the power series expansion from the change in variable, τ1, to x≡ 1=u,
as in the previous section, the result for the vacuum energy density is obtained by making use of the two elementary
integrals,
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Z
1ffiffi
3

p
=2
dxxαþ2r−1e−Ax ¼ A−α−2r½γðαþ 2r; AÞ − γðαþ 2j;

ffiffiffi
3

p
A=2Þ�; ð4:4Þ

and

X∞
r¼0

ð−1Þ2rþ1
1

j!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�

X∞
l¼1

ð−1Þlþ1

l

Z
1ffiffi
3

p
=2
dxxαþ2r−1ðx − 1Þle−Ax: ð4:5Þ

Performing the integrals over x gives the following result for the vacuum energy density:

ρðIIÞ0 ¼ −2 · ð4π2α0Þ−νbðIIA−IIBÞ0

X∞
n0¼−∞

X∞
k¼0

X∞
r¼0

1

k!
ð−1Þ2rþ1

1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�

×
ð−1Þν
ðνÞ!

	
Aν−2−2r½γðkþ 2rþ 2; AÞ − γðkþ 2rþ 2;

ffiffiffi
3

p
A=2Þ�½Ψðkþ 1Þ − lnA�

þ
X∞
l¼1

Xl

j¼0

ð−1Þlþ1

l
l!

j!ðl − jÞ!A
ν−2−2r−j½γðkþ 2rþ jþ 2; AÞ − γðkþ 2rþ jþ 2;

ffiffiffi
3

p
A=2Þ�




− 2 · ð4π2α0Þ−ν b
ðIIA−IIBÞ
0

ðνÞ!
X∞

n0¼−∞

X∞
r¼0

Xν−1
k¼0

ð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�

× ð−1ÞkΓðν − 2 − kÞAν−2−2r½γðkþ 2r − νþ 2; AÞ − γðkþ 2r − νþ 2;
ffiffiffi
3

p
A=2Þ�; ð4:6Þ

where A≃ 8π3α0n2
0

β2
þ ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ in the massless field limit and at large spatial radius, and low

temperatures.
Substituting the power series expansion for the incomplete gamma functions [GR 8.354.1],

γðq; AÞ ¼
X∞
s¼0

ð−1ÞsAqþs

s!ðqþ sÞ ; ð4:7Þ

gives the simpler result:

ρIIAðIIBÞ0 ðβÞ ¼ −
1

4
· ð4π2α0Þ−ν ð−1Þ

νbIIAðIIBÞ0

ðνÞ!
X∞

n0¼−∞
Aν

X∞
r¼0

ð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�

×
X∞
s¼0

ð−1ÞsAs

s!

	X∞
k¼0

Ak

k!

�
1

kþ 2rþ 2þ s
−
ð ffiffiffi

3
p

=2Þkþ2rþ2þs

kþ 2rþ 2þ s

�
fΨðkþ 1Þ − lnAg

þ
X∞
k¼0

Ak

k!

X∞
l¼1

Xl

j¼0

ð−1Þlþ1

l

�
l!

j!ðl − jÞ!
��

1

kþ 2rþ jþ 2þ s
−

ð ffiffiffi
3

p
=2Þkþ2rþjþ2þs

kþ 2rþ jþ 2þ s

�

−
Xν−1
k¼0

ð−1ÞkΓðν − kÞ
�

1

kþ 2r − νþ 2þ s
−

ð ffiffiffi
3

p
=2Þkþ2r−νþ2þs

kþ 2r − νþ 2þ s

�

: ð4:8Þ

Substituting in this expression for A≃ 8π3α0n2
0

β2
þ ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ, the infinite summations over

the thermal momentum modes, n0, can be recognized as the Riemann zeta function ζðz; qÞ [GR9.531] [23] and its
derivative,

X∞
n¼0

ðnþ qÞ−z ≡ ζðz; qÞ; ζð−n; 0Þ ¼ −
Bn−1

nþ 1
; ζ0ðzÞ≡X∞

n¼1

n−z ln n: ð4:9Þ
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This last substitution gives the explicit result,

ρIIAðIIBÞ0 ðβÞ ¼ −ð4π2α0Þ−ν ð−1Þ
νbIIAðIIBÞ0

ν!
ð8π3α0T2Þν

X∞
r¼0

ð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�

×
X∞
s¼0

ð−1Þs
s!

	X∞
k¼0

1

k!
ð8π3α0Þkþsβ−2k−2s

�
1 − ð ffiffiffi

3
p

=2Þkþ2rþ2þs

kþ 2rþ 2þ s

�

× ½ζð−2ν − 2k − 2s; 0ÞΨðkþ 1Þ − ζ0ð−2ν − 2k − 2sÞ ln½2πα0β−2��

þ
X∞
k¼0

1

k!

X∞
l¼1

Xl

j¼0

ð−1Þlþ1

l

�
l!

j!ðl − jÞ!
�
ζð−2ν − 2k − 2s; 0Þ

× ð2πα0Þkβ−2k
�
1 − ð ffiffiffi

3
p

=2Þkþ2rþjþ2þs

kþ 2rþ 2þ s

�
−
Xν−1
p¼0

ð−1ÞpΓðν − pÞ
�
1 − ð ffiffiffi

3
p

=2Þpþ2r−νþ2þs

pþ 2r − νþ 2þ s

�

: ð4:10Þ

Keeping the leading terms in powers of ðα0−1=2TÞ ≪ 1, we
extract the large radius, and low-temperature, low-energy
supergravity field theory limit of the type IIA(IIB) one-loop
vacuum energy density, with ν ¼ 5:

lim
β→∞

ρIIAðIIBÞ

¼ −ð4π2α0Þ−5ð8π3α0Þ5T10
bIIAðIIBÞ0

5!

×

	
1

8
ζð−10; 0Þð1þΨð1Þ − ζ0ð−10Þ ln½2πα0T2�Þ

þ
X4
p¼0

ð−1ÞpΓð5 − pÞ
�

1

p − 3
−
ð ffiffiffi

3
p

=2Þp−3
p − 3

�

:

ð4:11Þ

V. EQUILIBRIUM SPINð32Þ=Z2 STRING
CANONICAL ENSEMBLE

Our starting point in this section is the generating func-
tional of connected one-loop heterotic string vacuum graphs,
WðβÞ ¼ lnZðβÞ, where ZðβÞ is the canonical partition
function. WðβÞ can be derived from first principles by the
manifestly Weyl × diffeomorphism invariant Polyakov
string path integral quantization on target spacetime,
R8 × T2, with toroidal radii RH and βH=2π, respectively
[1,2]. The Helmholtz free energy, FðβÞ, and the vacuum
energy density, ρðβÞ, can be directly inferred from WðβÞ.
Generic points in the moduli space of the 2-torus can be

reached by group elements that preserve the Z2 subgroups
of the target space duality group of the perturbative
spinð32Þ=Z2 heterotic string compactified on a 2-torus:
RH → α0=RH, βH → 4π2α0=βH. In the presence of a back-
ground Neveu-Schwarz sector antisymmetric 2-form
potential, B09, it is convenient to complexify the pair of
coordinates ðX0; X9Þ, and with G00 ¼ G99 ¼ 1, B00 ¼
B99 ¼ 0; B09 ¼ −B90 ¼ B, and jB09j ¼ tanhðπαÞ, the con-
tribution to the path integral from the ðn; wÞth sector is

exp

�
−πτ2

�
4π2α0n20

β2H
þ α0n29

R2
9

þ w2
9ð1þ tanhðπαÞÞ2β2

4π2α0

þ w2
0ð1þ tanhðπαÞÞ2R2

9

α0

��

× exp
�
−πτ2

4

α0

�
1

2
ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ

��
:

ð5:1Þ

Notice that the pure thermal momentum and twisted
thermal winding states, ðn0; 0Þ and ð0; w9Þ, are potential
thermal tachyons that enter into the general expression for
the string mass level expansion. The T-duality transforma-
tions are a little more complicated in the presence of
constant background jB09j, A9 NS-sector gauge potentials.
Adding to our discussion of the type II superstrings
following [19], we parametrize the marginal deformations
by three real numbers:

B ¼ 1

2
Bij̄dx

i ∧ dxj̄; J ¼ 1

2
gij̄dx

i ∧ dxj̄;

A ¼ 1

2
AI
idx

iqI; I ¼ 1;…; 16:
ð5:2Þ

The B field appears both in the normalization of the
string path integral through the e−S term in the Polyakov
path integral [11,16], also resulting in a nonvanishing
characteristic for the Jacobi theta functions, and, together
with the shift due to the Wilson line, q ·A9, in the
Lorentzian self-dual (17, 1)-dimensional lattice momen-
tum summations.
The generating functional of heterotic connected

one-loop vacuum string graphs in the equilibrium finite
temperature vacuum will be given by compactification
on R8 × T2, with radii RH, βH=2π, A is the Wilson line
wrapping the spatial coordinate of radius RH, q is a vector
in the Lorentzian self-dual lattice Γð17;1Þ,
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WH ¼ N βH2πR9L9ð4π2α0Þ−5
Z
F

	
d2τ
4τ22

τ−42 ½ηðτÞη̄ðτ̄Þ�−6
�
eπτ2α

2

ηðτÞ
Θ11ðα; τÞ

��
eπτ̄2α

2

η̄ðτ̄Þ
Θ̄11ðα; τ̄Þ

�


×

�
Θ̄00ðα; τ̄Þ
eπτ2α

2

ηðτ̄Þ

�
Θ̄00ð0; τ̄Þ
η̄ðτ̄Þ

�
3

−
Θ̄01ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄01ð0; τ̄Þ
η̄ðτ̄Þ

�
3

−
Θ̄10ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄10ð0; τ̄Þ
η̄ðτ̄Þ

�
3
�

×
X∞

n0;w0¼−∞

X∞
n9;w9¼−∞

exp

�
−πτ2

�
4π2α0n20

β2H
þ w2

9ð1þ tanhðπαÞÞ2β2H
4π2α0

��

× exp

�
−πτ2

4

α0

�
1

2
ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ

��
× ½ηðτÞ�−16

×
X

k∈Γð17;1Þ
exp

�
−πτ2α0

	�
n9
RH

þ w0ð1þ tanhðπαÞÞRH

α0
− q ·A9 −

w9

RH
A9 ·A9

�
2

�

× exp

�
−πτ2α0

	�
n9
RH

−
w0ð1þ tanhðπαÞÞRH

α0
− q ·A9 −

w9

RH
A9 ·A9

�
2

�

exp ½−πτ2fðq − w9RHA9Þ2g�; ð5:3Þ

where N is the hitherto unknown normalization of the one-loop heterotic string vacuum energy density, which will be
computed in Sec. VII of this paper. The 16-dimensional Euclidean even integral self-dual lattice contained in Γð17;1Þ is that
for the affine Lie group spinð32Þ=Z2.
As for the closed bosonic string analyzed in the Appendix, a change of variable to y ¼ 1=τ2, and with i ¼ 0, 9, expresses

the τ2 integral in the form

ρðHÞðβHÞ ¼ −N ð4π2α0Þ−5 ·
X∞
m¼0

fðHÞm ðαÞ
Xþ∞

ni¼−∞

Xþ∞

wi¼−∞

X
q∈Γð17;1Þ

Z þ1=2

−1=2
dτ1

Z
1=

ffiffiffiffiffiffiffi
1−τ2

1

p

0

1

4
dyy9=2e−πD=y; ð5:4Þ

where the exponent D equals

D≡ 2mπ þ
�
4π2α0n20

β2H
þ w2

9ð1þ tanhðπαÞÞ2β2H
4π2α0

�
þ 4

α0

�
1

2
ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ

�

þ πα0
	�

n9
RH

þ w0ð1þ tanhðπαÞÞRH

α0
− q ·A9 −

w9

RH
A9 ·A9

�
2

þ
�
n9
RH

−
w0ð1þ tanhðπαÞÞRH

α0
− q ·A9 −

w9

RH
A9 ·A9

�
2

þ ðq − w9RHA9Þ2


: ð5:5Þ

The integral over τ2 can be recognized as an integral representation of the Whittaker function, Wν;λðzÞ:Z
u

0

dxxν−1e−
πD
x ¼ ðπDÞν−12 uνþ1

2 e−
πD
2uW−νþ1

2
;ν
2
ðπD=uÞ; ν ¼ 11=2; ð5:6Þ

where we have set u ¼ ð1 − τ21Þ−1=2.

A. High T convergence of spinð32Þ=Z2 energy density

The high mass level number, UV asymptotics of the spinð32Þ=Z2 heterotic string can be inferred by substituting the
asymptotic expansion for the Whittaker function [20,21]:

Wðκ;λÞðzÞ ∼ e−z=2zκ
�
1þ

X∞
k¼1

1

k!
z−k

�
λ2 −

�
κ −

1

2

�
2
��

λ2 −
�
κ −

3

2

�
2
�
� � �

�
λ2 −

�
κ − kþ 1

2

�
2
��

: ð5:7Þ

To proceed, note the degeneracies, bðHÞm , in the heterotic string mass level expansion are corrected by numerical factors given
by the integral

IðmÞ ¼ 1

4

X∞
w¼−∞

ðπDÞ−1
Z þ1=2

−1=2
dτ1ð1 − τ21Þ−3=2e−

1
2
πDð1−τ2

1
Þ1=2W−13

4
;11
4
ðπD½1 − τ21�1=2Þ: ð5:8Þ
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The term-by-term integrals over τ1 can be evaluated by substituting the asymptotic expansion for the Whittaker function
valid at large mass level number,

Iðm;wÞ≡ 1

4
ðπDÞ−1

�Z
2=

ffiffi
3

p

0

−
Z

1

0

�
duu

11
4
−3ð1 − 1=u2Þ−1=2e−1

2
πD=uW−11

4
;9
4
ðπD=uÞ

¼ 1

4
ðπDÞ−1

X∞
r¼0

X∞
k¼0

ðπDÞ−kð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ� × 1

k!
ð−1Þkþ1Ck

× ½Wð−7−4kþ8rÞ=8;ð3þ4k−8rÞ=8ðπD
ffiffiffi
3

p
=2Þ −Wð−7−4kþ8rÞ=8;ð3þ4k−8rÞ=8ðπDÞ�;

C0 ¼ −1; Ck ≡
��

13

4

�
2

−
�
9

4

�
2
���

17

4

�
2

−
�
9

4

�
2
�
� � �

��
9þ 4k

4

�
2

−
�
9

4

�
2
�
; ð5:9Þ

for all k ≥ 1.
Iterating the substitution of the asymptotic expansion for large argument of the Whittaker functions, as in Sec III, we find

an explicit exact result for the finite temperature vacuum energy density of the heterotic strings:

ρðHÞðβHÞ ¼ −N ð4π2α0Þ−5
X∞
m¼0

fðHÞm ½∞�
Xþ∞

ni¼−∞

Xþ∞

wi¼−∞

X
k∈Γð17;1Þ

X∞
r¼0

1

r!
½ð−1=2Þð−3=2Þ � � � ð−rþ 1=2Þ�

×
X∞
k¼0

ðπDÞ−1−k 1
k!
ð−1ÞkCk

X∞
j¼0

1

j!
ð−1ÞjCðj;k;rÞ½ð

ffiffiffi
3

p
πD=2Þð−7−4k−4jþ8rÞ=8e−πD

ffiffi
3

p
=4 − ðπDÞð−7−4k−4jþ8rÞ=8e−πD=2�:

C0 ¼ −1; Ck ≡
��

13

4

�
2

−
�
9

4

�
2
���

17

4

�
2

−
�
9

4

�
2
�
� � �

��
9þ 4k

4

�
2

−
�
9

4

�
2
�
:

Cð0;0;0Þ ¼ −1; Cðj;k;rÞ ≡
��

11þ 4k− 8r
8

�
2

−
�
3þ 4k− 8r

8

�
2
���

19þ 4k− 8r
8

�
2

−
�
3þ 4k− 8r

8

�
2
�
� � �

×
��

3þ 4jþ 4k− 8r
8

�
2

−
�
3þ 4k− 8r

8

�
2
�
: ð5:10Þ

This result should be compared with the analogous result for the perturbative type II superstring derived in Eq. (3.6).
As in that case, the reader might be concerned whether the summation over k is convergent: the numerical
coefficients, Ck > 1, grow with increasing k, and successive terms in the series have alternating sign. However, for
large mass level number, m, the succeeding terms in the summation are suppressed due to the negative powers of m.
Expressing the series as the sum of two like-sign infinite series, it is apparent that successive terms in each are
suppressed by a factor of 1=m, in addition to the overall exponential suppression. This will lead to very rapid
convergence.
The result is Oðe−DÞ, providing the exponential suppression as a linear power of mass level number m. Thus,

following an analytic evaluation of the integrals over world-sheet moduli, ðτ1; τ2Þ, we find that the numerical correction,
IðmÞ, to the asymptotic degeneracies, fHm½∞�, in the mass level expansion, is an exponential suppression of the
precise form,

D≡ 2mπ þ
�
4π2α0n20

β2H
þ w2

92
2β2H

4π2α0

�
þ 4

α0

�
1

2
ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ

�

þ πα0
	�

n9
RH

þ 2w0RH

α0
− q ·A9 −

w9

RH
A9 ·A9

�
2

þ
�
n9
RH

−
2w0RH

α0
− q ·A9 −

w9

RH
A9 ·A9

�
2

þ ðq − w9RHA9Þ2


;

ð5:11Þ

which can be compared with Eq. (3.7) for the type IIA(IIB) superstrings. The result isOðe−mÞ which will erase theOðe ffiffiffi
m

p Þ
growth of the asymptotic degeneracies, fðHÞð2Þ at large mass level number, m, [6,22], and for temperatures at, and above,
the string scale.
Thus, the convergence of the free energy in the ultraviolet, namely, at high mass level numbers, and for all

values of the target spacetime moduli: ðR9; βH; tanhðπαÞÞ, is extremely rapid, an exponential suppression with
increasing m:
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ρH ≃ −N ð4π2α0Þ−5 1
4

X∞
m¼0

X∞
n¼−∞

X∞
w¼−∞

fHmðαÞ
X∞
r¼0

1

r!
½ð−1=2Þð−3=2Þ � � � ð−rþ 1=2Þ�

×
X∞
k¼0

ðπDÞ−ð15þ12kÞ=8 1

k!
ð−1ÞkCk

X∞
j¼0

1

j!
ð−1ÞjCðj;k;rÞ

× ½ð
ffiffiffi
3

p
=2Þð−7−4k−4jþ8rÞ=8e−πD

ffiffi
3

p
=2 − e−πD�ðπDÞjþr: ð5:12Þ

The high-temperature behavior at high mass level numbers, and large spatial radius, is dominated by the twisted thermal
windings, w2

9β
2
H, and the spatial momentum modes. As with the type IIA(IIB) superstrings, since tanhðπαÞ asymptotes to

þ1, the appearance of the B field is absent in the high-temperature limit. In the large radius limit, R9 → ∞, the n0 ¼ w0 ¼ 0
sector dominates, and the spinð32Þ=Z2 exponent asymptotes to

D≃ 2mπ þ w2
92

2β2H
4π2α0

þ 2πα0
�
n9
RH

�
2

þ πα0
�
q ·A9 þ

w9

RH
A9 ·A9

�
2

þ ðq − w9RHA9Þ2: ð5:13Þ

Recall the square root exponential growth as a function of mass level m of the degeneracies, bðHÞ
m , at large mass level

numbers derived in [6]. However, the rapid convergence of the free energy is driven by the exponent,D, which provides an
exponential suppression linear as a function of mass level number. As shown for the type IIA and IIB strings in the previous
section, our explicit analytic integration of the heterotic closed string world-sheet moduli has pinned down the precise
mathematical form of the convergence in the ultraviolet: as fast as an exponential superimposed on the power law
suppression of the degeneracies at high mass levels.

B. Low T supergravity spinð32Þ=Z2 gauge field theory limit

As for the type IIA(IIB) superstring, we now examine the noncompact RH → ∞, βH → ∞ ten-dimensioanl low-energy
field theory limit, where the contributions from all winding modes are suppressed, specializing to the massless low-energy
field theory limit of the string mass spectrum, m ¼ 0. The power series representation of the Whittaker function then takes
the general form of an infinite power series, plus logarithmic, plus finite polynomial correction [20,21], and we have set
x ¼ 1=u:

Wλ;μðzÞ ¼
ð−1Þ2μzμþ1

2e−
1
2
z

Γð1
2
− μ − λÞΓð1

2
þ μ − λÞ ×

	X∞
k¼0

Γðμþ k − λþ 1
2
Þ

k!ð2μþ kÞ!

× zk
�
Ψðkþ 1Þ þΨð2μþ kþ 1Þ −Ψ

�
μþ k − λþ 1

2

�
− ln z

�

þ ð−zÞ−2μ
X2μ−1
k¼0

�
Γð2μ − kÞΓðk − μ − λþ 1

2
Þ

k!
ð−zÞk

�

;

where z ¼ Dð1 − τ21Þ1=2; λ ¼ −3; μ ¼ 5=2: ð5:14Þ

We perform the change of variable from τ1 to x as shown in the Appendix, also substituting the power series representation
for the Whittaker function, and the Taylor series expansions, so that every term by term integral over the variable x is an
incomplete gamma function, as in Sec. IV.
Substitution in the expression above gives the following result for the 496 massless gauge bosons of the spinð32Þ=Z2

heterotic string [10,24], or by setting q ¼ ð18 � � � ; 08Þ, we have the 240 gauge bosons for SOð16Þ × SOð16Þ, in addition to
the massless bosonic fields of the chiral ten-dimensional N ¼ 1 supergravity multiplet: the so-called Neveu-Schwarz sector
of the type I–heterotic supergravity, without the Ramond-Ramond antisymmetric tensor potentials, and the ð1; 28; 35Þ irreps
of the transverse SO(8) rotation subgroup of the Lorentz group, respectively, the scalar dilaton, symmetric, and
antisymmetric, rank-two tensor fields:
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W ½Oð32Þ�
m¼wi¼0;n9¼0ðTHÞ ¼ N · 2 · βHV9ð4π2α0Þ−5fðHÞ0 ð2Þ

X
q

X∞
ni;wi¼−∞

Z
1ffiffi
3

p
=2
dxx−2ð1− x2Þ−1=2D2 exp

�
−
D
2
x

�
W−3;5=2ðDxÞ

¼ N · 2 · ð2πRHÞV9ð4π2α0Þ−5fðHÞ0 ð2Þ
X
qI

X∞
n0¼−∞

Z
1ffiffi
3

p
=2
dxxð1− x2Þ−1=2D5

ð−1Þ5e−Dx

Γð1ÞΓð6Þ

×

	X∞
k¼0

Γð6þ kÞ
k!ð5þ kÞ! ðDxÞk½Ψðkþ 1Þ þΨð6þ kÞ−Ψð6þ kÞ− lnðDxÞ�

þ ð−DxÞ−5
X4
k¼0

�
Γð5− kÞΓðkþ 1Þ

k!
ð−DxÞk

�


¼ N · 2 · βHV9ð4π2α0Þ−5
ð−1Þ5fðHÞ0 ð2Þ

5!

X
q

X∞
n0¼−∞

Z
1ffiffi
3

p
=2
dxð1− x2Þ−1=2

×

	X∞
k¼0

1

k!
×D5þkxkþ1 exp ½−Dx�½Ψðkþ 1Þ− lnD− ln x� þ

X4
k¼0

ð−1Þk−5Γð5− kÞ exp ½−Dx�Dkxk−4


:

ð5:15Þ
Substituting the Taylor expansions for the logarithm, and performing the integrals over x, gives the following result for

the vacuum energy density:

ρ½Oð32Þ�0 ðRHÞ ¼ −N · 2ð4π2α0Þ−5 ð−1Þ
5fðHÞ0 ð2Þ
5!

X
qI

X∞
ni;wi¼−∞

X∞
k¼0

X∞
r¼0

1

k!
Cð−1=2Þ
ðrÞ

×

	
D3−2r½γðkþ 2rþ 2; DÞ − γðkþ 2rþ 2;

ffiffiffi
3

p
D=2Þ�½Ψðkþ 1Þ − lnD�

þ
X∞
l¼1

Xl

j¼0

ð−1Þlþ1

l
CðlÞ
ðjÞD

3−2r−j½γðkþ 2rþ jþ 2; DÞ − γðkþ 2rþ jþ 2;
ffiffiffi
3

p
D=2Þ�




−N · 2ð4π2α0Þ−5 f
ðHÞ
0 ð2Þ
5!

X
qI

X∞
n0¼−∞

X∞
r¼0

X4
k¼0

Cð−1=2Þ
ðrÞ ð−1ÞkΓð5 − kÞ

×D3−2r½γðkþ 2r − 3; DÞ − γðkþ 2r − 3;
ffiffiffi
3

p
D=2Þ�: ð5:16Þ

Setting A to zero, restricting to the spinð32Þ=Z2 group alone. In the m ¼ 0 low-energy finite temperature supergravity-
SO(32) Yang Mill gauge field theory limit, we have

D≃ 4π2α0n20
β2H

þ ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ þ α0
�
n9
RH

�
2

; ð5:17Þ

where we present the dominant terms in the exponent, at large spatial radius, and low temperatures.
As a final simplification, we substitute the power series representation for the incomplete gamma function [20,21], which

gives the simpler result:

ρ½Oð32Þ�0 ðβHÞ ¼ −N · 2ð4π2α0Þ−5 ð−1Þ
5fðHÞ0 ð2Þ
5!

X∞
ni;wi¼−∞

D5
X∞
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Cð−1=2Þ
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×
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Dk
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ð ffiffiffi
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þ
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k!
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Xl
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l
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�
1

kþ 2rþ jþ 2þ s
−

ð ffiffiffi
3

p
=2Þkþ2rþjþ2þs

kþ 2rþ jþ 2þ s
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−
X4
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�

1
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−
ð ffiffiffi
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=2Þkþ2r−3þs

kþ 2r − 3þ s

�

: ð5:18Þ
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Completing the square for the terms in n0; w9; n9; w0, the
infinite summations over the n0 and n9 momentum modes
can be expressed as the Riemann zeta function ζðz; qÞ [21]
and its derivative:

X∞
n¼0

ðnþ qÞ−z ≡ ζðz; qÞ; ζð−n; 0Þ ¼ −
Bn−1

nþ 1
;

ζ0ðsÞ≡X∞
n¼1

n−s ln n: ð5:19Þ

ρðHÞ0 ¼ N · 2ð4π2α0Þ−5 f
ðHÞ
0 ð2Þ
5!

ð4π2α0Þ5T10
H

×

	�
1

8
ζð−10; 0Þð1þΨð1Þ − ζ0ð−10Þ ln½α0β−2H �Þ

�

−
X4
k¼0

ð−1ÞkΓð5 − kÞ
�
1 − ð ffiffiffi

3
p

=2Þk−3
k − 3

�

: ð5:20Þ

We note in passing that it can be shown [10,13] that the
leading power law dependence on radius in the large radius
limit, D5 ≃ T−10

H , holds for the generic Wilson line, and the
generic nine-dimensional non-Abelian gauge group
obtained in Wilson line circle compactifications.

VI. TYPE IB O(32) GLUON ENSEMBLE IN
NONCOMMUTATIVE SPACETIME

Recall that the expression for the ten-dimensional open
and closed unoriented type IB string one-loop vacuum

energy density contains four terms, summing, respectively,
world sheets with the topology of a torus, annulus, Mobius
strip, and Klein bottle [10,18]. One of the remarkable
features of an open and closed oriented string ensemble in
an embedding noncommutative target space time—due to
the external antisymmetric tensor potential—is that the
open and closed string sectors of the theory perceive
distinct target spacetime metrics, as was noted by
Seiberg and Witten in 1999 [25]. Namely, the open string
states with (0, 9) excitations have a mass spectrum that
scales as integer multiples of an effective, B-field-depen-
dent, string tension, as was pointed out by Novak and I
[16]. Open string states with (0, 9) polarizations can
therefore probe distance scales shorter than the fundamen-
tal string scale, α01=2, and the corresponding masses are
heavier than if they had been measured with respect to the
fundamental string spacetime metric [25].
In most of this section, we will therefore focus on the

open oriented type IA-IB string sector, in the presence of
the B-field background, which will show is a fascinating
model for gluons and gauge solitons of the O(32) Yang
Mills gauge theory in a noncommutative target spacetime
[16,25]. The contribution of the type IB torus to the one-
loop vacuum energy density on R8 × T2, summing oriented
world sheets with the topology of a torus, and upon twisting
the compactified torus, T2, with a constant background
2-form NS potential jB09j ¼ tanhðπαÞ, is as was derived in
Sec. II for the type IIB superstring,

ρðIBÞtor ¼ −ð4π2α0Þ−5
Z
F

d2τ
4τ22

· ðτ2Þ−3½ηðτÞη̄ðτ̄Þ�−6 ×
1

4

�
eπτ2α

2

ηðτÞ
Θ11ðα; τÞ

��
eπτ̄2α

2

η̄ðτ̄Þ
Θ̄11ðα; τ̄Þ

�

×

�
Θ00ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ00ð0; τÞ
ηðτÞ

�
3

−
Θ01ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ01ð0; τÞ
ηðτÞ

�
3

−
Θ10ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ10ð0; τÞ
ηðτÞ

�
3
�

×

�
Θ̄00ðα; τ̄Þ
eπτ2α

2

ηðτ̄Þ

�
Θ̄00ð0; τ̄Þ
η̄ðτ̄Þ

�
3

−
Θ̄01ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄01ð0; τ̄Þ
η̄ðτ̄Þ

�
3

−
Θ̄10ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄10ð0; τ̄Þ
η̄ðτ̄Þ

�
3
�

×
X
n;w

exp

�
−πτ2

�
4π2α0n20
β2IB

þ α0n29
R2
IB

þ w2
9ð1þ tanhðπαÞÞ2β2IB

4π2α0
þ w2

0ð1þ tanhðπαÞÞ2R2
IB

α0

��

þ exp ½−πτ2ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ� − ð4π2α0Þ−4

×
Z
F

d2τ
4τ22

· ðτ2Þ−3½ηðτÞη̄ðτ̄Þ�−6 ×
1

4

�
eπτ2α

2

ηðτÞ
Θ11ðα; τÞ

��
eπτ̄2α

2

η̄ðτ̄Þ
Θ̄11ðα; τ̄Þ

�

×

�
Θ11ðα; τÞ
eπτ2α

2

ηðτÞ

�
Θ11ð0; τÞ
ηðτÞ

�
3
��

Θ̄11ðα; τ̄Þ
eπτ2α

2

η̄ðτ̄Þ

�
Θ̄11ð0; τ̄Þ
η̄ðτ̄Þ

�
3
�

×
X
n;w

exp

�
−πτ2

�
4π2α0n20
β2IB

þ α0n29
R2
IB

þ w2
9ð1þ tanhðπαÞÞ2β2IB

4π2α0
þ w2

0ð1þ tanhðπαÞÞ2R2
IB

α0

��

× exp ½−πτ2ðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ�; ð6:1Þ

EUCLIDEAN TIME FORMULATION FOR THE … PHYSICAL REVIEW D 90, 126005 (2014)

126005-15



where the choice of phase, (þ), for the (11) spin structure,
relative to the (00) spin structure, distinguishes the result
for the type IB torus graph at finite temperature. The
twist in the argument of the Jacobi theta functions:
j tanhðπαÞj≡ jBj, and α≡ ðβC=βÞ ¼ α01=2T, is linear in
the temperature, measured in units of the inverse string
scale. For very low temperatures, note that the B field itself
grows linearly with temperature, parametrizing the mar-
ginal deformation from the zero temperature supersym-
metric vacuum. The expression above is valid for all values
of 1=β, a target spacetime modulus, with jBj asymptoting to
unity at temperatures approaching the string scale. A
thermal duality transformation gives the corresponding
behavior of the finite temperature type IA open and closed
superstring.
Pure type IIB closed superstrings have no Yang-Mills

gauge fields, but spin one gauge fields can exist in the

world volume of D-branes in the type IB, and the T9-dual
type IA, open and closed unoriented superstring theories
[10,26]. The thermal modes of the open oriented string
sector, namely, the annulus graph’s contribution to the finite
temperature one-loop type IB vacuum energy density,
contains the tower of field-theoretic Matsubara states with
thermal momenta: p0 ¼ 2n0π=βIB, where n ∈ Z:

X∞
n0;n9¼−∞

exp

�
−
8π3α0n20
β2IB

−
8π3α0

R2
IB

ðn9−RIBq ·A9Þ2t
�
: ð6:2Þ

Thus, at finite temperature, the normalized open oriented
type IB superstring vacuum functional summing one-loop
graphs with the topology of an annulus, and in the presence
of an external B field3 is given by the expression

WðIBÞ
ann ¼ V10ð8π2α0Þ−5ð1þ jB09jÞ

Z
∞

0

dt
2t

· ð2tÞ−5ηðitÞ−6 ×
X∞

ni¼−∞
exp

�
−t

8π3α0n20
β2IB

−
8π3α0

R2
IB

ðn9 − RIBq ·A9Þ2t
�

×

�
Θ00ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ00ð0; itÞ
ηðitÞ

�
3

−
Θ01ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ01ð0; itÞ
ηðitÞ

�
3

−
Θ10ðα; τÞ
eiπtα

2

ηðitÞ

�
Θ10ð0; itÞ
ηðitÞ

�
3
�

− ð8π2α0Þ−5ð1þ jB09jÞ
Z

∞

0

dt
2t

· ð2tÞ−4½ηðitÞ�−6 1
4

�
eiπtα

2

ηðitÞ
Θ11ðα; itÞ

��
Θ11ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ11ð0; itÞ
ηðitÞ

�
3
�

×
X∞

ni¼−∞
exp

�
−t

8π3α0n20
β2IB

−
8π3α0

R2
IB

ðn9 − RIBq ·A9Þ2t
�
: ð6:3Þ

As explained in [16], the field-dependent normalization is
most simply interpreted as the effective field-dependent
string tension of the fundamental closed oriented string,
τ2F ¼ 4πα0, which is twice the square of the fundamental
oriented open string tension. Thus, from Eq. (20) of [16],
we have

τ−ðpþ1Þ=2
eff ¼ ð2πα0effÞ−ðpþ1Þ=2

≡ ½ð1þ tanhðπαÞÞð2πα0Þ−ðpþ1Þ=2�; ð6:4Þ
where pþ 1 is the number of noncompact spacetime
coordinates—equal to the critical dimension, ten, for the
type IB superstring at very low temperatures, when βIB is
large—vs nine noncompact coordinates at temperatures
approaching, and of order, the string scale. Notice that the
effective string tension is mainly a useful notion at temper-
atures far below the string scale, since the function
tanhðπαÞ asymptotes to unity at high temperatures of order
the string scale, α0−1=2. As noted above, the effective
tension has also been referred to in [25] as string states
perceiving the open string “metric”, as opposed to the
closed string “metric”, since the string mass spectrum is,
respectively, measured in integer multiples of the effective,
or the fundamental closed, string tension.

What is the role of the unoriented open and closed string
sectors of the finite temperature type IB superstring,
respectively, the Mobius strip and Klein bottle graphs?
This has been clarified by many authors [10,18], and we
have nothing new to add to the discussion at finite
temperature, namely, in a temperature-dependent B-field
background. The massless tadpole cancellation in the NS-
NS and R-R sectors holds as in the zero temperature
vacuum, and the main goal of the orientation projection is
to determine the anomaly-free gauge group explicitly, and
with a choice of phase, we pick Oð2NÞ, with 2N ¼ 32.
Since our main interest is in the Yang Mills gauge fields
sector of the type IB O(32) string, namely, the oriented
massless open string modes and their thermal excitations,
we now focus attention in what follows on the annulus
graph alone.
In passing, we note that the expression for the one-loop

(Helmholtz) free energy of the T9-dual type IA canonical
ensemble, is deduced by performing a T-duality trans-
formation on RIB. Notice, that due to the antisymmetric

3The B-field-dependent normalization for the open oriented
bosonic string one-loop amplitude was determined by Novak and
I in Eq. (16) of [16]. See also the earlier work [11].
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tensor potential, it is the T9-duality which brings the
thermal winding modes into the type IA string mass
spectrum, and in addition to the tower of Matsubara thermal
momentum modes:

X∞
n0;w0¼−∞

exp

�
−
8π3α0n20
β2IB

− 8π3α0
�
w0RIA

α0
½1þ jB09j�

−ðq ·A9 − w0RIAA9 ·A9Þ
�

2
�
: ð6:5Þ

The T9 duality has mapped this to a type IA O(32) string
state with 32 coincident D8-branes on one of the two O8
planes at either end of an interval of size RIA. Thus, the
Euclidean time formulation of the type IA string has
compactification on R8 × S1 × S1=Z2. The T9 duality
transformation enables one to examine the small distance
behavior of the finite temperature type IB superstring, at
spatial radii smaller than the string scale; this can be useful

in the approach to certain enhanced gauge symmetry
points in the moduli space of eight-dimensional and
nine-dimensional compactifications of the type IB super-
string [27]. It should be noted that the cancelation of
dilation tadpoles in the two-loop type I open oriented
superstring amplitude will be determined by the specific
choices of non-Abelian gauge group.

A. Low T behavior of O(32) IB thermal gluon ensemble

As shown for the low-energy supergravity-Yang Mills
field theoretic limit of the spinð32=ZÞ2 heterotic string
ensemble, it is helpful to verify that the noncompact limit of
the open oriented one-loop type IB string amplitude,
truncated to the mass level zero, and at temperatures very
far below the string scale, displays the expected T10 growth
of the O(32) thermal gluon ensemble.4

The normalized one-loop vacuum energy density takes
the form

ρIBðβIB; RIB; α; A9Þ ¼ −ð8π2α0Þ−5ð1þ jB09jÞ
Z

∞

0

dt
2t

ð2tÞ−5
X∞
m¼0

fðIBÞm ðαÞ

×
X∞

ni;wi¼−∞
exp

�
−t
	
πmþ 8π3α0n20

β2IB
−
8π3α0

R2
IB

ðn9 − RIBq ·A9Þ2

�

× exp ½−tðn0w9 þ n9w0Þ4ð1þ tanhðπαÞÞ�; ð6:6Þ

where q ¼ ð032Þ for the O(32) string, and q ¼ ð116; 016Þ for
the Oð16Þ × Oð16Þ type IB superstring in eight noncom-
pact spacetime dimensions.
Next, we split the range of integration, making a change

of variable 2t ¼ 1þ x in the integral. We recognize the first
term as an integral representation of the Whittaker function,
W−3;5=2ðzÞ [20],
Z

∞

0

ð1þ xÞ−νe−zxdx ¼ z
ν
2
−1e−z=2W−ν

2
;ð1−νÞ

2

ðzÞz≡ A;

ν ¼ 6; Wλ;−μ ¼ Wλ;μ; ð6:7Þ

and the exponent A is, respectively, defined as

AIB ≡ 1

2
πmþ 4π3α0n20

β2IB
−
4π3α0

R2
IB

ðn9 − RIBq ·A9Þ2: ð6:8Þ

In the noncompact limit, R9 → ∞, and for adequately low
temperatures far beneath the string scale, and at mass level
zero, the exponent function, A, can be approximated by the
thermal term. The following analysis of the power series
representation of the special functions holds in this limit
alone, as in the corresponding discussions in Sec. IV, and
Sec. VB, for the closed superstrings.

The remaining integral over the variable −x in the
domain [0, 1], is subtracted from the Whittaker function
above, and it gives the first of the three confluent hyper-
geometric series in two variables [20]:
Z

1

0

xμ−1ð1 − xÞ−λð1 − yxÞ−ρe−xAdx ¼ Bðμ; λÞ

× Φ1ðμ; ρ; λþ μ;A; yÞ;
μ ¼ λ ¼ 1; ρ ¼ 5; y ¼ 1: ð6:9Þ

This function is related to the first of the convergent
Appel series in two variables, F1ða; b; b0; c;A; yÞ, when
jAj < 1, as is true in the mass level number zero, low
temperatures far below the string scale, and large radius
limit. The Appel function, F1, by definition, equals Φ1,
when b0 ¼ 0 [20],

4There is one significant difference in how we obtain the low-
energy field theory limit in contrast with [4], since we perform the
modular integral in the expression for the one-loop string
amplitude, and set mass level number to zero, as opposed to
evaluating the amplitude at a fixed value of the annulus’modulus,
t ¼ 1, as was proposed in [4]. The point is that such a procedure
violates world-sheet modular invariance, and it is unnecessary to
break the world-sheet gauge symmetries while extracting specific
kinematic regimes of the theory
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F1ða; b; b0; c;A; yÞ ¼
X∞
m¼0

X∞
n¼0

ðaÞmþnðbÞmðb0ÞnAmyn

ðcÞmþnm!n!

����
b0¼0

¼ Φ1ða; b; c;A; yÞ≡
X∞
m¼0

X∞
n¼0

ðaÞmþnðbÞmAmyn

ðcÞmþnm!n!
; ð6:10Þ

and Φ1 can thus be related to the familiar hypergeometric function, Fða; b; c;AÞ, when y ¼ 1, reducing to a
hypergeometric series in one variable,

F1ða; b; b0; c;A; yÞ ¼
X∞
m¼0

ðaÞmðbÞmAm

ðcÞmm!
Fðaþm; b0; cþm; yÞ: ð6:11Þ

Thus, setting b0 ¼ 0, and y ¼ 1, we obtain the simplified result [20]

Φ1ða; b; c;A; 1Þ ¼ Fða; b; c;AÞ; Fðaþm; 0; cþm; 1Þ ¼ 1; a ¼ 1; c ¼ 2; b ¼ 5; y ¼ 1: ð6:12Þ

Recall that the hypergeometric function is convergent in the region inside the unit circle, jAj ≤ 1, and the series
representation above is the expansion about the origin [20].
We likewise substitute the power series expansion for the Whittaker function about A ¼ 0 [20]:

Wλ;μðAÞ ¼
ð−1Þ2μAμþ1

2e−
1
2
A

Γð1
2
− μ − λÞΓð1

2
þ μ− λÞ×

	X∞
k¼0

Γðμþ k− λþ 1
2
Þ

k!ð2μþ kÞ! Ak

�
Ψðkþ 1Þ þΨð2μþ kþ 1Þ−Ψ

�
μþ k− λþ 1

2

�
− lnA

�

þ ð−AÞ−2μ
X2μ−1
k¼0

�
Γð2μ− kÞΓðk− μ − λþ 1

2
Þ

k!
ð−AÞk

�

; where λ ¼ −

ν

2
; μ ¼ ð1− νÞ

2
; ν≡ 6: ð6:13Þ

This gives the following expression for the finite temperature vacuum energy density of the canonical ensemble of
thermal gluons in the noncompact limit, and at temperatures far below the string scale,

ρ0ðTIBÞ ¼ −ð8π2α0Þ−5ð1þ jB09jÞf½IB�0 ðαÞ ð−1Þ
5

5!
2ð4π3α0Þ5T10

IB

X∞
n0¼1

e−4π
3α0n2

0
T2
IBn100

×

	X∞
k¼0

1

ð5þ kÞ!A
k½Ψðkþ 1Þ − lnA� þ

X4
k¼0

Γð5 − kÞð−1ÞkAk−5



− ð8π2α0Þ−5ð1þ jB09jÞf½IB�0 ðαÞ
X∞
n0¼0

e−4π
3α0n2

0
T2
IB

X∞
l¼0

ð1Þlð5Þl
ð2Þll!

ð4π3α0n20T2
IBÞl: ð6:14Þ

Substituting the Taylor expansion for the exponentials, valid in the vicinity of TIB ¼ 0,

X∞
n0¼1

e−4π
3α0n2

0
T2
IBn100 ≡X∞

j¼0

X∞
n0¼1

n10þ2j
0

ð−1Þj
j!

ð4π3α0T2
IBÞj

¼
X∞
j¼0

ð−1Þj
j!

ð4π3α0T2
IBÞjζð−10 − 2j; 0Þ; ð6:15Þ

the result can be recognized as an infinite summation over Riemann zeta functions. Comparing with the low-energy
supergravity-YangMills field theory limit of the heterotic spinð32Þ=Z2 string vacuum energy density at finite temperature in
Eq. (5.21), we find the subleading, and convergent, finite corrections to the expected ðα01=2TÞ10 growth:

ρ0ðTIBÞ≃ −ð8π2α0Þ−5ð1þ jB09jÞf½IB�0 ðαÞ ð−1Þ
5

5!
ð4π3α0Þ5T10

IB

X∞
j¼0

ð−1Þj
j!

ð4π3α0T2
IBÞj

×

	
1

ð5Þ! ½ζð−10 − 2j; 0ÞðΨð1Þ − ln ½4π3α0T2
IB�Þ þ ζ0ð−10 − 2jÞ� þ Γð5Þð4π3α0T2

IBÞ−5ζð−10; 0Þ



− ð8π2α0Þ−5ð1þ jB09jÞf½IB�0 ðαÞ
X∞
j¼0

X∞
l¼0

ð−1Þj
j!

ζð−2j − 2l; 0Þ ð1Þlð5Þlð2Þll!
ð4π3α0T2

IBÞlþj: ð6:16Þ
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For completeness, we give the explicit form of the field-
dependent degeneracy function fIB0 ðαÞ, at level m ¼ 0—
similar analyses can be found in the references [10,16,23],

1

2Sinhð1
2
½π tanhðπαÞ�Þ × ½2ð2Coshð2π½tanhðπαÞ�Þ þ 6Þ

þ 16Coshðπ½tanhðπαÞ�Þ�; ð6:17Þ

and it is easy to verify that the α≃ 0 limit, gives the zero
temperature, target spacetime supersymmetric, result for
the degeneracies of target spacetime bosonic minus target
spacetime fermionic states: 1

2
½16 − 16�.

B. High T asymptotics of type IB O(32)
gluon ensemble

Let us now examine the high temperature regime of
the type IB open and oriented string ensemble at temper-
atures far above the string scale. The high temperature
behavior for the ten-dimensional O(32) type IB string
canonical ensemble is given by the low temperature
behavior of the thermal dual type IA canonical ensemble:
thermal momentum modes in the type IB string are
mapped to thermal winding modes in the T0-dual type IA
string, and due to the twisting by the constant back-
ground jB09j field at low type IA temperatures, we must
perform both the T9 and the T0 duality transformations.
Thus, we examine the large β½IA� regime, in the limit
R½IA� ≫ α01=2, and consider the high IB temperature
asymptotics at mass level zero.
In other words, we search for a signal of a thermal phase

transition5 in the high temperature type IB thermal gluon
ensemble, at temperatures approaching—and above–the
string scale, TC, the type IB thermal momentum modes
are transformed to type IA winding soliton strings, at IB
temperatures far above the string scale. Recall, also, that
the jB09j field asymptotes to unity as T approaches TC,
so that the exponent function will be dominated by the
spatial winding number w9 term, where we note that the
general background could extend to a timelike Wilson line
background A0:

A½IA� ≡ 2πmþ 8π3

α0
ðw2

9β
2
½IA� þ w2

0R
2
IAÞ½1þ j tanhðπαÞj�2

− 8π3α0
	�

w0RIA

α0
þ w9β½IA�

2πα0

�
½1þ tanhðπαÞ�

− ðq ·A9 − w0RIAA9 ·A9Þ2


: ð6:18Þ

As in Sec. III, and Sec. VA, we begin by setting y ¼ 1=t,
and expanding in integer powers of e−πt, which yields the

open oriented string mass level expansion, with coefficients

given by the jBj field-dependent degeneracies, fðIBÞm ðαÞ.
We setm ¼ 0. This gives the modular integral in the T9, T0

duality transformed form,

ρðIÞ0 ¼ −ð8π2α0Þ−5
Z

∞

0

dyy11=2

×
Xþ∞

w9¼−∞
fðIÞ0 exp

�
−
8π3

α0
ð2w2

9β
2
½IA�Þ

1

y

�
: ð6:19Þ

Next, we split the range of integration, making a change
of variable 2t ¼ 1þ x in the modular integral. We recog-
nize the first term as an integral representation of the
Whittaker function, W−11=4;−9=4ðAÞ [20],
Z

∞

0

ð1þ xÞ−νe−Axdx ¼ A
ν
2
−1e−A=2W−ν

2
;ð1−νÞ

2

ðAÞ

ν ¼ 11=2; Wλ;−μ ¼ Wλ;μ; ð6:20Þ

and in the noncompact limit, RIA → ∞, and for adequately
high type IB temperatures far above the string scale, the
duality transformed exponent function, A, is dominated by
the type IA spatial winding modes. In this limit, we will
substitute the asymptotic expansion for large argument of
the Whittaker function, as in Sec. III, and Sec. VA, for the
closed superstrings:

Wðκ;λÞðAÞ∼ e−A=2Aκ

�
1þ

X∞
k¼1

1

k!
A−k

�
λ2 −

�
κ −

1

2

�
2
�

×

�
λ2 −

�
κ −

3

2

�
2
�
� � �

�
λ2 −

�
κ − kþ 1

2

�
2
��

:

ð6:21Þ

The remaining integral over the variable −x in the
domain [0, 1], is subtracted from the Whittaker function
above, and it gives the first of the three confluent hyper-
geometric function in two variables [20]:

Z
1

0

xμ−1ð1 − xÞ−λð1 − βxÞ−ρe−xAdx

¼ Bðμ; λÞΦ1ðμ; ρ; λþ μ;A; βÞ;
μ ¼ β ¼ 1; ρþ λ ¼ 11=2: ð6:22Þ

As in Sec. VIA, we can identify the Φ function with
the ordinary hypergeometric function, Fðμ; ρ; λþ μ;AÞ,
but we must now employ its analytic continuation to the
region outside the unit circle A ¼ 1 (GR 9.154.1). We have
μ ¼ 1, and choose ρ ¼ 5 ¼ μþ n, n ¼ 4, λ ¼ 1

2
, which

gives

5More precisely, this is a phase transformation, since either
side of the phase boundary at TC is a weakly coupled open and
closed unoriented superstring theory.
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Fðμ; μþ n; λþ μ;AÞ ¼ Γðλþ μÞ
ΓðμÞΓðμþ nÞ

1

π
sin πðλÞ

	
ð−AÞ−μ−n

X∞
k¼0

Γðμþ nþ kÞΓð1 − λþ nþ kÞ
Γðkþ 1ÞΓðkþ nþ 1Þ gðkÞA−k

þ
Xn−1
k¼0

Γðμþ kÞΓð1 − λþ kÞΓðn − kÞ
Γðkþ 1Þ ð−AÞ−μ−k



;

where gðkÞ ¼ lnð−AÞ þ π cotðπλÞ þ ψðkþ 1Þ þ ψðkþ nþ 1Þ − ψðμþ kþ nÞ − ψð1 − λþ kþ nÞ: ð6:23Þ

Prior to making these substitutions, let us pause to
compare our derivation in this section with that of the
UV asymptotics of the type IIA(IIB) and heterotic closed
superstrings, where we considered the asymptotic limit of
large closed string mass level number, in addition to high
temperatures far above the string scale. The point is
that when more energy is available to the closed string
ensemble—in contact with a heat bath at temperatures high
above the string scale, the higher mass level number modes
of excitation of the single closed string are easily excited, in
addition to the thermal momentum and thermal winding
number modes. The open string ensemble responds differ-
ently to an influx of heat energy: since higher open string
mass level numbers correspond to longer open strings, it is
thermodynamically preferable for a single long open string
to split into massless thermal gluons, excited to various

thermal momentum number modes. The splitting transition
is forbidden in a theory of pure closed strings, so that an
influx of heat energy can lead to the excitation of the higher
mass level string modes. In an open and closed string
theory, instead, the condensate of highly energetic thermal
gluons—zero length open IB strings, undergoes a phase
transition6 at temperatures far above the string scale to the
type IA thermal winding modes: these are solitonic wind-
ing number strings, from the perspective of the open string
ensemble—and they wrap the spatial compact dimension—
of large radius RIA.
To emphasize the differences in the result for the open and

closed type IA(IB) string, we present the formal result,
including all open string mass levels, as in previous
Sec. III, and Sec. VA, prior to the truncation to mass level
number zero:

ρðIAÞ ¼ −ð8π2α0Þ−5½1þ tanhðπαÞ�
X∞
m¼0

fðIAÞm ðαÞ
Xþ∞

w9¼−∞

�
mπ þ 8π3w2

9

α0T2
IA

�
−1

exp

�
−πm −

16π3w2
9

α0T2
IA

�	
1þ

X∞
k¼1

1

k!

×

�
mπ þ 8π3w2

9

α0T2
IA

�
−k
	��

13

4

�
2

−
�
9

4

�
2
���

17

4

�
2

−
�
9

4

�
2
�
� � �

��
9þ 4k

4

�
2

−
�
9

4

�
2
�



− ð8π2α0Þ−5ð1þ tanh παÞ
X∞
m¼0

fðIAÞm ðαÞ
Xþ∞

w9¼−∞
B

�
1;
1

2

��
Γð3=2Þ
πΓð5Þ

�

×

	Xþ∞

k¼0

ð−1Þ5A−5−kgðkÞΓð5þ kÞΓð11
2
þ kÞ

Γðkþ 1ÞΓðkþ 5Þ þ
X2
k¼0

ð−1Þ1þkA−1−kΓ
�
1

2
þ k

�
Γð4 − kÞ



;

where gðkÞ ¼ lnð−AÞ þ ψðkþ 1Þ − ψðkþ 11=2Þ; and A≡mπ þ 8π3w2
9

α0T2
IA

: ð6:24Þ

Prior to performing the infinite summations over spatial
windings, notice that for high open string mass levels,
where the degeneracy fm is known to grow as fast as the
exponential of the square root of mass level number, the
first asymptotic expansion, which arises from theWhittaker

function, smoothly erases the Hagedorn growth, with the
exponential suppression, linear in the mass level number.
This is precisely as for the type IIA(IIB) and heterotic
closed oriented superstrings, where the fundamental do-
main of the modular group of the world-sheet torus
eliminates the troublesome τ2 → 0 limit [2,10,18].
This is not the case for the annulus graph of the open and

closed type IB(IA) superstring. The second asymptotic
expansion, which arises from the hypergeometric function
analytically continued to large argument, does not provide
an exponential suppression in the mass level number. Thus,
in order to proceed, we henceforth set the mass level

6We emphasize once more that the thermal duality transforma-
tion may, or may not, suggest a dynamical phase transition. We
should point out that, in addition to the splitting transition [10,18], a
theory of open and closed strings permits open-closed string
conversion [10,18]. Since the IA winding modes are solitonic
closed strings, the precise dynamics that might underlie the thermal
duality transformation, while suggestive, is not transparent.
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number to zero, and restrict our considerations in this paper
to the interesting possibility of a phase transition in the
level zero thermal gluon ensemble, that can be examined by
analytic methods.

The infinite summations over spatial windings w9 in the
annulus graph can be readily performed at mass level zero,
resulting in the familiar zeta functions, and their
derivatives:

ρðIAÞ0 ¼ −ð8π2α0Þ−5ð1þ tanh παÞfðIAÞ0 ðαÞ
�

8π3

α0T2
IA

�
−1X∞

j¼0

1

j!

�
−
16π3

α0T2
IA

�
j
	
ζð−2j; 0Þ þ

X∞
k¼1

ζð−2j − 2k; 0Þ 1
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�
8π3

α0T2
IA

�
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�
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�
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�
2
�



− ð8π2α0Þ−5ð1þ tanh παÞfðIAÞ0 ðαÞB
�
1;
1

2

��
Γð3=2Þ
πΓð5Þ

�	Xþ∞

k¼0

ð−1Þ5
�

8π3

α0T2
IA

�
−5−k Γð5þ kÞΓð11

2
þ kÞ

Γðkþ 1ÞΓðkþ 5Þ

×

�
ln

�
−

8π3

α0T2
IA

�
2ζ0ð−10 − 2kÞ þ ðψðkþ 1Þ − ψðkþ 11=2ÞÞζð−10 − 2k; 0Þ

�

þ
X2
k¼0

ð−1Þ1þkζð−2 − 2k; 0Þ
�

8π3

α0T2
IA

�
−1−k

Γ
�
1

2
þ k

�
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: ð6:25Þ

We should emphasize that TC is in no sense an ultimate
temperature beyond which the type IB string canonical
ensemble breaks down, nor is there a novel non-stringlike
phase above TC. The type IB theory above TC has a benign
string theoretic description as the T0-dual type IA string.
Thus, on either side of the phase boundary we have a
weakly coupled and self-consistent perturbative open and
closed unoriented string theory; except, that the tower of
thermal IB open string momentum modes has been trans-
formed to a tower of solitonic IAwinding number modes. It
is uncanny that the appropriate match with the known
behavior of finite temperature QCD appears to be the type
IA open and closed string theory: at low type IA temper-
atures, there is a phase with confined tubes of flux in the
thermal winding mode spectrum. As TIA approaches the
string scale, the type IA ensemble appears to deconfine,
giving the ensemble of thermally excited gluons zero
length, open oriented, IB strings. Whether this observation
of a suggestive dynamics underlying the type IA to IB
thermal duality transformation is a genuine signal of the
QCD deconfinement phase transition remains to be studied
in the future.
What should we make of the term in the annulus graph

summing all mass levels in the open and closed type IA or
type IB string that grows as the exponential of the square
root of the open string mass level number, with only a
power law suppression from the analytically continued
confluent hypergeometric function? That question remains
open to further investigation. Our main point in the analysis
given in this paper is to distinguish the possible signal of a
deconfinement transition in the gluon ensemble, evidenced
by the stringy thermal duality transformation from winding
IA strings to thermally excited IB gluons—from the

Hagedorn transition, or Hagedorn divergence, of the open
string annulus graph on its own—and even with the
addition of the torus, and the unoriented one-loop string
graphs. These well-known additions will not alter the new
physics we have discovered. As we have noted—the crucial
missing elements are a study of the open string splitting
process, and the open-to-closed oriented string conversion
process. They are likely to make a significant physical
distinction in the full analysis of the one-loop dynamics of
the type IB (IA) open and closed unoriented string
canonical ensemble. To the best of our knowledge, previous
authors who have pointed to applications of the “Hagedorn
transition” have made no reference to this crucial distinc-
tion between the physics of the closed oriented—and that of
the open and closed unoriented—superstrings, and this
fundamental distinction deserves further study.

VII. NORMALIZATION OF THE HETEROTIC
ONE-LOOP AMPLITUDE FROM DUALITIES

We begin by recapitulating the known target spacetime
and strong-weak coupling dualities relating the ten-
dimensional type IB-type IA O(32) unoriented superstring
theories and the spinð32Þ=Z2 heterotic string theory,
compactified on a twisted torus, T2 × R8. We shall thereby
determine the unknown normalization, N , of the
spinð32Þ=Z2 perturbative heterotic string one loop vacuum
amplitude.
As was pointed out in [28] as far back as 1986—unlike

the normalization of the bosonic and type IIA and
IIB superstring one-loop amplitudes—the normaliza-
tion of the one-loop heterotic string vacuum amplitude
cannot be computed by the methodology outlined in the
papers [1,2]. Nevertheless, in terms of this unknown
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normalization, N , the analysis in [28] showed that by
invoking a combination of factorization theorems and the
bootstrap method, namely, matching the low- and high-
energy asymptotics of heterotic closed string scattering
amplitudes at generic order in the genus expansion, the
entire tower of normalizations of the multiloop heterotic
string amplitudes can be deduced. To complete this very
elegant argument, however, the first step, namely, the
normalization of the one-loop vacuum energy density of
the heterotic string has to be deduced by independent
means. This is the problem we will address in this section,
showing that the strong-weak coupling heterotic-type IB-
type IA dualities [27] in the low-energy supergravity field
theory limit enables a matching of the normalizations of the
respective one-loop vacuum energy densities, thereby
giving an unambiguous means to compute the hitherto
unknown normalization of the spinð32Þ=Z2 heterotic string
one-loop vacuum amplitude.
Consider the torus-compactified ten-dimensional heter-

otic spinð32Þ=Z2 and type IB O(32) string theories in the
large spatial radius limit, R½Oð32Þ� ≃ RIB ≫ α01=2, twisting
by a near-vanishing B field, namely, jBj ¼ tanhðπαÞ
approaches zero. Equivalently, given our considerations
in the previous sections of this paper, we consider the low
temperature limit of either superstring theory. We begin
with the target space T9-duality transformations for either
string, and the type IB–heterotic strong-weak coupling
relation [10,27],

gOð32Þ ¼
1

gIB
; gIA ¼ gIB

�
α0

R2
IB

�
;

gIA ¼ 1

g½Oð32Þ�

�
α0

R2
½Oð32Þ�

�
; ð7:1Þ

and where the second relation follows from the T9-duality
transformation relating the type IB and type IA superstring
theories. In the large radius limit we are considering, both
gIA and g½Oð32Þ� take values at weak coupling, while the type
IB O(32) string theory is strongly coupled. The addition of
a spatial Wilson line background enables an analogous
determination for theOð16Þ ×Oð16Þ string theory [13,27].
Consider extending the standard strong-weak heterotic-

type IB duality map [27] to twisted torus compactifications,
and the basic T-duality relations, to generalized target
space T-duality transformations in the presence of the
background fields of the Neveu-Schwarz (NS) sector: Gmn,
Bmn, and AI

m, the color index I ¼ 1;…; 16, labeling the
components of the gauge lattice, and m, n ¼ 0; 1;…; 9
label embedding target spacetime coordinates [11,16,23].
Unlike the heterotic strings, the unoriented type IB and type
IA strings do not have the massless NS antisymmetric
tensor field. However, the constant mode of the antisym-
metric NS 2-form survives the orientifold projection, and
we denote this as the B field, Bmn. Under a generalized Tm,

T-duality transformation of the coordinate Xm
IB in the type

IB string, the background fields transform as follows:

Rm
IB →

α0

Rm
IA
; nm → wnðGmn þ BmnÞ; Am

IB ↔ Am
IA;

qI → qI − wnRAn
I ; ð7:2Þ

where the index I labels the location of the Ith D8-brane
along the interval S1=Z2 of size Rm

IA, in the background of
the type IA string compactified on the interval Xm

IA. It is
easy to deduce the T9-duality transformation of a general
Wilson line background in the type IB string; it is mapped
to the slightly more complicated winding mode background
of the type IA string as follows:

type IB∶ pm
IB ¼ nm

RIB
− qIAm

I :

type IA∶ pm
IA ¼ wnRIA

α0
ðGmn þ BmnÞ − ðqI − wnRIAAn

I ÞAm
I :

ð7:3Þ

Note, in particular, that it is possible to have both
string couplings ðgIA; g½Oð32Þ�Þ ≪ 1, namely, at weak
coupling, when both of the compactification radii,
ðRIB; R½Oð32Þ�Þ ≫ α01=2. Namely, this is the regime where
the type IA string background approaches sub-string-scale–
size interval separating the O8 planes: RIA ≪ α01=2. The
type IB O(32) string is becoming strongly coupled, but we
still have a weak coupling description in the T9-dual type
IA string. Our goal is to apply this weak coupling relation
linking the two superstring theories, only one of which,
namely the heterotic string, is at large radius, to match
the normalizations of their respective one-loop vacuum
amplitudes. String theory is unusual from the perspective
of quantum field theories, since the string scale, α01=2,
does not designate the small distance cutoff below which
the computations in the theory become invalid. On the
contrary, using dualities, we are able to compute ampli-
tudes at arbitrarily short distances much below the string
scale. This is a consequence of the exact renormaliz-
ability of the theory, which has been described elsewhere
[2,16,23,29].
The one-loop connected vacuum functional for the

twisted torus-compactified spin ð32Þ=Z2 heterotic string
theory in generic Wilson line background can be deduced
as follows: we begin with the results of the Polyakov path
integral quantization of the closed bosonic string theory,
and of the oriented closed type II superstring theories, and
deduce the existence of an anomaly-free and ultraviolet
finite ten-dimensional string theory with gauge group spin
ð32Þ=Z2, such that the world-sheet superconformal field
theory preserves the two-dimensional N ¼ ð1; 0Þ super-
symmetric diffeomorphism ×Weyl gauge invariances
[1,2,24]. This remarkable, but unusual, chiral string theory
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is based on the ten-dimensional Lorentz invariant, chiral
supergravity with sixteen spacetime supercharges, coupled
to an anomaly-free and ultraviolet finite, supersymmetric
gauge theory. In addition, the result for the one-loop
vacuum energy density needs to manifestly invariant under
the target space duality group of the twisted torus, and
include the target space duality transformations that accom-
pany Wilson line backgrounds with a requisite shift in the
vector potential, thereby preserving ten-dimensional Yang

Mills gauge invariance [13,14]. It was a truly remarkable
achievement to be able to deduce an expression for the
one-loop vacuum energy density that meets all of these tests
for consistency [24]. Thus, by symmetry considerations
alone, in addition to some clever application of integral
self-dual lattices, the authors of [24] succeeded in deducing
the the well-known standard result for the one-loop
heterotic string vacuum amplitude, apart from its unknown
normalization N :

WðRH;AÞ ¼ ð2πRHÞL9N ð4π2α0Þ−5
Z
F

	
d2τ
4τ22

τ−42 ½ηðτÞη̄ðτ̄Þ�−8

��

Θ00ðτÞ
ηðτÞ

�
4

−
�
Θ01ðτÞ
ηðτÞ

�
4

−
�
Θ10ðτÞ
ηðτÞ

�
4
�
½η̄ðτ̄Þ�−16

×
X

q∈Γð16;0Þ;n;w

e−πτ2α
0fð n

RH
þwRH

α0 −q·A− w
RH

A2Þ2þð n
RH

−wRH
α0 −q·A− w

RH
A2Þ2ge−πτ2fðq−wRHAÞ2g: ð7:4Þ

Here q is any sixteen component vector in the gauge
lattice, contained within the integral Lorentzian self-dual
lattice, Γð18;2Þ, describing the moduli space of the torus-
compactified spinð32Þ=Z2 heterotic string in the back-
ground of a Wilson line A, with its variety of enhanced
symmetry points. Recall that the normalization of the one-
loop vacuum energy density, ρ ¼ −W=V10, is free of any
ambiguity associated with the choice of regularization of
the embedding target spacetime volume since the analo-
gous choice can be made for either superstring theory
[2,10]. The heterotic string partition function has been
written as the product of Jacobi theta functions, and an
infinite summation over the vectors in a (18,2)-dimensional
Lorentzian integral self-dual lattice [14]. The properties of
this compactification lattice can be deduced by requiring a
target space duality invariant extension of one of the two
allowed sixteen-dimensional even integral Euclidean self-
dual gauge lattices, Γspinð32Þ=Z2. As usual, the one-loop
heterotic string amplitude is an integral of the heterotic
string partition function, integrating over the domain of
integration for the complex world-sheet moduli, ðτ; τ̄Þ,
namely, the fundamental domain, F , of the modular group
of the torus [2,10].

The first step towards the goal of determining the
unknown normalization N of the one-loop spinð32Þ=Z2

heterotic string vacuum energy density will be to explicitly
perform an analytical integration over the world-sheet
moduli of the torus in the modular integral, yielding a
result given solely in terms of the bare string tension,
1=4πα0, the target spacetime moduli, namely, the radius of
the target circle, RH, and a possible Wilson line back-
ground, A, in addition to the convergent infinite series that
arises from the mass level summation over the degeneracies
of the heterotic string mass spectrum, mass level by mass
level, and, finally, a numerical factor that follows from
performing the modular integral.
Term by term in the heterotic string mass level expan-

sion, the numerical degeneracies are the result of summing
spacetime bosonic and spacetime fermonic modes, which
of necessity contribute to the string partition function with
opposite sign. Hence, for the target spacetime supersym-
metric string theory, the partition function will vanish. We
therefore restrict our modular integration to the integrand
which includes the mass level expansion summing the
degeneracies of target spacetime spacetime bosonic modes
alone. The result for the torus-compactified heterotic string
one-loop vacuum energy density takes the form7

ρ½Oð32Þ�bos ðRH;AÞ ¼ −N ð4π2α0Þ−5
X∞
m¼0

bðHÞm

X∞
n¼−∞

X∞
w¼−∞

2

Z
1=2

0

dτ1e2πinwτ1D2ð1 − τ21Þ−3=2 exp
�
−
1

2
Dð1 − τ21Þ1=2

�

×W−3;5=2ðDð1 − τ21Þ1=2Þ: ð7:5Þ
The notation is as follows. At any mass level, m, in the heterotic string mass level expansion with corresponding target
spacetime boson degeneracy bðHÞm , we recall that the integral over the modulus, τ2, can be recognized as a standard integral
representation of the Whittaker function, W−3;5=2ðDxÞ, where we have made the usual change of variable, x2 ¼ 1 − τ21,
jτ1j ≤ 1=2, jxj ≤ 1, and the variable D, is the resulting argument in the exponential, e−Dτ2 , which appears in the integrand

7Compare with the discussion prior to Eq. (4.1) for the type IIA(IIB) superstring.
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upon deriving the mass level expansion. This is as in Eq. (5) of the Appendix, but with the parameter, ν, in that equation set
to half the critical target spacetime dimension of the heterotic string, and the exponent function, A, replaced by the exponent
function for the heterotic string, namely, D:

D≡ 2mπ þ πα0
��

n
RH

−
wRH

α0
− q ·A − wRHA2

�
2

þ
�

n
RH

þ wRH

α0
− q ·A − wRHA2

�
2
�

− π½ð−2wRHq ·Aþ w2R2
HA

2Þ�: ð7:6Þ

The next step is to tackle the integral over the world-sheet modular parameter τ1. For the purposes of this section, where
our goal is to use the field theoretic limit of the 10D heterotic-type IB duality to deduce the unknown normalization,N , we
directly give the result in the noncompact RH → ∞ limit, where the contributions from the winding modes are suppressed,
also specializing to the massless low-energy field theory limit of the spinð32Þ=Z2 heterotic string, setting the mass level
number, m ¼ 0. The power series representation of theWhittaker function takes the general form of an infinite power series,
plus logarithmic, plus finite polynomial correction [20,21], and we have substituted the usual change of variable from τ1 to
x, as defined below:

Wλ;μðxÞ ¼
ð−1Þ2μxμþ1

2e−
1
2
x

Γð1
2
− μ − λÞΓð1

2
þ μ − λÞ ×

	X∞
k¼0

Γðμþ k − λþ 1
2
Þ

k!ð2μþ kÞ!

× xk
�
Ψðkþ 1Þ þΨð2μþ kþ 1Þ −Ψ

�
μþ k − λþ 1

2

�
− ln z

�

þ ð−xÞ−2μ
X2μ−1
k¼0

�
Γð2μ − kÞΓðk − μ − λþ 1

2
Þ

k!
ð−xÞk

�

;

where x ¼ Dð1 − τ21Þ1=2; λ ¼ −3; μ ¼ 5=2: ð7:7Þ

Expressing the Whittaker function as a convergent power series expansion for small argument, and likewise substituting
Taylor series expansions for the additional standard mathematical functions appearing in the modular integral, gives the
following result:

W ½Oð32Þ�
m¼w¼0ðRHÞ ¼ N · 2 · ð2πRHÞV9ð4π2α0Þ−5bðIBÞ0

X
q

X∞
n¼−∞

Z
1ffiffi
3

p
=2
dxx−2ð1 − x2Þ−1=2D2 exp

�
−
D
2
x

�
W−3;5=2ðDxÞ

¼ N · 2 · ð2πRHÞV9ð4π2α0Þ−5bðHÞ0

X
qI

X∞
n¼−∞

Z
1ffiffi
3

p
=2
dxxð1 − x2Þ−1=2D5

ð−1Þ5e−Dx

Γð1ÞΓð6Þ

×

	X∞
k¼0

Γð6þ kÞ
k!ð5þ kÞ! ðDxÞk½Ψðkþ 1Þ þΨð6þ kÞ −Ψð6þ kÞ − lnðDxÞ�

þ ð−DxÞ−5
X4
k¼0

�
Γð5 − kÞΓðkþ 1Þ

k!
ð−DxÞk

�


¼ N · 2 · ð2πRHÞV9ð4π2α0Þ−5
ð−1Þ5bðHÞ0

5!

X
q

X∞
n¼−∞

Z
1ffiffi
3

p
=2
dxð1 − x2Þ−1=2

×

	X∞
k¼0

1

k!
×D5þkxkþ1 exp ½−Dx�½Ψðkþ 1Þ − lnD − ln x� þ

X4
k¼0

ð−1Þk−5Γð5 − kÞ exp ½−Dx�Dkxk−4


:

ð7:8Þ

Substituting the Taylor expansions for the logarithm function, and performing the integral over x, gives the following
result for the vacuum energy density,
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ρ½Oð32Þ�0 ðRHÞ ¼ −N · 2ð4π2α0Þ−5 ð−1Þ
5bðHÞ0

5!

X
qI

X∞
n¼−∞

X∞
k¼0

X∞
r¼0

1

k!
Cð−1=2Þ
ðrÞ

×

	
D3−2r½γðkþ 2rþ 2; DÞ − γðkþ 2rþ 2;

ffiffiffi
3

p
D=2Þ�½Ψðkþ 1Þ − lnD�

þ
X∞
l¼1

Xl

j¼0

ð−1Þlþ1

l
CðlÞ
ðjÞD

3−2r−j½γðkþ 2rþ jþ 2; DÞ − γðkþ 2rþ jþ 2;
ffiffiffi
3

p
D=2Þ�




−N · 2ð4π2α0Þ−5 b
ðHÞ
0

5!

X
qI

X∞
n¼−∞

X∞
r¼0

X4
k¼0

Cð−1=2Þ
ðrÞ ð−1ÞkΓð5 − kÞ

×D3−2r½γðkþ 2r − 3; DÞ − γðkþ 2r − 3;
ffiffiffi
3

p
D=2Þ�; ð7:9Þ

where we recall that D ¼ 2π½α0ðn=RH − qiAIÞ2�, in the limit where mass level number m ¼ 0, and the spatial winding
modes, w, are dropped from the expression string vacuum energy density, a consequence of our having specialized to the
large radius and low temperature limit of the one-loop vacuum amplitude.
As a final simplification, we substitute the power series representation for the incomplete gamma function [20,21], also

setting A to zero for the spinð32Þ=Z2 gauge group:

γðq;DÞ ¼
X∞
s¼0

ð−1ÞsDqþs

s!ðqþ sÞ ; D ¼ 2πα0R−2
H n2: ð7:10Þ

Substitution above gives the simpler result:

ρ½Oð32Þ�0 ðRHÞ ¼ −N · 2ð4π2α0Þ−5 ð−1Þ
5bðHÞ0

5!

X∞
n¼−∞

D5
X∞
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Cð−1=2Þ
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s¼0
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	X∞
k¼0

Dk
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1
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ð ffiffiffi

3
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�
fΨðkþ 1Þ − lnDg

þ
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Dk

k!
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l¼1

Xl

j¼0

ð−1Þlþ1

l
CðlÞ
ðjÞ

�
1
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ð ffiffiffi
3

p
=2Þkþ2rþjþ2þs

kþ 2rþ jþ 2þ s

�

−
X4
k¼0

ð−1ÞkΓð5 − kÞ
�

1

kþ 2r − 3þ s
−
ð ffiffiffi

3
p

=2Þkþ2r−3þs

kþ 2r − 3þ s

�

: ð7:11Þ

The infinite summations over the momentum modes can be recognized as the Riemann zeta function ζðz; qÞ [21] and its
derivative:

X∞
n¼0

ðnþ qÞ−z ≡ ζðz; qÞ; ζð−n; 0Þ ¼ −
Bn−1

nþ 1
; ζ0ðsÞ≡X∞

n¼1

n−s ln n; ð7:12Þ

ρ½Oð32Þ�ðRHÞ ¼ −N · 2ð4π2α0Þ−5 ð−1Þ
5bðHÞ0

5!
ð2πα0Þ5R−10

H

×
X∞
r¼0

Cð−1=2Þ
ðrÞ

X∞
s¼0

ð−1Þs
s!

	X∞
k¼0

1

k!
ð2πα0ÞkþsR−2k−2s

H

�
1 − ð ffiffiffi

3
p

=2Þkþ2rþ2þs

kþ 2rþ 2þ s

�

× fζð−10 − 2k − 2s; 0ÞΨðkþ 1Þ − ζ0ð−10 − 2k − 2sÞ ln½2πα0R−2
H �g

þ
X∞
k¼0

1

k!

X∞
l¼1

Xl

j¼0

ð−1Þlþ1

l
CðlÞ
ðjÞζð−10 − 2k − 2s; 0Þð2πα0ÞkR−2k

H

�
1 − ð ffiffiffi

3
p

=2Þkþ2rþjþ2þs

kþ 2rþ jþ 2þ s

�

−
X4
k¼0

ð−1ÞkΓð5 − kÞ
�
1 − ð ffiffiffi

3
p

=2Þkþ2r−3þs

kþ 2r − 3þ s

�

: ð7:13Þ
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Keeping the leading terms in inverse powers of RH, we extract the large radius and low-temperature limit of the expression

ρðHÞ0 ¼ N · 2ð4π2α0Þ−5 b
ðHÞ
0

5!
ð2πα0Þ5R−10

H

	�
1

8
ζð−10; 0Þf1þΨð1Þ − ζ0ð−10Þ ln½2πα0R−2

H �g
�

−
X4
k¼0

ð−1ÞkΓð5 − kÞ
�
1 − ð ffiffiffi

3
p

=2Þk−3
k − 3

�

: ð7:14Þ

We note in passing that the leading power law dependence
on radius in the large radius limit: D5 ≃ R−10

H , holds for the
generic Wilson line, and the generic nine-dimensional non-
Abelian gauge group obtained in Wilson line circle
compactifications [13,14].
Recall [10,24] the well-known degeneracy of target

spacetime bosonic modes in the spinð32Þ=Z2 heterotic
string, and restricting to only the Yang-Mills sector, since
our comparison is with the low-energy limit of the open
and oriented one-loop amplitude of the type IB O(32)
superstring, we have 496 gauge bosons for SO(32),
with vanishing Wilson line background, q ¼ ð0;…; 0Þ,
or, 240 gauge bosons for non-Abelian gauge group
SOð16Þ × SOð16Þ, when in a Wilson line background,
parametrized by the gauge lattice vector, q ¼ ð18; 08Þ. We
therefore truncate bH0 , to summing only the 496 gauge
bosons at the spinð32Þ=Z2 enhanced symmetry point,
where we recall that 496 ¼ 1

2
32ð31Þ, the number of

massless gauge bosons in the type IB superstring with
orthogonal group O(32). Hence, there is no ambiguity in

comparing the normalizations of the one-loop string
vacuum energy densities since we identify the correspond-
ing massless bosonic modes in either string theory.
Thus, we compactify the type IB string on R8 × T2, of

radius RIB, with inverse temperature, βIB, and twisted by a
constant temperature-dependent antisymmetric 2-form
potential in the Neveu-Schwarz sector, jB09j≡ tanhðπαÞ≃
πα ¼ πðβC=βIBÞ. The thermal modes of the type IB open
string sector vacuum energy density contains the tower of
Matsubara states with thermal momentum: p0 ¼ 2nπ=β,
where n ∈ Z:

X∞
n0;n9¼−∞

exp

�
−
8π3α0n20
β2IB

−
8π3α0

R2
IB

n29t

�
: ð7:15Þ

Thus, with 32 Chan-Paton factors, and at finite temperature,
the open and oriented type IB string graphs are given by the
expression

ρðIBÞann ¼ −ð8π2α0Þ−5ð1þ tanh παÞ
Z

∞

0

dt
2t

· ð2tÞ−4ηðitÞ−6
X∞

ni¼−∞
exp

�
−t

8π3α0n20
β2IB

−
8π3α0

R2
IB

n29t

�

×

�
Θ00ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ00ð0; itÞ
ηðitÞ

�
3

−
Θ01ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ01ð0; itÞ
ηðitÞ

�
3

−
Θ10ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ10ð0; itÞ
ηðitÞ

�
3
�

− ð8π2α0Þ−5ð1þ tanh παÞ
Z

∞

0

dt
2t

· ð2tÞ−4½ηðitÞ�−6 1
4

�
eiπtα

2

ηðitÞ
Θ11ðα; itÞ

��
Θ11ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ11ð0; itÞ
ηðitÞ

�
3
�

×
X∞

ni¼−∞
exp

�
−t

8π3α0n20
β2IB

−
8π3α0

R2
IB

n29t

�
: ð7:16Þ

Since our main interest in this paper is in the gauge
sector of the type IB O(32) string, and at near-zero
temperature, we now focus attention on the mass level
zero limit of the annulus graph alone, dropping all thermal
excitations, and keeping only the spatial momentum
modes.
Taking the massless limit m ¼ 0 of the twisted

torus-compactified unoriented open and closed type IB
string, it is helpful to make a change of variable, prior to
performing the modular integral. Summing on momentum
modes:

IðmÞjm¼0 ≡ 496
X∞
n¼0

Z
∞

0

dtt−5−1e
−2πα0

R2
IB
ðnÞ2t

¼ 496

�
πα0

R2
IB

�
5
�X∞
n¼1

n10
�
Γð−5Þ

¼ 496

�
2πα0

R2
IB

�
5

ζð−10; 0ÞΓð−5Þ: ð7:17Þ

The infinite sum over spatial momentum modes can be
recognized as a Riemann zeta function. The result takes the
form
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ρðIBÞ0 ðRIBÞ ¼ −ð8π2α0Þ−5496R−10
IB ζð−10; 0ÞΓð−5Þ: ð7:18Þ

HereRIB denotes the ten-dimensional spacetime volume, and
the result holds in the noncompact target spacetime super-
symmetric limit, for RIB ≫ α01=2. Our goal is to match the
normalizations in the regimewhere the T-dual type IA string
interval radius,RIA, is small, andboth the type IAandheterotic
strings are at weak coupling. A T9 duality transformation
maps the circle compactified type IB stringwith 32 coincident
D9-branes to the type IA string on an interval of sizeRIA, with
orientifold planes at either end, and 32 coincident D8-branes
on one of the O8 planes. The low- energy massless O(32)
gauge theory limit gives the result

ρðIAÞ0 ðRIAÞ ¼ 496½ð8π2α0Þ−5R10
IAα

0−10�ζð−10; 0ÞΓð−5Þ:
ð7:19Þ

Comparison with the result for the heterotic string
vacuum energy density above, enables us to determine
the unknown normalization of the one loop vacuum energy
density of the spinð32Þ=Z2 heterotic string, N . As men-
tioned earlier, the overall phase matches, and is determined
by modular invariance in the heterotic string theory—a
property which extends to arbitrary order in the string loop
expansion [28]. Our interest here is in the numerical
normalization of the heterotic string one-loop vacuum
energy densities. We find the simple result :

N ¼ − 2−7
1

5
½Γð6ÞΓð6Þ�½R10

H R10
IA�α0−10

	
1

8
ζð−10; 0Þð1þΨð1Þ − ζ0ð−10Þ ln½2πα0R−2

H �Þ

−
X4
k¼0

ð−1ÞkΓð5 − kÞ
�
1 − ð ffiffiffi

3
p

=2Þk−3
k − 3

�

−1
: ð7:20Þ

Note that since the string vacuum functional is dimensionless, the powers of RIB ≡ α0=RIA and RH, combine as expected to
give, in natural units, the dimensionless factor, ½G5

IBG
5
H�, the product of the embedding target space metrics, and our final

result for the heterotic, type IB, string, large radius limit is

N Spinð32Þ=Z2
¼ 2−10

�
1

5
ð5!Þ2

�
½G5

HG
5
IB�

	
ζð−10; 0Þð1þΨð1Þ− ζ0ð−10Þ ln½2πGH�Þ−

X4
k¼0

ð−1ÞkΓð5− kÞ
�
1− ð ffiffiffi

3
p

=2Þk−3
k− 3

�

−1
:

ð7:21Þ

Thus, the long-absent [28] unambiguous normalization of
the one-loop vacuum amplitude of the spinð32Þ=Z2 heter-
otic string has been obtained by invoking a low-energy
matching calculation at zero temperature to the O(32) type
IB string, a beautiful application of the strong/weak duality
analysis in [27].
Remarkably, we can apply this same logic to the E8 × E8

heterotic string. Recall that the relation between the ratio of
gauge coupling and compactification radius differs for the
closed heterotic string theories and the open and closed
type IB and type IA strings [10]; further, that any ambiguity
in the normalization due to the volume of the twisted-torus
compactification radii, since we only invoke dimensionless
ratios in deriving our duality relations. Thus, using the
T-duality relations to substitute for the coupling and spatial
compactification radius of the T9-dual E8 × E8 heterotic
string, we have the result

2πR½Oð32Þ�
g2½Oð32Þ�

¼ 2πR½E8×E8�
g2½E8×E8�

; gIA ¼ 1

g½E8×E8�

�R3
½E8×E8�
α03=2

�
;

ð7:22Þ
and we could compare the weakly coupled E8 × E8

heterotic string, with a strongly coupled type IA string,

in the background of 32 D8–D0-branes, with O8 planes
separated by a sub-string-scale–sized interval [30]. We
shall save the full analysis for a future work.

VIII. CONCLUSIONS

Perturbative superstring theory as formulated in the
world-sheet formalism inherently includes a description
of the background; thus, for finite-temperature string
theory, the “heat-bath” representing the embedding target
space of fixed spatial volume and fixed inverse temperature
is forced upon us, together with any background potentials
and fluxes in the Neveu-Schwarz and Ramond-Ramond
sectors,8 in addition to the embedding target spacetime
metric. Therefore, we are ordinarily restricted to the
canonical ensemble in formulating finite temperature

8In this paper, we have not as yet included any Ramond-
Ramond sector background antisymmetric tensor potentials, or
fluxes [26], since they have not become necessary for the closed
oriented superstring canonical ensembles. In the case of the type
IA(IB)–heterotic–M theory E8 × E8 open and closed unoriented
string ensemble, we anticipate inclusion of a discussion of all of
the Ramond-Ramond constant background fields, an investiga-
tion postponed for the future.
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perturbative string theory when using the world-sheet
superconformal field theory framework. It is thus heart-
ening that perturbative type II superstring amplitudes at
higher genus have been the subject of an intensive revisit
[31], enabling the extension of our work to higher orders in
string perturbation theory, and possibly, the analysis of the
all–orders high–temperature asymptotics of the superstring
vacuum energy density.
We should caution the reader that while an immense

literature exists on proposals for microcanonical and grand
canonical formulations for weakly coupled strings, the
conceptual basis of these analyses is as yet uncertain. Some
of the pitfalls have been described in [3,5,32]. One could
argue that the string/M microcanonical ensemble is essen-
tial for a formulation of string quantum cosmology, or the
statistical mechanics of the Universe: the Universe is, by
definition, an isolated closed system [33], and it is mean-
ingless to invoke the canonical ensemble of the “funda-
mental” degrees of freedom. On the other hand, many
questions in the standard model of cosmology ought to be
answerable within the framework of the perturbative super-
string canonical ensemble.
A second important observation pertains to the expected

Jeans instability of a gravitating ensemble, and formulation
of the thermodynamic limit in the presence of gravitational
interactions. Consider an ensemble of pointlike strings of
total mass, M, and Schwarschild radius, RS, and with one-
loop vacuum energy density ρ ¼ FðβÞ=RD−1

S . Recall that
the Newtonian gravitational coupling, GN ≃ g2, where g is
the fundamental closed string coupling. Since M ∼ ρRD−1

S ,
we have the relation

RS ≫
�

1

g2ρðβÞ
�

1=2
: ð8:1Þ

This would seem to suggest that our considerations in this
paper are limited to weak heterotic string coupling, as is
precisely compatible with our understanding of the weakly
coupled perturbative type IB O(32) thermalized graviton-
gluon ensemble. For large-loop-size gravitating heterotic
solitonic strings, we might expect a Jeans instability as was
proposed for any gravitating gauge ensemble by D. Gross,
L. Yaffe, and [32]. Compatibility with the strong-weak
dualities of the heterotic-type IB-type IA strings is essential
to circumvent a direct clash with the Jeans instability at
strong heterotic string coupling, or in M theory at finite size
R10. Nevertheless, as was shown in Sec. VI B and Sec. VI C
of this paper, there is a thermal-dual type IA ensemble of
closed thermal winding strings at low type IA temperatures.
Our results therefore suggests a thermal phase transforma-
tion of the thermal gluon-graviton ensemble at type IB
temperatures far above the string scale, even if the phase
transition at TC is not explicitly described. Such a thermal
phase transition does not occur in the canonical ensembles
of the closed superstring theories, which have a finite one-
loop vacuum energy density at the string scale temperature,

and are thermal dual to weakly coupled closed string
canonical ensembles, exactly alike in their statistical
mechanics and thermodynamics properties. Thus, we have
given evidence for two remarkable dynamical phenomena
in the fundamental string canonical ensemble in a twisted
torus and with generic background fields: the Hagedorn
divergence occurs only for the thermalized gauge-graviton
ensemble, whose normalized one-loop vacuum energy
density has been derived from that of the normalized,
finite temperature, open oriented type IB superstring
canonical ensemble, and the low-energy limit of the weakly
coupled finite temperature perturbative type IA (funda-
mental) string ensemble is an ensemble of long (solitonic)
thermal winding strings, which appear to be stable at
low temperatures and weak type IA string coupling.
Nevertheless, the type IA superstring being an open and
closed unoriented superstring theory, the thermal (funda-
mental) string excitations of the (solitonic) winding strings
could lead to a splitting transition at high temperatures, and
strong coupling. Thus, the low-energy limit of the type IA
superstring at finite temperature appears to match the
physics of non-Abelian gauge theories: confinement at
low type IA temperatures, and a plausible thermal phase
transition that is identical to the deconfinement transition at
the string scale, leading to a type IB transformed phase of
thermalized gluons and gravitons. Our results appear to
give credence to the long sought-after interpretation of the
“Hagedorn phase transition” in the type IA open and closed
string theory that can be identified with the deconfinement,
or “long” string, phase transition in string theory [3,5,6].
Our results also give a resolution to the puzzling

instability of flat spacetime pointed to in [32]; we have
shown that background fields—which are always, in any
case, generated by thermal fluctuations of the vacuum, and
present in the loop-renormalized string tension, the renor-
malized fundamental string coupling constant, and the
renormalized target spacetime moduli that describe the
stable thermal vacuum of the superstring theories at finite
temperature—can smooth infrared instabilities. This is very
encouraging, and further strong evidence in favor of the
physical and mathematical self-consistency of string/M
theory, an explanation for the bewildering multiplicity of
superstring theories, and of the plethora of vacua. There is
only one theory, and the plethora of solutions to the string
equations of motion simply enable computations at weak
string coupling and large (target space moduli) radi, or low
temperature, that describe different kinematical regimes of
the theory, where specific dynamical phenomena can occur.
The inclusion of higher order corrections from multiloop

superstring perturbation theory become essential to address
the perturbative evidence for a Jeans instability for strings
of macroscopic size explicitly. It is heartening that the small
blemishes that had remained in the impressive framework
for higher-loop superstring amplitudes developed from the
mid-1980’s onwards [28,34], have been recently addressed
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in a seminal series of outstanding papers by E. Witten, and
collaborators [31]. Thus, there is genuine hope that a more
explicit two-loop analysis of the type II superstring vacuum
energy density can be performed, which would shed light
on the stability of nontachyonic, and dilation tadpole-free,
nonsupersymmetric vacua, in the presence of background
fields, the most fundamental of which is the Neveu-
Schwarz antisymmetric 2-form gauge potential. The physi-
cal consistency of nonsupersymmetric, and nontachyonic,
type II and heterotic string asymmetric orbifold compacti-
fications has been tested, long well-known to string
theorists in the late eighties, and most often explored in
the free fermionic constructions. The recent developments
in [31] have led to a most elegant calculation of the two-
loop vacuum energy of the Z2 × Z2 Calabi-Yau orbifold
compactifications on the product of three 2-tori by D’Hoker
and Phong [35], giving the nonvanishing two-loop vacuum
energy density for the spinð32Þ=Z2 heterotic string theory,
with unbroken gauge symmetry SOð26Þ × SUð3Þ ×Uð1Þ.
In these models, spacetime supersymmetry is broken by
two-loop corrections via a Fayet-Ilioupoulos D term, while
both the one-loop amplitudes, and the tree-level mass
spectrum, has unbroken supersymmetry. It would be
interesting to extend these results to compactification on
twisted tori, twisting by the background 2-form B field, and
with the temperature-dependent background fields, which
likely provide a class of interesting models for supersym-
metry breaking in string/M theory, in addition to shedding
light on the systematic multiloop renormalization [29] of
the string tension, the string coupling, and additional target
spacetime moduli; the masses and couplings in heterotic
string theory. My own view is that until the status of
observational supersymmetric particle physics is more
clearly understood—such as, clues as to the scale of
supersymmetry breaking and the mass of the lightest
superpartner—the more serious theoretical issues of under-
standing why there is a string multiverse [30,36,37], and
what is the correct physical interpretation of the various
dualities that relate disparate regions of the space of string
vacua, are of greater urgency to resolve. I believe this is a
fundamental question, hinting at the existence of a more
efficient mathematical reformulation of string/M theory
[38–40]. Nevertheless, it would be a great breakthrough if a
compelling phenomenological model for spacetime super-
symmetry breaking could be constructed within this class
of relatively accessible Calabi-Yau compactifications, and
given that the role of fluxes in moduli stabilization has
by now been extensively examined [41], establishing that
a sensible model for spacetime supersymmetry breaking
is likely viable. More generally, we have in addition both
the NS five-branes, and the full set of allowed back-
ground p-form fields in the Ramond-Ramond sector
of the type IIA, type IIB, and type IA-IB superstring
theories, as became clear with the discovery of D-branes
[5,26,36,39,41], which is further stimulus for work on the

open questions regarding the proper physical interpretation
of the generalized electric-magnetic duality group of string/
M theory [40]. It should be noted that our results are
evidence for phase transitions in the moduli space of string
theories, not unlike the classic topology-changing phase
transitions discovered in [38,39], approached from the
world-sheet perspective, and the explicit computation of
superstring one-loop amplitudes. It would be fascinating to
combine these apparently distinct perspectives since they
bear a close resemblance, as noted in the outset where we
pointed out the similarity of the thermal duality relation to a
mirror symmetry transformation [19].
In closing, we mention that the target spacetime duality

symmetries of heterotic string backgrounds with com-
pact space, and compact time, in both Euclidean and
Minkowskian signature, had been studied in depth in a
far-reaching work in [42]. Backgrounds with Euclidean
time signature are more readily amenable to first quantiza-
tion by standard principles of world-sheet superconformal
field theory, and have significant physics implications for
finite temperature string and gauge theory, for early
Universe cosmology, and for the statistical mechanics of
the single string canonical ensemble. Eventually, we would
like a formalism for nonequilibrium string statistical
mechanics, which can directly probe the question of
phase transitions. A framework for string quantization in
Minkowskian spacetime is a necessary prerequisite, and
nonequilibrium string/M statistical mechanics is an out-
standing open problem which we hope is inspiration to
fundamental physics theorists!
Of immediate interest, it is likely that we can address the

following question in a future work. A derivation of the
one-loop free energy of the type IA E8 × E8 canonical
ensemble, is required to be compatible with the S-duality
relations for type IA/M theory. Consider the classical
moduli space of the type IA string on R8 × S1 × S1=Z2

and compare with the heterotic string, namely, M theory on
S1=Z2 × S1, where the radius of the S1 is R½E8×E8�, and the
interval is R10 ≡ gα01=2, with g the fundamental closed
string coupling, g½E8×E8�. In terms of the 11-dimensional
Planck length, M11 ¼ g−1=3α01=2, and R10, the strong weak
duality map yields the following result:

gIA ¼ 1

ðM11R10Þ3=2
ðR3

½E8×E8�ðM
9=2
11 R3=2

10 ÞÞ ¼ R3
½E8×E8�M

3
11:

ð8:2Þ

Substituting for R½E8×E8� ¼ β½E8×E8�=2π, we see that it is
possible to go above the string scale, probing the high-
temperature regime up to the 11-dimensional Planck scale,
α0−1=2 < T < M11, with weak gIA, and independent of R10.
This relation is clear evidence that the type IA E8 × E8

string admits a weak coupling analysis with O8 planes, 32
D8-branes, and 32 D0-branes [30]. We postpone a
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discussion of the one-loop free energy of the type IA E8 ×
E8 superstring for future work.
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APPENDIX: CLOSED BOSONIC STRING
VACUUM ENERGY DENISTY

The one-loop vacuum amplitude for the 26-dimensional
closed bosonic string is given by an ordinary integral over
the complex modulus, τ, parametrizing the conformally
inequivalent classes of closed Riemann surfaces with the
topology of a torus [2]. We will show that the two (real)
integrals over moduli, ðτ1; τ2Þ, of the genus one Riemann
surfaces summed in the one-loop string vacuum amplitude
can be carried out explicitly, and in closed form, by the
procedure of term-by-term integration of the closed string
level expansion. The integration domain in the complex τ

plane is the fundamental domain, F , of the group of
modular transformations of the torus [2]: − 1

2
≤ τ1 ≤ 1

2
,

jτj ≥ 1. The result will be an expression for the bosonic
string one-loop vacuum amplitude, expressed in terms of
the degeneracies, bm, at successive levels in the world-sheet
conformal field theory mass level expansion, where m
denotes level number, m ¼ 0;…;∞. These are weighted,
term-by-term in the level expansion, by numerical factors
arising from the modular integrals. Our goal in this
Appendix is to calculate the precise ultraviolet asymptotic
closed string level expansion by performing an explicit
analytic term-by-term integration over the moduli ðτ1; τ2Þ.
The leading tachyonic contribution in the vacuum

amplitude diverges as τ2 → ∞. This vacuum instability
is absent in the infrared finite and stable, target spacetime
supersymmetric type II superstrings discussed in the main
text; wewill simply excise this term from the infinite sum in
the illustrative calculation. Since our interest is in the high
temperature (short distance) regime, we can drop the
summation on thermal momentum modes; keeping only
windings. We make a change of variable, y ¼ 1=τ2,
expanding in powers of ðqq̄Þ1=2 ¼ e−2πτ2 . The asymptotic
expansion in level number, m, must be manipulated with
care since we interchange the order in which we perform
the modular integrals and level summation. Notice that
for each term in the infinite summation, the integrand is
manifestly finite for finite values of bðbosÞm , with no
divergences everywhere in the fundamental domain.
However, it is a well-known fact that the degeneracies
grow as the exponential of the square root of the mass level
number, m, at large m, a phenomenon known as the
Hagedorn growth of the world-sheet conformal field theory
partition function [6]. Thus, it is necessary to examine the
numerical correction to the coefficients in the string mass
level expansion which arise from the modular integration in
the expression for the string one loop vacuum energy
density.
We begin with the well-known result for the one-loop

vacuum energy density of the circle compactified 26D
closed bosonic string theory derived in [2,10,17], on a
circle of radius R ¼ β=2π:

ρbos ¼ −ð4π2α0Þ−26=2
Z þ1=2

−1=2
dτ1

Z
∞ffiffiffiffiffiffiffi
1−τ2

1

p
d2τ
4τ22

τ−122 jηðτÞη̄ðτ̄Þj−24

×
Xþ∞

n¼−∞

Xþ∞

w¼−∞
exp

�
−2πτ2

�
4π2α0n2

β2
þ w2β2

4π2α0

�
þ 2πinwτ1

�

¼ −ð4π2α0Þ−13 1
4

Z þ1=2

−1=2
dτ1

Z
1=

ffiffiffiffiffiffiffi
1−τ2

1

p

0

dy
Xþ∞

n¼−∞

Xþ∞

w¼−∞

X∞
m¼0

bðbosÞm yν−1e−2πmye
−2πτ2ð4π2α0n2β2

yþ2πw2β2

4π2α0
1
yÞþ2πinwτ1 : ðA1Þ

Note that bðbosÞm denotes the degeneracy at level m in the
string mass level expansion. Upon interchanging the order
of mass level summation, with the modular integrals, we

see upon inspection that the degeneracies will be corrected
by term-by-term numerical coefficients arising from the
integrals. Note that we compute these coefficients in each
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momentum or winding mode sector of the one loop vacuum
amplitude, taking the noncompact (low temperature) or
small radius (high temperature) approximation in the last
step prior to obtaining an analytic result, where the variable
y denotes, respectively, τ2, or its inverse, for the small
radius UV asymptotics [10]. The second equality has been
written for the asymptotic UV limit of the closed bosonic
string, with ν ¼ 13, and y ¼ 1=τ2. In the main text, this
step is carried out for the type II superstring theories in the
noncompact target spacetime supersymmetric 10D limit. In
this Appendix, we explain how either limit of the one loop
string vacuum energy density can be analyzed, and then
specialize instead to the small radius, or high temperature,
behavior of the closed bosonic string theory.
Let us denote the numerical correction by IðmÞ, an

infinite summation over thermal winding and momentum

modes. The integral over τ2 can be recognized as an integral
representation9 of the Whittaker function, Wν;λðxÞ (GR
3.471.2) [20,21]:

Z
u

0

dxxν−1e−
A
x ¼ A

ν−1
2 u

νþ1
2 e−

A
2uW−νþ1

2
;ν
2
ðA=uÞ; ðA2Þ

where we have set u ¼ ð1 − τ21Þ−1=2, and A, ν are given by:

A ¼ 2πm

�
1þ 2πα0n2

mβ2
þ w2β2

4mπ2α0

�
; ν ¼ 13: ðA3Þ

To proceed, note the degeneracies, bðbosÞm , in the bosonic
string mass level expansion are corrected by numerical
factors:

Iðm; n; wÞ ¼ 1

4

X∞
w¼−∞

A
ν−1
2

Z þ1=2

−1=2
dτ1ð1 − τ21Þ−7=2e−

1
2
Að1−τ2

1
Þ1=2W−νþ1

2
;ν
2
ðA½1 − τ21�1=2Þ: ðA4Þ

The term-by-term integrals over τ1 will be evaluated by substituting the appropriate, namely, power series or asymptotic,
expansion for the Whittaker function, valid in the limit of small or large argument. Namely, for the closed bosonic string,
with ν ¼ 13, and changing variables from τ1 to u, we have:

IðmÞ≡ 1

4
A6

�Z ffiffi
3

p
=2

0

−
Z

1

0

�
duu7−3ð1 − 1=u2Þ−1=2e−1

2
A=uW−14

2
;13
2
ðA=uÞ: ðA5Þ

The term by term integrals over u of a convergent series
representation of the Whittaker function can be performed
explicitly as follows. Set z equal to the argument of the
Whittaker function. Then, each of the term by term
integrals over the new variable z ¼ Ax will be found to
take the general form, for some integer j, and fraction κ:

X∞
r¼0

Cð−1=2Þ
ðrÞ

Z
1ffiffi
3

p
=2
dxx−1þ2rþjþκe−Ax;

Cð−1=2Þ
ðrÞ ¼ ð−1Þr 1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�: ðA6Þ

The Cð−1=2Þ
ðrÞ are the binomial coefficients for the power

series expansion, ð1 − x2Þ−1=2, with jxj2 ≤ 1. We can then

use the elementary integrals, for a given fraction κ, and a
given integer part j:

Z
1ffiffi
3

p
=2
dxxκþ2rþj−1e−Ax

¼ A−κ−2r−j½γðκ þ jþ 2r; AÞ − γðκ þ jþ 2r;
ffiffiffi
3

p
A=2Þ�:
ðA7Þ

The large radius IR asymptotics of the string mass
spectrum can be inferred from the convergent power series
representation for the Whittaker function which takes the
general form of an infinite power series, plus a logarithmic
term, plus a finite polynomial correction (GR 9.237.1) [20]:

Wλ;μðzÞ ¼
ð−1Þ2μzμþ1

2e−
1
2
z

Γð1
2
− μ − λÞΓð1

2
þ μ − λÞ ×

	X∞
k¼0

Γðμþ k − λþ 1
2
Þ

k!ð2μþ kÞ! zk
�
Ψðkþ 1Þ þΨð2μþ kþ 1Þ −Ψ

�
μþ k − λþ 1

2

�
− ln z

�

þ ð−zÞ−2μ
X2μ−1
k¼0

�
Γð2μ − kÞΓðk − μ − λþ 1

2
Þ

k!
ð−zÞk

�

: ðA8Þ

9In what follows, (GR #) denotes the corresponding equation number for a mathematical identity from the text [20].
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Note that, as above, lnðxÞ can be expanded in a Taylor
series about jxj ¼ 1, where the CðlÞ

ðjÞ are the binomial
coefficients with integer l, j:

ln x≡X∞
l¼1

ð−1Þlþ1

l
ðx − 1Þl

¼
X∞
l¼1

Xl

j¼0

CðlÞ
ðjÞ

ð−1Þlþjþ1

l
xj: ðA9Þ

We will not carry out these power series substitutions
explicitly for the closed bosonic string, since the IR limit is
tachyonic [2,10]. However, a similar manipulation is used
in the main text for the massless low-energy supergravity
field theory limit of the 10D tachyon-free type IIA and type
IIB superstrings.
On the other hand, the small radius UV asymptotics of

the string mass spectrum can be inferred from the asymp-
totic expansion for the Whittaker function (GR 9.227) [21]:

Wðκ;λÞðzÞ ∼ e−z=2zκ
�
1þ

X∞
k¼1

1

k!
z−k

�
λ2 −

�
κ −

1

2

�
2
��

λ2 −
�
κ −

3

2

�
2
�
� � �

�
λ2 −

�
κ − kþ 1

2

�
2
��

; ðA10Þ

where z≃ 2πm with corrections of Oð4π2R2=mα0Þ. Substituting the asymptotic expansion for large argument of the
Whittaker function in Eq. (1.30), and solving for the integrals over z in Eqs. (1.31), (1.32) gives:

IðmÞ ¼ 1

4
A−1

X∞
r¼0

X∞
k¼0

A−kð−1Þ2rþ1
1

r!
½ð1=2Þð3=2Þ � � � ðr − 1=2Þ�

×
1

k!
ð−1Þkþ1Ck½Wð−13−kþ2rÞ=2;ð12þk−2rÞ=2ðA

ffiffiffi
3

p
=2Þ −Wð−13−kþ2rÞ=2;ð12þk−2rÞ=2ðAÞ�;

C0 ¼ −1; Ck ≡
��

15

2

�
2

−
�
13

2

�
2
���

17

2

�
2

−
�
13

2

�
2
�
� � �

��
13þ 2k

2

�
2

−
�
13

2

�
2
�
; ðA11Þ

Thus, we find confirmation by explicit computation of the dramatic reduction in the degrees of freedom in string theory at
high temperatures [3,10]; the result is Oðe−AÞ, providing the exponential suppression as a linear power of mass level
number m. More explicitly, the numerical correction, IðmÞ, to the degeneracies, bðbosÞm , in the closed bosonic string mass
level expansion, is an exponential suppression of the precise form: e−ð2πmþw2β2=2πα0Þ, which erases theOðe ffiffiffi

m
p Þ growth of the

degeneracies, bðbosÞm at large m [6].
The convergence of the free energy in the ultraviolet, namely, at high mass level numbers and high energies is extremely

rapid, an exponential suppression:

ρbosonic ¼ −ð4π2α0Þ−13 1
4

X∞
m¼0

bðbosÞm

X∞
w¼−∞

A−1
X∞
r¼0

X∞
k¼0

A−k 1

r!
½ð−1=2Þð−3=2Þ � � � ð−rþ 1=2Þ�

×
1

k!
ð−1ÞkCk½ð

ffiffiffi
3

p
A=2Þð−13−kþ2rÞ=2e−A

ffiffi
3

p
=2 − ðAÞð−13−kþ2rÞ=2e−A�

¼ −ð4π2α0Þ−13
X∞
m¼0

bðbosÞm

X∞
w¼−∞

X∞
k¼0

�
1

k!
ð−1ÞkCk

��
2πm

�
1þ w2β2

4mπ2α0

��
−ð15þ3kÞ=2

×

8<
:

a−ð15þ3kÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð 2ffiffi

3
p

A
Þ2

q e−πm
ffiffi
3

p ð1þ w2β2

4mπ2α0Þ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1AÞ2
q e−2πmð1þ w2β2

4mπ2α0Þ

9=
;; ðA12Þ

where a ¼ ffiffiffi
3

p
=2. At first sight, the reader might be

concerned whether the summation over k is convergent:
the numerical coefficients, Ck > 1, grow with increasing k,
and successive terms in the series have alternating sign.
However, for large mass level number, m, the succeeding
terms in the summation are suppressed due to the negative
powers of m. Expressing the series as the sum of two like-
sign infinite series, it is apparent that successive terms in

each are suppressed by a factor of 1=m, in addition to the
overall exponential suppression. This will lead to very rapid
convergence. This is also true for the summation over m:
there is a well-known square root exponential growth as a
function of mass level m of the degeneracies, bm, at large
mass level numbers [6,7], but rapid convergence of the free
energy is driven by the variable A, which provides an
exponential suppression linear as a function of mass level
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number! Our explicit analytic integration of the closed
string world-sheet moduli has pinned down the precise
mathematical form: the convergence in the ultraviolet is as
fast as an exponential superimposed on the power law
suppression of the degeneracies at high mass levels.
Our result point to the exact renormalization properties

of any 2d Weyl × diffeomorphism invariant critical string
theory. Since the 26-dimensional closed bosonic string has
neither supersymmetry, nor is it free of vacuum instabil-
ities, it is nice to have an explicit analytic derivation
establishing that the closed bosonic string mass level
expansion is nevertheless ultraviolet finite, and convergent.

This conclusion was implicit in the final expression
for the one-loop string vacuum amplitude derived as a
diffeomorphism ×Weyl invariant path integral [2],
extended and reviewed by us in [16,29]. We note that
the original demonstration of the significance of the one-
loop modular transformations dates to the 26D Virasoro-
Shapiro model [17]. The Weyl × diffeomorphism invariant
measure of the integral for 2d quantum gravity conformally
coupled to 26 scalars, is finite everywhere in the funda-
mental domain of the modular group of the torus, a property
that can also be deduced at any order in the string loop
expansion [28].
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