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We study the magnetoresponse with nonconserved currents in holography. Nonconserved currents are
dual to massive vector fields in anti–de Sitter (AdS). We introduce the mass in a gauge invariant way via the
Stückelberg mechanism. In particular we find generalizations of the chiral magnetic effect, the chiral
separation effect and the chiral magnetic wave. Since the associated charge is not conserved we need to
source it explicitly by a coupling, the generalization of the chemical potential. In this setup we find that in
general the anomalous transport phenomena are still realized. The values we find for nonzero mass connect
continuously to the values of the anomalous conductivities of the consistent currents, i.e. the proper chiral
magnetic effect vanishes for all masses (as it does for the consistent current in the zero mass case) whereas
the chiral separation effect is fully present. The generalization of the chiral magnetic wave shows that for
small momenta there is no propagating wave but two purely absorptive modes (one of them diffusive).
At higher momenta we recover the chiral magnetic wave as a combination of the two absorptive modes.
We also study the negative magneto resistivity and find that it grows quadratically with the magnetic field.
The chiral magnetic wave and the negative magneto resistivity are manifestations of the chiral magnetic
effect that takes place when the (nonconserved) charge is allowed to fluctuate freely in contrast to the case
where the charge is fixed by an explicit source. Since the (classical) Uð1ÞA symmetry of QCD is not at all a
symmetry at the quantum level we also argue that using massive vectors in AdS to model the axial singlet
current might result in a more realistic holographic model of QCD and should be a good starting point to
investigate the dynamics of anomalous transport in the strongly coupled quark gluon plasma.
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I. INTRODUCTION

Anomalies in the quantum theories of chiral fermions
belong to the most emblematic properties of relativistic
quantum field theory [1,2] (see [3,4] for reviews). They
provide stringent consistency conditions on possible gauge
interactions but also predict physical processes that would
be otherwise highly suppressed such as the decay of the
neutral pion into two photons.
Anomalies are not only important for the phenomenol-

ogy of particle physics but they also are of utmost
importance to the theory of quantum many body systems
containing chiral fermions. Anomaly cancellation plays a
crucial role in the field theoretic understanding of the
electroresponse of quantum hall fluids for example. Chiral
fermions appear as edge states and the associated anomalies
have to be canceled by appropriate anomaly inflow from a
gapped bulk reservoir of charge.
More recently the focus has been on ungapped chiral

bulk fermions that give rise to new anomaly related
transport phenomena in the presence of a magnetic field
(chiral magnetic effect [5]) and/or vortices (chiral vortical
effect [6,7]). The chiral magnetic effect describes the
generation of a current in the presence of a magnetic field,

~J ¼ σB ~B: ð1Þ

The associated chiral magnetic conductivity [8] can be
calculated from first principles via a Kubo-type formula,

σB ¼ lim
kz→0

i
kz

hJxJyiðω ¼ 0; ~k ¼ kzêzÞ: ð2Þ

Since these effects owe their existence to the presence of
(global) anomalies one could expect that their values are
universal and independent from interactions. Indeed cal-
culations with free fermions [9,10] give the same result as
infinitely strongly coupled theories defined via the AdS/
CFT correspondence [11,12]. Furthermore it was shown
that the anomalous conductivities are completely deter-
mined in hydrodynamics or in effective action approaches
[13–15] (with the exception of the gravitational anomaly
contribution, whose model independent determination
needs additional geometric arguments [16]). Therefore
the values of the chiral conductivities related to purely
global anomalies are subject to a nonrenormalization
theorem akin to the Adler-Bardeen theorem [17].
Chiral conductivities do get renormalized however in the

case when the gauge fields appearing in the anomalous
divergence of the current are dynamical [17,18]. An example
is the singlet Uð1ÞA current in QCD. Its anomaly is of the
form
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∂μJ
μ
A ¼ ϵαβγδ

�
Nc

P
fq

2
f

32π2
FαβFγδ þ

Nf

16π2
trðGαβGγδÞ

þ NcNf

96π2
F5
αβF

5
γδ

�
: ð3Þ

Here F is the electromagnetic field strength, G the gluon
field strength andF5 the field strength of an axial gauge field
A5
μ whose only purpose is to sum up insertions of the axial

current in correlation functions, i.e. there is no associated
kinetic term. Nc and Nf are the numbers of colors and
flavors respectively. In this case it has been shown in [17,18]
that the vortical conductivity receives two loop corrections
whereas later on it has been argued in an effective field
theory approach that all chiral conductivities receive higher
loop corrections once dynamical gauge fields enter the
anomaly equation [19].
It has been argued long ago by ’t Hooft that in such a

situation one should not think of the classically present
Uð1ÞA symmetry as a symmetry at all on the quantum level
[20]. In asymptotically free theories such as QCD there
might survive only a discrete subgroup because of instanton
contributions. This discrete subgroup can be further broken
spontaneously via chiral symmetry breaking but since it
was not a symmetry to begin with there is also no
associated Goldstone boson, which explains the high mass
of the η0 meson in QCD. A related fact is that the
corresponding triangle diagram receives higher loop cor-
rections via photon-photon or gluon-gluon rescattering.
These higher order diagrams lead to a nonvanishing
anomalous dimension for the axial current operator JμA.
See [21,22] for recent reviews.
These considerations motivate us to study the anomalous

magnetoresponse of massive vector fields in holography.
Our philosophy is as follows. In quantum field theory we
would have to study the path integral

Z ¼
Z

DΨDΨ̄DAq

× exp

�
i
Z

d4x

�
−
1

2
trðG:GÞ þ Ψ̄DΨþ θOA þ J:A

��
;

ð4Þ

where Aq stands collectively for the dynamical gauge
fields, G is their field strength tensor and OA is the
(operator valued) anomaly

OA ¼ ϵαβγδ
�

Nf

16π2
trðGαβGγδÞ þ

NcNf

96π2
FαβFγδ

�
: ð5Þ

Since the anomaly is a quantum operator we need to define
a path integral that allows to calculate correlation functions
of this anomaly operator. This means that we need to
introduce the source field θðxÞ coupling to OA. For the
same reason we also have to include a source for the

anomalous current Jμ. This source is the nondynamical
gauge field which from now on we denote by Aμ. The
covariant derivative in (4) contains only the dynamical gauge
fields. The nondynamical gauge fields are coupled with the
last term in (4). If we define the effective action
expðiWeff ½A; θ�Þ ¼ Z it is basically guaranteed by construc-
tion that this effective action enjoys the gauge symmetry

δAμ ¼ ∂μλ; δθ ¼ −λ; δWeff ¼ 0: ð6Þ

We now replace the (strongly coupled) dynamics of the
gluon (and fermion) fields, i.e. the path integral over Aq,
Ψ and Ψ̄ by the dynamics of classical fields propagating in
anti–de Sitter (AdS) space. The gravity dual should allow
to construct Weff ½A; θ� as the on-shell action of a field
theory in anti–de Sitter space containing a vector field
Aμ and a scalar θ obeying the gauge symmetry (6). In
addition, as we have argued before, the vector field should
source a nonconserved current. Since anti–de Sitter space
implies the dual theory to have an additional conformal
symmetry the four-dimensional current is nonconserved
if and only if its dimension is different from three. This in
turn means that the bulk vector field in our AdS theory has
to be a massive vector and it is precisely the gauge
symmetry (6) that allows the inclusion of a gauge invariant
Stückelberg mass in the bulk AdS theory. The anomaly
also includes the global part proportional to the field
strengths of the nondynamical gauge field; therefore we
also need to include a five-dimensional Chern-Simons
term in our AdS dual. The relation of the Stückelberg field
in holography to the anomaly has been first pointed out in
[23] and the necessity to include it in holographic studies
of the anomalous transport has very recently also been
emphasized in [24].
Moreover, since we have application to the physics of the

strongly coupled quark gluon plasma in back of our head,
we are lead to study a massive Stückelberg theory with a
Chern-Simons term at high temperature, i.e. in the back-
ground of an AdS black brane. We make one more
simplifying assumption. We do not study any correlation
functions including the energy momentum tensor.
Therefore we can resort to the so-called probe limit in
which we ignore the backreaction for the gauge field theory
onto the geometry.
The paper is organized as follows. In Sec. II we define a

simple model with one massive vector field. We calculate
the (holographically) normalized nonconserved current and
compare to the massless case. Then we study the gener-
alization of the chiral magnetic conductivity defined via the
Kubo formula (2). We find that the chiral conductivity still
exists and in terms of an appropriately defined dimension-
less number gets even enhanced compared to the massless
case. In the limit of vanishing mass we recover the value of
the chiral magnetic conductivity in the consistent current.
As is well known this is 2=3 of the standard value most
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commonly cited (which corresponds to the covariant
definition of the current).
We remind the reader of the fact that the chiral magnetic

effect in the consistent current for the Uð1Þ3 anomaly of a
single Weyl fermion takes the form

~J ¼
�

μ

4π2
−

A0

12π2

�
~B; ð7Þ

whereas for the triangle anomaly with one axial and two
vector-like currents (AVV) of a single Dirac fermion with a
vector current preserving regularization it is

~JV ¼
�
μ5
2π2

−
A5
0

2π2

�
~B; ð8Þ

with μ, μ5 being the (axial) chemical potentials and A0 and
A5
0 being the background values of the (axial) gauge fields

that do not necessarily coincide with the chemical poten-
tials. The customary gauge choice A0 ¼ μ and A5

0 ¼ μ5
leads to the factor 2=3 in the Uð1Þ3 case and to a vanishing
chiral magnetic effect (CME) in the AVV case.1 In contrast
the chiral separation effect

~J5 ¼
μV
2π2

~B ð9Þ

shows no explicit dependence on the temporal gauge field.
This is a consequence of the fact that the vectorlike
symmetry is nonanomalous, i.e. μV is the chemical poten-
tial conjugate to a truly conserved charge.
If one expresses the CME however in terms of the

covariant currents the terms depending on the gauge
fields are absent. Finally we note that the relation between
covariant and consistent currents is Jμcov ¼ Jμcons þ
1

24π2
ϵμνρλAνFρλ for the Uð1Þ3 anomaly and Jμcov;V ¼

Jμcons;V þ 1
12π2

ϵμνρλA5
νFρλ. In these expressions the currents

and Chern-Simons terms all have dimension three.
In Sec. III we consider a massive and a massless vector

field in the bulk. Our motivation is that the proper chiral
magnetic effect stems from an interplay of vector and axial
symmetries. The vector symmetry can be taken as the usual
electromagnetic Uð1Þ. While the electromagnetic gauge
fields are still quantum operators we can assume in the
quark gluon plasma context that electromagnetic inter-
actions are weak and to first approximation we might
model the vector Uð1Þ as a nondynamical gauge field.
Furthermore the vector current of electromagnetic inter-
actions has to be exactly conserved. We compute the chiral
magnetic conductivity and the conductivity related to the

chiral separation effect. We find that the chiral separation
effect is fully realized whereas the chiral magnetic con-
ductivity vanishes. Again we point out that these are the
same results that hold for the consistent currents in the case
when also the axial current is modeled by a massless vector
field. Then we study the chiral magnetic wave [26] and
compare our findings to a simple hydrodynamic model in
which we include a decay width for the axial charge by
hand. We find basically a perfect match between the modes
of the phenomenological model and the low lying quasi-
normal modes of the holographic model. For small
momenta we find absence of a propagating wave, whereas
for large enough momentum there is indeed a propagating
(damped) wave which is the generalization of the chiral
magnetic wave. Finally we also study the negative mag-
netoresistivity induced by the anomaly in a constant
magnetic field background. We find by numerical analysis
that the negative magnetoresistivity depends quadratically
on the magnetic field. The optical conductivity has a Drude
peak form whose height is determined by the inverse of
the bulk mass. For large magnetic field a gap opens up in
the optical conductivity and we also check that the spectral
weight gets shifted from the gap region into the peak region
such that a sum rule of the formdðR dωσðωÞÞ=dB ¼ 0holds.
We present our conclusions in Sec. IV, summarize and

discuss our results and give some outlook to possible
further generalizations of models with holographic
Stückelberg axions.

II. HOLOGRAPHIC STÜCKELBERGMECHANISM
WITH A U(1) GAUGE FIELD

In this section we consider Maxwell–Chern-Simons
theory in the bulk and give a mass to the gauge field via
Stückelberg mechanism

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

m2

2
ðAμ − ∂μθÞðAμ − ∂μθÞ

þ κ

3
ϵμαβγδðAμ − ∂μθÞFαβFγδ

�
: ð10Þ

The above model provides a mass for the gauge field in a
consistent gauge invariant way. Stückelberg terms indeed
arise as the holographic realization of dynamical anoma-
lies, as pointed out for the first time in [23] (see also [27] for
similar conclusions in the context of AdS/QCD). This has
been also emphasized quite recently by the authors of [24]
for a class of nonconformal holographic models.
As it is well known, in holography we do not have access

to the strongly coupled gauge field directly.2 This implies
that the dynamical contribution to the divergence of the

1If an axion background is present there is also a term
proportional to ∂tθ~B. We also emphasize that the anomaly makes
the (axial) gauge field an observable precisely via the terms in (7),
(8). See e.g. the discussion in [25].

2Note however that dynamical gauge fields emerge in the
alternative quantization scheme in AdS4 [28]. They can also be
introduced via inclusion of boundary kinetic terms [29].
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current enters as a mass term for the gauge field thereby
inducing an explicit nonconservation. In contrast the global
anomaly is implemented by an explicit Chern-Simons term.
This fits the general expectation that the dynamical
anomaly cannot be switched off because it is not simply
a given by a functional of external fields.
Let us also comment on a crucial difference between

model (10) and models of holographic superconductors.
Holographic superconductors [30] also give a bulk mass
term to the gauge field and they might be written in
Stückelberg form as well [31]. The difference is that the
Higgs mechanism in the bulk uses a massive scalar field
that decays at the boundary and does therefore not change
the asymptotic behavior of the gauge field. In our case the
mass is constant in the bulk and does therefore change the
asymptotic behavior of the vector field as one approaches
the boundary of AdS.
We will work in the probe limit with Schwarzschild

AdS5 as background metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ
r2

L2
ðdx2 þ dy2 þ dz2Þ;

fðrÞ ¼ r2

L2
−
r4H
r2

: ð11Þ

As usual we make use of rescaling invariance of the theory
to set rH ¼ 1 and L ¼ 1, and therefore πT ¼ 1.
The equations of motion are

∇νFνμ −m2ðAμ − ∂μθÞ þ κϵμαβγρFαβFγρ ¼ 0; ð12Þ
∇μðAμ − ∂μθÞ ¼ 0: ð13Þ

The asymptotic analysis shows that the non-normalizable
(N.N.) and the normalizable modes of the gauge field
behave as

AiðN:N:Þ ∼ Aið0ÞrΔ; AiðN:Þ ∼ ~Aið0Þr−2−Δ;

Δ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
: ð14Þ

Since the mass has to be positive (for the massless case
saturates the unitarity bound), there is no possible alter-
native quantization and the leading term is always to be
identified with the N.N. mode. Moreover, there is an upper
bound to the value of the mass prescribed by Δ ¼ 1. As we
will show via holographic renormalization, the operator
dual to the coefficient of the non-normalizable mode is
essentially given by the normalizable mode. Its dimension
can be found via the following argument. The AdS metric is
invariant under the scaling r → λr, ðt; ~xÞ → λ−1ðt; ~xÞ. Since
a gauge field is a one form we have to study the behavior of
Aμðr; xÞdxμ under these scalings. One finds then that the
normalizable mode has a scaling dimension of

dimð ~Aið0ÞÞ ¼ ½Ji� ¼ 3þ Δ: ð15Þ

This implies that if Δ > 1 the dual operator is irrelevant
(in the IR) and thus destroys the AdS asymptotics. In the
holographic renormalization in Appendix A we find that
accordingly the number of counterterms diverges for
Δ > 1.3

It is clear that the number of counterterms depends on the
value of the mass. From now on we will work in the range
of masses that minimizes it, namely

Δ <
1

3
⟷ m2 <

7

9
: ð16Þ

Henceforth we will refer to Δ as the anomalous dimension
of the dual current.
The procedure of renormalization for this theory is

explained and discussed in detail in Appendix A.
The boundary action with the counterterms such that
SRen ¼ Sþ SCT reads

SCT ¼
Z
∂
d4x

ffiffiffiffiffiffi
−γ

p �
Δ
2
BiBi −

1

4ðΔþ 2Þ ∂iBi∂jBj

þ 1

8Δ
FijFij

�
; ð17Þ

with Bi ≡ Ai − ∂iθ.
Remarkably, the coupling of the Stückelberg field to the

Chern-Simons term in (10) is not optional once the mass is
turned on; if one does not add it to the action it appears as a
counterterm when holographic renormalization is carried
out. More precisely the coefficient in front of dθ ∧ F ∧ F in
(10) is not arbitrary once the mass is turned on. It is fixed to
be the negative of the coefficient in front of the Chern-
Simons term A ∧ F ∧ F, which renders a completely gauge
invariant action. If we had not added this term directly from
the start it would thus have appeared as a counterterm.

A. The one-point function

From the renormalized action we compute correlators of
the dual operators in the boundary theory by means of the
usual prescription. In this section we show our results,
sticking only to the strictly necessary technical details for
the discussion. A detailed discussion of the calculations can
be found in Appendix B 1.
Due to the anomalous dimension of the operator the

analysis of the one-point function becomes more subtle
than in the massless case. In previous works, at zero mass,
the leading terms of the expressions were finite. Therefore
it made sense to look at the expression for the current
expectation value as a functional of the covariant fields
before taking the limit r → ∞. This is however not the case
when m ≠ 0, since now all terms are divergent to leading
order. Nevertheless, to make comparison with the results at

3We thank Ioannis Papadimitriou for pointing this out.

JIMENEZ-ALBA, LANDSTEINER, AND MELGAR PHYSICAL REVIEW D 90, 126004 (2014)

126004-4



zero mass, we want to look at the result before explicitly
taking the limit. In order to do so, we split the unrenor-
malized one-point function into a term lacking a (sublead-
ing) finite contribution (called X below) and terms which
do lead to a finite contribution after renormalization,

hJii ¼ lim
r→∞

ffiffiffiffiffiffi
−g

p
rΔðFir þ rΔAiÞ þ Xi: ð18Þ

We see that the contribution arising from the Chern-Simons
term in (10) is contained in Xi, which means that it does
not contribute explicitly to the current. The renormalized
one-point function reads

hJiiren ¼ 2ð1þ ΔÞ ~Ai
ð0Þ; ð19Þ

where ~Að0Þm is the coefficient of the normalizable mode. Let
us compare this with the expression for the consistent
current that one obtains in absence of mass4

hJii ¼ lim
r→∞

ffiffiffiffiffiffi
−g

p �
Fir þ 4κ

3
ϵijklAjFkl

�
þ Xi:

¼Ren 2 ~Ai
ð0Þ þ

8κ

3
ϵijklAjð0Þ∂kAlð0Þ ð20Þ

Here we see that in the massless case (Δ ¼ 0) the Chern-
Simons term indeed gives a finite contribution to the
current which is explicitly proportional to the sources.
It is precisely this term that makes the difference between
the covariant and the consistent definition of the current.
We remind the reader that in the case of global anomalies
one can define a covariant current by demanding that it
transforms covariantly under the anomalous gauge trans-
formation. In the AdS/CFT dictionary this covariant current
is given by the normalizable mode of the vector field. In
contrast the consistent current is defined as the functional
derivation of the effective action with respect to the gauge
field and in the AdS/CFT correspondence includes the
Chern-Simons term in (20).
Equations (18)–(19) establish that we are no longer able

to make such a distinction if m ≠ 0, for there is no explicit
finite local contribution of the Chern-Simons term to the
current operator. Quite remarkably, all of our results show
that (19) corresponds to the consistent current in the zero
mass limit. This ultimately implies that in the limit m → 0
the highly nonlocal expression ~Að0Þi gives rise to the two
terms in the last line of (20), which include a local term in
the external sources. Hence, within the article we will only

refer to consistent or covariant currents when analyzing the
massless limit.
Another remarkable difference with the massless model

is the Ward identity of the current operator. Using the
equations of motion we can write the divergence of the
current on shell

h∂iJii¼ lim
r→∞

ffiffiffiffiffiffi
−g

p
rΔ
�
m2∂rθþ rΔ∂iAi−

κ

3
ϵijklFijFklþ ~X

�
;

¼Ren 2ð1þΔÞ∂i
~Ai
ð0Þ; ð21Þ

where we have extracted the (infinite) Chern-Simons term
from (18)5 because it is convenient for the following
discussion. As mentioned before, the fact that the terms
in these expressions diverge obscures the interpretation if
one does not take the limit r → ∞. Once we take it we find
that the Ward identity (21) becomes a tautology since the
only term on the right-hand side that gives a finite
contribution is determined in the large r expansion directly
by the divergence of the normalizable mode of the vector
field. Therefore the divergence of the current on shell is
unconstrained.
If we now look at what happens when we take the limit

m → 0 before we take r → ∞ we see that we recover the
expression for the divergence of the consistent current

h∂iJii ¼ lim
r→∞

ffiffiffiffiffiffi
−g

p �
κ

3
ϵijklFijFkl þ ~X

�
¼Ren ffiffiffiffiffiffi

−g
p κ

3
ϵijklFijFkl ð22Þ

contained in the (nonlocal) normalizable mode of the filed.
As we will see now the behavior of the conductivity points
in the same direction.

B. Two-point functions and anomalous conductivity

Our main interest is to study the effect that the anoma-
lous dimension has on the response of the system in the
presence of a magnetic field. As a first step in this direction
we compute the anomalous conductivity Ji ¼ σ55Bi that is
related to a correlator of current operators via the Kubo
formula

σ55 ¼ lim
k→0

i
kz

hJxJyi
����
ω¼0

: ð23Þ

We emphasize however that Bi does not have the simple
interpretation of a magnetic field since its dimension is
2 − Δ. We want to study the anomalous conductivity in an
analogous fashion to [32] and find the dependence of the
chiral anomalous conductivity on the source for Jμ. In order
to generalize the concept of chemical potential to the

4Notice that in the zero mass limit θ becomes a nondynamical
field defined at the boundary. The divergence of this field also
contributes to the current [25]. In order to keep the discussion
simple we chose to take this nondynamical field to vanish since
this is the natural value that arises from our background in the
zero mass limit. 5In other words, ∂iXi ¼ − κ

3
ϵijklFijFkl þ ~X.
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situation at hand we switch on a temporal component of
the gauge field in the background A ¼ ΦðrÞdt. We choose
the axial gauge Ar ¼ 0. The equation of motion is

Φ00 þ 3

r
Φ0 −

m2

f
Φ ¼ 0: ð24Þ

We solve Eq. (24) numerically,6 with the following boun-
dary conditions:

ϕðrHÞ ¼ 0; ϕðr → ∞Þ ∼ μ5rΔ; ð25Þ

with μ5 being the source. Notice that μ5 does not corre-
spond to a thermodynamic parameter in our massive model.
Rather it should be interpreted as a coupling in the
Hamiltonian. Different values of μ5 correspond therefore
to different theories. Different values of a chemical poten-
tial correspond only to different filling levels of the low
lying fermionic states in the same theory. In the case of an
anomalous symmetry one has to distinguish this filling
level from the presence of a background constant temporal
component of the gauge field [32].
The near horizon analysis shows that we are forced to

impose ΦðrHÞ ¼ 0. In absence of the mass term the gauge
filed is not divergent at the horizon, independently of the
finite value it takes at the boundary. This reflects the
remnant (recall we work in the axial gauge) gauge freedom
that one has in this case: the value of the source can be
shifted by a gauge transformation.7 However the mass term
in the equation of motion (e.o.m.) is divergent at the
horizon and forces the field to vanish there. Remarkably,
this and the asymptotic behavior of the field illustrate the
fact that speaking of a chemical potential does no longer
make sense. Computing the chemical potential as the
integrated radial electric flux in the bulk one obtains

μ ¼ lim
r→∞

Z
r

rH

∂rAtdr → ∞: ð26Þ

This can be understood heuristically from the nonconser-
vation of the charge: the energy to introduce and maintain a
quantum of charge that is not conserved is infinite.
Since our background is homogeneous in the transverse

directions it is easy to see that h∂iJii ¼ 0. In particular, the
fact that a stationary solution exists implies that it is
possible to choose a homogeneous configuration of μ5
such that it compensates for the decay of the charge that is
naturally caused due to the mass term. Namely,

dρ
dt

¼ 0; ð27Þ

with ρ being the charge density of the system. We will see
that the source necessary to ensure (27) equals the axial
chemical potential in the massless limit (recall that only
when m ¼ 0 we can identify μ5 with a chemical potential).
Once we have built the background we can proceed to

switch on perturbations on top of it in order to compute the
two-point function (23). To linear order in the external
source ~Ai

ð0Þ ≈ ~Ai
ð0Þ þ δ ~aið0Þ. From (19) we have

hJnJmi ¼ 2ð1þ ΔÞηml
δ ~að0Þl
δað0Þn

: ð28Þ

Here ~að0Þm is the coefficient of the normalizable mode of
the perturbation. We compute the above expression numeri-
cally. Again we leave technical details for Appendix B 2
because the analysis is tedious and it is based on standard
techniques. We show the result in Fig. 1. A comment is in
order here regarding the temperature dependence on the
plots. Dimensional analysis of the correlator ½hJJi� ¼ 6þ
2Δ implies that the conductivity now has dimension
½σ� ¼ 1þ 2Δ. This in turn causes the physical conductivity
to have a temperature dependence σ ∼ T3Δ. As usual, from
numerics we can only plot dimensionless quantities
σ=ðπTÞ3Δ and μ5=ðπTÞ1−Δ.
The plot on the left panel of Fig. 1 shows the dependence

of the conductivity with the source for different values of
the mass. Despite the fact that the slope changes the
behavior is always linear in the dimensionless source
parameter. The plot on the right panel shows the conduc-
tivity coefficient vs the anomalous dimension of the current
Δ. Remarkably the conductivity gets enhanced by the
presence of the mass term in the bulk. In addition to this
enhancement the plot shows another feature that deserves a
comment. In the limit ΔðmÞ → 0 the conductivity goes to
the numerical value 5.333 ∼ 16

3
. Let us now look at the

analytic solution for zero mass shown in (2.25) of [32],8

hJi5Jj5i ¼ −4i~κkð3μ5 − αÞϵij; ð29Þ

where μ5 here is the thermodynamic chemical potential, α
is the source, i.e. the boundary value of the temporal
component of the gauge field and ~κ ¼ 2κ

3
in our convention.

If one chooses the gauge α ¼ μ5 then one obtains

hJi5Jj5i ¼ −8i~κkμ5ϵij: ð30Þ
6The analytic solution can be worked out in terms of hyper-

geometric functions. Since we need to resort to numerical
methods later on, when studying fluctuations around the back-
ground, we found it more convenient to apply purely numerical
methods also for the background.

7Gauge transformations that are nonzero at the horizon are not
true gauge transformations but global transformations.

8This model contained two massless vector fields in the bulk,
one modeling the conserved vector and the other the anomalous
axial symmetry. It is clear that the result obtained in our model
with one massive vector should be compared in the zero mass
limit to the axial vector sector of the model in [32].
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In our numerical results we have absorbed the Chern-
Simons coupling in the definition of the external B-field
(or equivalently set it to one in the fluctuation equations).
Taking into account the difference in the normalizations
of the Chern-Simons couplings in [32] we can extract
from (29) the numerical value σ55 ¼ 16=3 which coin-
cides with the m → 0 limit in our case. We conclude that
our result matches the analytic formula only if we
identify α ¼ μ5, as mentioned right after Eq. (27). This
is also consistent with what we found in the expression
for the current.
The fact that we found a time-independent background

solution obscures the nonconservation of the charge. The
best way to shed light onto the explicit decay of charge is
by considering a trivial background (in particular, all the
sources vanish) and look at the spectrum of quasinormal
modes. In the massless case the lowest quasinormal mode
(QNM) shows a diffusion-type behavior, namely
ω ¼ −iDk2. This diffusive mode has to develop a gap
when m ≠ 0 due to the nonconservation of the charge.
Technical details on how to compute QNM can be found
in [33]. Indeed we find that the lowest QNM is no longer
massless. The gap Γ depends on the value of the bulk
mass as depicted in Fig. 2.
This indicates that the charge is no longer conserved.

Furthermore a simple phenomenological model including
only the dynamics of the lowest quasinormal mode
suggests that the nonconservation can be modeled by
writing ∂μJμ ¼ − 1

τ J
0, where τ is the inverse of the gap

Γ of the lowest quasinormal mode. Indeed, such a
phenomenological decay law together with Fick’s law
~J ¼ −D~∇J0 suggests a gapped pseudodiffusive mode
ωþ i=τ þ iDk2 ¼ 0 which indeed is what we find from
the QNM spectrum (see the next section).

III. THE STÜCKELBERG Uð1Þ × Uð1Þ MODEL

In this section we introduce an extra unbroken Abelian
symmetry in the bulk. This allows us to switch on an
“honest” external magnetic field in the dual theory and
therefore study not only the axial conductivity but the chiral
magnetic conductivity and the chiral separation conduc-
tivity as well. In addition we will be able to study the effect
of the mass on the chiral magnetic wave and on the electric
conductivity. The Lagrangian reads

L ¼
�
−
1

4
F2 −

1

4
H2 −

m2

2
ðAμ − ∂μθÞðAμ − ∂μθÞ

þ κ

2
ϵμαβγδðAμ − ∂μθÞðFαβFγδ þ 3HαβHγδÞ

�
; ð31Þ
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FIG. 1 (color online). Left: Plot of the conductivity versus the source for m2 ¼ 1=2 (upper line), m2 ¼ 1=4 (middle line), m2 ¼ 0.01
(lower line). Right: Plot of the conductivity coefficient as a function of the anomalous dimension; the circle stands for the asymptotic
value in the limit Δ → 0.
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FIG. 2 (color online). The gap Γ versus m2. The black line
corresponds to a linear fit.
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where F ¼ dA and H ¼ dV. The new dynamical U(1) in
the bulk is massless and couples to the Chern-Simons term
in the usual way. As in the previous section we work in the
probe limit with Schwarzschild AdS5 as background
metric. The scalar field transforms nontrivially only under
the massive Uð1Þ. From now on we will refer to the
massless Uð1Þ as vector Vμ and to the massive Uð1Þ as
axial Aμ. The equations of motion for the gauge fields are

∇μFμν−m2ðAν − ∂νθÞþ 3κ

2
ϵναβγρðFαβFγρ þHαβHγρÞ ¼ 0;

ð32Þ

∇νHνμ þ 3κϵμαβγρFαβHγρ ¼ 0: ð33Þ

The equation of motion of the scalar remains unchanged
[see Eq. (13)]. Non-normalizable and normalizable modes
of the axial gauge field have the same asymptotics for large
r as the gauge field in the Uð1Þ model. The vector field
shows the same behavior at infinity as usual,

ViðN:N:Þ ∼ Við0Þr0; ViðN:Þ ∼ ~Við0Þr−2: ð34Þ

The holographic renormalization of this model is discussed
in Appendix A 2. The result is the following boundary term:

SCT ¼
Z
∂
d4x

ffiffiffiffiffiffi
−γ

p �
Δ
2
BiBi −

1

4ðΔþ 2Þ ∂iBi∂jBj

þ 1

8Δ
FijFij þ 1

8
HijHij log r2

�
; ð35Þ

with Bi ¼ Ai − ∂iθ. There are two differences from the
result in the previous model, on the one hand, the appearance
of the usual ∼ log term for the vector gauge field. On the
other, the role of the coupling of the Stückelberg field to the
Chern-Simons term in (31) is different because now we have
two independent couplings dθ ∧ F ∧ F and dθ ∧ H ∧ H.
The former is mandatory, as in the Uð1Þ model. The latter
however is optional since it is a finite boundary term.9

We have chosen to include it. As we will see, this will
not affect the results in our concrete background, but it is
potentially useful for other models since it cancels possible
finite contributions to the vector current stemming from the
Stückelberg field.

A. One-point functions

First we compute the one-point functions of the gauge
fields. The technical details of the calculations can be found
in Appendix C 1. As in (18) we hide all terms that do not
contain any finite contribution in vectors Xi and Yi,
obtaining

hJiVi ¼ lim
r→∞

ffiffiffiffiffiffi
−g

p ðHir þ 6κϵijklðAj − ∂jθÞHklÞ þ Xi;

ð36Þ

hJiAi ¼ lim
r→∞

ffiffiffiffiffiffi
−g

p
rΔðFir þ rΔAiÞ þ Yi: ð37Þ

The axial current behaves as in the previous model. Recall
that the leading term in the asymptotic expansion of the
axial gauge field diverges and so does the Chern-Simons
term in (36). Nevertheless, contrary to the axial current, this
term has a subleading finite part (which is the reason why
we do not include it in Xi). Looking at the complete
expansion for the axial gauge field (B3), we see that this
finite contribution is proportional to the source of θ instead
of the source of the gauge field. This is of course different
from what one finds in the massless case. In addition, it is
here where we see the effect that the coupling dθ ∧ H ∧ H
has. It cancels this finite contribution proportional to the
source dual to the Stückelberg field. As mentioned before,
this cancellation comes from the choice we made in the
action and can be removed at will.
We can now look at the Ward identities. Substituting the

e.o.m. in the divergence of the current we find

h∂iJiViRen ¼ 0; h∂iJiAiRen ¼ ð2þ 2ΔÞ∂i
~Aið0Þ: ð38Þ

The vector current is conserved as in the massless case. The
result for the axial current is the same as in the previous
model: its divergence is unconstrained reflecting the fact
that it is a nonconserved current.

B. Two-point functions and anomalous
conductivities

The presence of an extra Uð1Þ allows us to obtain the
following anomalous conductivities from Kubo formulas
[32,35]:

σCME ¼ lim
k→0

iϵij
2k

hJiJjiðω ¼ 0; kÞ; ð39Þ

σCSE ¼ lim
k→0

iϵij
2k

hJi5Jjiðω ¼ 0; kÞ; ð40Þ

σ55 ¼ lim
k→0

iϵij
2k

hJi5Jj5iðω ¼ 0; kÞ: ð41Þ

In order to study these we have to switch on a source for
both axial and vector charges. Since the vector charge is
conserved at the boundary it is possible to define a
nondivergent chemical potential for it. In fact, since the
vector charge is conserved we do not need to source it by a
constant V0 at the boundary. Formally V0 is just a pure
gauge and therefore does not enter any physical observ-
ables. It is however a convenient and standard choice to
reflect the presence of the chemical potential in the vector

9At zero mass this coupling corresponds to the axion term
discussed in [34].
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sector by choosing V0 ¼ μ at the boundary and V0 ¼ 0 at
the horizon. In this case the difference of potentials at the
boundary and the horizon is the energy needed to introduce
one unit of charge into the ensemble. This is a finite
quantity and by definition the chemical potential μ.
We want to see how the dependence of the conductivities

on the source and/or chemical potential is affected by the
mass. Our background consists of the nontrivial temporal
components of both gauge fields. It is static and homo-
geneous in the dual theory so the bulk fields only depend on
the radial coordinate (again we work in the axial gauge
Ar ¼ 0; Vr ¼ 0),

θðrÞ ¼ 0; A ¼ ϕðrÞdt; V ¼ χðrÞdt: ð42Þ

The equations to solve are

ϕ00 þ 3

r
ϕ0 −

m2

f
ϕ ¼ 0; ð43Þ

χ00 þ 3

r
χ0 ¼ 0: ð44Þ

The boundary conditions for the gauge fields at infinity
ϕðr → ∞Þ ¼ μArΔ; χðr → ∞Þ ¼ μV determine the value
of the sources. As usual, (44) has the analytic solution

χðrÞ ¼ μV −
μV
r2

: ð45Þ

Expanding the action to second order in the perturbations
and differentiating with respect to the sources we obtain the
concrete expressions for the renormalized correlators

hJVi JVj iRen ¼ 2ηmj
δ ~við0Þ
δvmð0Þ

; ð46Þ

hJAi JAj iRen ¼ ð2þ 2ΔÞηmj
δ ~aið0Þ
δamð0Þ

; ð47Þ

hJAi JVj iRen ¼ 2ηmj
δ ~við0Þ
δamð0Þ

¼ ð2þ 2ΔÞηmj
δ ~aið0Þ
δvmð0Þ

: ð48Þ

We compute the above correlators numerically. For a
detailed explanation see Appendix C 2. In the following
we comment on the outcome.
Axial conductivity: the conductivity σ55 related to the

correlator of two axial currents behaves identically to
Sec. II B. Hence, we refer the reader to Fig. 1 and the
corresponding discussion.
Chiral separation conductivity: we show the result in

Fig. 3. In the plot on the lhs we show the behavior of the
conductivity with the vector chemical potential μ. We find
that there is no dependence on the source μ5 for any value
of the mass/anomalous dimension. As in the axial conduc-
tivity we observe an enhancement with increasing mass. In
addition, in the massless limit the conductivity approaches
the value σCSE ≈ 12 in numerical units. Again this is in
agreement with the analytic solution form ¼ 0 [32]. Notice
that for this conductivity even in m ¼ 0 there is no
dependence on the value of the vector field at the horizon
(the source).
Chiral magnetic conductivity: the CME vanishes in our

background. This is in perfect agreement with all the
findings so far. As it happened with the rest of anomalous
conductivities, in the massless limit the CMC approaches
the value that one obtains for the consistent currents. We
believe that the fact that it vanishes even in the massive case
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FIG. 3 (color online). Left: Plot of the chiral separation conductivity (CSC) versus the chemical potential μ for:m2 ¼ 1=2 (upper line),
m2 ¼ 1=3 (middle line),m2 ¼ 0 (lower line). This conductivity is independent of the axial source μ5. Right: Plot of the CSC coefficient
as a function of the anomalous dimension Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
− 1.
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is a consequence of the presence of the source μ5. The
necessary source to achieve a stationary solution for any
value of m is such that it forces the anomalous response of
JiV to Bi

V to vanish, very much as it occurs at zero mass.
This does however not imply that the chiral magnetic effect
does not exist in this model. As wewill see in the following,
if we allow the axial charge to fluctuate freely (as opposed
to fixing its value via a source term) the chiral magnetic
effect is realized. In particular it gives rise to a (generali-
zation of the) chiral magnetic wave and to a negative
magnetoresistivity, both of which can be understood as a
manifestation of the chiral magnetic effect.

C. The chiral magnetic wave

We start by reviewing the essential features in the case
when also the axial current is a canonical dimension three
current. The chiral magnetic wave (CMW) is a collective
massless excitation that arises form the coupling of vector
and axial density waves in the presence of a magnetic field
[26]. In addition, this mode can only appear in the spectrum
if there is an underlying axial anomaly. The dispersion
relation for this mode corresponds to a damped sound wave

ωðkÞ ¼ �vχk − iDk2; ð49Þ

although it is related to transport of electric and axial
charge. This mode can be thought of as a combination of
the CME and the chiral separation effect (CSE). The vector
charge and the axial charge oscillate one into the other
giving rise to a propagating wave. This wave mode is
present even in the absence of net axial or vector charge.
The CMW is expected to play an important role in the
experimental confirmations of anomaly induced transport
effects. It has been argued in the case of heavy ion
collisions that the CMW induces a quadrupole moment
in the electric charge distribution of the final state
hadrons [36,37].
Let us analyze how this propagating mode is affected by

the Stückelberg mechanism in the bulk. Before we proceed
to study holographic numerical results we can perform a
purely hydrodynamic computation as follows. As we have
already shown in the previous section, the presence of the
mass term for the axial vector field leads to a nonvanishing,
purely imaginary gap for the lowest quasinormal mode. We
will include this gap as a decay constant for axial charge.
Consider thus a model with axial and vector symmetries.
Under the assumption of the existence of a AVV anomaly
in the system, the constitutive relations for the current in the
presence of a background magnetic field B read

jxV ¼ κρAB
χA

−D∂xρV; jxA ¼ κρVB
χV

−D∂xρA; ð50Þ

with D being the diffusion constant and κ the anomaly
coefficient. We assume CME and CSE to be present. They
are expressed in terms of charge densities and the

susceptibilities χA, χV [26]. On the other hand we have
the (non)conservation equations

∂μj
μ
V ¼ 0; ∂μj

μ
A ¼ −ΓρA; ð51Þ

where ΓðmÞ is the charge dissipation induced by the
coupling to the underlying gauge anomaly.10 From here
we get the coupled equations

ωρV þ kκρAB
χA

þ ik2DρV ¼ 0; ð52Þ

ðωþ iΓÞρA þ kκρVB
χV

þ ik2DρA ¼ 0: ð53Þ

Assuming now that the equations are linearly dependent
we get

ω� ¼ −
iΓ
2
− iDk2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2k2κ2

χAχV
−
Γ2

4

s
: ð54Þ

The mode associated to ωþ is massless and expected to
arise due to the fact that the vector symmetry is conserved.
It basically represents the diffusion law for the conserved
vector charge. The ω− mode is gapped, i.e. ω−ðk ¼ 0Þ ¼
−iΓ. Both combine at a critical value for the momentum
kCðΓ; B; χðV;AÞÞ that makes the term inside the square root
vanish.

(i) If 4B2κ2k2 > χAχVΓ2 the square root is real and we
obtain a contribution linear in k (which boils down
to the well-known linear dispersion relation of the
chiral magnetic wave in the limit Γ ¼ 0).

(ii) If 4B2κ2k2 < χAχVΓ2 the square root contribution is
completely contained in the imaginary part of the
frequency.

In summary, we see that

kC ¼ χAχVΓ2

4B2κ2
: ð55Þ

For k > kC we get a propagating mode whose dispersion
relation approximates the one of the CMW.11 On the
contrary, if k < kC, there is no real part of the frequency
(i.e. no chiral magnetic wave); one of the modes remains
massless and the other develops a gap Γ.
With this phenomenological model in mind we look for

these modes in our holographic model. In order to find the
CMW we look at the QNM spectrum in presence of a
constant magnetic field B in the z-direction. Since the
CMW is present at zero axial and vector charge densities,

10We also assume vanishing external electric field and there-
fore there is no ~E:~B term present in the equation for the axial
current.

11Observe that for k ≫ kc the slope ℜðωÞ=k is the same as in
the case Γ ¼ 0.
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we do not switch on any chemical potential in the back-
ground. The only nonzero field in our ansatz for the
background is Ax ¼ By. It is easy to check that such
an ansatz satisfies the equations of motion trivially.
Subsequently we study the perturbations, with momentum
k aligned with the magnetic field. Applying the determinant
method of [33] we are able to obtain the dispersion relation
of the CMW as depicted in Fig. 4; we show the dispersion
relation of the lowest QNMs for both m ¼ 0 (orange) and
m > 0 (green, blue) in presence of B. On top of this we plot
(dashed lines) the predictions of the phenomenological
model (54).
The numerical results are in perfect agreement with the

analytic analysis. We observe the appearance of a critical
momentum kC, induced by the mass term. Below this
momentum the chiral magnetic wave is not really wavelike
(i.e. ℜ½ωðkÞ� ¼ 0 for k < kC); the two modes decouple,
giving rise to a diffusive mode and gapped purely imagi-
nary mode. Such a spectrum is what one would expect to
find in the model if there was no CMW, that is, the
unbroken vector charge exhibits diffusive behavior, with a
massless mode protected by the symmetry, whereas the
analogous mode for broken axial U(1) symmetry develops
a gap Γ. This gap is proportional to the mass and gets
diminished the stronger the magnetic field. Above the
critical momentum the two modes fuse again, giving rise to
the expected behavior of the CMW. Since the CMW is a
propagating oscillation between axial and vector charge we
see that for small momentum the decay of the axial charge
dominates, i.e. the axial charge decays before it can
oscillate back into vector charge. The strength of the
mixing of the charges is proportional to the momentum.
This mixing becomes large enough and the oscillation fast
enough to allow the buildup of a propagating (damped)
wave at large enough momentum.

We show the behavior of the gap Γ with the mass for
different values of the magnetic field in Fig. 5. We find that
the gap goes as ∼m2 and that it is inversely proportional to
the strength of the magnetic field.

D. Negative magnetoresistivity

As a last step we study how the electric conductivity is
affected by the mass. In the absence of mass the CMW
induces perfect (i.e. infinite) DC conductivities for both the
electric and the axial conductivities along the magnetic
field. However, from the QNM analysis of the previous
section we know that this cannot hold anymore. We expect
a finite conductivity but with a strong Drude-like peak at

0.1 0.2 0.3 0.4 0.5 0.6
k

–0.2

–0.1

0.0

0.1

0.2

Re[ ]

0.1 0.2 0.3 0.4 0.5 0.6
k

–0.15

– 0.10

-0.05

0.00

Im[ ]

FIG. 4 (color online). Real and imaginary parts of the frequency of the lowest QNM as a function of k. Solid lines correspond to
numerical data with κB ¼ 0.05 and two different values of the mass: m2 ¼ 0 (left: highest and lowest lines, right: highest line) and
m2 ¼ 0.15 (Δ ¼ 0.08) (left, right: others). The massive case is given two different colors to highlight the regimes k < kc (green) and
k > kc (blue). Dashed lines correspond to the analytic formula (54). The massless case shows the behavior of the CMW. With a
nonvanishing mass such a behavior is recovered for k > kc.

FIG. 5 (color online). The gap Γ versus m2 for different values
of the magnetic field κB ¼ 0.01 (upper line) and κB ¼ 0.5 (lower
line). Black lines correspond to linear fits.
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zero frequency. As we will see this is indeed what is
happening.
In order to analyze the longitudinal conductivity along

the magnetic field we switch on perturbations on top of the
background that we used to study the CMW, namely, an
external magnetic field pointing in the z-direction. The
electric conductivity along the magnetic field can be
extracted from the correlator

σjj ¼ lim
ω→0

i
2ω

hJzJziðω; k ¼ 0Þ: ð56Þ

Since this conductivity is obtained at zero momentum we
can assume spatial homogeneity for the perturbations. The
coupled equations of motion can be found in Appendix D.
The analysis of the two-point function reveals that for this
configuration of the background the correlator we want to
compute has the usual expression

hJzJziRen ¼ lim
r→∞

r3∂rHþ ω2 logðrÞ: ð57Þ

We solve the equations numerically with infalling boundary
conditions and build the bulk-to boundary propagator
(BBP). Our results are shown in Figs. 6–8.
The well-known Kramers-Kronig relations imply that

a pole in the imaginary part of the conductivity at zero
frequency signals the presence of a delta function peak
in the real part, i.e. and infinite DC conductivity. As soon
as we turn the mass on, we observe that the DC
conductivity is not a delta function anymore (see
Figs. 6–7). This fact has important consequences in
Ohm’s law for an anomalous system with an explicit

breaking term. It has been first pointed out that the axial
anomaly induced a large DC conductivity in a magnetic
field (or a negative magnetoresistivity) in [38]. More
recent studies of this phenomenon are [39,40]. In these
studies Weyl fermions of opposite chirality appear as the
effective electronic excitations at low energies in a crystal
(Weyl semimetal). The associated axial symmetry is
however only an approximate one since the electronic
quasiparticles can be scattered from one Weyl cone into
another. The associated scattering rate is called the
intervalley scattering rate τi. It turns out that the conduc-
tivity in these Weyl semimetals is indeed proportional to
the intervalley scattering rate. Our findings are in com-
plete analogy; the inverse of the gap in Fig. 5 plays the
role of the intervalley scattering time leading to a finite but
strongly peaked DC magnetoconductivity.
By numerical analysis we find the dependence of the DC

conductivity on m; κ and B. Results are shown in Fig. 8.
We can approximate it by

D ≈ 72
κ2B2

m2
: ð58Þ

Since in Fig. 5 we found that the gap is proportional to m2

we indeed see that the DC conductivity scales linearly with
the inverse of the gap as expected. We also find that it
depends quadratically on the magnetic field. Again this is
the expected result at least for small magnetic fields. For
larger magnetic fields the weak coupling analysis shows
however a linear dependence on the magnetic field that can
be traced back to the fact that all fermionic quasiparticles
are in the lowest Landau level.

FIG. 6 (color online). Real part of the conductivity in the longitudinal sector for Δ ¼ 0 (left) and Δ ¼ 0.1 (right). Different colors
correspond to different values of the magnetic field B, from κB ¼ 0 (blue) to κB ¼ 0.5 (yellow). The behavior of the conductivity at high
frequencies is qualitatively the same for both values of Δ. The conductivity shows a Drude peak as soon as the mass (Δ) is switched on
whereas it has delta function peak centered at ω ¼ 0 for zero mass.
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We found that our results show a kind of instability for
too large magnetic field such that we were not able to see
this cross over to linear behavior. This might be an artifact
of the probe limit or a genuine instability of the theory at
high magnetic fields (similar to the Chern-Simons term
induced instabilities in an electric field found in [41]). We
leave this issue for further investigation.
Finally we note that we have checked that the sum rule is

fulfilled for several values of the mass and the magnetic
field. This sum rule takes the form d

dB

R
ℜðσðωÞÞdω ¼ 0.

The sum rule implies that the peak is built up by shifting
spectral weight from higher frequencies towards ω ¼ 0. In
fact this is precisely what can be seen in Fig. 6 where it is

evident that the region of intermediate frequencies gets
depleted and correspondingly a gap in the magneto-optical
conductivity opens up as the magnetic field strength is
increased. Note that this gap is present still in the region
where we found quadratic scaling (58).

IV. CONCLUSIONS

We have studied anomaly related transport phenomena
in a bottom-up holographic model with massive vector
fields and Stückelberg axion. One of our motivations was
that the dynamical part of the axial anomaly, i.e. the gluonic
contribution, is dual to the dynamics of axions in
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FIG. 7 (color online). Imaginary part of the conductivity in the longitudinal sector forΔ ¼ 0 (left) andΔ ¼ 0.1 (right). Different colors
correspond to different values of the magnetic field B, from κB ¼ 0 (blue) to κB ¼ 0.5 (yellow). In agreement with the real part in Fig. 6
the zero frequency behavior shows a pole only when the mass is absent, signaling the presence of a delta function in the real part. As
soon as the mass is switched on ℑ½σ� vanishes at the origin.
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holography. Its precisely this axion that can be used in the
bulk Stückelberg mechanism to give mass to the bulk gauge
field. The operator dual to this massive gauge field is a
nonconserved current and this nonconservation is manifest
in the fact that we did not find a constraint on the
divergence of the current. Throughout the paper, we have
restricted ourselves to the probe approximation.
Equipped with the above model for an anomalous

massive Uð1Þ gauge field, in Sec. II we have studied
carefully the form of the current one-point function,
showing that the well-known Bardeen-Zumino polynomial
does not exist if the mass m ≠ 0. The resulting form of the
(holographically renormalized) current tends to the con-
sistent definition in the massless limit. Moreover, as
described by (21) the divergence of such a current is not
constrained. Moving to the two-point functions, the anoma-
lous conductivity σ55 has been computed using its defi-
nition via a Kubo formula. We find that its value
corresponds to the one associated to the consistent current
in the zero mass limit. We also showed that the QNM
spectrum has a gap in contrast to the massless case in which
there exists a hydrodynamic diffusion mode. We stress that
the nonconserved current Ji is not a hydrodynamic degree
of freedom because of this gap. Furthermore the parameter
μ5 is not a chemical potential but a coupling constant.
Nevertheless we think it would be an interesting exercise to
work out constitutive relations for the nonconserved current
extending the well-established methods of the fluid/gravity
correspondence [42] to this case.
In Sec. III we implemented the interplay between non-

conserved axial and conserved vector currents. We also
studied a wider set of anomalous conductivities using Kubo
formulas (39)–(41) We found that (as expected) the axial
conductivity is identical to the case with only one axial
gauge field. The chiral separation conductivity is indepen-
dent of the source μ5, behaves linearly with μ and increases
with the mass, as depicted in Fig. 3. Finally, the chiral
magnetic conductivity vanishes for all the values of m that
we have studied; we interpret this fact as an effect of the
source that ensures that the background is time indepen-
dent. As m → 0, all the conductivities approach the value
corresponding to consistent definition of the currents.
Subsection III C is devoted to the study of the CMW
[26] in the presence of mass. First, we perform an analytic
analysis of the modes in a phenomenological model that
implements the axial nonconservation via a relaxation term
[see Eq. (51)]. This model predicts that a propagating
wavelike mode can build up only for large enough
momentum. Indeed we find from our quasinormal mode
analysis that the model can be fitted very well to the QNM
spectrum and that indeed a propagating chiral magnetic
wave is absent for small momenta.
Finally we have also studied the negative magneto-

resistivity and showed that a sum rule holds for the
magneto-optical conductivity. The strength of the DC

conductivity is proportional to the square of the magnetic
field and inverse proportional to the gap. This is in
agreement with weak coupling considerations for small
magnetic fields and an intervalley scattering relaxation time
for axial charge. Unfortunately we were not able to see the
expected crossover to linear behavior in the magnetic field
because our numerics indicated a possible instability at
large B-field. Whether this is an artifact of the probe limit
(which assumes negligible backreaction of the gauge field
on the geometry) or a genuine instability we leave to further
investigation.
This brings us to possible generalizations of the present

work. First we would like to mention that the usage of
Stückelberg axions in the context of holographic studies of
anomaly induced transport has recently also been suggested
in [24]. Our model is a first step in this direction and
following [24] one might improve it by giving up con-
formal symmetry by working directly with the model of
[23] or a suitable simplification thereof. Another rather
straightforward generalization would be to take the back-
reaction onto the geometry into account. This opens the
way to study also the generalizations of the chiral vortical
effect and one could also include the mixed gauge
gravitational anomaly. As we emphasized the noncon-
served currents do not strictly belong to the set of hydro-
dynamic variables. But one can easily imagine a situation in
which the gap of the lowest quasinormal mode in the
massive vector sector is much smaller than the separation to
the higher QNMs. In this case it would make sense to
include these modes in the gauge/gravity correspondence
and work out the constitutive relations. A very interesting
question arises in connection to the possibility of defining
covariant or consistent currents in the massless case. We
found that the nonconserved current goes over into the
consistent current in the zero mass limit. Is is possible to
generalize the notion of covariant current to the massive
case? It is also known that the consistent currents are not
unique but can be redefined by adding finite counterterms
(the Bardeen counterterms). It is precisely this choice of
counterterms that allows us to shift the anomaly completely
into the axial sector (even when a mixed gravitational
anomaly is present). It would certainly be interesting to
include the gravitational anomaly and to see how the
Bardeen-Zumino terms arise in the zero mass limit.
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APPENDIX A: HOLOGRAPHIC
RENORMALIZATION

1. U(1) model

In order to renormalize the theory shown in (10) we
follow the procedure in [43]. Within this approach the
renormalization procedure consists of an expansion of the
canonical momenta and the on-shell action λ in eigenfunc-
tions of the dilatation operator. This operator can be obtained
taking the asymptotic leading term of the radial derivative

∂r ¼
Z

ddx

�
_γij

δ

δγij
þ _Ai

δ

δAi
þ _θ

δ

δθ

�
∼
Z

ddx

�
2γij

δ

δγij
þ ΔAi

δ

δAi
þOðe−rÞ

�
; ðA1Þ

δD ¼
Z

ddx

�
2γij

δ

δγij
þ ΔAi

δ

δAi

�
: ðA2Þ

Notice that this operator is not gauge invariant. Nevertheless
SC:T. must be gauge invariant since the bulk Lagrangian is
invariant too. Therefore SC:T. must be expressible as a
functional of Bi ≡ Ai − ∂iθ. We will see that this is indeed
the case even though we expand the on-shell action in
eigenfunctions of the (non–gauge invariant) dilatation oper-
ator δD. We choose the axial gauge Ar ¼ 0. Recall that

ΔðΔþ 2Þ ¼ m2: ðA3Þ

Our notation for the eigenfunctions of the dilatation operator
reads

δDXðaÞ ¼ −aXðaÞ; δDXð4Þ ¼ −4Xð4Þ − 2 ~Xð4Þ: ðA4Þ

All our results were obtained in the probe limit and there-
fore, for simplicity, we adapt the renormalization procedure
to this limit. This implies that we will use the e.o.m. for the
fields, instead of the Hamiltonian constraint in Einstein
equations, to determine the eigenfunctions of the dilatation
operator the canonical momenta are expanded in. In addition
we set the extrinsic curvature Kij ≡ _γij ¼ 2γij, which in our
setup is enough for the boundary analysis. The matter e.o.m.,
written in terms of Ei ≡ _Ai and Π≡ _θ, are

_Ei þ 2Ei −m2ðAi − ∂iθÞ þ ∂jFji þ 2κϵirjklEjFkl ¼ 0;

ðA5Þ

_Πþ 4Π − ∂iðAi − ∂iθÞ ¼ 0; ðA6Þ

Π ¼ 1

m2
ð∂iEi − κϵrijklFijFklÞ: ðA7Þ

With (A2) and the e.o.m. we can determine the explicit
form of the different terms in the expansions

Ei ¼ Eið−ΔÞ þ Eið0Þ þ Eið2−2ΔÞ þ Eið2−ΔÞ þ Eið2Þ þ � � � ;
ðA8Þ

Π ¼ Πið2−ΔÞ þ Πið2Þ þ � � � ; ðA9Þ

Eið−ΔÞ ¼ ΔAi; ðA10Þ

Eið0Þ ¼ −Δ∂iθ; ðA11Þ

Πð2−ΔÞ ¼
1

ðΔþ 2Þ ∂iAi; ðA12Þ

Πð2Þ ¼
−1

ðΔþ 2Þ□θ: ðA13Þ

Other terms like Eið2−2ΔÞ are nonzero but as we will see
they do not contribute to the counterterms. We can
determine the expressions for the higher order operators
needed to expand the radial derivative:

∂r ¼ δD þ δðΔÞ þ δð2−2ΔÞ þ δð2−ΔÞ þ δð2Þ þ δð2þΔÞ þ � � � ;
ðA14Þ

δðΔÞ ¼
Z

ddx0Eið0Þðx0Þ
δ

δAiðx0Þ
; ðA15Þ

δð2−ΔÞ ¼
Z

ddx0
�
Eið2−2ΔÞðx0Þ

δ

δAiðx0Þ
þΠð2−ΔÞðx0Þ

δ

δθðx0Þ
�
;

ðA16Þ

δð2Þ ¼
Z

ddx0
�
Eið2−ΔÞðx0Þ

δ

δAiðx0Þ
þ Πð2Þðx0Þ

δ

δθðx0Þ
�
;

ðA17Þ

δð2þΔÞ ¼
Z

ddx0Eið2Þðx0Þ
δ

δAiðx0Þ
: ðA18Þ

Once we have these we just need the equation for the on-
shell action

_λþ λ − Lm ¼ 0; ðA19Þ

_λþ 4λþ 1

2
EiEi þm2

2
Π2 þm2

2
ðAiAi − 2Ai∂iθ þ ∂iθ∂iθÞ

þ 1

4
FijFij þ 4κ

3
ðAi − ∂iθÞEjFklϵ

irjkl

−
κ

3
ΠFijFklϵ

irjkl ¼ 0: ðA20Þ

Using this equation and the expansion of the radial
derivative we can determine the terms of the eigenfunction
expansion of the on-shell action
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λ ¼ λð0Þ þ λð2−2ΔÞ þ λð2−ΔÞ þ λð2Þ þ λð4−4ΔÞ

þ λð4−3ΔÞ þ λð4−2ΔÞ þ λð4−ΔÞ þ λð4Þ þ ~λð4Þ log e2r þ � � � :
ðA21Þ

It is important to remark that depending on the value of
0 ≤ Δ ≤ 1 new terms may appear in this expansion. For
example, the next possible term in this expansion is λð6−6ΔÞ.
Therefore, as in the rest of the paper, we restrict our
analysis to

6 − 6Δ > 4 → Δ <
1

3
: ðA22Þ

Furthermore, for a large enough mass ðΔ ¼ 1Þ the number
of possible counterterms becomes infinite. This is to be
expected since for such a value of the mass the operator
dual to the gauge field becomes marginal.
We are now ready to proceed solving (A20) order by

order in dilatation weight

λð0Þ ¼ 0; ðA23Þ

λð2−2ΔÞ ¼
−Δ
2

AiAi; ðA24Þ

λð2−ΔÞ ¼ Δ∂iθAi; ðA25Þ

λð2Þ ¼
−Δ
2

∂iθ∂iθ: ðA26Þ

At this point one can see that these first terms of the on
shell (O.S.) action expansion can be rearranged in terms of
the Bi field:

λð2−2ΔÞ þ λð2−ΔÞ þ λð2Þ ¼ −
Δ
2
BiBi: ðA27Þ

It is a nice check to find all the terms explicitly and then
rearrange them like this although, as mentioned before, this
is to be expected. Moreover we can use this in our
advantage: once one obtains a counterterm which is only
proportional to Ai the following terms can be determined by
just imposing that λ has to be gauge invariant.

λð4−4ΔÞ ¼ 0; λð4−3ΔÞ ¼ 0: ðA28Þ

Let us analyze the following term with some detail:

_λjð4−2ΔÞ þ 4λð4−2ΔÞ þ Eið−ΔÞEi
ð2−ΔÞ þ

m2

2
Π2

ð2−ΔÞ þ
1

4
FijFij þ 4κ

3
ϵrijklFjkðEið0ÞAl − Eið−ΔÞ∂lθÞ ¼ 0; ðA29Þ

ðδD þ 4Þλð4−2ΔÞ þ δð2−ΔÞλð2−ΔÞ þ δð2Þλð2−2ΔÞ þ Eið−ΔÞEi
ð2−ΔÞ þ

m2

2
Π2

ð2−ΔÞ þ
1

4
FijFij ¼ 0; ðA30Þ

λð4−2ΔÞ ¼
1

4ðΔþ 2Þ ∂iAi∂jAj −
1

8Δ
FijFij: ðA31Þ

It is remarkable that the term proportional to κ vanishes
due to the contraction of a symmetric ðEið0ÞAl − Eið−ΔÞ∂lθÞ
and an antisymmetric ϵrijkl tensor. Here we see the
importance of the coupling of the Stückelberg filed to
the Chern-Simons term. If we had not added it, at this point
we would have found an extra counterterm of the form
−θ ∧ F ∧ F. In this expression we have neglected total
derivatives. From this last equation we can infer the
following two orders by imposing gauge invariance. So
in terms of the gauge invariant field Bi the counterterm
reads

λ4−2Δ þ λ4−Δ þ λ�4 ¼
1

4ðΔþ 2Þ ∂iBi∂jBj −
1

8Δ
FijFij:

ðA32Þ

Note that we cannot determine λð4Þ with just the boundary
analysis. λ�4 is just a part of λ4 which is imposed by gauge
invariance and can be obtained from the asymptotics.

We only lack the ∼ log term, which is obtained by
evaluating the equation to fourth order

~λð4Þ ¼ 0: ðA33Þ

Thus, the SCT reads

SCT ¼
Z
∂
ddx

ffiffiffiffiffiffi
−γ

p �
Δ
2
BiBi −

1

4ðΔþ 2Þ ∂iBi∂jBj

þ 1

8Δ
FijFij

�
: ðA34Þ

2. Uð1Þ × Uð1Þ model

Few things change if we introduce a second gauge field
(nonmassive, nonanomalous in the boundary). The asymp-
totic behavior remains unchanged. Specially, the vector
gauge field behaves as it usually does and thus it does not
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contribute to the dilatation operator.

δD ¼
Z

ddx

�
2γij

δ

δγij
þ ΔAi

δ

δAi
þOðe−rÞ

�
: ðA35Þ

The equation of the O.S. action has to be modified:

_λþ 4λþ 1

2
EiEi þ 1

2
ΣiΣi þm2

2
Π2 þm2

2
ðAiAi − 2Ai∂iθ þ ∂iθ∂iθÞ þ 1

4
FijFij

þ 1

4
HijHij þ 2κðAi − ∂iθÞðEjFkl þ 3ΣjHklÞϵirjkl −

κ

2
ΠðFijFkl þ 3HijHklÞϵirjkl ¼ 0; ðA36Þ

where Σ andHij are the momentum12 and the field strength
of the vector gauge field. It is not difficult to realize that the
only term proportional to Vi that will contribute to the
divergent part of λ is the kinetic termHijHij. Since this is of
order 4, it will only contribute to the logarithmic term and
therefore

SCT ¼
Z
∂
ddx

ffiffiffiffiffiffi
−γ

p �
Δ
2
BiBi −

1

4ðΔþ 2Þ ∂iBi∂jBj

þ 1

8Δ
FijFij þ 1

8
HijHij log e2r

�
: ðA37Þ

APPENDIX B: CORRELATORS IN
THE U(1) MODEL

1. One-point function

In order to derive the one-point function of the (non-
conserved) vector operator dual to the gauge field we write
fields as background plus perturbations,

Aμ ¼ Aμ þ aμ; θ ¼ θ þ ϕ; ðB1Þ

We expand the renormalized action to first order in the
perturbations

Sð1ÞR ¼
Z

drd4x
ffiffiffiffiffiffi
−g

p ½aμð∇νFνμ −m2ðAμ − ∂μθÞ þ κϵμαβγρFαβFγρÞ − ϕ∇μðAμ − ∂μθÞ�

þ
Z
∂
d4x

ffiffiffiffiffiffi
−g

p �
ai

�
Fir þ 4

3
κðAj − ∂jθÞFklϵ

rijkl

�
− ϕðFijFklϵ

rijkl þm2ðAr − ∂rθÞÞ
�

þ
Z
∂
d4x

ffiffiffiffiffiffi
−γ

p
ai

�
ΔðAi − ∂iθÞ þ 1

2ðΔþ 2Þ ∂
ið∂jAj −□θÞ − 1

2Δ
∂jFji

�
þ
Z
∂
d4x

ffiffiffiffiffiffi
−γ

p
ϕ

�
Δð∂jAj −□θÞ þ 1

2ðΔþ 2Þ□ð∂jAj −□θÞ
�
: ðB2Þ

The bulk integral contains the e.o.m. for the background fields. The second line shows the boundary term that arises from
the unrenormalized action S whereas the third and fourth lines contain the expansion of the counterterm action SCT. By
inspection of the equations of motion one finds that the most general asymptotic expansion of the fields reads

Aμ ∼
X∞
i¼0

AμðiÞrΔ−i þ
X∞
i¼0

~AμðiÞr−2−Δ−i þ
X∞
i¼0

~θμðiÞr−i þ
X∞

n>1;i≥2ðn−1Þ
ωμðn;iÞrnΔ−i

þ
X∞

n>1;i≥3n
~ωμðn;iÞr−nΔ−i þ

X
i≥4

ALðiÞrð−iÞ logðrÞ; ðB3Þ

θ ∼
X
i

θðiÞrð−iÞ þ
X

n≥1;i≥2n

~Ψðn;iÞrðnΔ−iÞ þ
X

n≥1;i≥3nþ2

~Ψð−n;iÞrð−nΔ−iÞ þ
X
i≥4

θLðiÞrð−iÞ logðrÞ; ðB4Þ

12As we did with the axial field we define Σi ≡ _Vi.
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with Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þm

p
− 1 that is bounded to be Δ < 1. The

coefficient of the leading (non-normalizable mode) term
Að0Þx is to be identified with the source of the dual operator.
~Að0Þx is the coefficient of the normalizable mode.
ωðn;iÞ; ~ωðn;iÞ arise due to the nonlinearities of the e.o.m.
and can be expressed as functionals of the sources of the
other components of the gauge field Að0Þy≠x. Finally, the ~θ
and AL terms arise from the coupling to the Stückelberg
field and are functionals of the source of θ; the logarithmic
terms are subleading with respect to the normalizable
mode, contrary to what happens in the massless case. In
the expansion for θ we find the θðiÞ coefficients that contain
both the non-normalizable i ¼ 0 and the normalizable
i ¼ 4 mode. The Ψ; ~Ψ terms appear due to the coupling
to the gauge field.
From the boundary term of the O.S. action one can

obtain the one-point function of the dual operator Ji.
As usual, it is convenient to group all the fields

in a vector of the appropriately normalized fields13

ψ ¼ ðr−Δai;ϕ) and express them as the (matrix valued)
BBP times a vector ψ ð0Þ made of the value of the sources

ψ IðrÞ ¼ FIJðrÞψJð0Þ; FðΛÞ ¼ I: ðB5Þ

Moreover, it will be useful to separate the BBP matrix in
a rectangular matrix F and a vector G such that

F ¼
� F− − −

G

�
; aI ¼ rΔF IJψJð0Þ; ϕ ¼ GJψJð0Þ:

ðB6Þ

In terms of these the expectation value of the cur-
rent reads

hJmi ¼ lim
r→∞

ffiffiffiffiffiffi
−g

p �
rΔF im

�
Fir þ 4κ

3
ϵijklðAj − ∂jθÞFkl

�
− GmðFijFklϵ

rijkl þm2ðAr − ∂rθÞ
�

þ lim
r→∞

ffiffiffiffiffiffi
−γ

p
rΔF im

�
ΔðAi − ∂iθÞ þ 1

2ðΔþ 2Þ ∂
ið∂jAj −□θÞ − 1

2Δ
∂jFji

�
þ lim

r→∞

ffiffiffiffiffiffi
−γ

p
Gm

�
Δð∂jAj −□θÞ þ 1

2ðΔþ 2Þ□ð∂jAj −□θÞ
�
: ðB7Þ

The above expression is quite messy and needs some
inspection. In the massless case [32] all terms proportional
to F i≠m;Gm vanish in the r → ∞ limit and therefore are not
explicitly written in the literature. When the mass is
present, however, all terms in the expression are divergent.
This is easy to check given the expansions (B3). To have a
better understanding of the properties of the current it is
convenient to collect the terms that do not contain finite
contributions as shown in the main text (18).

2. Two-point functions

Equation (28) is the correct expression for the correlator
hJyJzi. However, one usually does not have an analytic
solution for the e.o.m. and therefore one has to construct the
BBP numerically. This implies that we are interested in (28)
expressed as a linear combination of the BBP and its
derivatives. In principle one can derive this combination
directly from the O.S. action to second order in perturba-
tions but this might be rather tedious. A simpler strategy is
to look at the asymptotic expansions for the perturbations
and then invert the series to find the expression of the

normalizable mode as a combination of F ; _F . The anoma-
lous conductivity (23) is a good opportunity to perform an
explicit example.
First we switch on perturbations for all fields with

momentum k aligned to the x direction and frequency
ω: δθ ¼ σðrÞe−iωtþikx and δAμ ¼ aμðrÞe−iωtþikx. The lin-
earized e.o.m. for these perturbations naturally separate in
decoupled sectors; since we are interested in the correlator
hJyJzi we just look at

fa00y þ
�
f0 þ f

r

�
a0y þ

�
−m2 þ ω2

f
−
k2

r2

�
ay

−
8ikκϕ0az

r
¼ 0 ðB8Þ

fa00z þ
�
f0 þ f

r

�
a0z þ

�
−m2 þ ω2

f
−
k2

r2

�
az

þ 8ikκϕ0ay
r

¼ 0; ðB9Þ

which decouple from the other equations.
The asymptotic analysis of Eqs. (B8)–(B9) reveals that

close to the boundary the perturbations behave as

13Since the gauge field diverges at the boundary precisely as
∼rΔ, this choice for the normalization allows us to have a finite
BBP and to collect the sources of the dual theory in ψ ð0Þ.

JIMENEZ-ALBA, LANDSTEINER, AND MELGAR PHYSICAL REVIEW D 90, 126004 (2014)

126004-18



aiðr → ∞Þ ∼ að0Þi

�
rΔ −

k2

4Δ
rΔ−2

�
þ að0Þjϵij

8μkκi
3ðΔ − 2Þ r

2Δ−2 þ ~ai
r2þΔ ; ðB10Þ

where ~ai is the normalizable mode of the perturbation. In
principle it has a complicated dependence on the sources
but in the linear response regime we can write

~ai ¼ ρaið0Þ þ ~ρajð0Þ⟶
δ ~ai
δað0Þj

¼ ~ρ: ðB11Þ

That allows us to write (B10) as

aiðr → ∞Þ ∼ að0Þi

�
rΔ −

k2

4Δ
rΔ−2 þ ρ

rΔþ2

�
þ að0Þjϵij

�
8μkκi

3ðΔ − 2Þ r
2Δ−2 þ ~ρ

r2þΔ

�
; ðB12Þ

which is more useful to make the connection to the BBP
matrix

F ¼
�

bðrÞ cþðrÞ
c−ðrÞ dðrÞ

�
; ðB13Þ

with14

bðrÞ ¼ dðrÞ ∼ 1 −
k2

4Δr2
þ ρ

r2þ2Δ ;

c� ∼�
�

8μkκi
3ðΔ − 2Þ r

Δ−2 þ ~ρ

r2þ2Δ

�
: ðB14Þ

At this point we can invert the series to the order of the
normalizable mode. In our concrete case we have

~ρ ¼ lim
r→∞

r2þ2Δ ð2 − ΔÞcðrÞ þ rc0ðrÞ
−3Δ

: ðB15Þ

So the last thing to do is to numerically construct the
BBP imposing infalling boundary conditions at the horizon
and compute the latter formula. For a detailed explanation
on how to numerically construct the BBP we refer the
reader to [33]. Due to how we numerically construct F , one
may find some issues when computing limr→∞cðrÞ so we
rather use an alternative expression involving only deriv-
atives of cðrÞ. One can easily derive

~ρ ¼ lim
r→∞

r3þ2Δ ð3 − ΔÞc0ðrÞ þ rc00ðrÞ
6ΔðΔþ 1Þ : ðB16Þ

This expression combined with Eqs. (28) and (23) leads
finally to an expression for the conductivity

σ55 ¼ lim
k→0

i
kx

lim
k→∞

r3þ2Δ ð3 − ΔÞc0ðrÞ þ rc00ðrÞ
6Δ

����ω ¼ 0:

ðB17Þ

APPENDIX C: CORRELATORS IN
THE Uð1Þ × Uð1Þ MODEL

1. One-point functions

First of all we expand the action to first order in
perturbations

Sð1ÞR ¼
Z

drd4x
ffiffiffiffiffiffi
−g

p �
aμ

�
∇νFνμ −m2ðAμ − ∂μθÞ þ 3κ

2
ϵμαβγρðFαβFγρ þHαβHγρÞ

��
þ
Z

drd4x
ffiffiffiffiffiffi
−g

p ½vμð∇νHνμ þ 3κϵμαβγρFαβHγρÞ − ϕ∇μðAμ − ∂μθÞ�

þ
Z
∂
d4x

ffiffiffiffiffiffi
−g

p ½aiðFir þ 2κðAj − ∂jθÞFklϵ
rijklÞ�

þ
Z
∂
d4x

ffiffiffiffiffiffi
−g

p ½viðHir þ 6κðAj − ∂jθÞHklϵ
rijklÞ − ϕðFijFklϵ

rijkl þm2ðAr − ∂rθÞÞ�

þ
Z
∂
d4x

ffiffiffiffiffiffi
−γ

p
ai

�
ΔðAi − ∂iθÞ þ 1

2ðΔþ 2Þ ∂
ið∂jAj −□θÞ − 1

2Δ
∂jFji

�
þ
Z
∂
d4x

ffiffiffiffiffiffi
−γ

p
vi

�
−
1

2
∂jHji logðrÞ

�Z
∂
d4x

ffiffiffiffiffiffi
−γ

p
ϕ

�
Δð∂jAj −□θÞ þ 1

2ðΔþ 2Þ□ð∂jAj −□θÞ
�
: ðC1Þ

14Here we make some abuse of language when we refer to the block in F that affects ax; ay as F . The true F is actually a 4 × 5 matrix
as explained in (B6).
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From the e.o.m. we find that the expansions for the scalar
and the massive gauge field remain qualitatively unchanged
up to the normalizable mode with respect to what we found
in the Uð1Þ model. The expansion for the vector field is

Vμ ¼
X
i

VμðiÞr−i þ
X
i≥2

~VμðiÞr−i logðrÞ

þ
X

n;i≥nþ1

Λμðn;iÞrnΔ−i; ðC2Þ

Where the ∼Λ terms appear due to the mixing with the
axial gauge field via Chern Simons. As in the previous case
it is convenient to define the BBP with the fields normal-
ized ðr−Δai; vi;ϕÞ so that we can impose

ψ Ið0Þ≡

0BBBBBBB@

atð0Þ
..
.

vtð0Þ
..
.

ϕð0Þ

1CCCCCCCA
; FðΛÞ ¼ I: ðC3Þ

I is useful to divide the BBP in two rectangular matrices
F ;H and a vector G,

F ¼

0BBBBB@
F

− − − − −
H

− − − − −
G

1CCCCCA; aI ¼ rΔF IJψJð0Þ;

vI ¼ HIJψJð0Þ; ϕ ¼ GJψJð0Þ: ðC4Þ

From this one can derive the renormalized one-point
functions. The expressions can be found in the main text
in (36).

2. Two-point functions

In order to obtain the two-point functions in (39)–(41)
we switch on perturbations with momentum aligned to the
z-direction δθ ¼ σðrÞe−iωtþikz, δAμ ¼ aμðrÞe−iωtþikz and
δVμ ¼ vμðrÞe−iωtþikz on top of our background (42).
The equations decouple and in the sector we are interested
in we are left to four coupled equations for ax; ay; vx; vy.

a00y þ
�
f0

f
þ 1

r

�
a0y þ

�
ω2

f2
−

k2

r2f
−
m2

f

�
ay

−
12ikκϕ0

fr
az −

12ikκχ0

fr
vz ¼ 0; ðC5Þ

a00z þ
�
f0

f
þ 1

r

�
a0z þ

�
ω2

f2
−

k2

r2f
−
m2

f

�
az

þ 12ikκϕ0

fr
ay þ

12ikκχ0

fr
vy ¼ 0; ðC6Þ

v00y þ
�
f0

f
þ 1

r

�
v0y þ

�
ω2

f2
−

k2

r2f

�
vy

−
12ikκχ0

fr
az −

12ikκϕ0

fr
vz ¼ 0; ðC7Þ

v00z þ
�
f0

f
þ 1

r

�
v0z þ

�
ω2

f2
−

k2

r2f

�
vz

þ 12ikκχ0

fr
ay þ

12ikκϕ0

fr
vy ¼ 0: ðC8Þ

The asymptotic analysis of these equations allows to
write the near boundary expansion

aiðr → ∞Þ ∼ að0ÞiðrΔ þMrΔ−2Þ

þ að0Þjϵij ~Mr2Δ−2 þ eai
rΔþ2

; ðC9Þ

viðr → ∞Þ ∼ vð0Þið1Þ þ vð0Þjϵijð ~MrΔ−2Þ þ evi
r2
; ðC10Þ

where M and ~M are functions of k; κ; A0
t; V 0

t. In the linear
response limit the normalizable modes ~ai ~vi can only
depend linearly on the sources; therefore we may rewrite
the expansions

aiðr → ∞Þ ∼ að0Þi
�
rΔ þMrΔ−2 þ ρ

r2þΔ

	
þ að0Þjϵij

�
~Mr2Δ−2 þ ~ρ

r2þΔ

	
þ vð0Þi

~~ρ

r2þΔ þ vð0Þjϵij
~~~ρ

r2þΔ ; ðC11Þ

viðr → ∞Þ ∼ vð0Þi
�
1þ η

r2

	
þ vð0Þjϵij

�
~MrΔ−2 þ ~η

r2

	
þ að0Þi

~~η

r2
þ að0Þjϵij

~~~η

r2
: ðC12Þ

This allows us to write

hJVi JVj i ¼ 2
δ ~vi
δvjð0Þ

¼ 2~ηi; ðC13Þ

hJAi JAj i ¼ ð2þ 2ΔÞ δ ~ai
δajð0Þ

¼ ð2þ 2ΔÞ~ρi; ðC14Þ
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hJAi JVj i ¼ 2
δ ~vi
δajð0Þ

¼ 2
~~~ηi: ðC15Þ

Now we perform the same analysis as in (B 2), seeking
the correct expression of these correlators as a linear
combination of the BBP and its derivatives in order to
compute the conductivities numerically. We find

2~ηi ¼ lim
r→∞

− r3p0ðrÞ; ðC16Þ

ð2þ 2ΔÞ~ρi ¼ lim
r→∞

r3þ2Δ ð3 − ΔÞb0ðrÞ þ rb00ðrÞ
3Δ

; ðC17Þ

2
~~~ηi ¼ lim

r→∞
− r3þ2Δ v0ðrÞ

Δþ 1
; ðC18Þ

where pðrÞ, bðrÞ and vðrÞ are the functions that appear in
the matrix valued BBP0BBBBB@

r−ΔayðrÞ
r−ΔazðrÞ
vyðrÞ
vzðrÞ

1CCCCCA ¼

0BBBBB@
aðrÞ bðrÞ cðrÞ dðrÞ
iðrÞ jðrÞ kðrÞ lðrÞ
mðrÞ nðrÞ oðrÞ pðrÞ
uðrÞ vðrÞ wðrÞ yðrÞ

1CCCCCA

0BBBBB@
ayð0Þ
azð0Þ
vyð0Þ
vzð0Þ

1CCCCCA:

ðC19Þ

APPENDIX D: Uð1Þ × Uð1Þ MODEL:
PERTURBATIONS FOR THE CMW

In order to compute the QNM spectrum and the electric
conductivities with a constant and homogeneous back-
ground magnetic field we switch on perturbations with
momentum k aligned to the magnetic field and frequencyω.

The decoupled sector of equations we are interested in
reads

a00t þ
3

r
at0 −

�
k2

fr2
þm2

f

�
at −

ωk
fr2

az þ
12κB
r3

v0z

þ iωm2

f
η ¼ 0; ðD1Þ

v00t þ
3

r
vt0 −

k2

fr2
vt −

ωk
fr2

vz þ
12κB
r3

a0z ¼ 0 ðD2Þ

a00z þ
�
f0

f
þ 1

r

�
az0 þ

�
ω2

f2
−
m2

f

�
az þ

ωk
f2

at

þ 12κB
fr

v0t −
ikm2

f
η ¼ 0; ðD3Þ

v00z þ
�
f0

f
þ 1

r

�
v0z þ

ω2

f2
vz þ

ωk
f2

vt þ
12κB
fr

a0t ¼ 0; ðD4Þ

η00 þ
�
3

r
þ f0

f

�
η0 þ

�
ω2

f2
−
k2

f

�
ηþ iω

f2
at þ

ik
fr

az ¼ 0;

ðD5Þ

with a, v, η being the perturbations for the axial, vector and
Stückelberg fields respectively and f the blackening factor
of the metric. There are also two constraints:

ωa0t þ
kf
r2

a0z þ
12κB
r3

ðωvz þ kvtÞ − im2fη0 ¼ 0; ðD6Þ

ωv0t þ
kf
r2

v0z þ
12κB
r3

ðωaz þ katÞ ¼ 0: ðD7Þ

The equations for the electric conductivity can be
obtained turning off the momentum.
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