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By applying Darboux–Crum transformations to the quantum one-gap Lamé system, we introduce an
arbitrary countable number of bound states into forbidden bands. The perturbed potentials are reflectionless
and contain two types of soliton defects in the periodic background. The bound states with a finite number
of nodes are supported in the lower forbidden band by the periodicity defects of the potential well type,
while the pulse-type bound states in the gap have an infinite number of nodes and are trapped by defects of
the compression modulations nature. We investigate the exotic nonlinear N ¼ 4 supersymmetric structure
in such paired Schrödinger systems, which extends an ordinary N ¼ 2 supersymmetry and involves two
bosonic generators composed from Lax–Novikov integrals of the subsystems. One of the bosonic integrals
has a nature of a central charge and allows us to liaise the obtained systems with the stationary equations of
the Korteweg–de Vries and modified Korteweg–de Vries hierarchies. This exotic supersymmetry opens the
way for the construction of self-consistent condensates based on the Bogoliubov–de Gennes equations
and associated with them new solutions to the Gross–Neveu model. They correspond to the kink or
kink-antikink defects of the crystalline background in dependence on whether the exotic supersymmetry
is unbroken or spontaneously broken.
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I. INTRODUCTION

Quantum periodic finite-gap systems find many
interesting applications in physics [1–22]. They can be
related via the algebro-geometric approach with the
integrable Korteweg–de Vries (KdV) and modified
Korteweg–de Vries (mKdV) equations [23,24]. The poten-
tials of finite-gap Schrödinger systems correspond to the
“snapshots” of the evolving in time generalizations of
cnoidal waves solutions to the KdV equation [25]. In a
similar way, via the Miura transformation, the scalar Dirac
finite-gap potentials can be associated with solutions to the
mKdVequation. The infinite-period limit of such potentials
corresponds to reflectionless systems [26] and the solitary
waves solutions to the KdV and mKdV equations.
Reflectionless second- and first-order quantum systems

can be constructed via the Darboux–Crum transformations
[27] from the quantum free particle Schrödinger and Dirac
systems. The same transformations provide an effective
dressing method for construction of Lax–Novikov integrals
for these systems. The condition of conservation of them
generates the higher-order nonlinear stationary equations

for the KdV and mKdV hierarchies [28–31]. This picture
also applies for a more general case of Zakharov–Shabat/
Ablowitz–Kaup–Newell–Segur hierarchy [32].
It was shown recently in Ref. [31] that the Darboux–

Crum transformations yield a possibility to relate reflec-
tionless systems with a different number of bound states in
their spectra via a soliton scattering picture. It was also
demonstrated that the pairs of reflectionless Schrödinger
systems are described not by the ordinary linear or non-
linear N ¼ 2 supersymmetry, as this happens in the case
of ordinary, nontransparent quantum systems related by a
Darboux–Crum transformation. Instead, they are charac-
terized by exotic nonlinear N ¼ 4 supersymmetric struc-
ture. It is generated by two pairs of the supercharges, which
are the 2 × 2 matrix differential operators of the odd and
even orders. In addition, the exotic supersymmetric struc-
ture includes two bosonic generators composed from the
Lax–Novikov integrals of subsystems, which are differ-
ential operators of higher odd order [29,30].
Among all such paired reflectionless Schrödinger sys-

tems, there is a special class, in which two lower-order
supercharges have the differential order 1. In this case, one
of the two bosonic integrals transmutes into the central
charge of the exotic nonlinear N ¼ 4 superalgebra, while
the second bosonic integral generates rotations between
the first-order and even-order supercharges. One of the
first-order supercharges can be reinterpreted as the Dirac
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Hamiltonian, which is characterized by its own exotic
supersymmetry associated with the central charge of the
initial extended Schrödinger system. It is, in fact, the
Bogoliubov–de Gennes Hamiltonian, whose potential,
being the superpotential of the initial extended
Schrödinger system, provides us with self-consistent con-
densates. The latter supply us, particularly, with kink- and
kink-antikink-type solutions for the Gross–Neveu model
[30]. A similar picture related to the exotic supersymmetry
was also revealed in the pairs of mutually displaced one-
gap Lamé systems [22].
A natural question that appears here is whether the

Darboux–Crum transformations can be employed to unify
the reflectionless and finite-gap properties in the same
quantum system. Such a quantum system could be associated
with the KdV and mKdV equations, and its potential would
correspond to solitary wave solutions propagating in a
background of finite-gap, cnoidal-wave-type solutions. The
related question then is what happens with the exotic non-
linear supersymmetric structure in such quantum systems.
In this article, we answer the posed questions. To this

aim, we apply the Darboux–Crum transformations to the
quantum one-gap periodic Lamé system to introduce into
its spectrum an arbitrary countable number of bound states
in its two, the lowest and the intermediate, forbidden bands.
This procedure will provide us the reflectionless non-
periodic one-gap potentials, which will contain two essen-
tially different types of soliton defects in the periodic
background. The nature of defects depends on the for-
bidden band in which they support the bound states.
Coherently with this, as it will be shown, the corresponding
two types of the bound states possess essentially different
properties. We also investigate the exotic nonlinear super-
symmetric structure associated with such quantum systems.
Some general mathematical aspects of the theory of the

class of the systems we investigate here were discussed in
Ref. [33]. The simplest particular examples were consid-
ered in Ref. [34]. For the discussion of the problem of
defects in a more general context of integrable classical and
quantum field theoretical systems, see Refs. [35–37].
The article is organized as follows. In next section,

generic properties of the quantum one-gap periodic Lamé
system are summarized, and its infinite-period limit corre-
sponding to the simplest reflectionless Pöschl–Teller model
with one bound state is discussed in light of Darboux–Crum
transformations. In Sec. III, we consider Darboux trans-
lations for Lamé system. We apply Darboux–Crum trans-
formations in Sec. IV to introduce soliton defects into the
one-gap Lamé system. The procedure is developed first
to generate an arbitrary number of periodicity defects
supporting bound states in the lower forbidden band.
Then, we do the same for the gap separating the allowed
valence and conduction bands. As we shall see, the cases of
the even and odd numbers of the bound states in the
intermediate forbidden band are characterized by different

Darboux–Crum schemes. Finally, we show how to general-
ize the construction to introduce the bound states in both
forbidden bands. We discuss also the application of
Darboux–Crum dressing procedure for the construction of
the irreducible Lax–Novikov integrals. Section V is devoted
to investigation of the exotic nonlinear N ¼ 4 supersym-
metric structure that appears in the extended Shrödinger
systems composed from two arbitrary one-gap systems with
periodicity defects. Special attention is given there for the
most interesting from the viewpoint of physical applications
case when two of the four supercharges are given by the
matrix differential operators of the first order. We consider
the cases of the unbroken and spontaneously broken exotic
supersymmetries and indicate the relation of the obtained
systems with the KdVand mKdVequations. The results are
summarized in Sec. VI. We point out there further possible
research directions for the development of the obtained
results and some interesting applications. The Appendix is
devoted to a more technical demonstration of a nonsingular
nature of the constructed one-gap potentials of a generic
form with an arbitrary number of the periodicity defects.

II. ONE-GAP LAMÉ SYSTEM AND ITS
INFINITE-PERIOD LIMIT

In this section, we summarize generic properties of the
quantum one-gap periodic Lamé system and discuss its
infinite-period limit corresponding to the reflectionless
Pöschl–Teller model. The Darboux transformations asso-
ciate the latter system with a free particle and allow us,
particularly, to identify its nontrivial Lax–Novikov integral
via the dressing procedure. All this will form the basis for
application of the method of the Darboux–Crum trans-
formations to introduce two different types of nonperiodic
soliton defects into the Lamé system.

A. Spectral properties of one-gap Lamé system

The quantum one-gap Lamé system is described by the
Hamiltonian operator

H0;0 ¼ −
d2

dx2
þ V0;0ðxÞ;

V0;0ðxÞ ¼ 2k2sn2x − k2 ¼ −2dn2xþ 1þ k02; ð2:1Þ

with a periodic potential V0;0ðxÞ ¼ V0;0ðxþ 2KÞ.1 The
sense of the lower indices introduced here will be clarified

1K ¼ KðkÞ is a complete elliptic integral of the first kind
corresponding to the modular parameter k, 0 < k < 1. We also
denote K0 ¼ Kðk0Þ, where k0, 0 < k0 < 1, k2 þ k02 ¼ 1, is the
complementary modular parameter. For the properties of Jacobi
elliptic and related functions, see Ref. [38]. For a short summary
of the properties we use here, see the Appendix in Ref. [22]. The
dependence of these functions on k is not shown explicitly. In the
case in which they depend on k0 instead of k, we indicate such a
dependence explicitly.
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in what follows. The eigenstates of H0;0 can be found in a
closed analytic form for any complex eigenvalue E.
Parametrizing the latter in terms of Jacobi’s elliptic dn
function, EðαÞ ¼ dn2α, we obtain the solutions of the
stationary Schrödinger equation H0;0Ψα

� ¼ EðαÞΨα
�,

Ψα
�ðxÞ ¼

Hðx� αÞ
ΘðxÞ exp ½∓ xZðαÞ�: ð2:2Þ

Here, Θ, H, and Z are Jacobi’s Theta, Eta, and Zeta
functions, while parameter α can take arbitrary complex
values. Since the periods of the doubly periodic elliptic
function dn2α are 2K and 2iK0, and it is an even function,
without any loss of generality, one can restrict a consid-
eration to a rectangular domain with vertices in 0, K,
Kþ iK0, and iK0. Hamiltonian (2.1) is a Hermitian
operator, and we are interested in the real eigenvalues
EðαÞ.2 These are provided by further restriction of the
values of the parameter α to the borders of the indicated
rectangle; see Fig. 1. The horizontal edges correspond
to the lower and upper forbidden zones (lacunas) in
the spectrum. The vertical edges correspond, respectively,
to the valence and conduction bands. The necessary
information on the bands’ structure, including the values
of quasimomentum κðαÞ, see below, is summarized in
Table I. We supply the parameters β and γ, corresponding to
real and imaginary parts of the complex parameter α, with
upper index −=þ to distinguish whether they correspond to
the lower/upper forbidden and allowed bands, respectively.
While the real parameter β− increases in the open

interval ð0;KÞ, the energy increases in the lower, semi-
infinite forbidden band but decreases in the finite gap
separating the allowed bands when βþ varies in the same
interval. In the valence band, the energy increases when the
parameter γ− decreases from K0 to 0; the variation of
the parameter γþ in the semiopen interval ½0;K0Þ gives
the energy monotonically increasing in the semi-infinite
conduction band.
Under the shift for the real period 2K of the potential, the

eigenstates (2.2) undergo the transformation

Ψα
�ðxþ 2KÞ ¼ exp ð∓ i2KκðαÞÞΨα

�ðxÞ;
where κðαÞ ¼ π

2K
− iZðαÞ ð2:3Þ

is the quasimomentum, in which the first term is asso-
ciated with the 2K antiperiodicity of the Eta function,
Hðxþ 2KÞ ¼ −HðxÞ. The analytical form of the quasi-
momentum κðαÞ allows us to determine explicitly when
it takes real or complex values and therefore to locate
the allowed and forbidden bands. Thus, making use of the

properties of Jacobi’s Zeta function, one finds that in the
lower forbidden band the quasimomentum takes pure
imaginary values, κðβ− þ iK0Þ ¼ −izðβ−Þ, zðβ−Þ ¼
d

dβ− logHðβ−Þ. In accordance with this, the quasimomen-
tum varies in the complex plane along the imaginary axis
so that κ → −i∞ for β− → 0, E → −∞, and κ → 0 when
β− → K, E → 0. The amplitude of the wave functions
(2.2) in this band increases exponentially in one of the two
directions on the real axis x, and eigenfunctions
Ψα¼β−þiK0

� ðxÞ correspond therefore to nonphysical states.
In the valence band, the quasimomentum takes real values,
κðKþ iγ−Þ ¼ π

2K ð1 − γ−

K0Þ − d
dγ− logΘðγ− þK0jk0Þ, where

it increases monotonically from κ ¼ 0 (E ¼ 0) to κ ¼
π
2K (E ¼ k02). The wave functions (2.2) inside the valence
band correspond to the two linearly independent Bloch
states. In the intermediate energy gap, the quasimomen-
tum is complex valued, κðβþÞ ¼ π

2K − iZðβþÞ. In accor-
dance with the relation d

dβZðβÞ ¼ dn2β − E
K, where E is the

complete elliptic integral of the second kind, and
k02 < E

K < 1, the imaginary part in κðβþÞ varies monoton-
ically in the interval βþ ∈ ð0; β��, 0 < Z ≤ Zðβ�Þ, where
β� corresponds to the equality dn2β� ¼ E

K and then
decreases monotonically approaching the zero value in
the interval βþ ∈ ðβ�;KÞ. In the conduction band, like in
the valence band, the quasimomentum takes real values,
κðiγþÞ ¼ π

2K ð1 − γþ
K0Þ − d

dγþ logHðγþ þK0jk0Þ. It increases
here monotonically from π

2K (E ¼ 1) to þ∞ (E → ∞).
Inside this band, for any value of the energy, the two wave
functions (2.2) correspond to the two linearly independent
physical Bloch states.
The properties of a periodic quantum system are effec-

tively reflected by the discriminant DðEÞ (Lyapunov
function) of the corresponding stationary Schrödinger
equation, which is defined as a trace of the monodromy
matrix representing the operator of the translation for the
period of the potential [23,41–43]. Its form DðEÞ ¼
2 cos ð2KκðEÞÞ for the one-gap Lamé system (2.1) is
shown on Fig. 2. In the lower prohibited zone and in
the valence band, the explicit analytic form is given,
respectively, by DðEðβ− þ iK0ÞÞ ¼ 2 cosh ð2Kzðβ−ÞÞ and
DðEðKþ iγ−ÞÞ ¼ 2 cos ð2Kκðγ−jk0ÞÞ. In the energy gap
separating the valence and conduction bands, it reduces to

FIG. 1 (color online). Spectrum of the one-gap Lamé system
(2.1) as a function of complex parameter α.

2The PT-symmetric generalization [39,40] of (2.1) can also be
associated with real values of EðαÞ; see below.
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DðEðβþÞÞ ¼ −2 cosh ð2KZðβþÞÞ. The minimum of the
curve at E ¼ dn2β� ¼ E

K corresponds to the maximum
value Zðβ�Þ > 0 of the Zeta function. In the conduction
band, we have DðEðγþÞÞ ¼ 2 cos ð2Kκðγþjk0ÞÞ. The infin-
ite number of oscillations of the curve between −2 and þ2
extrema values of the DðEÞ is associated in this band with
the zero of cnðγþjk0Þ at γþ ¼ K0 appearing in the denom-
inator of the function fþ in the structure of κðγþjk0Þ; see
Table I.
At the edges of the valence and conduction bands, where

jDj ¼ 2, dDdE ≠ 0, the two wave functions (2.2) reduce, up to
numerical factors, to the same periodic, ψ1 ¼ dn x (E ¼ 0),
and antiperiodic, ψ2 ¼ cn x (E ¼ k02) and ψ3 ¼ sn x
(E ¼ 1), eigenstates. The second, linear independent eigen-
functions at the edges of the valence and conduction bands
are given by ΨiðxÞ ¼ ψ iðxÞI i, i ¼ 1; 2; 3, where I iðxÞ ¼R
dx=ψ2

i ðxÞ are expressed in terms of the incomplete
elliptic integral of the second kind, EðxÞ ¼ R

x
0 dn

2xdx:
I1ðxÞ ¼ 1

k02 EðxþKÞ, I2ðxÞ ¼ x − 1
k02 EðxþKþ iK0Þ,

I3ðxÞ ¼ x − Eðxþ iK0Þ. The functions ΨiðxÞ are not
bounded on the real line and correspond to nonphysical
eigenstates of the Lamé Hamiltonian operator. They also
can be obtained from the states (2.2) by differentiation in α.
Namely, derivatives of the functions ΨαþðxÞ in α at α ¼ 0

and α ¼ K give some linear combinations of the functions
ψ iðxÞ and ΨiðxÞ with i ¼ 3 and i ¼ 2, respectively, while
the derivative of the function (2.6) in parameter β− at
β− ¼ K gives a linear combination of ψ1ðxÞ and Ψ1ðxÞ.
For any value of the parameter α, under the parity

reflection, PfðxÞ ¼ fð−xÞ, the states (2.2) satisfy the
relation

PΨα
�ðxÞ ¼ −Ψα∓ðxÞ: ð2:4Þ

The properties of the wave functions (2.2) in corresponding
bands under the T, TfðxÞ ¼ f�ðxÞ, and the composed PT
operations [39,40] are shown in Table II.
Notice that in the lower forbidden band

Ψβ−þiK0
� ðxÞ ¼ �iq−1=4 exp

�
−i

πβ−

2K

�
Fð�x; β−Þ; ð2:5Þ

where

Fðx; β−Þ ¼ Θðxþ β−Þ
ΘðxÞ expð−xzðβ−ÞÞ ð2:6Þ

is a real-valued function of x, which takes positive
values, Fðx; β−Þ > 0. Here, q ¼ expð−πK0=KÞ is Jacobi’s
nome, and we used the relation Hðxþ iK0Þ ¼
iq−1=4 expð−i πx

2KÞΘðxÞ. In this band, one can employ
alternatively the real functions Fðx; β−Þ and Fð−x; β−Þ ¼
PFðx; β−Þ as two linear independent solutions.
The operator PT distinguishes whether the function (2.2)

belongs to the forbidden or allowed band. When it
corresponds to the physical Bloch state, it is also the
eigenfunction of the PT. In contrast, the functions (2.2)
from the forbidden bands cease to be eigenstates of the PT
operator. Instead, certain linear combinations of the two
states (2.2) with the opposite sign of the quasimomentum
have to be taken to create the eigenstates of the PT operator
in the forbidden bands.

B. Infinite period limit: Reflectionless Pöschl–Teller
system and Darboux transformations

Before we pass to the discussion of the introduction of
the periodicity defects, corresponding to solitons, into the

TABLE I. Bands and their characteristics. Here zðβ−Þ ¼ Zðβ−Þ þ cn β−ds β−, κðγ�jk0Þ ¼ π
2K ð1 − γ�

K0Þ − Zðγ�jk0Þ þ f�,
f− ¼ k02snðγ−jk0Þcdðγ−jk0Þ, and fþ ¼ snðγþjk0Þdcðγþjk0Þ.
Band α ¼ β þ iγ EðαÞ κðαÞ
Lower forbidden β≡ β− ∈ ð0;KÞ, γ ¼ K0 ð−∞; 0Þ∋E ¼ −cs2β− −izðβ−Þ
Valence β ¼ K, γ ≡ γ− ∈ ½0;K0� ½0; k02�∋E ¼ k02cd2ðγ−jk0Þ κðγ−jk0Þ
Upper forbidden (gap) β≡ βþ ∈ ð0;KÞ, γ ¼ 0 ðk02; 1Þ∋E ¼ dn2βþ π

2K − iZðβþÞ
Conduction β ¼ 0, γ ≡ γþ ∈ ½0;K0Þ ½0;þ∞Þ∋E ¼ dc2ðγþjk0Þ κðγþjk0Þ

TABLE II. Properties of the eigenfunctions under the T and PT
operations. Here, c ¼ exp ði πβ−K Þ.
Band Ψα

�ðxÞ TΨα
�ðxÞ PTΨα

�ðxÞ
Lower forbidden Ψβ−þiK0

� ðxÞ −cΨβ−þiK0
� ðxÞ cΨβ−þiK0

∓ ðxÞ
Valence ΨKþiγ−

� ðxÞ −ΨKþiγ−∓ ðxÞ ΨKþiγ−

� ðxÞ
Upper forbidden (gap) Ψβþ

� ðxÞ Ψβþ
� ðxÞ −Ψβþ∓ ðxÞ

Conduction Ψiγþ
� ðxÞ Ψiγþ∓ ðxÞ −Ψiγþ

� ðxÞ

FIG. 2 (color online). The discriminant DðEÞ of the one-gap
Lamé system. The scale is linear in energy for E < 1, while for
E > 1 a logarithmic scale is used here. The parts shown in red
correspond to the lower (E < 0) and to the upper (k02 < E < 1)
forbidden bands.
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spectrum of the one-gap Lamé system, we consider briefly
the analogous procedure for the infinite-period limit case.
The picture in such a limit case is more simple and
transparent, and it is useful to bear it in mind when we
generalize the method to the very Lamé system.
In the infinite-period limit K → ∞, which is equivalent

to any of the three limits k → 1, k0 → 0, or K0 → π=2,
operator (2.1) transforms into the Hamiltonian of the
reflectionless Pöschl–Teller system

H1 ¼ −
d2

dx2
þ V1ðxÞ; V1ðxÞ ¼ −

2

cosh2x
þ 1: ð2:7Þ

In this limit, the valence band shrinks into one discrete
energy level E ¼ 0. The wave functions (2.2) of the valence
band with α ¼ Kþ iγ−, γ− ∈ ½0;K0� transform into the
unique bound state described by the normalizable wave
function ΨE¼0ðxÞ ¼ sechx. The conduction band, para-
metrized by α ¼ iγþ, γþ ∈ ½0;K0Þ, transforms into the
scattering part of the spectrum of the system (2.7). In
the limit, we have γþ ∈ ½0; π

2
Þ. Introducing the notation

tan γþ ¼ k, 0 ≤ k < ∞, we find that the rescaled wave

functions q−1=4Ψα¼iγþ∓ ðxÞ of the conduction band trans-
form, up to an inessential constant multiplicative factor,
into the wave functions

Ψk
�ðxÞ ¼ ð�ik − tanh xÞe�ikx: ð2:8Þ

Corresponding energy E ¼ dn2ðiγþjkÞ ¼ dc2ðγþjk0Þ trans-
forms in the limit k0 → 0 into 1=cos2γþ ¼ 1þ k2, which is
the eigenvalue of the eigenstates (2.8) of the Pöschl–Teller
Hamiltonian (2.7). The nondegenerate state Ψ0 ¼ tanh x
(k ¼ 0) corresponds here to the state of energy E ¼ 1
described by snx at the edge of the conduction band of the
Lamé system (2.1).
The scattering states (2.8) can be presented in the form

Ψk
�ðxÞ ¼ Aφe�ikx in terms of the first-order differential

operator

Aφ ¼ φðxÞ d
dx

1

φðxÞ ¼
d
dx

− tanh x; φðxÞ ¼ cosh x:

ð2:9Þ

Operator Aφ together with the Hermitian conjugate A†
φ

intertwine the reflectionless system (2.7) with the free
particle Hamiltonian shifted for an additive constant,

H0 ¼ −
d2

dx2
þ 1; ð2:10Þ

and provide the factorization of both:

AφA
†
φ ¼ H1; A†

φAφ ¼ H0;

AφH0 ¼ H1Aφ; A†
φH1 ¼ H0A

†
φ: ð2:11Þ

Relations (2.11) correspond to the Darboux transforma-
tions that relate the free particle system with the reflection-
less Pöschl–Teller system. The alternative form to express
the same relation between the systems corresponds to the
equality

H1 ¼ H0 − 2
d2

dx2
logφðxÞ: ð2:12Þ

The wave function φðxÞ ¼ cosh x is a nodeless nonphysical
eigenstate of the free particle H0, and the operator Aφ

produces an almost isospectral mapping of all the physical
and nonphysical states of H0, except φðxÞ, AφφðxÞ ¼ 0,
into corresponding states of the system H1. The only
physical bound state ΨE¼0ðxÞ ¼ sechx of H1 of zero
energy, for which there is no bound state analog in the
physical spectrum of H0, is obtained by applying the
operator Aφ to the wave function ~φðxÞ ¼ φðxÞ R dx

φ2ðxÞ.
This is the nonphysical eigenstate of (2.10) of the
same zero eigenvalue as φðxÞ. It reduces here just to
the derivative of the latter, ~φðxÞ ¼ sinh x ¼ φ0ðxÞ.
Analogously, the application of the operator A†

φ to the
eigenstates ofH1 in correspondence with the last relation in
(2.11) produces the eigenstates of H0. The unique bound
state ΨE¼0ðxÞ ¼ sechx of H1 is the zero mode of the
first-order operator A†

φ.
The free particle system (2.10) has a nontrivial integral

p ¼ −i d
dx. It distinguishes the plane waves e

�ikx, which are
the eigenstates of H0 of the same energy, and detects a
unique nondegenerate state ΨE¼1ðxÞ ¼ 1 corresponding to
k ¼ 0 by annihilating it. In correspondence with the last
two relations in (2.11) and the described picture of the
mapping associated with the Darboux transformations, one
finds that the operator

P ¼ −iAφ
d
dx

A†
φ ð2:13Þ

is the Hermitian integral for the reflectionless system H1.
We refer to this as the dressing procedure. Similarly to p,
this operator distinguishes the eigenstates (2.8), being
analogs of the plane wave states for the free particle,
PΨk

�ðxÞ ¼ �kð1þ k2ÞΨk
�ðxÞ. It annihilates the lowest

nondegenerate stateΨ0ðxÞ ¼ tanh x in the scattering sector,
and the bound state3 ΨE¼0ðxÞ ¼ sechx. Integral (2.13)
satisfies the Burchnall–Chaundy relation [45]

P2 ¼ H2
1ðH1 − 1Þ: ð2:14Þ

Since the free particle has the integral p ¼ −i d
dx ; the H0

and the Pöschl–Teller Hamiltonian (2.7) can be intertwined

3Being the third-order differential operator, (2.13) also turns
into zero the state φðxÞ ¼ cosh x, which is a nonphysical
eigenstate of the free particle Hamiltonian (2.10) [44].
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not only by the first-order operator (2.9) and its conjugate
A†
φ but also by the second-order operators

Bφ ¼ Aφ
d
dx

and B†
φ: ð2:15Þ

The first- and second-order intertwining operators together
with the integrals p and P of the systems H0 and H1

constitute the building blocks of the exotic centrally
extended N ¼ 4 nonlinear supersymmetry of the
system described by the 2 × 2 matrix Hamiltonian
H ¼ diagðH0; H1Þ [31].
Suppose now that we want to construct another reflec-

tionless system proceeding from the Pöschl–Teller system
(2.7) by means of a new Darboux transformation, or a
composition of them, that corresponds to the Darboux–
Crum transformation. There are three different ways to do
this. First, one can construct a reflectionless system with
an additional, second bound state lying below the unique,
zero energy bound state of the system (2.7). Another case
corresponds to the situation in which we want to introduce
a bound state with the energy level lying between the zero
energy level of the already existing bound state and the
edge of the scattering sector of energy E ¼ 1. At last, one
can construct a reflectionless system completely isospec-
tral to the system (2.7) but with the displaced potential
(“soliton center”). Having at hands the building blocks
corresponding to the described three possibilities, by the
appropriate generalization of the procedure, we can
construct a reflectionless system with an arbitrary number
of bound states and arbitrary positions of the correspond-
ing soliton centers [29,30].
The first situation is realized by the construction in a way

similar to (2.9) of the Darboux generator on the basis of the
nodeless function

φ1ðx; κ1; τ1Þ ¼ Aφ sinh κ1ðxþ τ1Þ; ð2:16Þ

where κ1 > 1 and τ1 is an arbitrary real parameter. The
function φ1ðx; κ1; τ1Þ is the nonphysical eigenstate of (2.7)
with energy 1 − κ21, and τ1 is associated with the center
(phase) of the second soliton (the first soliton is charac-
terized by τ0 ¼ 0 and the amplitude κ0 ¼ 1) in the potential
of the system

H2 ¼ H1 − 2
d2

dx2
logφ1ðxÞ ð2:17Þ

with two bound states; cf. (2.12). Note that alternatively
H2 can be presented in terms of the second-order
Darboux–Crum transformation applied to the free
particle, H2 ¼ H0 − 2 d2

dx2 logWðxÞ, where WðxÞ is the
Wronskian of the two nonphysical states of the free
particle, φ ¼ cosh x and ϕ ¼ sinh κ1ðxþ τ1Þ, WðxÞ ¼
Wðφ;ϕÞ ¼ φϕ0 − φ0ϕ.

To obtain a reflectionless system with an additional
bound state inside the energy interval (0, 1), which
separates the bound state level of the system (2.7) with
the continuous part of the spectrum, one can apply to (2.7)
the Darboux–Crum transformation generated by the two
nonphysical states ϕ1ðx; κ1; τ1Þ ¼ Aφ cosh κ1ðxþ τ1Þ and
ϕ2ðx; κ2; τ2Þ ¼ Aφ sinh κ2ðxþ τ2Þ. If we restrict the param-
eters κ1;2 by the condition 0 < κ1 < κ2 < 1, the corre-
spondingWronskianWðxÞ ¼ Wðϕ1;ϕ2Þ has no zeros. This
produces a system with a regular reflectionless potential

V3ðxÞ ¼ V1ðxÞ − 2
d2

dx2
logWðxÞ; ð2:18Þ

which has three bound states with energies 1 − κ21, 1 − κ22,
and 0. Sending then one of the two translation parameters,
τ2 or τ1, to any of the limits þ∞ or −∞, we get a
reflectionless system with two bound states of energies 1 −
κ21 and 0 when we send jτ2j → ∞, or with energies 1 − κ22
and 0 when jτ1j → ∞. The indicated limit changes the
translation parameters of the remaining added soliton as
well as of the initial one with κ0 ¼ 1 and τ0 ¼ 0 in
correspondence with the picture of soliton scattering;
see Ref. [31].
There is another possibility to introduce one additional

bound state into the spectrum of the system (2.7) with the
energy inside the interval (0, 1). One can apply to (2.7) a
Darboux transformation constructed on the basis of its
nonphysical state ϕðx; κ; τÞ ¼ Aφ sinh κðxþ τÞ, 0 < κ < 1.
This will produce a singular system. Shifting then
τ → τ þ i π

2κ ð1 − κÞ and x → xþ i π
2
, we get a regular

reflectionless system with two bound states with energies
1 − κ2 and 0.
Finally, to produce a system completely isospectral to

the system (2.7), one can apply to the latter the Darboux
transformation based on the function [31] fðx; κÞ ¼
Aφ expðκxÞ, where κ > 1. In the present simplest case of
H1, this will give us the shifted system (2.7), in which
the argument of the potential x changes for4 xþ λ,
where λ ¼ 1

2
log κ−1

κþ1
.

In all three indicated cases, the corresponding extended
system H ¼ diagðH1; ~HÞ will be described by the
exotic centrally extended nonlinear N ¼ 4 supersymmetry
[29–31]. Such reflectionless systems will correspond to the
k → 1 limit of the systems obtained from the one-gap Lamé
system by introducing into it the periodicity defects by
means of the appropriate Darboux(–Crum) transformation.

4In the case of a reflectionless system with n > 1 bound states,
the isospectral deformation of the potential, which can be
generated by applying the appropriate Darboux–Crum trans-
formation, corresponds to a “snapshot” of the evolved n-soliton
solution of the Korteweg–de Vries equation; see Refs. [29–31].
In that case, like in the case of Lamé system with periodicity
defects we consider below, the form of the isospectrally deformed
potential is different from the original one.
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In the subsequent sections, we describe how to introduce
such periodicity defects and discuss the associated exotic
nonlinear supersymmetric structure.

III. DARBOUX TRANSLATIONS
OF THE LAMÉ SYSTEM

Assume that we have a system described by a
Hamiltonian operator of the most general form H ¼
− d2

dx2 þ UðxÞ and that ψðxÞ is its an arbitrary physical,
or nonphysical eigenstate,Hψ ¼ Eψ . As in (2.9), we define
the first-order operators

Aψ ¼ ψ
d
dx

1

ψ
¼ d

dx
þ ΔðxÞ; ΔðxÞ ¼ −

d
dx

logψðxÞ;
ð3:1Þ

and

A♯
ψ ¼ −

1

ψ

d
dx

ψ ¼ −
d
dx

þ ΔðxÞ: ð3:2Þ

If ψðxÞ is a real valued function modulo a possible complex
multiplicative constant, then the operators Aψ and A♯

ψ are

mutually conjugate, A♯
ψ ¼ A†

ψ . Another, linear independent
eigenstate of H of the same eigenvalue E is given by
~ψðxÞ ¼ ψðxÞ R dx=ψ2ðxÞ. The action of the operator Aψ on

this eigenstate produces a kernel of the operator A♯
ψ ,

Aψ ~ψðxÞ ¼ 1=ψðxÞ. The second-order operator A♯
ψAψ ¼

− d2

dx2 þ Δ2ðxÞ − Δ0ðxÞ has exactly the same kernel,
spanned by ψðxÞ and ~ψðxÞ, as the second-order differential
operator H − E, and therefore A♯

ψAψ ¼ H − E, and
Δ2ðxÞ − Δ0ðxÞ ¼ UðxÞ − E.
Consider now the operator AψA

♯
ψ ¼− d2

dx2þΔ2ðxÞþ
Δ0ðxÞ¼A♯

ψAψ þ2Δ0ðxÞ≡ ~H−E. The wave function
1=ψðxÞ is the eigenstate of the Schrödinger Hamiltonian
operator ~H of eigenvalue E. Another, linear independent
eigenstate of ~H of the same eigenvalue E is 1

ψðxÞ
R
ψ2ðxÞdx.

The latter is mapped by the operator A♯
ψ into the state ψðxÞ

being the zero mode of Aψ .
Let us return now to the Lamé system (2.1). Its

eigenstates ΨαþðxÞ obey the property

Ψαþð−x − α − iK0Þ ¼ −Ψα
−ðxþ αþ iK0Þ ¼ CðαÞ

ΨαþðxÞ
;

ð3:3Þ

where CðαÞ ¼ − exp ðαðZðαÞ þ i π
2KÞ þ iK0ZðαÞÞ. Taking

ψðxÞ ¼ ΨαþðxÞ in (3.1), we obtain the factorization for
the one-gap Lamé Hamiltonian,

A♯
Ψα

þ
AΨα

þ ¼ H0;0ðxÞ − EðαÞ: ð3:4Þ

Making use of the relation (3.3), we find then that

AΨα
þA

♯
Ψα

þ
¼ H0;0ðxþ αþ iK0Þ − EðαÞ: ð3:5Þ

As the Darboux-partner of the Lamé Hamiltonian H0;0ðxÞ,
we obtain therefore the translated Hamiltonian opera-
tor H0;0ðxþ αþ iK0Þ.
In the case of the lower prohibited band, the wave

function Ψβ−þiK0
þ ðxÞ reduces to the real function Fðx; βÞ

modulo a constant multiplier, see Eqs. (2.5) and (2.6),
and we have AΨα

þ ¼ AF, A♯
Ψα

þ
¼ A†

F. The property

dnðxþ 2iK0Þ ¼ −dnx gives us then in (3.5) the same
Hermitian Lamé Hamiltonian operator but shifted for
the real distance β−, 0 < β− < K, H0;0ðxþ αþ iK0Þ ¼
H0;0ðxþ β−Þ. The obtained Darboux transformations,
supersymmetry, and physics associated with them were
studied in diverse aspects in Ref. [22]. Note here that the
real function Fðx; β−Þ takes positive values for all x, blows
up exponentially when x → −∞, and tends to zero for
x → þ∞. The limit case β− ¼ K corresponds to a trans-
lation for the half of the period of Lamé Hamiltonian. It is
produced on the basis of the ground state ψðxÞ ¼ dnx [19].
The obtained Darboux transformations are analogous to the
translation transformations in the case of the Pöschl–Teller
system (2.7) with one bound state, which are constructed
on the basis of the exponentlike nonphysical eigenstates
ψ ¼ Aφ exp κx, κ > 1, of H1.
In the forbidden band separating the allowed bands, the

eigenfunctionΨβþ
þ ðxÞ takes real values, but it has an infinite

number of zeros at the points −βþ þ 2nK, n ∈ Z. In this
case, relation (3.4) gives us the factorization of the Lamé
Hamiltonian H0;0ðxÞ in terms of the singular mutually
conjugate Darboux generators. The alternative product
(3.5) of these first-order differential operators produces
the Hermitian operator H0;0ðxþ βþ þ iK0Þ with the sin-
gular Treibich–Verdier potential [46]

V0;0ðxþ βþ þ iK0Þ ¼ 2

sn2ðxþ βþÞ − k2; ð3:6Þ

where we have taken into account the identity
snðxþ iK0Þ ¼ 1=ksn x. The limiting case βþ ¼ 0 corre-
sponds to the singular Darboux transformation constructed
on the basis of the eigenfunction ψðxÞ ¼ snx at the edge of
the conduction band. Another limit case βþ ¼ K gives rise
to the singular transformation based on the eigenfunction
ψðxÞ ¼ cnx at the edge of the valence band, for which the
Treibich–Verdier potential reduces to

V0;0ðxþKþ iK0Þ ¼ 2dc2x − k2; ð3:7Þ

where we have employed the identity snðxþKþ iK0Þ ¼
dnx=kcnx.
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Inside the valence band, the eigenstate ΨKþiγ−
þ ðxÞ takes

nonzero but complex values. The Darboux partner (3.5)
reduces in this case to the nonsingular PT-symmetric
Hamiltonian with the potential

V0;0ðxþ αþ iK0Þ ¼ 2dc2ðxþ iγ−Þ − k2: ð3:8Þ

The edge value γ− ¼ K0 corresponds here to the regular
Hermitian Lamé Hamiltonian operator shifted for the
half-period,H0;0ðxþKÞ. Another edge value γ− ¼ 0 gives
the singular Hermitian Treibich–Verdier Hamiltonian (3.7)
obtained on the basis of the edge state ψðxÞ ¼ cnx.
At last, inside the conduction band, the Hamiltonian in

(3.5) reduces to the regular PT-symmetric operator with the
potential

V0;0ðxþ iγþ þ iK0Þ ¼ 2

sn2ðxþ iγþÞ − k2: ð3:9Þ

The edge case γþ ¼ 0 reduces to the singular Treibich–
Verdier potential generated via the choice ψðxÞ ¼ snx.
The described first-order Darboux transformations can

also be considered for the values of the parameter α lying
inside the rectangle in Fig. 1. In this case, the partner
Hamiltonian will be nonsingular with the potential taking
complex values, which, however, will be neither a Hermitian
nor PT-symmetric operator. Indeed, under Hermitian
conjugation, the shifted Hamiltonian operator from (3.5)
transforms as ðH0;0ðxþ αþ iK0ÞÞ† ¼ H0;0ðxþ α� þ iK0Þ,
where we have taken into account the pure imaginary period
2iK0 of the potential V0;0ðxÞ. Analogously, we have
PTðH0;0ðxþ αþ iK0ÞÞ ¼ H0;0ðx − α� þ iK0Þ, where the
even nature of the potential has additionally been taken into
account. The shifted Hamiltonian is therefore Hermitian if
α − α� ¼ 2nKþ 2imK0, n;m ∈ Z, while it is PT sym-
metric when αþ α� ¼ 2nKþ 2imK0. For the α region
shown in Fig. 1, the first condition is satisfied only on
the upper and lower horizontal edges of the rectangle, which
correspond to the prohibited zones in the spectrum, while
the second relation takes place only on the vertical edges
corresponding to the allowed valence and conduction bands.
Below, we shall see that the higher-order Darboux–Crum

transformation corresponding to a composition of the
Darboux transformations, each of which generates
the translated Lamé system of the form (3.5), produces
the Lamé system with a shift of the argument equal to the
sum of individual translations.

IV. LAMÉ SYSTEM DEFORMED BY
NONPERIODIC, SOLITON DEFECTS

In this section, we show how to introduce the reflection-
less, soliton (nonperiodic) defects into the one-gap Lamé
system.

A. Lower forbidden band

The real-valued eigenfunction Fðx; β−Þ in the lower
prohibited band has the modulated exponentlike behavior.
Let us take a linear combination of the two eigenfunctions
of the same eigenvalue,

F�ðx; β−; CÞ ¼ CFðx; β−Þ � 1

C
Fð−x; β−Þ; ð4:1Þ

where K > β− > 0 and a real parameter C is restricted
by the condition C > 0. These states have the pro-
perties F�ð−x; β−; C−1Þ ¼ �F�ðx; β−; CÞ. The function
Fþðx; β−; CÞ takes strictly positive values and blows up
exponentially in the limits x → �∞. The function
F−ðx; β−; CÞ, on the other hand, tends exponentially to
þ∞ and −∞ when x tends to −∞ and þ∞, respectively,
and has a unique zero whose position depends on the values
of the parameters β− and C. The form of the functions
F�ðx; β−; CÞ is shown in Fig. 3.
Construct now the first-order operator

A0;1 ¼ Fþð1Þ
d
dx

1

Fþð1Þ
¼ d

dx
−

d
dx

logFþð1Þ; ð4:2Þ

where Fþð1Þ ¼ Fþðx; β−1 ; C1Þ. We have A†
0;1A0;1 ¼

H0;0 − ε−1 , and A0;1A
†
0;1 ¼ H0;1 − ε−1 , where ε−1≡

Eðβ−1 þ iK0Þ ¼ −cn2β−1 =sn2β−1 < 0,

H0;1 ¼ H0;0 − 2
d2

dx2
ðlogFþð1ÞÞ ¼ −

d2

dx2
þ V0;1ðxÞ;

ð4:3Þ

V0;1ðxÞ ¼ 1þ k02 − 2
E
K

− 2
d2

dx2
ðlog χβ−10;1ðx;C1ÞÞ; ð4:4Þ

FIG. 3 (color online). At C ¼ 1, Fþðx; β−; CÞ is an even
function, while F−ðx; β−; CÞ is odd. The symmetry of nonphysi-
cal eigenfunctions F�ðx; β−; CÞ of H0;0 is broken for C ≠ 1.
Here, the case C > 1 is shown. With C increasing, the minimum
of Fþðx; β−; CÞ > 0 and zero of F−ðx; β−; CÞ are displaced to
the right. A similar situation occurs when 0 < C < 1 but with a
displacement to the negative coordinate axis. In fact, the form of
the functions for 0 < C < 1 is obtained from that for C > 1 via
the relation F�ðx; β−; CÞ ¼ �F�ð−x; β−; C−1Þ.
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χ
β−
1

0;1ðx;C1Þ ¼ C1Θðxþ β−1 Þ expð−xzðβ−1 ÞÞ

þ 1

C1

Θðx − β−1 Þ expðxzðβ−1 ÞÞ: ð4:5Þ

The ΘðxÞ function appearing in the denominator of
FþðxÞ, see Eq. (2.6), cancels the nontrivial potential term
−2dn2x in the Lamé Hamiltonian H0;0 via the equality
d2

dx2 ðlogΘðxÞÞ ¼ dn2x − E
K, that results in the nonperiodic

potential (4.3), (4.4); see Fig. 4. By the Darboux con-
struction, the system H0;1 has the same spectrum as the
one-gap Lamé system except that it possesses an additional
discrete level of energy ε−1 . This is the eigenvalue of the
bound state described by the normalizable nodeless wave
function

Ψ;1
0;1ðx; β−1 ; C1Þ ¼

1

Fþðx; β−1 ; C1Þ
ð4:6Þ

shown in Fig. 5, which is a zero mode of the operator
A†
0;1. The nonzero lower index in the Hamiltonian and

potential reflects here the property that the system
possesses one bound state in the lower forbidden band.

The upper index in notation for the wave function of the
bound state is introduced bearing in mind a generaliza-
tion for the case of a perturbed Lamé system with various
bound states supported both in lower and upper for-
bidden bands.
Other physical and nonphysical eigenfunctions of H0;1

are given by A0;1Ψα
�ðxÞ. They correspond to the same

permitted and prohibited values of energy as the eigen-
states Ψα

�ðxÞ of the periodic Lamé Hamiltonian. This
shows that the introduced nonperiodic defect is reflec-
tionless; physical Bloch states are transformed into the
Bloch states.
Asymptotically, in the limit x → −∞, the potential

has a form of the one-gap periodic Lamé potential,
V0;1ðxÞ → V−∞

0;1 ðxÞ ¼ V0;0ðxþ β−1 Þ. In another limit
x → þ∞, we have V0;1ðxÞ → Vþ∞

0;1 ðxÞ ¼ V0;0ðx − β−1 Þ.
So, the defect produces a phase shift between the asymp-
totically periodic one-gap potentials that is equal to −2β−1 .
This observation follows also directly from (4.1).
Asymptotically, we have Fþðx; β−1 ; C1Þ → C1Fðx; β−1 Þ
when x → −∞, and Fþðx; β−1 ; C1Þ → C−1

1 Fð−x; β−1 Þ for
x → ∞. Employing the results discussed below (3.5), we
can write

A0;1A
†
0;1 → H0;0ðx� β−1 Þ − ε−1 for x →∓ ∞: ð4:7Þ

We get the phase displacement

Δϕðβ−1 Þ ¼ −2β−1 ; ε−1 ¼ −cd2β−1 < 0; ð4:8Þ

where we indicate the discrete energy level of the bound
state of H0;1. The potential V0;1ðxÞ may be treated as a
soliton defect in the background of the one-gap periodic
Lamé system.
Notice that in the limit C1 → ∞ (or C1 → 0) the soliton

“goes” to infinity, and in correspondence with Eq. (4.3),
H0;1 transforms into the shifted Lamé Hamiltonian
H0;0ðxþ β−1 Þ [or H0;0ðx − β−1 Þ].
Before we proceed further, let us show that the infinite-

period limit of the obtained system with a periodicity defect
corresponds to a reflectionless system of a generic form
(2.17) with two bound states of energies E0 ¼ 0 and
E1 ¼ 1 − κ21 < 0. To this aim, we apply the limit k → 1

FIG. 4 (color online). Potential with a one-soliton defect that supports a bound state in the lower forbidden band. The soliton is broader
when the energy of the bound state is closer to zero, and a greater number of oscillations are observable within it. The depth (amplitude)
of the soliton, on the other hand, increases when the negative energy of the bound state is deeper. The sequence of the pictures illustrates
the propagation of the soliton in the periodic background of the Lamé potential.

FIG. 5 (color online). The bound state eigenfunction of the
systemH0;1. The state on the left corresponds to the potential V0;1
with C ¼ 1 in the central picture in Fig. 4. The state on the right,
with C > 1, has energy closer to zero: when the energy modulus
is lower, the state is broader, and the oscillations in it are well
notable. By varying the parameter C, the soliton defect in the
potential is displaced as well as the position of the bound state
supported by it. In correspondence with this, in the case of
0 < C < 1 not shown here, a localization of the wave function of
the bound state is shifted to the x < 0 region in comparison with
the case C > 1.
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to the operator (4.2). The nonphysical eigenfunctionFþð1Þ
of the Lamé system in this limit transforms into the
eigenfunction (2.16), whose explicit form is

φ1ðx; κ1; τ1Þ ¼ 1

cosh x
Wðcosh x; sinh κ1ðx þ τ1ÞÞ:

ð4:9Þ

Indeed, in the indicated limit Zðβj1Þ ¼ tanh β, and
zðβ−1 Þ, defined in Table I, reduces to zðβ−1 Þ →
tanh β−1 þ 1

sinh β−
1
cosh β−

1

¼ cotanh β−1 ≡ κ1, where 1 < κ1 <

∞ since K → ∞, and then β−1 ∈ ð0;∞Þ. We have also
Θðx�βj1Þ
Θðxj1Þ ¼ coshðx�βÞ

cosh x . Introducing the notation C1 ≡ exp κ1τ1,

where τ1 is an arbitrary real parameter, we find that Fþð1Þ
transforms into 1

coshxðcoshðxþβ−1 Þexpð−κ1ðxþτ1ÞÞþ
coshðx−β−1 Þexpðκ1ðxþτ1ÞÞÞ. This function reduces, up
to inessential nonzero multiplicative constant sinh β−1 ,
to (4.9). Then, in correspondence with the discussion of
Sec. II B, the limit of the operator (4.2) is the Darboux
generator, which intertwines the reflectionless Pöschl–
Teller Hamiltonian (2.7) with the Hamiltonian operator
(2.17). Thus, we conclude that the infinite-period limit of
(4.3) corresponds to the reflectionless system (2.17).
To introduce several discrete energies into the spectrum

of the one-gap Lamé system by making use of its
nonphysical states from the lower prohibited band, consider
first the case of the two bound states. It is not difficult
to show that the Wronskian WðFþð1Þ;F−ð2ÞÞ ¼
Fþð1ÞF 0

−ð2Þ − F 0þð1ÞF−ð2Þ, where Fþð1Þ ¼
Fþðx; β−1 ; C1Þ, F−ð2Þ ¼ F−ðx; β−2 ; C2Þ, takes strictly
negative values, WðxÞ < 0, if K > β−1 > β−2 > 0; see
the Appendix. The corresponding energies of the
nonphysical eigenstates of H0;0 are ordered then as
0 > Eðβ−1 þ iK0Þ > Eðβ−2 þ iK0Þ. With such a choice of
the states, we can construct the Darboux–Crum trans-
formation producing a nonperiodic deformation of Lamé
system, which in addition to the one-gap spectrum of
H0;0ðxÞ has two discrete energy values ε−j ¼ Eðβ−j þ iK0Þ,
j ¼ 1; 2,

H0;2 ¼ −
d2

dx2
þ V0;2ðxÞ;

V0;2ðxÞ ¼ V0;0ðxÞ − 2
d2

dx2
ðlogWðFþð1Þ;F−ð2ÞÞÞ:

ð4:10Þ

The discrete energy levels ε−1 and ε−2 correspond, respec-
tively, to the two bound states

Ψ;1
0;2ðx; β−1 ; C1; β−2 ; C2Þ ¼

WðFþð1Þ;F−ð2Þ;F−ð1ÞÞ
WðFþð1Þ;F−ð2ÞÞ

;

ð4:11Þ

Ψ;2
0;2ðx; β−1 ; C1; β2; C2Þ ¼

WðFþð1Þ;F−ð2Þ;Fþð2ÞÞ
WðFþð1Þ;F−ð2ÞÞ

:

ð4:12Þ

Other physical and nonphysical eigenstates of the system
(4.10) are given by

Ψα
0;2;�ðx; β−1 ; C1; β−2 ; C2Þ ¼

WðFþð1Þ;F−ð2Þ;Ψα
�Þ

WðFþð1Þ;F−ð2ÞÞ
ð4:13Þ

and correspond to the Darboux–Crum mapping of the
eigenstates (2.2) of the initial Lamé system. The energies of
these states are defined by the values of the parameter α
exactly in the same way as for the system (2.1). In
accordance with (4.1), expressions (4.11) and (4.12) for
the bound states correspond to linear combinations of the
eigenstates (4.13) with α ¼ β−1 þ iK0 and α ¼ β−2 þ iK0,
respectively.
Let us take now n states

F sjðjÞ¼F sjðx;β−j ;CjÞ with K> β−1 > β−2 >…> β−n > 0;

ð4:14Þ

where sj corresponds to a linear combination of the form
(4.1) with index þð−Þ for j odd (even). Then, by applying
the Darboux–Crum construction on the basis of these
eigenstates, we obtain a nonperiodic deformation H0;n
of the Lamé system H0;0 with n bound states with energies
0 > ε−1 > ε−2 > …ε−n > −∞.
The potential of this system is given by a generalization

of Eq. (4.10), in which the Wronskian has to be changed for

W0;nðxÞ ¼ WðFþð1Þ; F−ð2Þ;…;F snðnÞÞ: ð4:15Þ

The n bound states of energies ε−j are described by the
normalizable wave functions

Ψ;j
0;nðx;β−1 ;C1;…;β−n ;CnÞ

¼WðFþð1Þ;F−ð2Þ;…;F snðnÞ;F−sjðjÞÞ
W0;n

; j¼ 1;…;n;

ð4:16Þ

while other corresponding eigenstates of H0;n are given by
the generalization of Eq. (4.13),

Ψα
0;n;�ðx; β−1 ; C1;…; β−n ; CnÞ

¼ WðFþð1Þ;F−ð2Þ;…;F snðnÞ;Ψα
�Þ

W0;n
: ð4:17Þ

As in the case (4.10), bound states (4.16) may be obtained
from (4.17) by putting there α ¼ β−j þ iK0, j ¼ 1;…; n,
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and changing the wave functions Ψα
� on the rhs for the

corresponding linear combinations of them.
Applying then the limit x → −∞ to the Wronskian

W0;nðxÞ, we find that it transforms, up to a multiplicative
constant, into W0;nðxÞ ¼ WðFðx; β−1 ÞðxÞ;…; Fðx; β−n ÞÞ.
Asymptotically, we get a potential V−∞

0;n ðxÞ¼
limx→−∞ð−2 d2

dx2 logW0;nðxÞÞ¼V0;0ðxþbÞ, where b ¼P
n
j¼1 βj. Analogously, in another limit x → þ∞, we

get the asymptotic form of the potential Vþ∞
0;n ðxÞ ¼

V0;0ðx − bÞ. The phase displacement produced by the n
solitons (defects) is

Δϕðβ−Þ ¼ −2
Xn
j¼1

β−j ; ð4:18Þ

which generalizes the one-soliton effect (4.8).
The eigenstates of the system H0;n (4.16) and (4.17) can

be presented in an alternative form [30],

Ψðx; β−1 ; C1;…; β−n ; CnÞ ¼ A0;nΨðxÞ;
A0;n ¼ A0;nA0;n−1…A0;1; ð4:19Þ

where the wave function on the lhs corresponds to (4.16)
for the choiceΨ ¼ F−sjðjÞ on the rhs, while it corresponds
to the eigenfunctions (4.17) for the choice Ψ ¼ Ψα

� on the
rhs. The operator A0;n is a differential operator of order n,
which is constructed in terms of the recursively defined
first-order differential operators (4.2) and

A0;j ¼ ðA0;j−1F sjðjÞÞ
d
dx

1

ðA0;j−1F sjðjÞÞ

¼ d
dx

þW0;j; j ¼ 2;…; ð4:20Þ

where

W0;j ¼ Ω0;j −Ω0;j−1; Ω0;j ¼ −ðlogW0;jÞx; ð4:21Þ

andW0;1 ≡ Fþð1Þ. Equations (4.20) and (4.21) can also be
used for j ¼ 1 by puttingW0;0 ¼ 1. Note here that, making
use of Eqs. (4.19), it is easy to see that in the case of the
two-soliton defect, particularly, the bound states (4.12) and
(4.11) are reduced modulo multiplicative constants to the
functions Fþð1Þ=W0;2 and F−ð2Þ=W0;2, respectively. This
shows explicitly that the first function describing the
discrete ground state is nodeless, while the second wave
function corresponding to the first excited bound state has
exactly one zero as it should be for the lowest bound states
in the spectrum.
Relation (4.19) means that the operator A0;n maps the

eigenstates of the Lamé system (2.1) into the corresponding
eigenstates of H0;n. Its n-dimensional kernel is spanned by
the eigenstates F sjðjÞ, j ¼ 1;…; n. These relations reflect

the fact that the Darboux–Crum transformation of order n
corresponds to a composition of n subsequent Darboux
maps H0;0 → H0;1 → … → H0;n. In accordance with this,
the operators A0;n and A†

0;n intertwine the Hamiltonian
operator H0;nðxÞ with the Lamé Hamiltonian H0;0ðxÞ,

A0;nH0;0 ¼ H0;nA0;n; A†
0;nH0;n ¼ H0;0A

†
0;n: ð4:22Þ

The products of the operator A0;n and its conjugate are

A0;nA
†
0;n ¼

Yn
j¼1

ðH0;n − ε−j Þ; A†
0;nA0;n ¼

Yn
j¼1

ðH0;0 − ε−j Þ:

ð4:23Þ

Alternative representation given by Eqs. (4.19) and
(4.20) is valid for arbitrary Darboux–Crum transformations
generated on the basis of n eigenstates of a generic
Schrödinger Hamiltonian [30]. In the particular case of
the one-gap Lamé system H ¼ H0;0 and the choice of
eigenstates ψ jðxÞ ¼ Ψ

αj
þ ðxÞ, each of which, as we saw in

the previous section, generates the translation of the Lamé
system for αj þ iK0, we obtain the Darboux–Crum trans-
formation producing the translation of H0;0ðxÞ forP

n
j¼1 αj þ inK0. Taking into account that the system

(2.1) besides the real period 2K possesses also the
imaginary period 2iK0, the shift produced by the
Darboux–Crum transformation reduces to

P
2r
j¼1 αj in

the case of even n ¼ 2r and to
P

2rþ1
j¼1 αj þ iK0 when

n ¼ 2rþ 1 is odd. Making use of this observation, it is
obvious that when the total shift produced by the Darboux–
Crum transformation reduces to a nontrivial period 2Kn1 þ
2iK0n2 of the system (2.1) with n21 þ n22 ≥ 2, the corre-
sponding higher-order generator An gives us the integral
(multiplied in a generic case by a polynomial in H0;0 [47])
of the one-gap Lamé system. This is the analog of the
integral (2.13) of the reflectionless Pöschl–Teller system
(2.7), which is the Lax–Novikov integral P0;0 for the
system (2.1),

iP0;0 ¼
d3

dx3
þ ð1þ k2 − 3k2sn2xÞ d

dx
− 3k2sn x cn x dn x:

ð4:24Þ

In the limit k → 1, it transforms into (2.13). The kernel of
this third-order differential operator is spanned by eigen-
functions dnx, cnx, and snx, which correspond to the edges
of the allowed bands. In correspondence with this, it admits
an infinite number of factorizations. Particularly, it can be
presented in the form

iP0;0 ¼ A1=cn xAcn x=dn xAdn x; ð4:25Þ

SOLITON DEFECTS IN ONE-GAP PERIODIC SYSTEM … PHYSICAL REVIEW D 90, 125041 (2014)

125041-11



where Adn x is defined by relation of the form (3.1) with
ψðxÞ ¼ dn x, etc.
The sense of the factorization (4.25) is the following.

The first factor on the right, Adn x, in accordance with its
definition, annihilates dnx, the lower edge state of the
valence band that is proportional to the limit of Fðx; β−Þ
for β− ¼ K. Acting on the wave function snx, which
corresponds to the lower edge of the conduction band,
the operator Adn x translates it, as well as all other
eigenstates of the Lamé system, for the half-period K,
snðxþKÞ ¼ cn x=dn x, and then this sn function with a
shifted argument is annihilated by the operator Acn x=dn x.
Acting on the wave function cn x, which describes the
upper edge state of the valence band, the Adn x transforms
it into cnðxþKÞ, while the subsequent action of the
Acn x=dn x transforms this into cnðxþKþ iK0Þ ¼
−ik0=kcn x, which is annihilated finally by the first-order
operator A1=cn x. In a similar way, one can construct five
other factorizations of P0;0 having a simple interpretation
in terms of the Darboux transformations (translations)
generated by the edge states. Relation (4.27) corresponds
here to the Darboux–Crum transformation that generates
the total shift for the nontrivial period 2Kn1 þ 2iK0n2
with n1 ¼ n2 ¼ 1 in correspondence with the discussion
presented above.
The Lamé system’s integral P0;0 satisfies the Burchnall–

Chaundy relation

P2
0;0 ¼ H0;0ðH0;0 − k02ÞðH0;0 − 1Þ; ð4:26Þ

which lies in the basis of the hidden bosonized nonlinear
supersymmetry of the one-gap Lamé system [18]. The
zeros of the third-order polynomials in H0;0 correspond to
the energies of the edges of the allowed bands of (2.1).
In the limit k → 1, (4.26) transforms into relation (2.14),
in which the double factor H2

1 originates from the first
two factors in (4.26) and roots in the shrinking of the
valence band.
By analogy with the Lax–Novikov integral (2.13) for

the reflectionless Pöschl–Teller system with one bound
state, we can find the analogous integral for the H0;n
system,

P0;n ¼ A0;nP0;0A
†
0;n; ½P0;n; H0;n� ¼ 0; ð4:27Þ

which is the differential operator of the order 2nþ 3.
In correspondence with (4.26) and (4.23), it satisfies the
Burchnal–Chaundy relation

P2
0;n ¼ H0;nðH0;n − k02ÞðH0;n − 1Þ

Yn
j¼1

ðH0;n − ε−j Þ2:

ð4:28Þ

The systems H0;0 and H0;n can be intertwined not only
by the operators A0;n and A†

0;n but also by the operators

B0;n ¼ A0;nP0;n and B†
0;n: ð4:29Þ

B. Intermediate forbidden band

Let us consider the intermediate prohibited band (gap)
and the linear combinations of eigenstates (2.2) in it,

Φþð1Þ≡ Φþðx; βþ1 ; C1Þ ¼ C1Ψ
βþ
1þ ðxÞ þ 1

C1

Ψ
βþ
1− ðxÞ;
ð4:30Þ

Φ−ð2Þ≡ Φ−ðx; βþ2 ; C2Þ ¼ C2Ψ
βþ
2þ ðxÞ − 1

C2

Ψ
βþ
2− ðxÞ;

ð4:31Þ

where 0 < βþl < K and Cl, l ¼ 1; 2 are arbitrary real
constants restricted by the condition Cl > 0. Taking into
account relation (2.4), the linear combinations used here
differ effectively in sign in comparison to those employed
in (4.1). This is related to the fact that the eigenvalue
Eðβ− þ iK0Þ is an increasing function of the real parameter
β− in the lower prohibited band, while dEðβþÞ=dβþ < 0
in the intermediate, upper forbidden band. Both these
functions have an infinite number of zeros on the real
line. The choice of any of these two functions as the
function ψ in operator (3.1) produces by means of the first-
order Darboux transformation a singular partner for the
system H0;0ðxÞ.

FIG. 6 (color online). Zeros of Ψβþ
� ðxÞ are in the equidistant points 2nK ∓ βþ, and the amplitudes of these two functions increase

exponentially in opposite directions. The amplitudes of the oscillating states Φ� increase exponentially in both directions. The graphic
on the right corresponds to the case βþ1 < βþ2 .
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Our next goal is to show how, by appropriate use of the
second-order Darboux–Crum transformation applied to
H0;0, one can generate a regular system with two bound
states in the gap.

Zeros of the nonphysical eigenfunctions Ψβþ
þ ðxÞ are

−βþ þ 2nK, while the infinite set of zeros of the eigen-
states Ψβþ

− ðxÞ is βþ þ 2nK, n ∈ Z. On the open intervals

ð−βþ; βþÞ þ 2nK, functions Ψβþ
þ ðxÞ and Ψβþ

− ðxÞ take non-
zero values of the opposite sign, whereas on the open
intervals ðβþ; 2K − βþÞ þ 2nK, they take values of the
same sign. Therefore, zeros of the linear combination

(4.30) of Ψβþ
þ ðxÞ and Ψβþ

− ðxÞ with βþ1 ¼ βþ are inside
the first of the indicated set of the open intervals, and zeros
of (4.31) with βþ2 ¼ βþ are inside the second set of the
intervals. Since Φþ and Φ− are linearly independent
eigenstates of the same eigenvalue EðβþÞ, in correspon-
dence with the oscillation theorem, each of the indicated
open intervals contains exactly one zero of the respective
function.
We want to generate a nontrivial nonsingular Darboux–

Crum transformation based on the pair of the eigenfunc-
tions (4.30) and (4.31). For this, the Wronskian of these
functions should take nonzero nonconstant values. The
choice

0 < βþ1 < βþ2 < K ⇔ Eðβþ1 Þ > Eðβþ2 Þ ð4:32Þ

guarantees then that the intervals containing zeros of the
functions (4.30) and (4.31) do not intersect, and between
each two neighbor zeros xþn and xþnþ1 of the Φþðx; βþ1 ; C1Þ,
there will appear exactly one zero x−n of the Φ−ðx; βþ2 ; C2Þ,

xþn ∈ Iþ
n ð1Þ; x−n ∈ I−

n ð2Þ; Iþ
n ð1Þ∩I−

n0 ð2Þ ¼ ∅;
ð4:33Þ

where

Iþ
n ð1Þ ¼ ð−βþ1 ; βþ1 Þ þ 2nK;

I−
n ð2Þ ¼ ðβþ2 ; 2K − βþ2 Þ þ 2nK: ð4:34Þ

The amplitudes of the oscillating functions Ψβþ
þ ðxÞ and

Ψβþ
− ðxÞ increase exponentially for x → −∞ and x → þ∞,

respectively. As a consequence, in the limit x → þ∞, the
zeros xþn tend to the right edges of the intervals Iþ

n ð1Þ,
while x−n tend to the left edges of the intervals I−

n ð2Þ.
In another limit x → −∞, the corresponding zeros tend to
the opposite edges of the indicated intervals.
The Wronskian of the eigenfunctions (4.30) and (4.31)

obeys the relation

d
dx

Wðy1; y2Þ ¼ ðEðβþ1 Þ − Eðβþ2 ÞÞy1ðxÞy2ðxÞ; ð4:35Þ

where y1 ¼ Φþð1Þ y2ðxÞ ¼ Φ−ð2Þ. From (4.35), it follows
that zeros x�n correspond exactly to the local extrema of the
Wronskian. Let us choose a zero xþn0 of y1, y1ðxþn0Þ ¼ 0,
such that y01ðxþn0Þ > 0. Then, in principle, we have two
possibilities: either (i) y2ðxþn0Þ > 0 or (ii) y2ðxþn0Þ < 0. In
case i, we find that Wðx�n Þ < 0, while in case ii, we would
haveWðx�n Þ > 0 for any n ∈ Z. Differentiation of (4.35) in
x shows that in case i the zeros x−n and xþn correspond to the
local maxima and minima of the Wronskian, respectively.
In case ii, the role of these zeros as local maxima and
minima would be interchanged. Then, in case i, we
conclude that the Wronskian takes strictly negative values
for all x, while in case ii, it would be a strictly positive
function. Though in both cases we would have a nodeless
Wronskian, let us show that case i, illustrated on Fig. 6, is
realized here. In the limits x → �∞, in correspondence
with definition (4.30), (4.31), we have

lim
x→þ∞

WðΦþð1Þ;Φ−ð2ÞÞ ¼ −
1

C1C2

WðΨβþ
1− ðxÞ;Ψβþ

2− ðxÞÞ;
ð4:36Þ

lim
x→−∞

WðΦþð1Þ;Φ−ð2ÞÞ ¼ C1C2WðΨβþ
1þ ðxÞ;Ψβþ

2þ ðxÞÞ:
ð4:37Þ

Using these relations and the above-described behavior of
the zeros of the functions Φþð1Þ and Φ−ð2Þ in the limit
x → þ∞, the corresponding local extrema values of W are
given by

lim
x�n →þ∞

Wðx�n Þ ¼ −
1

C1C2

H0ð0ÞHðβþ2 − βþ1 Þ
Θ2ðβjÞ

× expððβþj þ 2nKÞðZðβþ1 Þ þ Zðβþ2 ÞÞÞ;
n ≫ 1; ð4:38Þ

where j ¼ 1; 2 and βþ1 ðβþ2 Þ corresponds here to xþn ðx−n Þ.
For the limits x�n → −∞, we have a similar expression
with a unique change of the coefficient 1=ðC1C2Þ for C1C2.
Taking into account that H0ð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kk0K=π
p

> 0, and that
Hðβþ2 − βþ1 Þ > 0 because 0 < βþ2 − βþ1 < K, we conclude
finally that W2;0ðxÞ ¼ WðΦþð1Þ;Φ−ð2ÞÞ takes strictly
negative values on all the real line. Additionally, we
conclude that −W2;0ðxÞ blows up exponentially in both
limits x → �∞.
Similarly to (4.10), we construct now the Hamiltonian

H2;0 ¼ −
d2

dx2
þ V2;0ðxÞ;

V2;0ðxÞ ¼ V0;0ðxÞ − 2
d2

dx2
logWðΦþð1Þ;Φ−ð2ÞÞ: ð4:39Þ
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This quantum system has the same spectrum as the
Lamé system except two additional discrete energy levels
εþl ≡ Eðβþl Þ, l ¼ 1; 2. These are described by the wave
functions given by relations of the form (4.11), (4.12) with
F�ðjÞ there changed for corresponding functions Φ�ðlÞ.
With some algebraic manipulations, the wave eigenfunc-
tions can be presented in the form

Ψ1;
2;0ðxÞ ¼ const

Φ−ð2Þ
W2;0

; H2;0Ψ
1;
2;0ðxÞ ¼ εþ1 Ψ

1;
2;0ðxÞ;

ð4:40Þ

Ψ2;
2;0ðxÞ ¼ const

Φþð1Þ
W2;0

; H2;0Ψ
2;
2;0ðxÞ ¼ εþ2 Ψ

2;
2;0ðxÞ:

ð4:41Þ
The amplitude of these oscillating functions tends expo-
nentially to zero in both limits x → �∞, which confirms
their bound state nature; see Fig. 7. The relations (4.36)
and (4.37) tell us that the Darboux–Crum transformation
generated on the basis of the states appearing there
on the right-hand sides produces a potential translated in
ðβþ1 þ iK0Þ þ ðβþ2 þ iK0Þ. Using this fact and taking into
account the imaginary period 2iK0 of V0;0ðxÞ, we find that

V−∞
2;0 ðxÞ ¼ lim

x→−∞
V2;0ðxÞ ¼ V0;0ðxþ βþ1 þ βþ2 Þ;

and, analogously,

Vþ∞
2;0 ðxÞ ¼ lim

x→þ∞
V2;0ðxÞ ¼ V0;0ðx − βþ1 − βþ2 Þ:

Therefore, similarly to the case of soliton defects corre-
sponding to the bound states in the lower forbidden band,
the two-soliton defect associated with the presence of the
two bound states in the intermediate (upper) prohibited
band produces the phase shift described by Eq. (4.18) with
n ¼ 2 and β−j there changed for βþl , where the parameters
βþ1 and βþ2 obey the condition (4.32). The bound states here
are described by infinitely oscillating wave functions,
which have an infinite number of zeros and exponentially
decreasing amplitudes. This situation contrasts with the
bound states introduced into the lower forbidden band,

where the wave functions are also exponentially decreasing
but have a finite number of zeros, similarly to the nature of
ordinary bound states.
The system (4.39) is also characterized by the

Lax–Novikov integral, which in the present case is the
differential operator of order 7,

P2;0 ¼ A2;0P0;0A
†
2;0; ½P2;0; H2;0� ¼ 0: ð4:42Þ

The second-order operators A2;0 and A†
2;0 intertwining the

Lamé system H0;0 with H2;0 have the form (4.20) and
(4.19) with the functions Fþð1Þ and F−ð2Þ changed here,
respectively, for Φþð1Þ and Φ−ð2Þ. They satisfy relations of
the form (4.23) with n ¼ 2, where H0;n has to be changed
for H2;0, and constants ε−j have to be changed for
corresponding energy values εþl , l ¼ 1; 2, of the nonphysi-
cal eigenstates from the intermediate prohibited band we
used in the construction.
Analogously to the discussion presented in the previous

subsection, it is not difficult to show that the infinite-period
limit applied to the system (4.39) corresponds to the
reflectionless system given by potential (2.18).
The described procedure of the introduction of the

periodicity defects with eigenvalues within the intermedi-
ate prohibited band can be generalized for the case of
an arbitrary even number of the solitons. This can be done
in a systematic way by choosing linear combinations
of the wave functions of the form (4.30) and (4.31) with
alternating lower indices þ and −, cf. (4.15), with the
restriction on the parameters βþ, which generalizes that
from (4.32),

0< βþ1 < βþ2 <…βþ2l <K⇔ Eðβþ1 Þ > Eðβþ2 Þ…> Eðβþ2lÞ:
ð4:43Þ

In the basis of such a construction, there is the property
jW2l;0ðxÞj > 0 guaranteed by the choice (4.43), where
W2l;0ðxÞ is the Wronskian of the corresponding 2l
nonphysical eingestates of the Lamé system,

W2l;0ðxÞ ¼ WðΦþð1Þ;Φ−ð2Þ;…;Φþð2l − 1Þ;Φ−ð2lÞÞ:
ð4:44Þ

FIG. 7 (color online). Each of the two pulse-type bound states of the system H2;0 is localized in one of the two periodicity defects of
the potential V2;0, which are showing up as compression modulations. The states also reveal a small tunnelling (asymmetry) in the
direction of the other deformation.
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The proof of this property is given in the Appendix.5 As a
generalization of (4.39) and (4.42), the Hamiltonian and
Lax–Novikov integral are given here by the relations

H2l;0 ¼ H0;0 − 2
d2

dx2
logW2l;0; ð4:45Þ

P2l;0 ¼ A2l;0P0;0A
†
2l;0; ½P2l;0; H2l;0� ¼ 0: ð4:46Þ

They satisfy the Burchnall–Chaundy relation of the form

P2
2l;0 ¼ H2l;0ðH2l;0 − k02ÞðH2l;0 − 1Þ

Y2l
l¼1

ðH2l;0 − εþl Þ2:

ð4:47Þ

Here, εþl ¼ Eðβþl Þ are the eigenvalues of the bound states

Ψl;
2l;0ðx; βþ1 ; C1;…; βþ2l; C2lÞ

¼ WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;Φð−1ÞlðlÞÞ
W2l;0

;

l ¼ 1;…; 2l: ð4:48Þ

Other physical and nonphysical eigenstates of H2l;0 of
eigenvalues EðαÞ are given by

Ψα
2l;0;�ðx; βþ1 ; C1;…; βþ2l; C2lÞ

¼ WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;Ψα
�Þ

W2l;0
: ð4:49Þ

From this picture with even number 2l ≥ 2 of bound
states in the intermediate forbidden band, one can obtain
systems that contain odd number 2l − 1 of discrete energy
levels in the same prohibited band of the initial one-gap
Lamé system. This can be achieved by sending any one of
the 2l solitons to infinity.
Let us see how this procedure works in the case of the

system (4.39). For the sake of definiteness, we send the first
soliton, associated with the higher discrete energy level
Eðβþ1 Þ, to infinity. Another case corresponding to the limit
associated with the soliton related to the lower discrete
energy level can be realized in a similar way. To send the
indicated soliton to infinity, we take a limit C1 → ∞.
In analogous way, one can also consider the limit C1 → 0.
In the limit C1 → ∞, the potential V2;0ðxÞ given by

Eq. (4.39) transforms into

lim
C1→∞

V2;0ðxÞ≡ V̆1;0ðx; βþ1 Þ

¼ V0;0ðxÞ − 2
d2

dx2
logWðΨβþ

1þ ;Φ−ð2ÞÞ:
ð4:50Þ

The Hamiltonian H̆1;0ðx; βþ1 Þ ¼ − d2

dx2 þ V̆1;0ðx; βþ1 Þ pos-
sesses single bound state of energy εþ2 , which can be
obtained as a limit of the bound eigenstate Ψ2;

2;0ðxÞ of H2;0,

lim
C1→∞

Ψ2;
2;0ðxÞ ¼ Ψ̆1;

1;0ðxÞ; ð4:51Þ

see Fig. 8. In correspondence with the results of Sec. III,
the Darboux transformation based on the single eigenfunc-

tion Ψ
βþ
1þ ðxÞ produces the Treibich–Verdier potential,

V0;0ðxÞ − 2 d2

dx2 logΨ
βþ
1þ ¼ V0;0ðxþ βþ1 þ iK0Þ, and we can

present (4.50) in the equivalent form

V̆1;0ðxÞ ¼ V0;0ðxþ βþ1 þ iK0Þ

− 2
d2

dx2

�
log

WðΨβþ
1þ ;Φ−ð2ÞÞ
Ψ

βþ
1þ

�
: ð4:52Þ

Function WðΨβþ
1þ ;Φ−ð2ÞÞ=Ψβþ

1þ appearing in the argument
of the logarithm is an eigenfunction of the system
H0;0ðxþ βþ1 þ iK0Þ. The Bloch-like eigenstates of this
Hamiltonian operator can be obtained from the corre-
sponding eigenstates of the Lamé system H0;0ðxÞ,
Ψα

�ðxþ βþ1 þ iK0Þ ¼ N�ðαÞΨ̆α
�ðxþ βþ1 Þ, where

Ψ̆α
�ðxÞ ¼

Θðx� αÞ
HðxÞ e∓xZðαÞ ð4:53Þ

and N�ðαÞ ¼ exp ð∓ iðαπ
2K þK0ZðαÞÞ. Therefore, we have

FIG. 8 (color online). Sending one soliton to infinity results in a
potential supporting one bound state less. System H̆1;0 is related
with the Lamé systemH0;0 by the Darboux–Crum transformation
of the second order, while it is related with the singular Treibich–
Verdier system by the first-order Darboux transformation. The
symmetric state (presented by odd function here) is centered in
the soliton deformation of the potential, and the tunnelling related
to the soliton sent to infinity disappears.

5Like in the procedure shortly discussed in Sec. II B corre-
sponding to the reflectionless Pöschl–Teller system, the defects
also can be introduced in such a way that their associated energies
will appear between the already placed discrete energy levels, but
the final picture will be described equivalently by the Darboux–
Crum transformation based on the Wronskian (4.44).
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WðΨβþ
1þ ;Ψ

βþ
2

� Þ
Ψ

βþ
1þ

¼ C�Ψ̆
βþ
2

� ðxþ βþ1 Þ: ð4:54Þ

Putting in both sides of the last relation x ¼ −βþ1
(or x ¼∓ βþ2 to escape simple poles at both sides), we
define the real nonzero constants C� in (4.54),

C� ¼∓ Hðβþ2 ∓ βþ1 ÞH0ð0Þ
Θðβþ1 ÞΘðβþ2 Þ

exp ð�βþ1 Zðβþ2 ÞÞ: ð4:55Þ

Making a shift x → x − βþ1 in (4.50), all this gives us

V1;0ðxÞ≡ V̆1;0ðx − βþ1 Þ ¼ 1þ k02 − 2
E
K

− 2
d2

dx2
log χ

βþ
2

1;0;

ð4:56Þ

χ
βþ
2

1;0ðxÞ ¼ C̆2Θðxþ βþ2 Þ exp ð−xZðβþ2 ÞÞ

þ 1

C̆2

Θðx − βþ2 Þ exp ðxZðβþ2 ÞÞ: ð4:57Þ

Here, a real constant C̆2 is given in terms of C2 by

C̆2 ¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðβþ

2
−βþ

1
Þ

Hðβþ
2
þβþ

1
Þ

r
exp ðβþ1 Zðβþ2 ÞÞ > 0, and we have

taken into account the relation d2

dx2 logHðxÞ ¼
dn2ðxþ iK0Þ − E

K. In the limit C1 → ∞, the Wronskian
in the denominator of the eigenstate (4.40) of energy
Eðβþ1 Þ of the system H2;0 blows up exponentially, and
this state disappears. On the other hand, the state (4.41)
transforms into the bound state of energy Eðβþ2 Þ of the
system H1;0ðxÞ ¼ − d2

dx2 þ V1;0ðxÞ,

Ψ2;
2;0ðx − βþ1 Þ → Ψ̆1;

1;0ðx − βþ1 Þ ¼ const
HðxÞ
χ
βþ
2

1;0ðxÞ
: ð4:58Þ

The presence of this bound state in the spectrum of
H1;0ðxÞ is the unique difference in comparison with the
spectrum of the one-gap Lamé system H0;0ðxÞ. The system
H1;0ðxÞ is related with H0;0ðxÞ, however, by the second-
order Darboux–Crum transformation of the form (4.50)
with x changed there for x − βþ1 . On the other hand, the
system H1;0ðxÞ can be related with the singular Treibich–
Verdier system described by the potential V0;0ðxþ iK0Þ,
by the first-order Darboux transformation based on the
function Ψ̆α

�ðx − βþ1 Þ given by Eq. (4.53), which is the
eigenfunction of the singular PT-invariant Hamiltonian
operatorH0;0ðxþ iK0Þ. This picture is analogous to that for
the Pöschl–Teller system when we want to introduce there
the bound state between the already existing bound state
and the continuous part of the spectrum; see Sec. II B.
In correspondence with the described picture, the system

H1;0ðxÞ is characterized by the irreducible Lax–Novikov
integral

P1;0ðxÞ ¼ AψP0;0ðxþ iK0ÞA†
ψ ; ψ ¼ Ψ̆

βþ
1þ ðx − βþ1 Þ;

ð4:59Þ

which is the differential operator of order 5, where
P0;0ðxÞ is the Lax–Novikov integral (4.24) of the Lamé
system H0;0ðxÞ. In (4.59), one can take, equivalently,
ψ ¼ Ψβþ

1 ðx − βþ1 þ iK0Þ.
Notice a remarkable similarity of the potential V1;0 given

by Eqs. (4.56) and (4.57) with the potential V0;1 defined by
Eqs. (4.4) and (4.5). The important difference of both
potentials is, however, that Zðβþ2 Þ presents in the structure
of V1;0, while in the structure of the potential V0;1, there
appears zðβ−1 Þ defined in Table I. Unlike the nodeless bound
state (4.6) of the system V0;1, the bound state (4.58) of the
system V1;0 has an infinite number of zeros at xn ¼ 2nK,
and its amplitude, like that of the wave function (4.6),
decreases exponentially as x goes to �∞.
When x → �∞, Hamiltonian H1;0ðxÞ asymptotically

transforms into H0;0ðx ∓ βþ2 Þ − Eðβþ2 Þ, and we get the
phase displacementΔϕðβþ2 Þ ¼ −2βþ2 generated by the one-
soliton potential defect, which supports one bound state
within the upper prohibited band of the original one-gap
Lamé system.
Let us notice that one can also introduce an odd number

of bound states into the gap by taking, instead of (4.32),
the set of parameters 0 ¼ βþ1 < βþ2 < …βþ2l < K, or
0 < βþ1 < βþ2 < …βþ2l ¼ K. This assumes the change of
the state Φþð1Þ in Wronskian (4.44) for sn x in the first
case, or Φ−ð2lÞ for cn x in the second case. Such alter-
natives, however, do not give anything new. They are
reproduced just by taking, respectively, limits βþ1 → 0 or
βþ2l → K in the general picture presented in this subsection.

C. Bound states in both forbidden bands

One can introduce periodicity defects into the Lamé
system by constructing the potentials that support bound
states in both lower and upper forbidden bands. Similarly to
the already discussed cases, the construction is based on the
property that the Wronskian

W2l;nðxÞ ¼ WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;
Fþð1Þ;…;F snðnÞÞ ð4:60Þ

is a nodeless smooth function on all the real line; see the
Appendix. In this way, the most general family of the one-
gap Hamiltonians with 2lþ n defects (solitons) introduced
into the periodic background of Lamé potential V0;0ðxÞ is
defined by

H2l;n ¼ H0;0 − 2
d2

dx2
logW2l;nðxÞ: ð4:61Þ

The defects correspond to 2l bound states in the spectral
gap and n bound states in the lower prohibited band.

ADRIÁN ARANCIBIA et al. PHYSICAL REVIEW D 90, 125041 (2014)

125041-16



In Fig. 9 is shown the form of the potential for the simplest
case l ¼ n ¼ 1.
Each member of the family of Hamiltonians (4.61)

possesses a nontrivial integral

P2l;n ¼ A2l;nP0;0A
†
2l;n; ½P2l;n; H2l;n� ¼ 0; ð4:62Þ

satisfying the relation

P2
2l;n ¼ H2l;nðH2l;n − k02ÞðH2l;n − 1Þ

×
Y2l
l¼1

ðH2l;n − εþl Þ2
Yn
j¼1

ðH2l;n − ε−j Þ2: ð4:63Þ

Here, A2l;n is the differential operator of order 2lþ n,
which is defined by A2l;n ¼ A2l;n…A2l;1A2l;0, where

A2l;j ¼
W2l;j

W2l;j−1

d
dx

W2l;j−1

W2l;j
; j ¼ 1;…; n: ð4:64Þ

The first-order differential operator A2l;n and its conjugate
generate the intertwining relations

A2l;nH2l;n−1 ¼ H2l;nA2l;n; A†
2l;nH2l;n ¼ H2l;n−1A

†
2l;n

ð4:65Þ

and factorize the neighbor Hamiltonians H2l;n and H2l;n−1
in the form

A2l;nA
†
2l;n ¼ H2l;n − ε−n ; A†

2l;nA2l;n ¼ H2l;n−1 − ε−n :

ð4:66Þ

The 2l bound states of H2l;n of energies ε
þ
l , l ¼ 1;…; 2l,

within the gap are given by

Ψl;
2l;n ¼

WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;Fþð1Þ;…;F snðnÞ;Φð−1ÞlðlÞÞ
W2l;n

; ð4:67Þ

while the n bound states of energies ε−j , j ¼ 1;…; n, in the lower prohibited band have the form

Ψ;j
2l;n ¼

WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;Fþð1Þ;…;F snðnÞ;F−sjðjÞÞ
W2l;n

: ð4:68Þ

Here, we do not indicate explicitly the parameters that define the functions Ψl;
2l;n and Ψ;j

2l;n being in general of the form
Ψðx; βþ1 ; Cþ

1 ;…; βþ2l; C
þ
2l; β

−
1 ; C

−
1 ;…β−n ; C−

n Þ. Other, physical as well as nonphysical, eigenstates of H2l;n of eigenvalues
EðαÞ are given by

Ψα
2l;n;� ¼ WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;Fþð1Þ;…;F snðnÞ;Ψα

�Þ
W2l;n

: ð4:69Þ

It is always possible to eliminate any of the bound states
from the spectrum taking the limit C�

r → 0, or C�
r → ∞ for

the corresponding parameter. In the case we take such a
limit for the parameter Cþ

l of the state Φð−1Þlþ1ðlÞ, we obtain
H2l;nðxÞ → H̆2l−1;nðx; βþl Þ, where H̆2l−1;nðx; βþl Þ is the
Hamiltonian of the system with 2l − 1 bound states in
the gap. Similarly to the case discussed in the previous

subsection, the H̆2l−1;nðx; βþl Þ can also be obtained by the
Darboux–Crum transformation of order 2l − 1þ n applied
to the singular Treibich–Verdier system. The Lax–Novikov
integral P̆2l−1;nðx; βþl Þ of H̆2l−1;nðx; βþl Þ appears from
(4.62) via the indicated limit through the reduction,
P2l;nðxÞ → ðH̆2l−1;nðx; βþl Þ − εþl ÞP̆2l−1;nðx; βþl Þ. On the
other hand, if we take one of the two specified limits for the

FIG. 9 (color online). Potential supporting two bound states in
the gap and one bound state in the lower forbidden band. The
defects in the form of the two compression modulations and a
potential soliton well can be displaced arbitrarily in the periodic
background.
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parameter C−
j , we obtain the Hamiltonian ~H2l;n−1ðx; β−j Þ,

whichcorresponds to thesystemH2l;n−1ðxÞof the form(4.61)
with the displaced argument, x → xþ β−j . The initial param-
eters β−i with i ¼ jþ 1;…; n transform into the parameters
β−i , i ¼ j;…; n − 1, of the resulting system, and the same
happenswith the correspondingparametersC−

i .Moreover, all
parameters C� undergo rescaling, Cþ

l → cþl ðβþl ; β−j ÞCþ
l ,

l ¼ 1;…; 2l, C−
i → c−i ðβ−i ; β−j ÞC−

i , i ¼ 1;…; n − 1, where
cþl > 0 and c−i > 0 are some functions of the indicated
arguments, whose explicit form we do not write down in
detail here.
Notice that in the most general case of one-gap quantum

system H2l−m;n ¼ − d2

dx2 þ V2l−m;nðxÞ supporting 2l −
mþ n ≥ 1 bound states, relation (4.18) is generalized for

Δϕ ¼ −2
Xn
j¼1

β−j − 2
X2l−m
l¼1

βþl ; ð4:70Þ

where n ≥ 0, 2l −m ≥ 0, m ¼ 0; 1, and the omission of
the corresponding sum is assumed when n ¼ 0 or l ¼ 0.
This is the net phase displacement between x ¼ þ∞ and
x ¼ −∞ periodic asymptotics of the potential V2l−m;nðxÞ,
which is the one-gap Lamé potential V0;0ðxÞ perturbed by
n ≥ 0 soliton defects of the potential well type and
2l −m ≥ 0, periodicity defects of the compression mod-
ulations nature.
In conclusion of this section, let us note that the notion

of Hill’s discriminant (Lyapunov function) is defined for a
Schrödinger equation with periodic potential, and reflects
coherently the properties of the eigenstates under the shift
of the quantum system for its period [23,41]. The
Darboux–Crum transformations that do not violate the
periodicity of the potential produce isospectral systems
and do not change the corresponding discriminants
[42,43]. The systems we constructed here are almost
isospectral to the one-gap Lamé system. Their potentials
are not periodic functions, and so Hill’s discriminant
cannot be defined for them in a usual way. It can be
considered only in the regions x → −∞ and x → þ∞,
where the periodicity (with a relative phase displacement
defect) is restored asymptotically. At the same time, it is
necessary to bare in mind that the Lyapunov function
reflects the stability properties of the points in the
spectrum: for periodic quantum systems, two linearly
independent Bloch–Floquet states correspond to all the
points inside the allowed bands, while the edge points are
treated as nonstable because there one of the two solutions
is unbounded [41]. Since the periodicity defects we
constructed introduce into the spectrum of the Lamé
system only the discrete energy values corresponding to
nondegenerate bound states, one can say that they do not
change the properties of stability of the spectrum of the
initial system.

V. EXOTIC SUPERSYMMETRY

According to the analysis presented above, any pair
of the Hamiltonians H2l1−m1;n1 and H2l2−m2;n2 , where
m1;2 ¼ 0; 1, can be related by means of the two pairs of
intertwining operators. One pair of mutually conjugate
operators intertwines the Hamiltonians directly. Another
pair has higher differential order and does the same job via
a virtual periodic one-gap system. The operators of the
second pair involve in their structure the Lax–Novikov
integral of the Lamé system H0;0, or of its analog
corresponding to the singular on the real line Treibich–
Verdier one-gap system. Each of the subsystems in the pair
(H2l1−m1;n1 , H2l2−m2;n2) is also characterized by its proper
Lax–Novikov integral. As a result, if we consider the
extended system given by the matrix 2 × 2 Schrödinger
operator composed from the pair of the indicated
Hamiltonians, it will be described not just by the N ¼ 2
linear or nonlinear supersymmetry as it would be expected
for the ordinary pair of Darboux(–Crum) related quantum
mechanical systems. Instead, as in the case of nonperiodic
reflectionless systems, it will be characterized by an exotic
nonlinear N ¼ 4 supersymmetric structure that involves
the two nontrivial bosonic generators composed from the
Lax–Novikov integrals of the subsystems.
From the perspective of physical applications, the most

interesting case corresponds to the pairs of the Schrödinger
Hamiltonians, which can be related by the mutually
conjugate first-order Darboux intertwiners alongside with
the pair of higher-order intertwiners. It is this case that we
consider in this section in detail.
We start from the general discussion of the picture

corresponding to a basic case, from which other cases
can be obtained via certain limiting procedures. Then, we
illustrate this by considering the simplest examples, which
reveal all the peculiarities of the exotic supersymmetric
structure.

A. Exotic supersymmetry with the first-order
supercharges: Generic picture

The first-order differential operators A2l;n and A†
2l;n

intertwine the Hamiltonians H2l;n−1 and H2l;n,

A2l;nH2l;n−1 ¼ H2l;nA2l;n; H2l;n−1A
†
2l;n ¼ A†

2l;nH2l;n;

ð5:1Þ

and factorize them,

A†
2l;nA2l;n ¼ H2l;n−1 − ε−n ; A2l;nA

†
2l;n ¼ H2l;n − ε−n ;

ð5:2Þ

where ε−n ¼ Eðβ−n þ iK0Þ. These relations allow us to
consider the extended system described by the Hamiltonian
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H2l;n ¼
�
H2l;n−1 0

0 H2l;n

�
ð5:3Þ

and by the pair of matrix operators

S12l;n ¼
�

0 A†
2l;n

A2l;n 0

�
; S22l;n ¼ iσ3S12l;n: ð5:4Þ

Taking the trivial integral Γ ¼ σ3 as a Z2-grading operator,
we identify H2l;n as the bosonic operator, ½Γ;H2l;n� ¼ 0,
and Sa2l;n, a ¼ 1; 2, as the fermionic ones, fΓ; Sa2l;ng ¼ 0.
They generate a superalgebra of N ¼ 2 supersymmetric
quantum mechanics,

½H2l;n; Sa2l;n� ¼ 0; fSa2l;n; Sb2l;ng ¼ 2δabðH2l;n − ε−n Þ:
ð5:5Þ

By the redifinition of the Hamiltonian via an additive shift,
H2l;n − ε−n → H2l;n, one can transform (5.5) into the
standard form of N ¼ 2 superalgebra describing the
system with the zero energy of the nondegenerate ground
state appearing in the spectrum of the “lower” subsystem of
the extended matrix system. Since the subsystems H2l;n−1
and H2l;n possess the nontrivial Lax–Novikov integrals
being differential operators of orders 4lþ 2nþ 1 and
4lþ 2nþ 3, the extended system (5.3) possesses also
two nontrivial bosonic integrals that we define in the form

P1
2l;n ¼

� ðH2l;n−1 − ε−n ÞP2l;n−1 0

0 P2l;n

�
;

P2
2l;n ¼ σ3P1

2l;n: ð5:6Þ

We introduced here the additional factor in the upper
component whereby the upper and lower components of
these integrals are operators of the same differential order.
The commutation relations

½H2l;n; Pa
2l;n� ¼ 0; ½Pa

2l;n; P
b
2l;n� ¼ 0;

½P1
2l;n; S

a
2l;n� ¼ 0 ð5:7Þ

extend the superalgebraic relations (5.5) and show that the
integral P1

2l;n is the bosonic central charge. On the other
hand, the nontrivial commutator ½P2

2l;n; S
a
2l;n� generates the

second pair of the fermionic supercharges Qa
2l;n, which are

the matrix differential operators of the order 2ð2lþ nþ 1Þ.
As we shall see, the anticommutator of Qa

2l;n with Qb
2l;n

produces a polynomial in matrix Hamiltonian H2l;n, while
the anticommutator ofQa

2l;n with S
b
2l;n generates the central

charge P1
2l;n. The second bosonic integral P2

2l;n generates
finally a kind of a rotation between the supercharges Sa2l;n
and Qa

2l;n.

Taking in (5.3) the limit Cþ
l → ∞ or Cþ

l → 0 with l
chosen from the set 1;…; 2l, we obtain another extended
system:

H̆2l−1;n ¼
�
H̆2l−1;n−1 0

0 H̆2l−1;n

�
: ð5:8Þ

As we saw, the application of the limits Cþ
l → ∞ or Cþ

l →
0 to the corresponding Lax–Novikov integrals of the
subsystems produces the reducible operators. The irreduc-
ible nonsingular Lax–Novikov integrals of H̆2l−1;n−1 and
H̆2l−1;n have orders 4lþ 2n − 1 and 4lþ 2nþ 1 and
include in their structure the Lax–Novikov integral of the
singular Treibich–Verdier one-gap system. The bosonic
integrals P̆a

2l−1;n of the extended matrix system (5.8) are
constructed from P̆2l−1;n−1 and P̆2l−1;n like in (5.6).
Again, P̆1

2l−1;n will play the role of the central charge of
the nonlinear superalgebra, while the commutator
½P̆2

2l−1;n; S̆
a
2l−1;n� will generate the second pair of the

supercharges Q̆a
2l−1;n. The exotic superalgebra of the

system (5.8) will have as a result a form similar to that
for the system (5.3).
Let us change index n for nþ 1 in (5.3) and take one of

the two limits

lim
C−
nþ1

→0;∞
H2l;nþ1ðxÞ ¼ ~H2l;nðx;∓ β−nþ1Þ; ð5:9Þ

where the upper and lower signs on the rhs correspond,
respectively, to the 0 and ∞ cases. In such a limit, we get
the extended system described by the Hamiltonian,

~H2l;n ¼
�H2l;n 0

0 ~H2l;n

�
; ð5:10Þ

where ~H2l;n corresponds to one of the indicated limits,
~H2l;nðx;∓ β−nþ1Þ. Here, we have used the definition of the
functions (4.1) and have taken into account that for the
function (2.6) the identity Fð−x; β−Þ ¼ Fðx;−β−Þ is valid.
The initial subsystems H2l;n and H2l;nþ1 in (5.3) with n
changed for nþ 1 are related by the first-order intertwining
operators A2l;nþ1 and A†

2l;nþ1. Then, the pair of H2l;nðxÞ
and ~H2l;nðx;∓ β−nþ1Þ in (5.10) is related by the first-order
intertwining operators

X2l;nðx;∓ β−nþ1Þ≡ lim
C−
nþ1

→0;∞
A2l;nþ1

¼ Ŵ2l;nðFðx;∓ β−nþ1ÞÞ
W2l;n

d
dx

W2l;n

Ŵ2l;nðFðx;∓ β−nþ1ÞÞ
ð5:11Þ

and X†
2l;nðx;∓ β−nþ1Þ, where Ŵ2l;nðfðxÞÞ ≡WðΦþð1Þ;

…;Φ−ð2lÞ;Fþð1Þ…F snðnÞ; fðxÞÞ. The subsystems in
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(5.10) are completely isospectral, and the exotic super-
symmetry in this case has a structure similar to that of
the system (5.3). However, unlike (5.3), the system (5.10)
is characterized by the spontaneously broken exotic
supersymmetry, and this fact, as we shall see, is properly
reflected by the “fine structure” of the nonlinear
superalgebra.
Another interesting case that could be mentioned

corresponds to the limit

lim
β−nþ1

→β−n
H2l;nþ1 ¼ lim

β−nþ1
→β−n

~H2l;nðx;∓ β−nþ1Þ ¼ H2l;n−1:

ð5:12Þ

However, if we apply such a limit to the system (5.3) with
index n changed for nþ 1, we obtain just a system of the
form H2l;n but with the permuted upper and lower
corresponding Hamiltonians.

B. Unbroken exotic supersymmetry

Consider now the simplest case of the extended systems
(5.3) with l ¼ 0, n ¼ 1. Besides the first-order operators
A0;1 and A†

0;1, the pair of Hamiltonians H0;0 and H0;1 is
intertwined by the differential operators of order 4, B0;1 ¼
A0;1P0;0ðxÞ and B†

0;1. The systems H0;0 and H0;1 are also
characterized by the Lax–Novikov integrals P0;0ðxÞ and
P0;1ðxÞ ¼ A0;1P0;0ðxÞA†

0;1. Besides the integrals of the
form (5.4) and (5.6), the extended matrix system is
characterized also by the pair of the supercharges

Q1
0;1 ¼

�
0 B†

0;1

B0;1 0

�
; Q2

0;1 ¼ iσ3Q1
0;1: ð5:13Þ

The fermionic integrals Sa0;1 and Qa
0;1 and the bosonic

integrals Pa
0;1 together with the Hamiltonian H0;1 generate

the nonlinear superalgebra

fSa; Sbg ¼ 2δabðH − ε−1 Þ;
fQa;Qbg ¼ 2δabðH − ε−1 ÞC3ðHÞ; ð5:14Þ

fSa;Qbg ¼ 2δabP1; ð5:15Þ

½P2; Sa� ¼ −2iϵabðH − ε−1 ÞQb;

½P2; Qa� ¼ −2iϵabðH − ε−1 ÞC3ðHÞSb; ð5:16Þ

½P1; Qa� ¼ 0; ½P1; Sa� ¼ 0; ð5:17Þ

where C3ðHÞ ¼ HðH − k02ÞðH − 1Þ, ϵab is the antisym-
metric tensor, ϵ12 ¼ 1, and for the sake of simplicity, we
omit the lower indices. The unique nondegenerate state
with energy E ¼ ε−1 appearing in the spectrum of subsystem
H0;1 is annihilated by the shifted Hamiltonian H − ε−1 and
by all the integrals Sa, Qa, and Pa. This means that the
exotic supersymmetry of the extended Schrödinger system
is unbroken. The doubly degenerate energy values corre-
sponding to the edges of the allowed bands of the
subsystems are the zeros of the third-order polynomial
appearing in the superalgebra structure: C3ðEÞ ¼ 0 for
E ¼ 0; k02; 1. This reflects the property that the correspond-
ing edge states of the subsystems are detected by the fourth-
order supercharges Qa as well as by the bosonic integrals
Pa; all these operators annihilate them. One can also show
that the physical eigenstates Ψα

� and A0;1Ψα
� of the upper

and lower subsystems inside their valence and conduction
bands possessing the quasimomentum of the opposite sign
(they correspond to the different lower indices of the Bloch
states) are distinguished by the bosonic integrals Pa.
The second relation ½P1; Sa� ¼ 0 from (5.17) can be

rewritten as a nonlinear differential equation for the super-
potential W0;1ðxÞ shown in Fig. 10, see Eq. (4.21). This
corresponds here to the first equation of the stationary
mKdV hierarchy, which can be associated with the
extended system with one nonperiodic soliton defect
introduced into the one-gap Lamé system. At the same
time, the equation ½H; P1� ¼ 0 can be presented in the form
of the nonlinear differential equations of the third order
for the potentials V�ðxÞ≡W2

0;1 �W 0
0;1 þ ε−1 . These equa-

tions correspond to the first equation of the stationary KdV
hierarchy, which can be associated with the one-gap
Lamé system itself and with its deformation V−ðxÞ pro-
duced by the one-soliton defect introduced into the periodic
background of the one-gap Lamé system.
The generic case of the extended systems (5.3) and (5.8)

is described by the exotic nonlinear superalgebras of the

FIG. 10 (color online). Topological superpotentials in the form of the kink that incorporate one bound state into the spectrum. On the
left is shown the superpotential that relates the systems H0;0 with H0;1. The superpotential in the center corresponds to the pair of the
systems H0;1 and H0;2, while that on the right corresponds to the pair of H2;0 and H2;1.

ADRIÁN ARANCIBIA et al. PHYSICAL REVIEW D 90, 125041 (2014)

125041-20



same form. The unique difference is that the third-
order polynomial C3ðHÞ appearing here will be changed
for the structure polynomials of the form (4.63), which
are associated with the square of the corresponding
Lax–Novikov integrals.

C. Spontaneously broken exotic supersymmetry

The case of the spontaneously broken exotic supersym-
metry realized in the one-gap systems with the nonper-
iodicity defects can be illustrated by the extended system
with the mutually displaced one-gap Lamé systemsH0;0ðxÞ
and ~H0;0ðx; β−Þ ¼ H0;0ðxþ β−Þ. Though such systems are
periodic, all the principle features of the structure of the
exotic supersymmetry we observe in this case appear also
in the extended systems composed from the completely
isospectral systems with soliton defects.
The isospectral Hamiltonians H0;0ðxÞ and H0;0ðxþ β−Þ

are connected by the first-order differential operator

X0;0ðx; β−Þ ¼ Fðx; β−Þ d
dx

1

Fðx; β−Þ ¼
d
dx

þ Δ0;0ðx; β−Þ

ð5:18Þ

and by its Hermitian conjugate operator, where

Δ0;0ðx; β−Þ ¼ ZðxÞ − Zðxþ β−Þ þ zðβ−Þ ð5:19Þ

is the superpotential shown in Fig. 11. To simplify
notations, in what follows in this subsection, we omit
lower indices in Hamiltonians, intertwining operators, and
corresponding Lax–Novikov integrals and put β− ¼ β.
Recall that 0 < β < K.
The operator (5.18) and its conjugate factorize the

Hamiltonians,

X†ðx; βÞXðx; βÞ ¼ HðxÞ − εðβÞ;
Xðx; βÞX†ðx; βÞ ¼ Hðxþ βÞ − εðβÞ; ð5:20Þ

and intertwine them,

Xðx; βÞHðxÞ ¼ Hðxþ βÞXðx; βÞ;
X†ðx; βÞHðxþ βÞ ¼ HðxÞX†ðx; βÞ; ð5:21Þ

where εðβÞ ¼ Eðβ þ iK0Þ ¼ −cs2β. These first-order
intertwining operators are related by X†ðx; βÞ ¼
−Xðxþ β;−βÞ, that follows from the identity
1=Fðx; βÞ ¼ Fðxþ β;−βÞ expð−βzðβÞÞ, and corresponds
according to (5.11) to the limit C− → ∞ of the first-order
operator A0;1. In this limit, the topologically nontrivial
superpotentialW0;1 transforms into the topologically trivial
superpotential Δ0;0, see Figs. 10 and 11. One can construct
the second intertwiner being the differential operator of the
order 2 by taking a composition of the two first-order
intertwiners (5.18),

Gðx; β0; βÞ ¼ Xðxþ β0; β − β0ÞXðx; β0Þ; ð5:22Þ
Gðx; β0; βÞHðxÞ ¼ Hðxþ βÞGðx; β; β0Þ, where we assume
that β0 ≠ β. The first factor on the rhs in (5.22) intertwines
the HðxÞ with the Hamiltonian of the virtual system
Hðxþ β0Þ, and then this is intertwined by the second
factor with Hðxþ βÞ. Notice also that G†ðx; β0; βÞ ¼
Gðxþ β; β0 − β;−βÞ.
One could think here that in this way intertwining

operators of the higher order n > 2 can be constructed,
but this is impossible because of the identity [22,47]

Gðx; β0; βÞ ¼ Gðx; β00; βÞ þGðβ; β0; β00ÞXðx; βÞ; ð5:23Þ
from where it follows that the third-order differential
operator

Xðxþ β0; β − β0ÞGðx; β00; β0Þ
¼ −ðHðxþ βÞ − εðβ0 − βÞÞXðx; βÞ
þGðβ0; β00; βÞGðx; β0; βÞ; ð5:24Þ

which intertwines HðxÞ and Hðxþ βÞ, reduces effectively
to the first- and second-order intertwining operators
Xðx; βÞ and Gðx; β0; βÞ. Here, we used the notations
Gðβ; β0; β00Þ≡ gðβ;−β0Þ − gðβ;−β00Þ,

FIG. 11 (color online). Nontopological superpotentials that allow us to displace the periodic potential network of the Lamé system
as well as the nonperiodic defects in it. The nontrivial displacements of the defects correspond to a nonlinear interaction between
the soliton defects themselves and to their interaction with the periodic background (see Fig. 4). According to Fig. 10, these
superpotentials are obtained by sending the kink, and the associated ground state of the Hamiltonian (5.3), to minus infinity, which
generates the supersymmetry breaking. The shown superpotentials relate the following isospectral pairs:H0;0 and ~H0;0 (on the left),H0;1
and ~H0;1 (in the center), and H2;0 and ~H2;0 (on the right).
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gðβ; β0Þ≡ ns β ns β0nsðβ þ β0Þð1 − cn β cn β0cnðβ þ β0ÞÞ:
ð5:25Þ

The relation (5.23) reflects effectively a kind of the
“gauge” nature of the parameter β0, which appears in the
structure of Gðx; β0; βÞ and is associated with a virtual
system Hðxþ β0Þ. On the other hand, from the same
relation and definition (5.22), one finds that the second-
order operator

Yðx; βÞ ¼ Xðxþ β0; β − β0ÞXðx; β0Þ − gðβ;−β0ÞXðx; βÞ
ð5:26Þ

is invariant under the change β0 → β00. Thus, being a
certain linear combination of (5.18) and (5.22), Yðx; βÞ
is the “gauge-invariant” second-order intertwining oper-
ator, Yðx; βÞHðxÞ ¼ Hðxþ βÞYðx; βÞ, which does not
depend on the value of the virtual parameter in spite
of its appearance on the rhs in (5.26). The conjugate
operator acts in the opposite direction, and similarly to
the first order intertwining operator, we have Y†ðx; βÞ ¼
Yðxþ β;−βÞ.
One can represent Yðx; βÞ in the explicitly β0-

independent form in terms of the superpotential (5.19)
and parameter β. However, we do not need here such an
expression and will use the representation (5.26).
From the properties of Xðx; βÞ and Yðx; βÞ, it

follows that the third-order operators X†ðx; βÞYðx; βÞ
and Y†ðx; βÞXðx; βÞ reduce, up to the additive constants,
to the third-order Lax–Novikov integral PðxÞ ¼ P0;0ðxÞ
given by Eq. (4.24) and to Pðxþ βÞ, respectively.
Namely, we have

X†ðx; βÞYðx; βÞ ¼ −iPðxÞ −N 0ðβÞ;
Xðx; βÞY†ðx; βÞ ¼ iPðxþ βÞ −N 0ðβÞ ð5:27Þ

and the pair of identity relations, which can be obtained
from (5.27) by the Hermitian conjugation. The β-depen-
dent constant N 0ðβÞ is given by6

N 0ðβÞ ¼ dn β cn β ns3β ¼ 1

2

d
dβ

εðβÞ: ð5:28Þ

Similarly to (5.21), the second-order intertwining oper-
ators generate the second-order polynomial in the isospec-
tral Hamiltonians,

Y†ðx; βÞYðx; βÞ ¼ N 2ðHðxÞ; βÞ;
Yðx; βÞY†ðx; βÞ ¼ N 2ðHðxþ βÞ; βÞ; ð5:29Þ

where

N 2ðHðxÞ; βÞ ¼ H2ðxÞ þ c1ðβÞHðxÞ þ c2ðβÞ; ð5:30Þ

c1ðβÞ ¼ −k02 − ns2β ¼ εðβÞ − 1 − k02;

c2ðβÞ ¼ dn2βns4β ¼ ðεðβÞ − 1ÞðεðβÞ − k02Þ: ð5:31Þ

Finally, for the products of the intertwining operators with
the Lax–Novikov integral, we obtain

−iXðx;βÞPðxÞ ¼N 1ðHðxþ βÞ;βÞYðx;βÞ þN 0ðβÞXðx;βÞ
ð5:32Þ

iPðxÞX†ðx; βÞ ¼ N 1ðHðxÞ; βÞY†ðx; βÞ þN 0ðβÞX†ðx; βÞ;
ð5:33Þ

iYðx;βÞPðxÞ¼N 2ðHðxþβÞ;βÞXðx;βÞþN 0ðβÞYðx;βÞ;
ð5:34Þ

−iPðxÞY†ðx; βÞ ¼ N 2ðHðxÞ; βÞX†ðx; βÞ þN 0ðβÞY†ðx; βÞ
ð5:35Þ

and four other relations given by the Hermitian conjuga-
tion. Here, we introduce the notation

N 1ðHðxÞ; βÞ ¼ HðxÞ − εðβÞ: ð5:36Þ

The operators Xðx; βÞ and Yðx; βÞ and their conjugate ones
intertwine the Lax–Novikov integrals PðxÞ and Pðxþ βÞ
exactly in the same way as they do this with the corre-
sponding Hamiltonians.
Now, we are in a position to identify the superalgebra

of the extended Schrödinger system ~H ¼ diagðHðxÞ;
Hðxþ βÞÞ, which corresponds to (5.10) with l ¼ n ¼ 0

and lower component ~H0;0ðx; β−1 Þ. This extended system is
characterized by the two pairs of the fermion integrals
~Saðx; βÞ and ~Qaðx; β0; βÞ, constructed from the first-,
X†ðx; βÞ, Xðx; βÞ, and second-order, Y†ðx; βÞ, Yðx; βÞ,
intertwining operators in the form similar to that in
(5.4), and by the two boson integrals ~P1 ¼ diagðPðxÞ;
Pðxþ βÞÞ and ~P2 ¼ σ3 ~P

1. These 2 × 2 matrix operators
generate the exotic nonlinear N ¼ 4 superalgebra,

f ~Sa; ~Sbg ¼ 2δabN 1ð ~H; βÞ;
f ~Qa; ~Qbg ¼ 2δabN 2ð ~H; βÞ; ð5:37Þ

f ~Sa; ~Qbg ¼ −2ϵab ~P1 − 2δabN 0ðβÞ; ð5:38Þ

6Notice here that, for the limit case β ¼ K, N 0ðKÞ ¼ 0.
Then, for the choice β0 ¼ Kþ iK0, the coefficient g in (5.26)
turns into zero, and the Hermitian conjugate form of the first
relation in (5.27) corresponds to factorization (4.27). Another
choice, for instance, β0 ¼ iK0, gives a factorization iP0;0ðxÞ ¼
A1=sn xAsn x=dn xAdn x.
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½ ~P2; ~Sa� ¼ −2iN 1ð ~H; βÞ ~Qa − 2iN 0ðβÞ ~Sa;
½ ~P2; ~Qa� ¼ 2iN 2ð ~H; βÞ ~Sa þ 2iN 0ðβÞ ~Qa; ð5:39Þ

½ ~P1; ~Qa� ¼ 0; ½ ~P1; ~Sa� ¼ 0; ð5:40Þ

where N 1ð ~H; βÞ and N 2ð ~H; βÞ are defined as above with
the operator argument HðxÞ changed for ~H. The matrix
Hamiltonian operator ~H plays here, as well as in the
superalgebra we considered in the previous subsection,
the role of the central element. Note that the constants
appearing in the structure of N 1ð ~H; βÞ and N 2ð ~H; βÞ
correspond to the energies of the doubly degenerate states
of the systemat the edges of the allowed bands:E ¼ 0; k02; 1.
The sub-superalgebra generated by the supercharges ~Sa

and by the Hamiltonian ~H with 0 < β < K corresponds to
the case of the spontaneously broken linear (Lie) N ¼ 2
supersymmetry. The first-order supercharges do not anni-
hilate the two ground states Ψtþ ≡ ðdnx; 0Þ and Ψt

− ≡
ð0; dnðxþ βÞÞ being eigenstates of zero energy of the
extended system. This is obvious from the first relation
from (5.37) and Eq. (5.36). The quantity −εðβÞ ¼ cs2β > 0
defines here the scale of supersymmetry breaking. The
second relation from (5.37) and Eqs. (5.30) and (5.31) show
that the second-order supercharges ~Qa also do not anni-
hilate these states. These edge states, however, as well as
the edge states of energies k02 and 1, which correspond to
the two other doubly degenerate energy levels of ~H, are
zero modes of the bosonic generators ~Pa.
The limit case β ¼ K corresponding to ε ¼ 0 is special

here. At β ¼ K, the coefficient N 0 turns into zero, and the
indicated two ground states are zero modes of the first-
order supercharges. The structure of the nonlinear super-
algebra (5.37)–(5.40) essentially simplifies because of the
disappearance of the three terms in Eqs. (5.38) and (5.39).
In this case, the second-order supercharges ~Qa annihilate
the doubly degenerate states at the edges of the valence and
conduction bands of energies k02 and 1. Since the second-
order supercharges ~Qa do not annihilate the degenerate pair
of the ground states in this case either, the extended system
~H with β ¼ K is characterized by the partially broken
exotic nonlinear N ¼ 4 supersymmetry.
Notice that, though at β ¼ K the sub-supersymmetry

N ¼ 2 generated by ~H and ~Sa is unbroken, the subsystems
HðxÞ and Hðxþ βÞ are completely isospectral, and the
superextended system is characterized by the zero Witten
index [48]. This is a characteristic peculiarity of the
quantum supersymmetric systems composed from the
periodic completely isospectral pairs, which was noted
for the first time by Braden and Macfarlane [3] for the
particular case of the pair of one-gap periodic Lamé
systems shifted mutually for the half-period β ¼ K
and later was discussed in a more broad context of

“self-isospectrality” by Dunne and Feinberg [11]. In the
framework of the nonlinear “tri-supersymmetric” structure,
it was analyzed then in Refs. [19,42].
In the context of the breaking of the exotic supersym-

metry, it is worth noticing that, generally speaking, the
second-order supercharges are not defined uniquely here.
Instead of ~Qa, one can take linear combinations of ~Qa and
~Sa, for instance, Q̂a ¼ ~Qa þ γ ~Sa, where γ is a real constant.
The particular choice γ ¼ dn β=sn β cn β gives then the
supercharges Q̂a, which satisfy the anticommutation
relations fQ̂a; Q̂bg ¼ 2δab ~Hð ~Hþ ϱðβÞÞ, where ϱðβÞ ¼
k02sc2β. Hence, for β ≠ K, the supercharges Q̂a annihilate
the ground states of zero energy of the system ~H (while
other states from their kernels correspond to nonphysical
eigenstates of ~H). In this case, the exotic supersymmetry
generated by ~Sa, Q̂a, ~Pa, and ~H should be interpreted as
partially broken. However, the second-order supercharges
Q̂a, unlike ~Qa, are not defined for the limit case β ¼ K.
The supercharges Q̂a with the indicated choice of the
parameter γ correspond to the second-order intertwining
generators (5.22) with β0 ¼ K.
As in the case of the unbroken exotic supersymmetry we

considered in the previous subsection, the Lax–Novikov
matrix integral ~P1 plays here the role of the bosonic central
charge, and the second relation in (5.40) corresponds to
the stationary equation of the mKdV hierarchy for the
topologically trivial superpotential Δ0;0ðx; βÞ. The relation
½ ~H; ~P1� ¼ 0 corresponds to the pair of stationary equations
of the KdV hierarchy for the functions V�ðxÞ ¼
Δ0;0ðx; βÞ2 � Δ0

0;0ðx; βÞ þ εðβÞ, which represent the poten-
tials of the corresponding mutually shifted Schrödinger
systems.
The superalgebra (5.37)–(5.40) in comparison with that

of the unbroken exotic supersymmetry case (5.14)–(5.17)
contains the terms with the coefficient N 0ðβÞ in (5.38) and
(5.39), which are absent in (5.15) and (5.16). There are also
other obvious differences in these two forms of super-
algebras, which reflect properly the unbroken and sponta-
neously broken character of the exotic supersymmetries
and different topological nature of the corresponding
superpotentials. At the formal level, some of these
differences are associated with a nontrivial limit procedure
applied to the fourth-order intertwining operators B0;1 ¼
A0;1P0;1ðxÞ and B†

0;1, in terms of which the fourth-order
supercharges Qa were constructed in the previous sub-
section. In correspondence with the limit (5.11), we have
B0;1 → Xðx; βÞPðxÞ, PðxÞ ¼ P0;0ðxÞ. But according to the
relation (5.32), the fourth-order intertwining operator we
obtain in the limit is reducible, and, finally, instead of the
fourth-order intertwining operators, here we have the
second-order operators Yðx; βÞ and Y†ðx; βÞ, which inter-
twine the completely isospectral pair of the Schrödinger
systems HðxÞ ¼ H0;0ðxÞ and Hðxþ βÞ ¼ H0;0ðxþ βÞ.
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VI. DISCUSSION AND OUTLOOK

To conclude, we summarize shortly the results and point
out further possible research directions.
We showed how, by applying the Darboux–Crum trans-

formations to the quantum one-gap Lamé system, an
arbitrary countable number of bound states can be intro-
duced into the forbidden bands of its spectrum. These states
are trapped by localized perturbations of the periodic
potential background of the initial system. The nature of
the perturbations depends on whether they support discrete
energy levels in the lower forbidden band, or in the finite gap
separating the allowed valence and conduction bands. In the
first case, the perturbations have a nature of the smooth
soliton potential wells superimposed on the background of
the Lamé system, while the discrete energy levels in the gap
are supported by compression modulations of the periodic
background. Though both types of perturbations have a
soliton nature, to distinguish, we identify them here as the
W-type and M-type defects, respectively. The nature of the
bound states is essentially different in these two cases.
The n ≥ 1 bound states trapped by the W-type defects are
described by the wave functions with finite number 0 ≤ j ≤
n − 1 of nodes on the real line. In contrast, the bound states
supported by the M-type defects have an infinite number of
nodes and represent oscillating trapped pulses.
The obtained nonperiodic systems are reflectionless;

their physical states inside the valence and conduction
bands are described by the Darboux–Crum transformed
Bloch states of the Lamé system, just like the scattering
states of quantum systems with multisoliton potentials are
given by a Darboux–Crum transformation of free particle
plane waves. Similarly to the multisoliton reflectionless
potentials, which exponentially tend to a constant value
corresponding to the free particle case, here the asymptotics
of the perturbed potentials corresponds to the periodic one-
gap Lamé potential. We show that the net phase displace-
ment (defect) between x ¼ þ∞ and x ¼ −∞ periodic
asymptotics of the potential are given by a simple sum
of the same parameters that determine, via the elliptic dn2

parametrization, the discrete energy levels.
The procedure for introducing the W- and the M-type

periodicity defects has some important differences. In the
first case, the order n of the Darboux–Crum transformation
corresponds exactly to the number of the introduced bound
states. In the second case, the same is true when the number
of discrete energy values is even. The odd number of the
discrete energy levels in the gap is obtained by sending
one of the already introduced 2lM-type defects to infinity.
The resulting potential with 2l − 1 M defects is related to
the initial Lamé system by 2l-th-order Darboux–Crum
transformation. At the same time, it can be related by the
Darboux–Crum transformation of order 2l − 1 with a
singular one-gap Treibich–Verdier system obtained by a
displacement of the regular Lamé system for one of its two
complex half-periods. The indicated complex displacement

can itself be generated by the first-order Darboux trans-
formation. This explains the existence of two alternative
Darboux–Crum transformations whose orders differ by 1.
The procedure described in this article allows us to

construct the irreducible Lax–Novikov integrals of motion
for the perturbed systems H2l−m;n via the Darboux–Crum
dressing of the Lax–Novikov integral of the initial periodic
Lamé system H0;0. This is similar, again, to the situation
with the transparent quantum systems described by multi-
soliton potentials, for which the Lax–Novikov integrals are
the Darboux–Crum dressed form of the momentum operator
of the free particle. The Lax–Novikov integrals here are
differential operators of order 2ðnþ 2l −mÞ þ 3 for the
system with n ≥ 0 W-type and 2l −m ≥ 0, m ¼ 0; 1, M-
type defects. The condition of conservation of these integrals
generates a nonlinear differential equation of order 2ðnþ
2l −mÞ þ 3 for the potential V2l−m;nðxÞ. This ordinary
nonlinear differential equation of odd order in the highest
derivative belongs to the stationary KdV hierarchy.
For an extended system composed from an arbitrary pair

of the Hamiltonians H2l1−m1;n1 and H2l2−m2;n2 , which
possess ni ≥ 0, i ¼ 1; 2, discrete energy levels in the lower
forbidden band, and 2li −mi ≥ 0, mi ¼ 0; 1, bound states
in the gap, the presence of the Lax–Novikov integrals
has an essential consequence. The whole system is now
described not just by an N ¼ 2 linear or nonlinear
supersymmetry as would be expected in the case of a
Darboux–Crum related pair of ordinary, nontransparent, or
not periodic finite-gap, quantum Hamiltonians. Instead,
such a system is characterized by an exotic nonlinear
N ¼ 4 supersymmetry that, besides two pairs of the
fermion supercharges of odd and even differential orders,
involves two bosonic generators composed from the
Lax–Novikov integrals of the subsystems. We investigated
in more detail the most interesting, from the point of view
of physical applications, case in which two of the four
fermionic supercharges are matrix differential operators
of order 1. In this case, one of the matrix Lax–Novikov
bosonic integrals plays a role of central charge of a
nonlinear superalgebra, and its commutativity with first-
order supercharges generates a higher-order differential
equation for the superpotential that belongs to the sta-
tionary mKdV hierarchy. The second bosonic integral
generates rotations between the pair of first-order super-
charges and the pair of higher-order supercharges.
When the spectra of Schrödinger superpartners are

different only in the lowest discrete energy level present
in one of the two subsystems, which corresponds to the
almost isospectral case, the superpotential has a topologi-
cally nontrivial modulated crystalline kink-type nature.
This case is described by an unbroken exotic nonlinear
N ¼ 4 supersymmetry, in which the ground state is
annihilated by all four supercharges and two bosonic
integrals. On the other hand, in the completely isospectral
case, the pair of Schrödinger Hamiltonians is characterized
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by a superpotential of a topologically trivial, modulated
kink-antikink-type nature. Such pairs can be obtained from
the pairs of the almost isospectral case just by sending theW-
type defect associated with the lowest-energy discrete value
to infinity. The completely isospectral pairs are described by
a spontaneously broken exotic nonlinearN ¼ 4 supersym-
metry. Unlike the unbroken supersymmetry case, in such
systems, the two states corresponding to the lowest doubly
degenerate energy value are annihilated (in a generic case)
only by the bosonic Lax–Novikov integrals.
When one of the two first-order supercharges is reinter-

preted as the matrix Hamiltonian operator, we arrive at the
Bogoliubov–de Gennes system, in which the superpotential
will play the role of a scalar Dirac potential. The results
presented here allow us then, particularly, to obtain new
types of self-consistent condensates and associate with
them new solutions for the Gross–Neveu model, which
correspond to the kink- and kink-antikink-type configura-
tions in the crystalline background. We are going to
consider this problem elsewhere.
It is worth noticing that Dirac Hamiltonians with scalar

potential appear, in different physical context, in the
description of the low-energy charge carriers in graphene
and related carbon nanostructures. This fact opens potential
applications of the results in physics of condensed matter
systems, following the ideas of Refs. [49–51].
The discussed constructions can be generalized to the

case of the PT-symmetric one-gap potentials. To achieve
this, it is sufficient to apply the complex shift considered in
Sec. III to the described Hermitian systems with periodicity
defects. Such systems have an immediate application in
the context of the PT-symmetric quantum mechanics and
optics.
An interesting development of the presented results is to

“reconstruct” the time dependence for defects in a periodic
background of the one-gap Lamé system in correspondence
with dynamics illustrated, as an example, by Fig. 4. This
would provide us a new class of solutions for the KdV and
mKdVequations. At the same time, it is natural to consider
the generalization of the construction to the case of
quantum n-gap systems with n > 1. One can also wonder
if, somehow, bothW-type andM-type defects are the result
of “shrinking” bands from a more generic finite-gap
Hamiltonian, under some special limit.
Finally, it would also be very interesting to look for the

ð1þ 1Þ-dimensional field theories, in which nontrivial
solutions are controlled by a stability operator of the
Schrödinger type [52] with the potentials of the nature
considered here.
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APPENDIX: NON-SINGULARITY
OF POTENTIALS

We show here that the family of Hamiltonians

H2l;n ¼ H0;0 − 2
d2

dx2
ðlogWðΦþð1Þ;Φ−ð2Þ;…;

Φ−ð2lÞ;Fþð1Þ;…;F snðnÞÞÞ ðA1Þ

is given in terms of the nonsingular potentials, which
correspond to the soliton defects introduced into the
periodic background of the one-gap Lamé system. To
achieve this, we demonstrate successively that the
Wronskians appearing in the structure of H0;n, H2l;0,
and, finally, H2l;n are nodeless on the real line. The
notations we employ are explained in the main text.

1. Lower prohibited band

To show that the potential of H0;n is regular, i.e., has no
zeros on the real line, we will demonstrate that

ð−1Þnðnþ1Þ
2 WðFþð1Þ;…;F snþ1

ðnþ 1ÞÞ > 0: ðA2Þ

First, we define the two sets of functions,

fnðxÞ≡ ð−1Þn WðFþð1Þ;…;F snþ1
ðnþ 1ÞÞ

WðFþð1Þ;…;F snðnÞÞ
ðA3Þ

and

gnðxÞ≡ ð−1Þn WðFþð1Þ;…;F snðnÞ;F snþ2
ðnþ 2ÞÞ

WðFþð1Þ;…;F snðnÞÞ
;

ðA4Þ
which are nonphysical eigenstates ofH0;n with eigenvalues
ε−nþ1 and ε−nþ2, respectively. We will check below that
fnðxÞ > 0, while gnðxÞ has only one zero.
In correspondence with the definition W0;0 ¼ 1 intro-

duced in Eq. (4.21), for n ¼ 0, we have f0 ¼ Fþð1Þ > 0,
and g0 ¼ F−ð2Þ. The second function (plotted for a
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particular case with C2 ¼ 1 in Fig. 3) has one zero, which
we denote by x0. Thus, we have g0ðxÞ > 0 for x < x0 and
g0ðxÞ < 0 for x > x0.
For the case n ¼ 1, we also define the functions

fðxÞ ¼ WðFþð1Þ;F−ð2ÞÞ; gðxÞ ¼ WðFþð1Þ;Fþð3ÞÞ;
ðA5Þ

which appear in the numerators of (A3) and (A4). Taking
into account that F are solutions of the stationary
Schrödinger equation, it is straightforward to check that

f0ðxÞ ¼ ðε−1 − ε−2 ÞFþð1ÞF−ð2Þ; ðA6Þ

g0ðxÞ ¼ ðε−1 − ε−3 ÞFþð1ÞFþð3Þ: ðA7Þ

As ε−2 < ε−1 < 0, we observe that signðf0ðxÞÞ ¼
signðF−ð2ÞÞ. Then,

fðx0Þ ¼ Fþðx0; β−1 ; C1ÞF 0
−ðx0; β−2 ; C2Þ ðA8Þ

since F−ðx0; β−2 ; C2Þ ¼ 0. From the Schrödinger equation,
we have also F 0

−ðx0; β−2 ; C2Þ ≠ 0, and from the definition
(4.1), it follows that F 0

−ðx0; β−2 ; C2Þ < 0. We have then
fðx0Þ < 0, and hence signðf0ðxÞÞ ¼ signðF−ð2ÞÞ. Thus,
the function fðxÞ increases monotonically from
fð−∞Þ ¼ −∞, it takes a maximum negative value
fðx0Þ < 0 at x ¼ x0, and then it decreases again mono-
tonically to fð∞Þ ¼ −∞. This means that fðxÞ < 0 and, as
a consequence,

f1ðxÞ ¼ −
WðFþð1Þ;F−ð2ÞÞ

Fþð1Þ
> 0 ðA9Þ

for all x.
The derivative g0ðxÞ takes positive values and grows up

exponentially for x → �∞. Therefore, gðxÞ passes through
zero only once at some point x1. The function

g1ðxÞ ¼ −
WðFþð1Þ;Fþð3ÞÞ

Fþð1Þ
ðA10Þ

has then only one zero at this point x1 and takes positive
and negative values for x < x1 and x > x1, respectively.
So, we see that the nonphysical eigenstates f0 and f1 of
H0;0 and H0;1, respectively, have no zeros, while their
eigenfunctions g0 and g1 have one zero, where their slope is
negative.
We extend now this result by induction for arbitrary n by

showing that fnðxÞ > 0 while gn has only one zero xn and
that gnðxÞ > 0 and gnðxÞ < 0 for x < xn and x > xn,
respectively, and so, g0nðxnÞ < 0.
By using the Darboux–Crum construction, we can check

that functions fnðxÞ and gnðxÞ are nonphysical eigenstates
of the Schrödinger operator

H0;n ¼ H0;0 − 2
d2

dx2
logWðFþð1Þ;…;F snðnÞÞ ðA11Þ

with eigenvalues ε−nþ1 and ε−nþ2. For nþ 1, we have

fnþ1ðxÞ ¼ ð−1Þnþ1
WðFþð1Þ;…;F snþ2

ðnþ 2ÞÞ
WðFþð1Þ;…;F snþ1

ðnþ 1ÞÞ

¼ −
Wðfn; gnÞ

fn
; ðA12Þ

W0ðfn; gnÞ ¼ ðε−nþ1 − ε−nþ2Þfngn; ðA13Þ

from where we obtain that signW0ðfn; gnÞ ¼ signgnðxÞ.
The zero xn of gn corresponds therefore to the maximum of
Wðfn; gnÞ,

Wðfn; gnÞðxnÞ ¼ g0nðxnÞfnðxnÞ < 0: ðA14Þ

Since signW0ðfn;gnÞ¼ signgnðxÞ, the function −Wðfn; gnÞ
decreases for x < xn and increases for x > xn, and then
−Wðfn; gnÞðxnÞ > 0 for all x. From Eq. (A12), we con-
clude that fnþ1ðxÞ > 0 for all x.
Let us change β−nþ1 by β−nþ3 in the numerator of the

function fnðxÞ in (A3) and redefine the resulting function
as hnðxÞ. This function takes positive values, hnðxÞ > 0,
and we obtain the following relations:

gnþ1 ¼ ð−1Þnþ1
WðFþð1Þ;…;F snþ1

ðnþ 1Þ;F snþ3
ðnþ 3ÞÞ

WðFþð1Þ;…;F snþ1
ðnþ 1ÞÞ

¼ −
Wðfn; hnÞ

fn
; ðA15Þ

W0ðfn; hnÞ ¼ ðε−nþ1 − ε−nþ3Þfnhn > 0: ðA16Þ

Consequently,Wðfn; hnÞ increases exponentially from −∞
toþ∞ passing through one zero, which we call xnþ1. Since
fnðxÞ > 0 is a regular function, and gnþ1 has only one zero
at xnþ1, we find that gnþ1ðxÞ > 0 for x < xnþ1 and
gnþ1ðxÞ < 0 for x > xnþ1.
Finally, from the definition (A3) of fnðxÞ, we obtain

fnfn−1…f1Fþð1Þ
¼ ðð−1Þ

P
n
i¼1

iÞWðFþð1Þ;…;F snþ1
ðnþ 1ÞÞ; ðA17Þ

and since

fnfn−1…; f1Fþð1Þ > 0; ðA18Þ
we demonstrate the necessary relation (A2).

2. Upper prohibited band

To show that H2l;0 is nonsingular on the whole real line,
we show that the Wronskian is a regular nodeless function
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WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞÞ, where the functions
Φþð2l − 1Þ and Φ−ð2lÞ, l ¼ 1; 2… correspond to a gener-
alization of those defined in (4.30) and (4.31) for l ¼ 1.
Before, we showed that WðΦþð1Þ;Φ−ð2ÞÞ < 0 by

choosing parameters 0 < βþ1 < βþ2 < K. This condition
means that 1 > εþ1 > εþ2 > k02 for the eigenvalues of the
nonphysical eigenstates Φþð1Þ and Φ−ð2Þ inside the
intermediate forbidden band of H0;0.
To demonstrate the validity of the formulated statement

for the next case l ¼ 2, we define an eigenstate of the
one-gap Lamé system with the displaced argument,
x → xþ βþ3 þ iK0, in the following form:

Φ̆½1�ðx; βþ3 Þ ¼
WðΨβþ

3þ ðxÞ;Φþð1ÞÞ
Ψ

βþ
3þ ðxÞ

: ðA19Þ

This state has an infinite number of poles at the zeros of

Ψ
βþ
3þ ðxÞ. Between each pair of poles, Φ̆½1�ðx; βþ3 Þ does not

change the sign and takes nonzero values. Its sign is
inverted in the neighbor regions separated by poles.
From the theorem on zeros, the linearly independent state

Φ̆½2�ðx; βþ3 Þ ¼
WðΨβþ

3þ ðxÞ;Φ−ð2ÞÞ
Ψ

βþ
3þ ðxÞ

ðA20Þ

has also an infinite number of poles, but between each pair
of poles, it possesses one zero, which we denote as xi.
The function (A20) preserves the sign when the argument
passes through any pole.
Now, it is necessary to show thatWðΦ̆½1�; Φ̆½2�Þ does not

have zeros. For this, we redefine the function Φ̆½2� up to a
sign in such a way that its derivative in some xi0 will be
positive. In the same way, we also redefine, up to a global
sign, the function Φ̆½1�ðxÞ to have Φ̆½1�ðxi0Þ < 0. Thus,
we obtain that

WðΦ̆½1�; Φ̆½2�ÞðxiÞ ¼ Φ̆½1�ðxiÞΦ̆0½2�ðxiÞ < 0; ðA21Þ
while

W0ðΦ̆½1�; Φ̆½2�Þ ¼ ðεþ1 − εþ2 ÞΦ̆½1�Φ̆½2�: ðA22Þ

The function WðΦ̆½1�; Φ̆½2�Þ has a local extremum at each
xi, and its derivative is positive for x < xi until a pole and is
negative for x > xi until the next pole since xi is a local
maximum of WðΦ̆½1�; Φ̆½2�ÞðxÞ. From here, we conclude
that WðΦ̆½1�; Φ̆½2�ÞðxÞ does not have zeros and hence is of
one sign.
Because of the identity

WðΦþð1Þ;Φ−ð2Þ;Ψβþ
3þ ðxÞÞ ¼ Ψ

βþ
3þ ðxÞWðΦ̆½1�; Φ̆½2�Þðx; βþ3 Þ;

ðA23Þ

the Wronskian WðΦþð1Þ;Φ−ð2Þ;Ψβþ
3þ ð�xÞÞ has exactly

the same zeros as Ψ
βþ
3

� ðxÞ. Note that we have

WðΦþð−x; βþ1 ; 1=C1Þ; Φ−ð−x; βþ2 ; 1=C2Þ; Ψβþ
3þ ð−xÞÞ ¼

−Wð−Φþð1Þ; Φ−ð2Þ; Ψβþ
3þ ð−xÞÞ ¼ − WðΦþð1Þ; Φ−ð2Þ;

−Ψβþ
3þ ð−xÞÞ. Using the Wronskian properties, it is easy to

see that Wða; bÞðxÞ ¼ −Wða; bÞð−xÞ and Wða; b; cÞðxÞ ¼
−Wða; b; cÞð−xÞ, but Wða;b;c;dÞðxÞ¼Wða;b;c;dÞð−xÞ.
Taking in account the above relations, we can write

signWðΦ̆½1�; Φ̆½2�Þðx; βþ3 Þ ¼ signWðΦ̆½1�; Φ̆½2�Þð−x; βþ3 Þ:
ðA24Þ

Thus, the zeros of the nonphysical states of H2;0,

WðΦþð1Þ;Φ−ð2Þ;Φþð3ÞÞ
WðΦþð1Þ;Φ−ð2ÞÞ

and
WðΦþð1Þ;Φ−ð2Þ;Φ−ð4ÞÞ

WðΦþð1Þ;Φ−ð2ÞÞ
;

ðA25Þ

are within the intervals Iþ
n ðβþ3 Þ and I−

n ðβþ4 Þ, respectively,
see Eq. (4.34), where Iþ

n ð3Þ ⋂ I−
n ð4Þ ¼ ∅. As a conse-

quence of the theorem on zeros, their zeros are alternated.
Next, we can check that under the condition

0 < βþ1 < βþ2 < βþ3 < βþ4 < K, the Wronskian

W

�
WðΦþð1Þ;Φ−ð2Þ;Φþð3ÞÞ

WðΦþð1Þ;Φ−ð2ÞÞ
;
WðΦþð1Þ;Φ−ð2Þ;Φ−ð4ÞÞ

WðΦþð1Þ;Φ−ð2ÞÞ
�

¼ WðΦþð1Þ;Φ−ð2Þ;Φþð3Þ;Φ−ð4ÞÞ
WðΦþð1Þ;Φ−ð2ÞÞ

ðA26Þ

does not have zeros nor the function WðΦþð1Þ;
Φ−ð2Þ;Φþð3Þ;Φ−ð4ÞÞ.
This result can be generalized for the case of

the Wronskian of 2l states, WðΦþð1Þ;Ψ−ð2Þ;…;
Φþð2l − 1Þ;Φ−ð2lÞÞ, under the condition 0 < βþ1 <
βþ2 < … < βþ2l < K.
Using the identity

WðΦþð1Þ;…;Φ−ð2lÞ;Ψβþ
2lþ1þ ðxÞÞ

¼ WðΦþð1Þ;…;Φ−ð2l − 2Þ;Ψβþ
2lþ1þ ðxÞÞ

×WðΦ̆½1;…; 2l − 1�; Φ̆½1;…; 2l − 2; 2l�Þ; ðA27Þ

we have

Ψ
βþ
2lþ1þ ðxÞWðΦ̆½1�; Φ̆½2�Þ ×WðΦ̆½1; 2; 3�; Φ̆½1; 2; 4�Þ ×…

×WðΦ̆½1;…; 2l − 2; 2l − 1�; Φ̆½1;…; 2l − 2; 2l�Þ
¼ WðΦþð1Þ;…;Φ−ð2lÞ;Ψβþ

2lþ1þ ðxÞÞ; ðA28Þ

where
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Φ̆½1;…; l; lþ r�ðx;βþÞ

¼WðΨβþ
þ ðxÞ;Φþð1Þ;…;Φ−ð2lÞ;Φs2lþr

ð2lþ rÞÞ
WðΨβþ

þ ðxÞ;Φþð1Þ;…;Φ−ð2lÞÞ
ðA29Þ

and r ¼ 1; 2, l ¼ 0; 1;…. Having in mind all previous
demonstrations, it is clear that

jWðΦ̆½1;…; 2l − 2; 2l − 1�; Φ̆½1;…; 2l − 2; 2l�Þj > 0;

ðA30Þ

and the functions

WðΦþð1Þ;…;Φ−ð2lÞ;Φþð2lþ 1ÞÞ
WðΦþð1Þ;…;Φ−ð2lÞÞ

and

WðΦþð1Þ;…; :Φ−ð2lÞ;Φ−ð2lþ 2ÞÞ
WðΦþð1Þ;…;Φ−ð2lÞÞ

ðA31Þ

have alternating zeros in the intervals Iþ
n ðβþ2lþ1Þ and

I−
n ðβþ2lþ2Þ, respectively. Then,

W

�
WðΦþð1Þ;…;Φ−ð2lÞ;Φþð2lþ 1ÞÞ

WðΦþð1Þ;…;Φ−ð2lÞÞ
;
WðΦþð1Þ;…;Φ−ð2lÞ;Φ−ð2lþ 2ÞÞ

WðΦþð1Þ;…;Φ−ð2lÞÞ
�

¼ WðΦþð1Þ;…;Φ−ð2lþ 2ÞÞ
WðΦþð1Þ;…;Φ−ð2lÞÞ

ðA32Þ

is regular and has no zeros, which means that
WðΦþð1Þ;…;Φ−ð2lþ 2ÞÞ is nonsinguar and nodeless if
and only if WðΦþð1Þ;…;Φ−ð2lÞÞ is regular and has no
zeros.
Besides, if the potentials of the systems H2l;0 are

nonsingular for all real x, by taking limits Cl → ∞ or
Cl → 0, the regularity is preserved, and we get a regular
Hamiltonians H2l−1;0 with 2l − 1 states in the gap of the
Lamé system.

3. Mixed case

Finally, using the all previous demonstrations, we show
that the most general Hamiltonian

H2l;n ¼ H0;0 − 2
d2

dx2
ðlogWðΦþð1Þ;Φ−ð2Þ;…;

Φ−ð2lÞ;Fþð1Þ;…;F snðnÞÞÞ ðA33Þ

has also a nonsingular potential. To this aim, we define

F2lðx; β−Þ ¼
WðΦþð1Þ;…;Φ−ð2lÞ; Fðx; β−ÞÞ

WðΦþð1Þ;…;Φ−ð2lÞÞ
; ðA34Þ

which is a nonphysical eigenstate of H2l;0 with eigenvalue
Eðβ− þ iK0Þ. Using the Wronskian identity

Wð ~Φ1;…; ~ΦlÞ ¼ WðWðF;Φ1Þ=F;…;WðF;ΦlÞ=FÞ
¼ WðF;Φ1;…;ΦlÞ=F; ðA35Þ

where ~Φ ¼ WðF;ΦÞ=F, we obtain

F2lðx; β−Þ ¼
Wð ~Φþð1Þ;…; ~Φ−ð2lÞÞ
WðΦþð1Þ;…;Φ−ð2lÞÞ

Fðx; β−Þ

¼ G2lðx; β−ÞFðx; β−Þ: ðA36Þ
~Φi is the eigenstate of the displaced Lamé system
H0;0ðxþ β−Þ, with the properties similar to those as Φi.

We have shown thatWðΦþð1Þ;…;Φ−ð2lÞÞ is nodeless and
takes finite values of a definite sign. This implies that
Wð ~Φþð1Þ;…; ~Φ−ð2lÞÞ share the same properties. Hence,
function G2lðx; β−Þ also possesses the same indicated
properties. Taking into account the properties of the
functions inside the Wronskian under the reflection
x → −x, it is not difficult to show that signG2lðx; β−Þ ¼
signG2lðx;−β−Þ. Having the identity Fð−x; β−Þ ¼
Fðx;−βÞ, we find that

F 2l;þðx; β−Þ ¼
WðΦþð1Þ;…;Φ−ð2lÞ;Fþðβ−ÞÞ

WðΦþð1Þ;…;Φ−ð2lÞÞ
ðA37Þ

¼ CG2lðx; β−ÞFðx; β−Þ

þ 1

C
G2lðx;−β−ÞFð−x; β−Þ: ðA38Þ

Since G2lðx;�β−Þ take values of the same sign and
increase exponentially, the function F 2l;þ has no zeros.
Then,

F 2l;−ðx; β−Þ ¼
WðΦþð1Þ;…;Φ−ð2lÞ;F−ðβ−ÞÞ

WðΦþð1Þ;…;Φ−ð2lÞÞ
ðA39Þ

¼ CG2lðx; β−ÞFðx; β−Þ

−
1

C
G2lðx;−β−ÞFð−x; β−Þ ðA40Þ

has only one zero. Here, the functions F 2l;� are linearly
independent eigenstates of the operator H2l;0 with
eigenvalues Eðβ− þ iK0Þ, which are analogous to the
eigenfunctions F� of the Lamé system H0;0; see (4.1).
Using the arguments presented in Appendix A 1, one can
show that

WðF 2l;þð1Þ;…;F 2l;snþ1
ðnþ 1ÞÞ ðA41Þ
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has no zeros. From the Crum theorem,

H2l;n ¼ H2l;0 − 2
d2

dx2
logWðF 2l;þð1Þ;…;F 2l;snðnÞÞ

¼ H0;0 − 2
d2

dx2
logW2l;n; ðA42Þ

and it follows that

WðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;Fþð1Þ;…;F snðnÞÞ ðA43Þ

is a smooth and nodeless function.
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