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Soliton defects in one-gap periodic system and exotic supersymmetry

Adrian Arancibia,l‘* Francisco Corlrea,z’3 T vit Jakubsk’,4’i Juan Mateos Guilalrte,s’§ and Mikhail S. Plyushchayl‘||

1Departamento de Fisica, Universidad de Santiago de Chile, Casilla 307 Santiago 2, Chile
2Leibniz Universitit Hannover, Appelstrafie 2, 30167 Hannover, Germany
3Centro de Estudios Cientificos (CECs), Arturo Prat 514 Valdivia, Chile
4Department of Theoretical Physics, Nuclear Physics Institute, 25068 ReZ, Czech Republic
5Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca,
Salamanca E-37008, Spain
(Received 18 October 2014; published 31 December 2014)

By applying Darboux—Crum transformations to the quantum one-gap Lamé system, we introduce an
arbitrary countable number of bound states into forbidden bands. The perturbed potentials are reflectionless
and contain two types of soliton defects in the periodic background. The bound states with a finite number
of nodes are supported in the lower forbidden band by the periodicity defects of the potential well type,
while the pulse-type bound states in the gap have an infinite number of nodes and are trapped by defects of
the compression modulations nature. We investigate the exotic nonlinear A = 4 supersymmetric structure
in such paired Schrodinger systems, which extends an ordinary A" = 2 supersymmetry and involves two
bosonic generators composed from Lax—Novikov integrals of the subsystems. One of the bosonic integrals
has a nature of a central charge and allows us to liaise the obtained systems with the stationary equations of
the Korteweg—de Vries and modified Korteweg—de Vries hierarchies. This exotic supersymmetry opens the
way for the construction of self-consistent condensates based on the Bogoliubov—de Gennes equations
and associated with them new solutions to the Gross—Neveu model. They correspond to the kink or
kink-antikink defects of the crystalline background in dependence on whether the exotic supersymmetry

is unbroken or spontaneously broken.
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I. INTRODUCTION

Quantum periodic finite-gap systems find many
interesting applications in physics [1-22]. They can be
related via the algebro-geometric approach with the
integrable Korteweg—de Vries (KdV) and modified
Korteweg—de Vries (mKdV) equations [23,24]. The poten-
tials of finite-gap Schrodinger systems correspond to the
“snapshots” of the evolving in time generalizations of
cnoidal waves solutions to the KdV equation [25]. In a
similar way, via the Miura transformation, the scalar Dirac
finite-gap potentials can be associated with solutions to the
mKdV equation. The infinite-period limit of such potentials
corresponds to reflectionless systems [26] and the solitary
waves solutions to the KdV and mKdV equations.

Reflectionless second- and first-order quantum systems
can be constructed via the Darboux—Crum transformations
[27] from the quantum free particle Schrodinger and Dirac
systems. The same transformations provide an effective
dressing method for construction of Lax—Novikov integrals
for these systems. The condition of conservation of them
generates the higher-order nonlinear stationary equations
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for the KdV and mKdV hierarchies [28-31]. This picture
also applies for a more general case of Zakharov—Shabat/
Ablowitz—Kaup—Newell-Segur hierarchy [32].

It was shown recently in Ref. [31] that the Darboux—
Crum transformations yield a possibility to relate reflec-
tionless systems with a different number of bound states in
their spectra via a soliton scattering picture. It was also
demonstrated that the pairs of reflectionless Schrodinger
systems are described not by the ordinary linear or non-
linear A/ = 2 supersymmetry, as this happens in the case
of ordinary, nontransparent quantum systems related by a
Darboux—Crum transformation. Instead, they are charac-
terized by exotic nonlinear N' = 4 supersymmetric struc-
ture. It is generated by two pairs of the supercharges, which
are the 2 x 2 matrix differential operators of the odd and
even orders. In addition, the exotic supersymmetric struc-
ture includes two bosonic generators composed from the
Lax—Novikov integrals of subsystems, which are differ-
ential operators of higher odd order [29,30].

Among all such paired reflectionless Schrodinger sys-
tems, there is a special class, in which two lower-order
supercharges have the differential order 1. In this case, one
of the two bosonic integrals transmutes into the central
charge of the exotic nonlinear N' = 4 superalgebra, while
the second bosonic integral generates rotations between
the first-order and even-order supercharges. One of the
first-order supercharges can be reinterpreted as the Dirac

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.90.125041
http://dx.doi.org/10.1103/PhysRevD.90.125041
http://dx.doi.org/10.1103/PhysRevD.90.125041
http://dx.doi.org/10.1103/PhysRevD.90.125041

ADRIAN ARANCIBIA ef al.

Hamiltonian, which is characterized by its own exotic
supersymmetry associated with the central charge of the
initial extended Schrodinger system. It is, in fact, the
Bogoliubov—de Gennes Hamiltonian, whose potential,
being the superpotential of the initial extended
Schrodinger system, provides us with self-consistent con-
densates. The latter supply us, particularly, with kink- and
kink-antikink-type solutions for the Gross—Neveu model
[30]. A similar picture related to the exotic supersymmetry
was also revealed in the pairs of mutually displaced one-
gap Lamé systems [22].

A natural question that appears here is whether the
Darboux—Crum transformations can be employed to unify
the reflectionless and finite-gap properties in the same
quantum system. Such a quantum system could be associated
with the KdV and mKdV equations, and its potential would
correspond to solitary wave solutions propagating in a
background of finite-gap, cnoidal-wave-type solutions. The
related question then is what happens with the exotic non-
linear supersymmetric structure in such quantum systems.

In this article, we answer the posed questions. To this
aim, we apply the Darboux—Crum transformations to the
quantum one-gap periodic Lamé system to introduce into
its spectrum an arbitrary countable number of bound states
in its two, the lowest and the intermediate, forbidden bands.
This procedure will provide us the reflectionless non-
periodic one-gap potentials, which will contain two essen-
tially different types of soliton defects in the periodic
background. The nature of defects depends on the for-
bidden band in which they support the bound states.
Coherently with this, as it will be shown, the corresponding
two types of the bound states possess essentially different
properties. We also investigate the exotic nonlinear super-
symmetric structure associated with such quantum systems.

Some general mathematical aspects of the theory of the
class of the systems we investigate here were discussed in
Ref. [33]. The simplest particular examples were consid-
ered in Ref. [34]. For the discussion of the problem of
defects in a more general context of integrable classical and
quantum field theoretical systems, see Refs. [35-37].

The article is organized as follows. In next section,
generic properties of the quantum one-gap periodic Lamé
system are summarized, and its infinite-period limit corre-
sponding to the simplest reflectionless Poschl-Teller model
with one bound state is discussed in light of Darboux—Crum
transformations. In Sec. III, we consider Darboux trans-
lations for Lamé system. We apply Darboux—Crum trans-
formations in Sec. IV to introduce soliton defects into the
one-gap Lamé system. The procedure is developed first
to generate an arbitrary number of periodicity defects
supporting bound states in the lower forbidden band.
Then, we do the same for the gap separating the allowed
valence and conduction bands. As we shall see, the cases of
the even and odd numbers of the bound states in the
intermediate forbidden band are characterized by different
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Darboux—Crum schemes. Finally, we show how to general-
ize the construction to introduce the bound states in both
forbidden bands. We discuss also the application of
Darboux—Crum dressing procedure for the construction of
the irreducible Lax—Novikov integrals. Section V is devoted
to investigation of the exotic nonlinear ' = 4 supersym-
metric structure that appears in the extended Shrodinger
systems composed from two arbitrary one-gap systems with
periodicity defects. Special attention is given there for the
most interesting from the viewpoint of physical applications
case when two of the four supercharges are given by the
matrix differential operators of the first order. We consider
the cases of the unbroken and spontaneously broken exotic
supersymmetries and indicate the relation of the obtained
systems with the KdV and mKdV equations. The results are
summarized in Sec. VI. We point out there further possible
research directions for the development of the obtained
results and some interesting applications. The Appendix is
devoted to a more technical demonstration of a nonsingular
nature of the constructed one-gap potentials of a generic
form with an arbitrary number of the periodicity defects.

II. ONE-GAP LAME SYSTEM AND ITS
INFINITE-PERIOD LIMIT

In this section, we summarize generic properties of the
quantum one-gap periodic Lamé system and discuss its
infinite-period limit corresponding to the reflectionless
Poschl-Teller model. The Darboux transformations asso-
ciate the latter system with a free particle and allow us,
particularly, to identify its nontrivial Lax—Novikov integral
via the dressing procedure. All this will form the basis for
application of the method of the Darboux—Crum trans-
formations to introduce two different types of nonperiodic
soliton defects into the Lamé system.

A. Spectral properties of one-gap Lamé system

The quantum one-gap Lamé system is described by the
Hamiltonian operator

dZ
Hyo = e + Voo(x),

Voo(x) = 2k*sn’x — k* = =2dn’x + 1 + K2, (2.1)
with a periodic potential Vo(x) = Vio(x +2K)." The
sense of the lower indices introduced here will be clarified

'K = K(k) is a complete elliptic integral of the first kind
corresponding to the modular parameter k, 0 < k < 1. We also
denote K’ = K(k'), where k', 0 <k’ <1, k> + k? =1, is the
complementary modular parameter. For the properties of Jacobi
elliptic and related functions, see Ref. [38]. For a short summary
of the properties we use here, see the Appendix in Ref. [22]. The
dependence of these functions on k is not shown explicitly. In the
case in which they depend on k' instead of k, we indicate such a
dependence explicitly.
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in what follows. The eigenstates of H( can be found in a
closed analytic form for any complex eigenvalue &.
Parametrizing the latter in terms of Jacobi’s elliptic dn
function, &£(a) = dn’a, we obtain the solutions of the
stationary Schrodinger equation H, V% = E(a)VY,

H(x + a)
O(x)

Here, ®, H, and Z are Jacobi’s Theta, Eta, and Zeta
functions, while parameter @ can take arbitrary complex
values. Since the periods of the doubly periodic elliptic
function dn?a are 2K and 2iK’, and it is an even function,
without any loss of generality, one can restrict a consid-
eration to a rectangular domain with vertices in 0, K,
K + iK', and {K’. Hamiltonian (2.1) is a Hermitian
operator, and we are interested in the real eigenvalues
E(a).> These are provided by further restriction of the
values of the parameter « to the borders of the indicated
rectangle; see Fig. 1. The horizontal edges correspond
to the lower and upper forbidden zones (lacunas) in
the spectrum. The vertical edges correspond, respectively,
to the valence and conduction bands. The necessary
information on the bands’ structure, including the values
of quasimomentum «(a), see below, is summarized in
Table I. We supply the parameters f# and y, corresponding to
real and imaginary parts of the complex parameter @, with
upper index —/+ to distinguish whether they correspond to
the lower/upper forbidden and allowed bands, respectively.

While the real parameter S~ increases in the open
interval (0, K), the energy increases in the lower, semi-
infinite forbidden band but decreases in the finite gap
separating the allowed bands when #* varies in the same
interval. In the valence band, the energy increases when the
parameter y~ decreases from K’ to 0; the variation of
the parameter y* in the semiopen interval [0,K’) gives
the energy monotonically increasing in the semi-infinite
conduction band.

Under the shift for the real period 2K of the potential, the
eigenstates (2.2) undergo the transformation

U4 (x) = exp [F xZ(a)]. (2.2)

U4 (x + 2K) = exp (F i2Kk(a)) V% (x),
(2.3)

where k(a) = % —iZ(a)

is the quasimomentum, in which the first term is asso-
ciated with the 2K antiperiodicity of the Eta function,
H(x 4+ 2K) = —H(x). The analytical form of the quasi-
momentum k(«) allows us to determine explicitly when
it takes real or complex values and therefore to locate
the allowed and forbidden bands. Thus, making use of the

*The PT-symmetric generalization [39,40] of (2.1) can also be
associated with real values of £(a); see below.
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FIG. 1 (color online). Spectrum of the one-gap Lamé system
(2.1) as a function of complex parameter a.

properties of Jacobi’s Zeta function, one finds that in the
lower forbidden band the quasimomentum takes pure
imaginary values, «(f~ +iK')=—iz(f~), z(f7) =
dl%log H(f~). In accordance with this, the quasimomen-
tum varies in the complex plane along the imaginary axis
so that k - —ioco for f~ - 0, £ - —o0, and k — 0 when
p~ — K, £— 0. The amplitude of the wave functions
(2.2) in this band increases exponentially in one of the two
directions on the real axis x, and eigenfunctions
\I/‘fﬂ K (x) correspond therefore to nonphysical states.
In the valence band, the quasimomentum takes real values,
k(K +iy7) = (1 - &) — #=log®(y~ + K'|K), where
it increases monotonically from x =0 (£ =0) to x =
3 (€ = k’%). The wave functions (2.2) inside the valence
band correspond to the two linearly independent Bloch
states. In the intermediate energy gap, the quasimomen-
tum is complex valued, x(f%) = & —iZ(B*). In accor-
dance with the relation diﬂZ(ﬂ) = dn’f — £, where E is the
complete elliptic integral of the second kind, and
k? < £ < 1, the imaginary part in k(") varies monoton-
ically in the interval f* € (0,4,], 0 < Z <Z(p,), where
p. corresponds to the equality dn’f, = % and then
decreases monotonically approaching the zero value in
the interval f* € (f,, K). In the conduction band, like in
the valence band, the quasimomentum takes real values,
k(iy?) =5 (1= §(—+) - dy%log H(y" 4+ K'|K'). Tt increases
here monotonically from 7 (£ =1) to +c0 (£ — o0).
Inside this band, for any value of the energy, the two wave
functions (2.2) correspond to the two linearly independent
physical Bloch states.

The properties of a periodic quantum system are effec-
tively reflected by the discriminant D(E) (Lyapunov
function) of the corresponding stationary Schrodinger
equation, which is defined as a trace of the monodromy
matrix representing the operator of the translation for the
period of the potential [23,41-43]. Its form D(E) =
2cos (2Kk(€)) for the one-gap Lamé system (2.1) is
shown on Fig. 2. In the lower prohibited zone and in
the valence band, the explicit analytic form is given,
respectively, by D(E(f~ + iK’)) = 2cosh (2Kz($~)) and
D(EK +iy7)) =2cos (2Kk(y~|k')). In the energy gap
separating the valence and conduction bands, it reduces to

125041-3



ADRIAN ARANCIBIA ef al.

PHYSICAL REVIEW D 90, 125041 (2014)

TABLE 1. Bands and their characteristics. Here z(f~)=Z(f")+cnpdsp~, «k(y k) =+%(1 —V%,) —Z(yE|K) + fus
[ =K?sn(y"|[K)ed(y~|K'), and f, = sn(y*[K)de(y"|K).

Band a=p+1iy E(a) k(a)
Lower forbidden p=p"€(0,K),y=K (—c0,0)3E = —cs?f~ —iz(p™)
Valence =K, y=y €[0,K] [0, k%]3E = K?cd?(y~|K) (r |k
Upper forbidden (gap) p=pte(0,K),y=0 (k?,1)2€ = dn?p* iZ(ph)
Conduction p=0,y=r"€[0,K) [0, +00)2E = dc?(yF|K) k(rt|K)
D(E(PT)) = —2cosh (2KZ(f)). The minimum of the PY% (x) = —W%(x). (2.4)

curve at £ =dn’g, = % corresponds to the maximum
value Z(f,) > 0 of the Zeta function. In the conduction
band, we have D(E(y")) = 2 cos (2Kk(y"|k’)). The infin-
ite number of oscillations of the curve between —2 and +2
extrema values of the D(E) is associated in this band with
the zero of cn(y™|k") at y© = K’ appearing in the denom-
inator of the function f, in the structure of x(y*|k'); see
Table I.

At the edges of the valence and conduction bands, where
|D| = 2,4R es D + 0, the two wave functions (2.2) reduce, up to
numerical factors, to the same periodic, y; = dnx (€ = 0),
and antiperiodic, w, =cnx (£ =k?) and w; = snx
(€ = 1), eigenstates. The second, linear independent eigen-
functions at the edges of the valence and conduction bands
are given by ¥;(x) = y,;(x)Z;, i = 1,2,3, where Z;(x) =

Jdx/ w?(x) are expressed in terms of the incomplete
elliptic integral of the second kind, E(x) = [§ dn’xdx:
Z)(x) = =E(x + K), Ip(x) = k,zE(x—l—K—l—zK’)

Z5(x) =x—E(x+iK’). The functlons U,(x) are not
bounded on the real line and correspond to nonphysical
eigenstates of the Lamé Hamiltonian operator. They also
can be obtained from the states (2.2) by differentiation in a.
Namely, derivatives of the functions U% (x) in @ at @ = 0
and a = K give some linear combinations of the functions
wi(x) and W;(x) with i = 3 and i = 2, respectively, while
the derivative of the function (2.6) in parameter S~ at
B~ = K gives a linear combination of y(x) and ¥, (x).

For any value of the parameter o, under the parity
reflection, Pf(x) = f(—x), the states (2.2) satisfy the
relation

FIG. 2 (color online). The discriminant D(E) of the one-gap
Lamé system. The scale is linear in energy for £ < 1, while for
&€ > 1 a logarithmic scale is used here. The parts shown in red
correspond to the lower (£ < 0) and to the upper (K> < £ < 1)
forbidden bands.

The properties of the wave functions (2.2) in corresponding
bands under the 7, Tf(x) = f*(x), and the composed PT
operations [39,40] are shown in Table IL.

Notice that in the lower forbidden band

\Iji‘ﬁ'K'(x) = 4ig~'/*exp (—i%) F(£x 7). (25)

where

O(x+p7)

F(x;p7) = o0)

exp(—xz(f7))  (2.6)
is a real-valued function of x, which takes positive
values, F(x;37) > 0. Here, g = exp(—zK’/K) is Jacobi’s
nome, and we wused the relation H(x+ iK') =
ig~'/* exp(—i Z£)®(x). In this band, one can employ
alternatively the real functions F(x;7) and F(—x;f7) =
PF(x;$7) as two linear independent solutions.

The operator PT distinguishes whether the function (2.2)
belongs to the forbidden or allowed band. When it
corresponds to the physical Bloch state, it is also the
eigenfunction of the PT. In contrast, the functions (2.2)
from the forbidden bands cease to be eigenstates of the PT
operator. Instead, certain linear combinations of the two
states (2.2) with the opposite sign of the quasimomentum
have to be taken to create the eigenstates of the PT operator
in the forbidden bands.

B. Infinite period limit: Reflectionless Poschl-Teller
system and Darboux transformations

Before we pass to the discussion of the introduction of
the periodicity defects, corresponding to solitons, into the

TABLEII. Properties of the eigenfunctions under the 7" and PT
operations. Here, ¢ = exp (i ”{%)

Band W4 (x) TV (x) PTV4 (x)
Lower forbidden ﬂ +ik’ (x) _C\I/Ifif(’ (x) C\I,/i‘fif(’ (x)
Valence K“y (1) —UET () WET ()
Upper forbidden (gap) q,lf (x) v (x) _\I,/jf; (x)

. iyt iyt

Conduction (x) U7 (x) U7 (x)
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spectrum of the one-gap Lamé system, we consider briefly
the analogous procedure for the infinite-period limit case.
The picture in such a limit case is more simple and
transparent, and it is useful to bear it in mind when we
generalize the method to the very Lamé system.

In the infinite-period limit K — oo, which is equivalent
to any of the three limits k - 1, ¥ - 0, or K' - 7/2,
operator (2.1) transforms into the Hamiltonian of the
reflectionless Poschl-Teller system

d?
dZ

Ho=-——+V@x). Vix)=- +1. (27

coshZx

In this limit, the valence band shrinks into one discrete
energy level £ = 0. The wave functions (2.2) of the valence
band with a = K+ iy~, y~ € [0,K’] transform into the
unique bound state described by the normalizable wave
function We_y(x) = sechx. The conduction band, para-
metrized by a = iy", y* € [0,K’), transforms into the
scattering part of the spectrum of the system (2.7). In
the limit, we have y* € [0,5). Introducing the notation
tany™ =k, 0 <k < oo, we find that the rescaled wave

functions ¢~ 1/4W2"" (x) of the conduction band trans-
form, up to an inessential constant multiplicative factor,
into the wave functions
UK (x) = (+ik — tanh x) e, (2.8)
Corresponding energy £ = dn?(iy*|k) = dc?(y*|k') trans-
forms in the limit ¥ — 0 into 1/cos’y* = 1 + k2, which is
the eigenvalue of the eigenstates (2.8) of the Poschl-Teller
Hamiltonian (2.7). The nondegenerate state W° = tanh x
(k =0) corresponds here to the state of energy £ =1
described by snx at the edge of the conduction band of the
Lamé system (2.1).
The scattering states (2.8) can be presented in the form

T (x) = A,e*™ in terms of the first-order differential
operator
d d
A, = o(x) D) dx tanh x, ¢(x) = coshux.
(2.9)

Operator A, together with the Hermitian conjugate Az,
intertwine the reflectionless system (2.7) with the free
particle Hamiltonian shifted for an additive constant,

d2
Hy=--—5+1, 2.10
0 dx2 + ( )
and provide the factorization of both:
AAL=H,,  AbA,=H,,
A Hy=HA,  ALH,=HyA, — (2.11)

PHYSICAL REVIEW D 90, 125041 (2014)

Relations (2.11) correspond to the Darboux transforma-
tions that relate the free particle system with the reflection-
less Poschl-Teller system. The alternative form to express
the same relation between the systems corresponds to the
equality

2
H, :HO—Z%log(p(x). (2.12)
The wave function ¢(x) = cosh x is a nodeless nonphysical
eigenstate of the free particle H,, and the operator A,
produces an almost isospectral mapping of all the physical
and nonphysical states of H,, except ¢(x), A,p(x) =0,
into corresponding states of the system H;. The only
physical bound state We_g(x) =sechx of H; of zero
energy, for which there is no bound state analog in the
physical spectrum of H,, is obtained by applying the
operator A, to the wave function @(x dx

This is the nonphysical eigenstate of (2. 10) of the
same zero eigenvalue as ¢(x). It reduces here just to
the derivative of the latter, @(x) = sinhx = ¢'(x).
Analogously, the application of the operator A;, to the
eigenstates of H; in correspondence with the last relation in
(2.11) produces the eigenstates of H,. The unique bound
state Wg_o(x) = sechx of H; is the zero mode of the
first-order operator Az,.

The free particle system (2.10) has a nontrivial integral
p = —i-% Tt distinguishes the plane waves ¢***, which are
the eigenstates of H, of the same energy, and detects a
unique nondegenerate state Ue_; (x) = 1 corresponding to
k = 0 by annihilating it. In correspondence with the last
two relations in (2.11) and the described picture of the
mapping associated with the Darboux transformations, one
finds that the operator

d .
P =—iA,—A)

. (2.13)

is the Hermitian integral for the reflectionless system H.
We refer to this as the dressing procedure. Similarly to p,
this operator distinguishes the eigenstates (2.8), being
analogs of the plane wave states for the free particle,
PUK (x) = k(1 + k?)¥K (x). It annihilates the lowest
nondegenerate state U¥(x) = tanh x in the scattering sector,
and the bound state’ Wg_o(x) = sechx. Integral (2.13)
satisfies the Burchnall-Chaundy relation [45]

P2 =H¥H, - 1). (2.14)
Since the free particle has the integral p = —i % d , the H,
and the Poschl-Teller Hamiltonian (2.7) can be intertwined

3Being the third-order differential operator, (2.13) also turns
into zero the state @(x) =coshx, which is a nonphysical
eigenstate of the free particle Hamiltonian (2.10) [44].
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not only by the first-order operator (2.9) and its conjugate
AJ;, but also by the second-order operators

B and B}, (2.15)

d
0 = Ay dx
The first- and second-order intertwining operators together
with the integrals p and P of the systems H, and H,
constitute the building blocks of the exotic centrally
extended N =4 nonlinear supersymmetry of the
system described by the 2 x?2 matrix Hamiltonian
‘H = diag(H,y, H;) [31].

Suppose now that we want to construct another reflec-
tionless system proceeding from the Poschl-Teller system
(2.7) by means of a new Darboux transformation, or a
composition of them, that corresponds to the Darboux—
Crum transformation. There are three different ways to do
this. First, one can construct a reflectionless system with
an additional, second bound state lying below the unique,
zero energy bound state of the system (2.7). Another case
corresponds to the situation in which we want to introduce
a bound state with the energy level lying between the zero
energy level of the already existing bound state and the
edge of the scattering sector of energy £ = 1. At last, one
can construct a reflectionless system completely isospec-
tral to the system (2.7) but with the displaced potential
(“soliton center”). Having at hands the building blocks
corresponding to the described three possibilities, by the
appropriate generalization of the procedure, we can
construct a reflectionless system with an arbitrary number
of bound states and arbitrary positions of the correspond-
ing soliton centers [29,30].

The first situation is realized by the construction in a way
similar to (2.9) of the Darboux generator on the basis of the
nodeless function

@1 (x;ky,71) = A, sinhky (x + 7). (2.16)
where k; > 1 and 7; is an arbitrary real parameter. The
function ¢, (x; x;,7;) is the nonphysical eigenstate of (2.7)
with energy 1 —«2, and 7, is associated with the center
(phase) of the second soliton (the first soliton is charac-
terized by 7, = 0 and the amplitude x, = 1) in the potential
of the system

2

d
H2:H1—2—210gg01(x) (217)
dx

with two bound states; cf. (2.12). Note that alternatively
H, can be presented in terms of the second-order
Darboux—Crum transformation applied to the free
particle, H, :HO—Z;—;IogW(x), where W(x) is the
Wronskian of the two nonphysical states of the free
particle, ¢ =coshx and ¢ = sinhk;(x +7;), W(x) =
W(p, ) = od' — ¢'¢.

PHYSICAL REVIEW D 90, 125041 (2014)

To obtain a reflectionless system with an additional
bound state inside the energy interval (0, 1), which
separates the bound state level of the system (2.7) with
the continuous part of the spectrum, one can apply to (2.7)
the Darboux—Crum transformation generated by the two
nonphysical states ¢, (x;k;,7,) = A, coshk;(x 4 7;) and
¢ (x;K2,75) = A, sinh ik, (x + 7). If we restrict the param-
eters ky, by the condition 0 < k; <k, < 1, the corre-
sponding Wronskian W(x) = W(¢,, ¢,) has no zeros. This
produces a system with a regular reflectionless potential

Vi(x) =V, (x) — 2%10gW(x), (2.18)

which has three bound states with energies 1 — x?, 1 — k3,
and 0. Sending then one of the two translation parameters,
7, or 7y, to any of the limits +oco0 or —oo, we get a
reflectionless system with two bound states of energies 1 —
k2 and 0 when we send |z,| — oo, or with energies 1 — 3
and 0 when |7;| - oo. The indicated limit changes the
translation parameters of the remaining added soliton as
well as of the initial one with ko =1 and 75 =0 in
correspondence with the picture of soliton scattering;
see Ref. [31].

There is another possibility to introduce one additional
bound state into the spectrum of the system (2.7) with the
energy inside the interval (0, 1). One can apply to (2.7) a
Darboux transformation constructed on the basis of its
nonphysical state ¢(x; k,7) = A, sinhx(x +7),0 <k < 1.
This will produce a singular system. Shifting then
=740 (1 —k) and x — x+i5, we get a regular
reflectionless system with two bound states with energies
1 —«x? and 0.

Finally, to produce a system completely isospectral to
the system (2.7), one can apply to the latter the Darboux
transformation based on the function [31] f(x;x) =
A, exp(kx), where k > 1. In the present simplest case of
H,, this will give us the shifted system (2.7), in which
the argument of the potential x changes for' x+ 4,
where 4 = Jlog .

In all three indicated cases, the corresponding extended
system H =diag(H,H) will be described by the
exotic centrally extended nonlinear A = 4 supersymmetry
[29-31]. Such reflectionless systems will correspond to the
k — 1 limit of the systems obtained from the one-gap Lamé
system by introducing into it the periodicity defects by
means of the appropriate Darboux(—Crum) transformation.

*In the case of a reflectionless system with n > 1 bound states,
the isospectral deformation of the potential, which can be
generated by applying the appropriate Darboux—Crum trans-
formation, corresponds to a “snapshot” of the evolved n-soliton
solution of the Korteweg—de Vries equation; see Refs. [29-31].
In that case, like in the case of Lamé system with periodicity
defects we consider below, the form of the isospectrally deformed
potential is different from the original one.
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In the subsequent sections, we describe how to introduce
such periodicity defects and discuss the associated exotic
nonlinear supersymmetric structure.

ITII. DARBOUX TRANSLATIONS
OF THE LAME SYSTEM

Assume that we have a system described by a
Harzniltonian operator of the most general form H =
—%—l— U (x) an_d that w(x) is its an a.rbitrary physical,
or nonphysical eigenstate, Hy = . Asin (2.9), we define
the first-order operators

d1 d d
A, = Yy Alx).  Alx) = ———logy(x),
(3.1)
and
1d d
Al ==y =" 4 A(x). 2
v s (x) (3.2)

If w(x) is a real valued function modulo a possible complex
multiplicative constant, then the operators A, and Ag, are
mutually conjugate, Al = AZ,. Another, linear independent
eigenstate of H of the same eigenvalue £ is given by
w(x) = w(x) [dx/w?*(x). The action of the operator A,, on
this eigenstate produces a kernel of the operator AL,
A,w(x) = 1/w(x). The second-order operator AB,A,,, =
—j—; + A%(x) — A'(x) has exactly the same kernel,
spanned by w(x) and ¥ (x), as the second-order differential
operator H — &, and therefore AS,AW =H-¢&, and
A(x) = A'(x) = U(x) = £.

Consider now the operator A,/,Ag, = —;—;—I— A%(x)+
A(x)= A5,A,,, +2A'(x)=H—-E. The wave function
1/y(x) is the eigenstate of the Schrodinger Hamiltonian
operator H of eigenvalue €. Another, linear independent
eigenstate of H of the same eigenvalue & is ﬁ Jy?(x)dx.
The latter is mapped by the operator AE, into the state y(x)
being the zero mode of A,,.

Let us return now to the Lamé system (2.1). Its
eigenstates W% (x) obey the property

C(a)
v (x)

Vi(—x—a-iK')=-0*(x+a+iK')=
(3.3)
where C(a) = —exp (a(Z(a) + i5f) + iK'Z(a)). Taking

w(x) = W9 (x) in (3.1), we obtain the factorization for
the one-gap Lamé Hamiltonian,

AEIMA\V; = Hoo(x) — &(a). (3.4)

PHYSICAL REVIEW D 90, 125041 (2014)
Making use of the relation (3.3), we find then that

Aw/ﬁg,i = Hoo(x 4 a+ iK') — &(a). (3.5)
As the Darboux-partner of the Lamé Hamiltonian H (x),
we obtain therefore the translated Hamiltonian opera-
tor HO,O(x + a4+ lK,)

In the case of the lower prohibited band, the wave

function \IJ{’:HK’ (x) reduces to the real function F(x;p)
modulo a constant multiplier, see Eqgs. (2.5) and (2.6),
and we have Ay. =Ap, A?M = A;. The property
dn(x + 2iK’) = —dnx gives us then in (3.5) the same
Hermitian Lamé Hamiltonian operator but shifted for
the real distance =, 0 <~ <K, Hpo(x + a+ iK') =
Hyo(x + p7). The obtained Darboux transformations,
supersymmetry, and physics associated with them were
studied in diverse aspects in Ref. [22]. Note here that the
real function F(x; f~) takes positive values for all x, blows
up exponentially when x — —oo, and tends to zero for
X — 4o0. The limit case f~ = K corresponds to a trans-
lation for the half of the period of Lamé Hamiltonian. It is
produced on the basis of the ground state w(x) = dnx [19].
The obtained Darboux transformations are analogous to the
translation transformations in the case of the Poschl-Teller
system (2.7) with one bound state, which are constructed
on the basis of the exponentlike nonphysical eigenstates
w=A,expkx, k > 1, of H;.

In the forbidden band separating the allowed bands, the

eigenfunction \Illf (x) takes real values, but it has an infinite
number of zeros at the points =" + 2nK, n € Z. In this
case, relation (3.4) gives us the factorization of the Lamé
Hamiltonian H,(x) in terms of the singular mutually
conjugate Darboux generators. The alternative product
(3.5) of these first-order differential operators produces
the Hermitian operator Hyo(x + f* + iK’) with the sin-
gular Treibich—Verdier potential [46]

2
V tHIiK)=—""——— k2, 3.6
0,0(x+ﬂ +1 ) snz(x—l—ﬁﬂ ( )
where we have taken into account the identity

sn(x 4 iK’) = 1/ksnx. The limiting case f* =0 corre-
sponds to the singular Darboux transformation constructed
on the basis of the eigenfunction y(x) = snx at the edge of
the conduction band. Another limit case 7 = K gives rise
to the singular transformation based on the eigenfunction
w(x) = cnx at the edge of the valence band, for which the
Treibich—Verdier potential reduces to

Voio(x + K + lK,) = 2dC2x - kz, (37)
where we have employed the identity sn(x + K + iK’) =
dnx/kenx.
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Inside the valence band, the eigenstate W (x) takes
nonzero but complex values. The Darboux partner (3.5)
reduces in this case to the nonsingular PT-symmetric
Hamiltonian with the potential

Voo(x +a+iK') = 2dc?(x + iy~) — k% (3.8)
The edge value y~ = K’ corresponds here to the regular
Hermitian Lamé Hamiltonian operator shifted for the
half-period, Hy o(x + K). Another edge value y~ = 0 gives
the singular Hermitian Treibich—Verdier Hamiltonian (3.7)
obtained on the basis of the edge state y/(x) = cnx.

At last, inside the conduction band, the Hamiltonian in

(3.5) reduces to the regular PT-symmetric operator with the
potential

2

— — k.
sn?(x + iy™)

Voyo(x + l}’Jr + lK/) = (39)

The edge case y© = 0 reduces to the singular Treibich—
Verdier potential generated via the choice y(x) = snx.

The described first-order Darboux transformations can
also be considered for the values of the parameter a lying
inside the rectangle in Fig. 1. In this case, the partner
Hamiltonian will be nonsingular with the potential taking
complex values, which, however, will be neither a Hermitian
nor PT-symmetric operator. Indeed, under Hermitian
conjugation, the shifted Hamiltonian operator from (3.5)
transforms as (Hyo(x + a + iK'))" = Hyo(x + a* + iK'),
where we have taken into account the pure imaginary period
2iK’ of the potential Vj,(x). Analogously, we have
PT(Hpo(x +a+iK')) = Hyo(x —a* + iK’), where the
even nature of the potential has additionally been taken into
account. The shifted Hamiltonian is therefore Hermitian if
a—ao =2nK +2imK', n,m € Z, while it is PT sym-
metric when a + a* = 2nK 4 2imK'’. For the a region
shown in Fig. 1, the first condition is satisfied only on
the upper and lower horizontal edges of the rectangle, which
correspond to the prohibited zones in the spectrum, while
the second relation takes place only on the vertical edges
corresponding to the allowed valence and conduction bands.

Below, we shall see that the higher-order Darboux—Crum
transformation corresponding to a composition of the
Darboux transformations, each of which generates
the translated Lamé system of the form (3.5), produces
the Lamé system with a shift of the argument equal to the
sum of individual translations.

IV. LAME SYSTEM DEFORMED BY
NONPERIODIC, SOLITON DEFECTS

In this section, we show how to introduce the reflection-
less, soliton (nonperiodic) defects into the one-gap Lamé
system.

PHYSICAL REVIEW D 90, 125041 (2014)
A. Lower forbidden band

The real-valued eigenfunction F(x;f~) in the lower
prohibited band has the modulated exponentlike behavior.
Let us take a linear combination of the two eigenfunctions
of the same eigenvalue,

Filp,C) = CF(x;ﬂ‘):I:éF(—x;ﬂ‘), (4.1)
where K > = > 0 and a real parameter C is restricted
by the condition C > 0. These states have the pro-
perties F,(—x;,C™') = £ F,(x;3~,C). The function
F . (x;p7,C) takes strictly positive values and blows up
exponentially in the limits x — d+oco. The function
F_(x;~,C), on the other hand, tends exponentially to
+o00 and —oo when x tends to —oco and +o0, respectively,
and has a unique zero whose position depends on the values
of the parameters f~ and C. The form of the functions
Fi(x;p7,C) is shown in Fig. 3.
Construct now the first-order operator

d 1 d d

e | 1),
FOGF D " et

Ap1 = (4.2)

where F, (1) =F,(x;57.C;). We have Al Ag, =

HO,O - 81_, and AOJA(T'),] = HO.I - 81_, where E'I_E
E(By +iK') = —cn?B7 /sn’p7 < 0,
&2 d?
Hy, = Hpo - 2@(10&7:41)) = _W+ Vo1 (x),
(4.3)

E d? -
Vor(x) =1+ k2 =22 =25 (log £y, (: C1)),

4.4
K ~dx? (44)

Fi

\/\/\/\/\
\\;\x

FIG. 3 (color online). At C=1, F, (x;f~,C) is an even
function, while F_(x; 7, C) is odd. The symmetry of nonphysi-
cal eigenfunctions F (x;47,C) of Hy, is broken for C # 1.
Here, the case C > 1 is shown. With C increasing, the minimum
of F (x;57,C) > 0 and zero of F_(x;p4~,C) are displaced to
the right. A similar situation occurs when 0 < C < 1 but with a
displacement to the negative coordinate axis. In fact, the form of
the functions for 0 < C < 1 is obtained from that for C > 1 via
the relation F (x;87.C) = £F . (—x; 7, C71).
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Vou

0<C<1

FIG. 4 (color online).

PHYSICAL REVIEW D 90, 125041 (2014)
Vo

C>1

Potential with a one-soliton defect that supports a bound state in the lower forbidden band. The soliton is broader

when the energy of the bound state is closer to zero, and a greater number of oscillations are observable within it. The depth (amplitude)
of the soliton, on the other hand, increases when the negative energy of the bound state is deeper. The sequence of the pictures illustrates
the propagation of the soliton in the periodic background of the Lamé potential.

201 (x:Cy) = C\O(x + 7)) exp(—xz(f7))

+ Lo — ) explua(pr).

c (4.5)

The O(x) function appearing in the denominator of
F . (x), see Eq. (2.6), cancels the nontrivial potential term
—2dn’x in the Lamé Hamiltonian H,, via the equality
dd—; (log®(x)) = dn’x — £, that results in the nonperiodic
potential (4.3), (4.4); see Fig. 4. By the Darboux con-
struction, the system H,; has the same spectrum as the
one-gap Lamé system except that it possesses an additional
discrete level of energy e. This is the eigenvalue of the
bound state described by the normalizable nodeless wave
function

. 1
i (x; 7. Cp) =

“Fpoy  *9

shown in Fig. 5, which is a zero mode of the operator
A(T)’l. The nonzero lower index in the Hamiltonian and

potential reflects here the property that the system
possesses one bound state in the lower forbidden band.

;1 ;1
W54 \1/0,1

T T

FIG. 5 (color online). The bound state eigenfunction of the
system H ;. The state on the left corresponds to the potential V|
with C = 1 in the central picture in Fig. 4. The state on the right,
with C > 1, has energy closer to zero: when the energy modulus
is lower, the state is broader, and the oscillations in it are well
notable. By varying the parameter C, the soliton defect in the
potential is displaced as well as the position of the bound state
supported by it. In correspondence with this, in the case of
0 < C < 1 not shown here, a localization of the wave function of
the bound state is shifted to the x < 0 region in comparison with
the case C > 1.

The upper index in notation for the wave function of the
bound state is introduced bearing in mind a generaliza-
tion for the case of a perturbed Lamé system with various
bound states supported both in lower and upper for-
bidden bands.

Other physical and nonphysical eigenfunctions of Hy ;
are given by Ag;¥%(x). They correspond to the same
permitted and prohibited values of energy as the eigen-
states WY (x) of the periodic Lamé Hamiltonian. This
shows that the introduced nonperiodic defect is reflec-
tionless; physical Bloch states are transformed into the
Bloch states.

Asymptotically, in the limit x — —oco, the potential
has a form of the one-gap periodic Lamé potential,
Voi(x) = ViP(x) = Voo(x+ 7). In another limit
x = +co, we have Vj;(x) = Vi (x) = Voolx —f7).
So, the defect produces a phase shift between the asymp-
totically periodic one-gap potentials that is equal to =247 .
This observation follows also directly from (4.1).
Asymptotically, we have F,(x;p7.C;)— CF(x;p7)
when x — —oo0, and F ,(x;87.C;) —» C{'F(—x;p7) for
x — oo. Employing the results discussed below (3.5), we
can write

ApAd, = Hoo(x £ B7) — €7 for x >F 0. (4.7)
We get the phase displacement
AP(pT) = =287, &7 =—cd?By <0, (4.8)

where we indicate the discrete energy level of the bound
state of Hy ;. The potential V((x) may be treated as a
soliton defect in the background of the one-gap periodic
Lamé system.

Notice that in the limit C; — oo (or C; — 0) the soliton
“goes” to infinity, and in correspondence with Eq. (4.3),
H,, transforms into the shifted Lamé Hamiltonian
Hoo(x + p7) [or Hyp(x = p7)].

Before we proceed further, let us show that the infinite-
period limit of the obtained system with a periodicity defect
corresponds to a reflectionless system of a generic form
(2.17) with two bound states of energies & =0 and
& =1-x?<0. To this aim, we apply the limit k — 1
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to the operator (4.2). The nonphysical eigenfunction F (1)
of the Lamé system in this limit transforms into the
eigenfunction (2.16), whose explicit form is

p1(x3k1, 7)) = W(cosh x, sinh k; (x + 77)).

cosh x

(4.9)

Indeed, in the indicated limit Z(p|1) = tanhf, and
z(py), defined in Table I, reduces to z(f])—
tanh 7 + W = cotanh 7 =k, where 1 <k <
oo since K — o0, and then f] € (0,0). We have also

O(x£p|1) _ cosh(x£p)
O(x[1) —  coshx

where 7, is an arbitrary real parameter, we find that 7, (1)
transforms  into  _I—(cosh(x+p7)exp(—k (x+7;))+
cosh(x—p7)exp(k;(x+7;))). This function reduces, up
to inessential nonzero multiplicative constant sinhf7,
to (4.9). Then, in correspondence with the discussion of
Sec. 1I B, the limit of the operator (4.2) is the Darboux
generator, which intertwines the reflectionless Poschl—
Teller Hamiltonian (2.7) with the Hamiltonian operator
(2.17). Thus, we conclude that the infinite-period limit of
(4.3) corresponds to the reflectionless system (2.17).

To introduce several discrete energies into the spectrum
of the one-gap Lamé system by making use of its
nonphysical states from the lower prohibited band, consider
first the case of the two bound states. It is not difficult
to show that the Wronskian W(F (1),F_(2)) =
F (DHF_(2)-F (1) F_(2), where F.(1)=
F . (xp7.Cy), F_(2) =F_(x;55,C,), takes strictly
negative values, W(x) <0, if K> gy >p; >0; see
the Appendix. The corresponding energies of the
nonphysical eigenstates of H;,, are ordered then as
0> &Py +iK') > £(5 + iK'). With such a choice of
the states, we can construct the Darboux—Crum trans-
formation producing a nonperiodic deformation of Lamé
system, which in addition to the one-gap spectrum of
H(x) has two discrete energy values &7 = £(f; + iK'),

j: 172’

. Introducing the notation C; = exp k71,

dZ
Hy, = 2 + Voa(x),

2

Vaa() = Voo () = 2.5 5 (log WIF (1), F_(2)).

x2

(4.10)

The discrete energy levels €] and &5 correspond, respec-
tively, to the two bound states

WF.(1).7_(2).7-(1))
W(F (1), 7-(2))
(4.11)

‘I’E)l.z(xhﬁi Ci.p,.Cr) =

PHYSICAL REVIEW D 90, 125041 (2014)

WF. (1), F_(2), 7:(2))
W(F.(1). F-(2))

‘I’é)z,z<x§ﬂ1_7 Ci.pr.Cy) =
(4.12)

Other physical and nonphysical eigenstates of the system
(4.10) are given by

W(F. (1),
W(F, (1

F_(2),0?
\Ilg,Z;:t(X;ﬂl_ﬁ Cl,ﬂE,CZ) = ) ( ) i)

L F-(2))
(4.13)

and correspond to the Darboux—Crum mapping of the
eigenstates (2.2) of the initial Lamé system. The energies of
these states are defined by the values of the parameter o
exactly in the same way as for the system (2.1). In
accordance with (4.1), expressions (4.11) and (4.12) for
the bound states correspond to linear combinations of the
eigenstates (4.13) with a = 7 + iK' and a = f; + iK/,
respectively.
Let us take now n states

F,(7)=F,,(x:47,C;) with K>y >p5>...>p,;>0,
(4.14)

where s; corresponds to a linear combination of the form
(4.1) with index +(—) for j odd (even). Then, by applying
the Darboux—Crum construction on the basis of these
eigenstates, we obtain a nonperiodic deformation H),
of the Lamé system H,, with n bound states with energies
0>¢] >¢& > ... > —c0.

The potential of this system is given by a generalization
of Eq. (4.10), in which the Wronskian has to be changed for

W, (x) = W(F (1), F_(2),....F,, (n). (4.15)
The n bound states of energies ¢; are described by the
normalizable wave functions

U (67,Craee s i, C)
CW(FL),F-2), ... Fy, (n). F ()
B Wo,n '

(4.16)

while other corresponding eigenstates of H, are given by
the generalization of Eq. (4.13),

\Il(o)l,n;i(X;ﬁl_’ Cl’ "‘?IB;’ Cn)
_WFL(1), F(2), o, Fy (1), 99)
WO,n ’

(4.17)

As in the case (4.10), bound states (4.16) may be obtained
from (4.17) by putting there a = f; + iK,j=1..n,
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and changing the wave functions W% on the rhs for the
corresponding linear combinations of them.

Applying then the limit x - —oo to the Wronskian
W ,(x), we find that it transforms, up to a multiplicative
constant, into Wy ,(x) = W(F(x;57)(x). ... F(x; 5)).
Asymptotically, ~we get a potential Vi (x)=
limx_,_oo(—2j—;210gwo‘”(x)):VO,O(x—%—b), where b =
>3- Bj. Analogously, in another limit x — +oo, we
get the asymptotic form of the potential V(x) =
Voo(x —b). The phase displacement produced by the n
solitons (defects) is

M) =23 F. (4.18)

which generalizes the one-soliton effect (4.8).
The eigenstates of the system H,), (4.16) and (4.17) can
be presented in an alternative form [30],

U(x; 87, Cly oo B, Cy) = A, ¥ (x),

AO,n = AO,nAO,n—l .- 'AO,I ’ (419)
where the wave function on the lhs corresponds to (4.16)
for the choice ¥ = F_ (j) on the rhs, while it corresponds

to the eigenfunctions (4.17) for the choice ¥ = W9 on the
rhs. The operator A, is a differential operator of order n,
which is constructed in terms of the recursively defined
first-order differential operators (4.2) and

d 1

(4.20)

where

Wo,j = L0, = Q0,j-1 Q= —(log Wo,j) (4.21)

©
and Wy, ; = F , (1). Equations (4.20) and (4.21) can also be
used for j = 1 by putting W, ; = 1. Note here that, making
use of Eqgs. (4.19), it is easy to see that in the case of the
two-soliton defect, particularly, the bound states (4.12) and
(4.11) are reduced modulo multiplicative constants to the
functions F , (1)/W;, and F_(2)/W, ,, respectively. This
shows explicitly that the first function describing the
discrete ground state is nodeless, while the second wave
function corresponding to the first excited bound state has
exactly one zero as it should be for the lowest bound states
in the spectrum.

Relation (4.19) means that the operator A, maps the
eigenstates of the Lamé system (2.1) into the corresponding
eigenstates of Hy ,. Its n-dimensional kernel is spanned by
the eigenstates F 5; (j), j =1,...,n. These relations reflect

PHYSICAL REVIEW D 90, 125041 (2014)

the fact that the Darboux—Crum transformation of order n

corresponds to a composition of n subsequent Darboux

maps Hyy — Hy; — ... = Hy,. In accordance with this,

the operators A, and A\(T)’” intertwine the Hamiltonian

operator Hy,(x) with the Lamé Hamiltonian H(x),

Ay Ho, = HooA -
0,n"40,n 0,07%0,n

AO.nI{O,O = HO,nAO,m (422)

The products of the operator A, and its conjugate are

n

Ao, Ay, = H(Ho.n —€7), A(T),,Ao,n = H(Ho.o —€7).
=1 =1

(4.23)

Alternative representation given by Eqgs. (4.19) and
(4.20) is valid for arbitrary Darboux—Crum transformations
generated on the basis of n eigenstates of a generic
Schrodinger Hamiltonian [30]. In the particular case of
the one-gap Lamé system H = H,, and the choice of
eigenstates y;(x) = % (x), each of which, as we saw in
the previous section, generates the translation of the Lamé
system for a; + iK', we obtain the Darboux—Crum trans-
formation producing the translation of Hgg(x) for
Z;?:laj—f—inK’. Taking into account that the system
(2.1) besides the real period 2K possesses also the
imaginary period 2i/K’, the shift produced by the
Darboux—Crum transformation reduces to 12.;, a; in
the case of even n =2r and to Z?;’Tlaj + iK' when
n=2r+1 is odd. Making use of this observation, it is
obvious that when the total shift produced by the Darboux—
Crum transformation reduces to a nontrivial period 2Kn; +
2iK'n, of the system (2.1) with n} + n3 > 2, the corre-
sponding higher-order generator A, gives us the integral
(multiplied in a generic case by a polynomial in H [47])
of the one-gap Lamé system. This is the analog of the
integral (2.13) of the reflectionless Poschl-Teller system
(2.7), which is the Lax-Novikov integral P, for the
system (2.1),

3

d d
iPoo = ) + (1 + k*> = 3k?sn’x) e 3k*snxcnxdnx.

(4.24)

In the limit k — 1, it transforms into (2.13). The kernel of
this third-order differential operator is spanned by eigen-
functions dnx, cnx, and snx, which correspond to the edges
of the allowed bands. In correspondence with this, it admits
an infinite number of factorizations. Particularly, it can be
presented in the form

iPO,O = Al/cnxAcnx/dnxAdnxs (425)
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where Ay, , is defined by relation of the form (3.1) with
w(x) = dnx, etc.

The sense of the factorization (4.25) is the following.
The first factor on the right, A, ,, in accordance with its
definition, annihilates dnx, the lower edge state of the
valence band that is proportional to the limit of F(x; /")
for f~ =K. Acting on the wave function snx, which
corresponds to the lower edge of the conduction band,
the operator Ay, translates it, as well as all other
eigenstates of the Lamé system, for the half-period K,
sn(x + K) = cnx/dnx, and then this sn function with a
shifted argument is annihilated by the operator Ag; y/dn -
Acting on the wave function cnx, which describes the
upper edge state of the valence band, the Ay, , transforms
it into cn(x + K), while the subsequent action of the
Acnyjany transforms this into cn(x + K +iK’') =
—ik’ /ken x, which is annihilated finally by the first-order
operator A; ¢, ,. In a similar way, one can construct five
other factorizations of P, having a simple interpretation
in terms of the Darboux transformations (translations)
generated by the edge states. Relation (4.27) corresponds
here to the Darboux—Crum transformation that generates
the total shift for the nontrivial period 2Kn, + 2iK’'n,
with n; = n, = 1 in correspondence with the discussion
presented above.

The Lamé system’s integral P satisfies the Burchnall—-
Chaundy relation

Pso = Hoo(Hoo = k?)(Hoo = 1), (4.26)
which lies in the basis of the hidden bosonized nonlinear
supersymmetry of the one-gap Lamé system [18]. The
zeros of the third-order polynomials in Hy correspond to
the energies of the edges of the allowed bands of (2.1).
In the limit k — 1, (4.26) transforms into relation (2.14),
in which the double factor H? originates from the first
two factors in (4.26) and roots in the shrinking of the
valence band.

By analogy with the Lax—Novikov integral (2.13) for
the reflectionless Poschl-Teller system with one bound
state, we can find the analogous integral for the H,,
system,

St
;P
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T
PO,n == AO.nPO,OAo_n’ [Po,n’ HO,n] == 0, (427)

which is the differential operator of the order 2n + 3.
In correspondence with (4.26) and (4.23), it satisfies the
Burchnal-Chaundy relation

n

P(z),n = HO,n(HO,n - k/z)(H(),n -1) H(Ho’n - g]T)2'
=1

(4.28)

The systems H, and H, can be intertwined not only
by the operators A, and A&n but also by the operators

Bo’n = AO,nPO.n and Bg,n' (429)

B. Intermediate forbidden band

Let us consider the intermediate prohibited band (gap)
and the linear combinations of eigenstates (2.2) in it,

®,(1)= @, (5. ) = ¥ () + 0 (o),
(4.30)

©.(2) =0_(x:f5.Cr) = V2 (1) - 5 ¥ (),
(4.31)

where 0 < <K and C;, [ =1,2 are arbitrary real
constants restricted by the condition C; > (. Taking into
account relation (2.4), the linear combinations used here
differ effectively in sign in comparison to those employed
in (4.1). This is related to the fact that the eigenvalue
E(p~ + iK') is an increasing function of the real parameter
p~ in the lower prohibited band, while d&(f)/dp™ <0
in the intermediate, upper forbidden band. Both these
functions have an infinite number of zeros on the real
line. The choice of any of these two functions as the
function y in operator (3.1) produces by means of the first-
order Darboux transformation a singular partner for the
system H (x).

B+
v

FIG. 6 (color online). Zeros of \IIII (x) are in the equidistant points 2nK F f*, and the amplitudes of these two functions increase
exponentially in opposite directions. The amplitudes of the oscillating states ¢ increase exponentially in both directions. The graphic

on the right corresponds to the case ] < 7.
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Our next goal is to show how, by appropriate use of the
second-order Darboux—Crum transformation applied to
H,,, one can generate a regular system with two bound
states in the gap.

Zeros of the nonphysical eigenfunctions \I'{f (x) are
—p* 4+ 2nK, while the infinite set of zeros of the eigen-
states W#' (x) is f + 2nK, n € Z. On the open intervals
(—p+.p") + 20K, functions ¥ (x) and W#' (x) take non-
zero values of the opposite sign, whereas on the open
intervals (B7,2K — ) + 2nK, they take values of the
same sign. Therefore, zeros of the linear combination
(4.30) of U (x) and WE' (x) with g = B* are inside
the first of the indicated set of the open intervals, and zeros
of (4.31) with g = p* are inside the second set of the
intervals. Since ®, and ®_ are linearly independent
eigenstates of the same eigenvalue £(S"), in correspon-
dence with the oscillation theorem, each of the indicated
open intervals contains exactly one zero of the respective
function.

We want to generate a nontrivial nonsingular Darboux—
Crum transformation based on the pair of the eigenfunc-
tions (4.30) and (4.31). For this, the Wronskian of these
functions should take nonzero nonconstant values. The
choice

0<pf <pi <K& Ep))>Ep)  (432)
guarantees then that the intervals containing zeros of the
functions (4.30) and (4.31) do not intersect, and between
each two neighbor zeros x,; and x;\, of the ®_ (x; f, Cy),
there will appear exactly one zero x;, of the ®_(x; 55, C,),

X €1, x, €Z;(2), Iy ()NZ,(2) =9,
(4.33)
where
Iy (1) = (=pf. p) + 20K,
Z,(2) = (B5.2K - ) + 2nK. (4.34)

The amplitudes of the oscillating functions \I/T (x) and

TP' (x) increase exponentially for x — —co and x — +co,
respectively. As a consequence, in the limit x — +o0, the
zeros x;; tend to the right edges of the intervals Z, (1),
while x, tend to the left edges of the intervals Z,(2).
In another limit x — —o0, the corresponding zeros tend to
the opposite edges of the indicated intervals.

The Wronskian of the eigenfunctions (4.30) and (4.31)
obeys the relation

d

—W(yi,y) = (5(/3?) - 5(/”;)))’1@”2(@,

= (4.35)

PHYSICAL REVIEW D 90, 125041 (2014)

where y; = @ (1) y,(x) = ®_(2). From (4.35), it follows
that zeros x;- correspond exactly to the local extrema of the
Wronskian. Let us choose a zero x,; of y;, y;(x; ) =0,
such that y/(x,; ) > 0. Then, in principle, we have two
possibilities: either (i) y,(x;;,) > 0 or (i) y,(x; ) < 0. In
case i, we find that W(x ) < 0, while in case ii, we would
have W(x;) > 0 for any n € Z. Differentiation of (4.35) in
x shows that in case i the zeros x, and x; correspond to the
local maxima and minima of the Wronskian, respectively.
In case ii, the role of these zeros as local maxima and
minima would be interchanged. Then, in case i, we
conclude that the Wronskian takes strictly negative values
for all x, while in case ii, it would be a strictly positive
function. Though in both cases we would have a nodeless
Wronskian, let us show that case i, illustrated on Fig. 6, is
realized here. In the limits x — +o0, in correspondence
with definition (4.30), (4.31), we have

1

By By
——— W (x), ¥ (x)).
oo W (), = (x)

lim W(®,(1),®_(2)) =

X—-+00

(4.36)

lim W(®, (1), $_(2)) = C,CW (V) (x). ¥% (x)).
(4.37)
Using these relations and the above-described behavior of
the zeros of the functions ®_ (1) and ®_(2) in the limit

x — o0, the corresponding local extrema values of W are
given by

_ | H(OH(; -p))

C\G ®z(ﬁj)
< exp((B] +2nK)(Z(BT) + Z(53))).
(4.38)

lim W(x}) =

Xif—+oo

n>1,

where j = 1,2 and S () corresponds here to x,} (x;).
For the limits x; — —co, we have a similar expression

with a unique change of the coefficient 1/(C;C,) for C,C>.
Taking into account that H'(0) = /2kk'K/z > 0, and that
H(p3 —p) > 0 because 0 < f; — ] < K, we conclude
finally that W, o(x) = W(®, (1), P_(2)) takes strictly
negative values on all the real line. Additionally, we
conclude that —W, (x) blows up exponentially in both
limits x — +oo0.

Similarly to (4.10), we construct now the Hamiltonian

d2

Hyo = e + Vo o(x),
d2

Vao(x) = Voo(x) = 2——=log W(P, (1), D_(2)).

o (4.39)
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This quantum system has the same spectrum as the
Lamé system except two additional discrete energy levels
e/ =E(B), 1 =1,2. These are described by the wave
functions given by relations of the form (4.11), (4.12) with
F.(j) there changed for corresponding functions @ (I).
With some algebraic manipulations, the wave eigenfunc-
tions can be presented in the form

. d_(2 . .
Why() = const 222 p W () = e W (),
2.0
(4.40)
) D (1 ) .
\Ilgjo(x) = constﬁ, Hz,o\lfgzo(x) =& \I’%O(x).
2.0

(4.41)

The amplitude of these oscillating functions tends expo-
nentially to zero in both limits x — 4oo0, which confirms
their bound state nature; see Fig. 7. The relations (4.36)
and (4.37) tell us that the Darboux—Crum transformation
generated on the basis of the states appearing there
on the right-hand sides produces a potential translated in
(B] +iK') + (B, + iK’). Using this fact and taking into
account the imaginary period 2iK’ of V,(x), we find that

Vag(x) = lim V;0(x) = Voo(x + B +57),
and, analogously,

Vie(x) = lim V,o(x) = Voo(x =7 = 5).

X—>—+00

Therefore, similarly to the case of soliton defects corre-
sponding to the bound states in the lower forbidden band,
the two-soliton defect associated with the presence of the
two bound states in the intermediate (upper) prohibited
band produces the phase shift described by Eq. (4.18) with
n =2 and f§; there changed for p;, where the parameters

B and 5 obey the condition (4.32). The bound states here
are described by infinitely oscillating wave functions,
which have an infinite number of zeros and exponentially
decreasing amplitudes. This situation contrasts with the
bound states introduced into the lower forbidden band,

FIG. 7 (color online).

“A[\{\QQ_._. A\
7
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where the wave functions are also exponentially decreasing
but have a finite number of zeros, similarly to the nature of
ordinary bound states.

The system (4.39) is also characterized by the
Lax—Novikov integral, which in the present case is the
differential operator of order 7,

Pao = AggPooAl. [Pro, Hao) = 0. (4.42)
The second-order operators A, and A;,o intertwining the
Lamé system H,, with H,, have the form (4.20) and
(4.19) with the functions F (1) and F_(2) changed here,
respectively, for @, (1) and ®_(2). They satisfy relations of
the form (4.23) with n = 2, where H),, has to be changed
for H,p, and constants &; have to be changed for

corresponding energy values ¢, [ = 1,2, of the nonphysi-
cal eigenstates from the intermediate prohibited band we
used in the construction.

Analogously to the discussion presented in the previous
subsection, it is not difficult to show that the infinite-period
limit applied to the system (4.39) corresponds to the
reflectionless system given by potential (2.18).

The described procedure of the introduction of the
periodicity defects with eigenvalues within the intermedi-
ate prohibited band can be generalized for the case of
an arbitrary even number of the solitons. This can be done
in a systematic way by choosing linear combinations
of the wave functions of the form (4.30) and (4.31) with
alternating lower indices + and —, cf. (4.15), with the
restriction on the parameters #, which generalizes that
from (4.32),

0<pl <py <.y <K& EP)>EPB)...>EWPS,).
(4.43)

In the basis of such a construction, there is the property
W,z 0(x)| > 0 guaranteed by the choice (4.43), where
W,z 0(x) is the Wronskian of the corresponding 27
nonphysical eingestates of the Lamé system,

W, o(x) = W(B, (1),8_(2), ..., 8. (2 — 1), &_(22)).
(4.44)

1; 2;
\IIZ,O ‘1/2,0

Each of the two pulse-type bound states of the system H,  is localized in one of the two periodicity defects of

the potential V,, which are showing up as compression modulations. The states also reveal a small tunnelling (asymmetry) in the

direction of the other deformation.
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The proof of this property is given in the Appendix.5 Asa
generalization of (4.39) and (4.42), the Hamiltonian and
Lax—Novikov integral are given here by the relations

d?
Hypo=Hyo - 2——logWy,p,

e (4.45)

Paro = Azf,opo,oA;f,o, [Paros Harol = 0. (4.46)

They satisfy the Burchnall-Chaundy relation of the form

20

P%f,o = H2t’,0(H2f,0 - klz)(Hzf,o - 1) H(HZK’,O - 8?)2'
=1

(4.47)

Here, ¢ = £(f,") are the eigenvalues of the bound states

WSy (557 Cis s By, Cor)
W(D, (1), ®_(2), ... D_(26), B _yy(1))
WZK,O '

1=1,..2¢. (4.48)

Other physical and nonphysical eigenstates of H,, of
eigenvalues £(a) are given by

\ng,o;i(x§ﬂ1+7 Cl’ ~--vﬁ;f7 C2f)

~ W(D(1),D_(2),....D_(27), %)
= Waro . (4.49)

From this picture with even number 2 > 2 of bound
states in the intermediate forbidden band, one can obtain
systems that contain odd number 2Z — 1 of discrete energy
levels in the same prohibited band of the initial one-gap
Lamé system. This can be achieved by sending any one of
the 27 solitons to infinity.

Let us see how this procedure works in the case of the
system (4.39). For the sake of definiteness, we send the first
soliton, associated with the higher discrete energy level
E(BT), to infinity. Another case corresponding to the limit
associated with the soliton related to the lower discrete
energy level can be realized in a similar way. To send the
indicated soliton to infinity, we take a limit C; — oo.
In analogous way, one can also consider the limit C; — 0.

In the limit C; — oo, the potential V,,(x) given by
Eq. (4.39) transforms into

’Like in the procedure shortly discussed in Sec. II B corre-
sponding to the reflectionless Poschl-Teller system, the defects
also can be introduced in such a way that their associated energies
will appear between the already placed discrete energy levels, but
the final picture will be described equivalently by the Darboux—
Crum transformation based on the Wronskian (4.44).

PHYSICAL REVIEW D 90, 125041 (2014)
Clim Vyo(x) = Vlﬁo(x;ﬁf)
| =00

d? B
= VO’()(X) - 2@10g VV(\I/Jr s (I)_(Z))

(4.50)

The Hamiltonian H, o(x; ;) = —%4— Vio(x;pf) pos-
sesses single bound state of energy &5, which can be
obtained as a limit of the bound eigenstate ‘Ilgo(x) of Hy,

Jim Z(x) = B () (4.51)

see Fig. 8. In correspondence with the results of Sec. III,
the Darboux transformation based on the single eigenfunc-

tion \Ifﬁl+ (x) produces the Treibich—Verdier potential,
Vool(x) — 2dd—;log \IJil+ = Voolx+ p{ +iK’), and we can
present (4.50) in the equivalent form

Vio(x) = Voo(x + By +iK')

2 (s W(WT,@_@)))

4.52
dx2 \I/'_HE ( )

Function W(\I/[f, D_(2))/ \I/[jrl+ appearing in the argument
of the logarithm is an eigenfunction of the system
Hyo(x+ B +iK’). The Bloch-like eigenstates of this
Hamiltonian operator can be obtained from the corre-
sponding eigenstates of the Lamé system Hgg(x),

U (x+ pf +iK') = No(a)U% (x + ), where

O(xta)

FxZ(a)
Hx) ©

U2 (x) = (4.53)

and N (a) = exp (F i(5% + K'Z(a)). Therefore, we have

y ‘1.
Vio Wiy

FIG. 8 (color online). Sending one soliton to infinity results in a
potential supporting one bound state less. System H 10 1s related
with the Lamé system Hy by the Darboux—Crum transformation
of the second order, while it is related with the singular Treibich—
Verdier system by the first-order Darboux transformation. The
symmetric state (presented by odd function here) is centered in
the soliton deformation of the potential, and the tunnelling related
to the soliton sent to infinity disappears.
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-+ +
Wl v
P
+
Putting in both sides of the last relation x = —p]

(or x =F f; to escape simple poles at both sides), we
define the real nonzero constants C in (4.54),

H(B T SOH0)
“=F oo

Making a shift x — x — f in (4.50), all this gives us

= C U (x4 7). (4.54)

exp (£4{Z(f;)).  (4.55)

. E d? B
Vip(x) =Vig(x =) =1+ k? =2——2——log ¥’

K dx
(4.56)
2i(x) = Cr0(x + ) exp (—xZ(p7))
OG- pew (ZF).  (457)

2

Here, a real constant C, is given in terms of C, by

. H(p, -p))
C, =0, H(ﬁ§++ﬁ'l+)exp (B{Z(B3)) >0, and we have
taken into account the relation %log H(x) =

dn?(x 4+ iK') — £. In the limit C; — oo, the Wronskian
in the denominator of the eigenstate (4.40) of energy
E(By) of the system H,, blows up exponentially, and
this state disappears. On the other hand, the state (4.41)
transforms into the bound state of energy £(f;) of the

system Hyo(x) = —% + Vio(x),

H(x) .

W3(x = f) = Wiiglx — ) = const—;
Xio(x)

(4.58)

The presence of this bound state in the spectrum of
H,o(x) is the unique difference in comparison with the
spectrum of the one-gap Lamé system H o(x). The system
H,o(x) is related with H(x), however, by the second-
order Darboux—Crum transformation of the form (4.50)
with x changed there for x — . On the other hand, the
system H (x) can be related with the singular Treibich—
Verdier system described by the potential V(x + iK’),
by the first-order Darboux transformation based on the
function W% (x — ) given by Eq. (4.53), which is the
eigenfunction of the singular PT-invariant Hamiltonian
operator Hy o(x + iK’). This picture is analogous to that for
the Poschl-Teller system when we want to introduce there
the bound state between the already existing bound state
and the continuous part of the spectrum; see Sec. II B.

In correspondence with the described picture, the system
Ho(x) is characterized by the irreducible Lax—Novikov
integral

PHYSICAL REVIEW D 90, 125041 (2014)

y =Vl (x— 7).
(4.59)

Plyo()c) = AV/PO,O(X + lK/)AZ,,

which is the differential operator of order 5, where
Poo(x) is the Lax—Novikov integral (4.24) of the Lamé
system Hgo(x). In (4.59), one can take, equivalently,
w = U (x — g + iK).

Notice a remarkable similarity of the potential V' , given
by Eqgs. (4.56) and (4.57) with the potential V, ; defined by
Egs. (4.4) and (4.5). The important difference of both
potentials is, however, that Z(; ) presents in the structure
of V,, while in the structure of the potential V;, there
appears z(f7 ) defined in Table I. Unlike the nodeless bound
state (4.6) of the system V| ;, the bound state (4.58) of the
system Vo has an infinite number of zeros at x,, = 2nK,
and its amplitude, like that of the wave function (4.6),
decreases exponentially as x goes to +oo.

When x — +oo, Hamiltonian H,(x) asymptotically
transforms into Hyo(x F ) — E(B5), and we get the
phase displacement A¢ () = —2f; generated by the one-
soliton potential defect, which supports one bound state
within the upper prohibited band of the original one-gap
Lamé system.

Let us notice that one can also introduce an odd number
of bound states into the gap by taking, instead of (4.32),
the set of parameters 0=p; <f; <...p,, <K, or
0 <p <py <...py, = K. This assumes the change of
the state @ (1) in Wronskian (4.44) for snx in the first
case, or ®_(27) for cnx in the second case. Such alter-
natives, however, do not give anything new. They are
reproduced just by taking, respectively, limits 7 — 0 or
B>, — K in the general picture presented in this subsection.

C. Bound states in both forbidden bands

One can introduce periodicity defects into the Lamé
system by constructing the potentials that support bound
states in both lower and upper forbidden bands. Similarly to
the already discussed cases, the construction is based on the
property that the Wronskian

Warn(x) = W(@, (1), 2_(2), ..., ®_(27),
Fi(l). ... Fy, (n)

is a nodeless smooth function on all the real line; see the
Appendix. In this way, the most general family of the one-
gap Hamiltonians with 27 + n defects (solitons) introduced
into the periodic background of Lamé potential V(x) is
defined by

(4.60)

2

d
Hypy = Hpo — 2W10g Wz (x). (4.61)

The defects correspond to 27 bound states in the spectral
gap and n bound states in the lower prohibited band.
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Vaa

FIG. 9 (color online). Potential supporting two bound states in
the gap and one bound state in the lower forbidden band. The
defects in the form of the two compression modulations and a
potential soliton well can be displaced arbitrarily in the periodic
background.

In Fig. 9 is shown the form of the potential for the simplest
case £ =n=1.

Each member of the family of Hamiltonians (4.61)
possesses a nontrivial integral
PZL”.n = Azf.ﬂPO,OA;f.H’

{,PZf,n’ H2f,n] = O’ (462)

satisfying the relation

PHYSICAL REVIEW D 90, 125041 (2014)

Here, A,,, is the differential operator of order 2 + n,
which is defined by A,,,, = Ays,...Asp1Asy o, Where

War; d Wy g
sz,j—l dx WZf.j

AZf,j: ]:1,,Vl

The first-order differential operator A,,,, and its conjugate
generate the intertwining relations

Al Hopy = Hop, Al
(4.65)

A2f,nH2f.n—1 = HZf,nAZf,n B

and factorize the neighbor Hamiltonians H,,,, and H,, ,,_
in the form

t _ t _ _
AspnArpn = Hopn — €, Ay Arpn = Hayp o1 — €.

(4.66)
,P%,f’,n = H2f,n(H2f.n - klz)(HZK,n - 1)
20 n
X H(sz,n —&f)? H(Hzf,n - 8;)2- (4.63) The 2¢ bound states of H,,, of energies ¢/, [ = 1, ...,27,
=1 J=1 within the gap are given by
|
) WP, (1),P_(2),...,.2_(20), F (1), ..., F, LDyl
g W02 0 20T (1) Ty () By () e
" Wb”.n
while the n bound states of energies ¢, j =1, ..., n, in the lower prohibited band have the form
. W@, (1),D_(2),....,2_(27), F.(1),.... F, (n), F_s (J
g W2 Q) 0O F (1) Py (). F-y (1) o)

Here, we do not indicate explicitly the parameters that define the functions \Illz;f_n and \Ilzjfn being in general of the form
U(x; B, Cy. ... fap Cop BT, Cr. .. .Br. Cy). Other, physical as well as nonphysical, eigenstates of H,,, of eigenvalues

E(a) are given by

W@, (1),8_(2),....d

LQO).F (1), Fy (), W2

a _
quﬁn;j: -

It is always possible to eliminate any of the bound states
from the spectrum taking the limit ¥ — 0, or C¥ — oo for
the corresponding parameter. In the case we take such a
limit for the parameter C;” of the state ®_; 1 (1), we obtain
Hop (%) = Hyoyo(x: ), where Hap_y,(x;f)) is the
Hamiltonian of the system with 2 — 1 bound states in
the gap. Similarly to the case discussed in the previous

4.69
WZ:,’JL ( )

|
subsection, the H,,_; ,(x; ;) can also be obtained by the
Darboux—Crum transformation of order 2¢ — 1 + n applied
to the singular Treibich—Verdier system. The Lax—Novikov
integral Py,_;,(x; ) of Has_y,(x;B) appears from
(4.62) via the indicated limit through the reduction,
Pan(x) = (Hapo10(6:5)) = € )Pari w(x: ). On the
other hand, if we take one of the two specified limits for the

125041-17



ADRIAN ARANCIBIA ef al.

parameter C;, we obtain the Hamiltonian I:sz,n_l(x;[)’;),
which corresponds to the system H,, ,_1 (x) of the form (4.61)
with the displaced argument, x — x + /. The initial param-
eters #; with i = j + 1, ..., n transform into the parameters
pr.i=j,...,n—1, of the resulting system, and the same
happens with the corresponding parameters C; . Moreover, all
parameters C* undergo rescaling, C; — ¢; (f;, ﬂJT)C’L,
l=1,..,2¢,C; - ci‘(ﬂi‘,ﬁjf)Ci‘, i=1,...,n—1, where
¢/ >0 and ¢; > 0 are some functions of the indicated
arguments, whose explicit form we do not write down in
detail here.

Notice that in the most general case of one-gap quantum

system Hy,_,,, = —j—;z + Vas_mn(x) supporting 27 —
m + n > 1 bound states, relation (4.18) is generalized for

20-m

Ap=-2> p7-2Y B,
j=1 =1

(4.70)

where n >0, 2 —m >0, m =0, 1, and the omission of
the corresponding sum is assumed when n =0 or Z = 0.
This is the net phase displacement between x = +o00 and
x = —oo periodic asymptotics of the potential V,_,, ,(x),
which is the one-gap Lamé potential V,(x) perturbed by
n >0 soliton defects of the potential well type and
2¢ —m > 0, periodicity defects of the compression mod-
ulations nature.

In conclusion of this section, let us note that the notion
of Hill’s discriminant (Lyapunov function) is defined for a
Schrédinger equation with periodic potential, and reflects
coherently the properties of the eigenstates under the shift
of the quantum system for its period [23,41]. The
Darboux—Crum transformations that do not violate the
periodicity of the potential produce isospectral systems
and do not change the corresponding discriminants
[42,43]. The systems we constructed here are almost
isospectral to the one-gap Lamé system. Their potentials
are not periodic functions, and so Hill’s discriminant
cannot be defined for them in a usual way. It can be
considered only in the regions x - —o0 and x — +o0,
where the periodicity (with a relative phase displacement
defect) is restored asymptotically. At the same time, it is
necessary to bare in mind that the Lyapunov function
reflects the stability properties of the points in the
spectrum: for periodic quantum systems, two linearly
independent Bloch—Floquet states correspond to all the
points inside the allowed bands, while the edge points are
treated as nonstable because there one of the two solutions
is unbounded [41]. Since the periodicity defects we
constructed introduce into the spectrum of the Lamé
system only the discrete energy values corresponding to
nondegenerate bound states, one can say that they do not
change the properties of stability of the spectrum of the
initial system.
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V. EXOTIC SUPERSYMMETRY

According to the analysis presented above, any pair
of the Hamiltonians Hy, _,, ,, and Hy.,_,, ., Where
my, = 0,1, can be related by means of the two pairs of
intertwining operators. One pair of mutually conjugate
operators intertwines the Hamiltonians directly. Another
pair has higher differential order and does the same job via
a virtual periodic one-gap system. The operators of the
second pair involve in their structure the Lax—Novikov
integral of the Lamé system H;,, or of its analog
corresponding to the singular on the real line Treibich—
Verdier one-gap system. Each of the subsystems in the pair
(Ha,—m, ;> Haz,—m, n,) 18 also characterized by its proper
Lax—Novikov integral. As a result, if we consider the
extended system given by the matrix 2 x 2 Schrodinger
operator composed from the pair of the indicated
Hamiltonians, it will be described not just by the A/ = 2
linear or nonlinear supersymmetry as it would be expected
for the ordinary pair of Darboux(—Crum) related quantum
mechanical systems. Instead, as in the case of nonperiodic
reflectionless systems, it will be characterized by an exotic
nonlinear A = 4 supersymmetric structure that involves
the two nontrivial bosonic generators composed from the
Lax—Novikov integrals of the subsystems.

From the perspective of physical applications, the most
interesting case corresponds to the pairs of the Schrodinger
Hamiltonians, which can be related by the mutually
conjugate first-order Darboux intertwiners alongside with
the pair of higher-order intertwiners. It is this case that we
consider in this section in detail.

We start from the general discussion of the picture
corresponding to a basic case, from which other cases
can be obtained via certain limiting procedures. Then, we
illustrate this by considering the simplest examples, which
reveal all the peculiarities of the exotic supersymmetric
structure.

A. Exotic supersymmetry with the first-order
supercharges: Generic picture

The first-order differential operators A,,, and A;fn
intertwine the Hamiltonians H,,,_; and H,.,,

H2f.n— 1 A;ﬁn = A;f,nHZK,n s
(5.1)

AspnHop ot = Hop yAop s

and factorize them,

T _ - il _ -
A2f_nA2f,n - HZf,n—l — &y, AZf,nAzfyn - HZf,n — &,

(5.2)

where ¢, = £(f, + iK’). These relations allow us to
consider the extended system described by the Hamiltonian
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Hyp i 0
HZK’,n = (

5.3
0 H2f.n ( )

and by the pair of matrix operators

Sl — ( 0 A;f,n
2¢.n
AZI,’JL 0

Taking the trivial integral I' = o3 as a Z,-grading operator,
we identify H,,, as the bosonic operator, I, H,,,] =0,
and S5, ,, a = 1,2, as the fermionic ones, {r.s5,,} =0.
They generate a superalgebra of AN/ = 2 supersymmetric
quantum mechanics,

), 83y, =038, (5.4)

[H2f.n’ ng,n] =0, {ng,,1» ng,n} =25 (Hzf,n - €Z)~

(5.5)

By the redifinition of the Hamiltonian via an additive shift,
Hopn — €, = Hopn, one can transform (5.5) into the
standard form of A =2 superalgebra describing the
system with the zero energy of the nondegenerate ground
state appearing in the spectrum of the “lower” subsystem of
the extended matrix system. Since the subsystems H,,,_;
and H,,, possess the nontrivial Lax—Novikov integrals
being differential operators of orders 47+ 2n+ 1 and
47 +2n + 3, the extended system (5.3) possesses also
two nontrivial bosonic integrals that we define in the form

1
P2f,n -

<(H2f,n—1_€;)P2f,n—l 0 >
0 PZf,n ’

P%f,n = GSPéf,n' (56)

We introduced here the additional factor in the upper
component whereby the upper and lower components of
these integrals are operators of the same differential order.
The commutation relations

[HZK.W szf’,n] =0, [ng,n’ ng.n] =0,
=0

[Péf.n’ gf,n] (57)

extend the superalgebraic relations (5.5) and show that the
integral P}, is the bosonic central charge. On the other
hand, the nontrivial commutator [P3, . $4, ] generates the
second pair of the fermionic supercharges 05, ,» which are
the matrix differential operators of the order 2(2Z + n + 1).
As we shall see, the anticommutator of Q4, , with 0%,
produces a polynomial in matrix Hamiltonian H,, ,,, while
the anticommutator of 05, , with ng,n generates the central
charge Pém. The second bosonic integral P%ﬁn generates
finally a kind of a rotation between the supercharges S5, ,

and 05, .
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Taking in (5.3) the limit C; — oo or C — 0 with /

chosen from the set 1, ...,27, we obtain another extended
system:
v H 20-1.n—-1 0
HZL”—],H = < " o . (58)
0 HZL”—I n

As we saw, the application of the limits C;” - oo or C; —
0 to the corresponding Lax—Novikov integrals of the
subsystems produces the reducible operators. The irreduc-
ible nonsingular Lax—Novikov integrals of I:IM_],,,_I and
Hzf_l,,, have orders 42 +2n—1 and 47+ 2n+ 1 and
include in their structure the Lax—Novikov integral of the
singular Treibich—Verdier one-gap system. The bosonic
integrals P§,_; , of the extended matrix system (5.8) are
constructed from 752f_1_n_1 and 75%_1,” like in (5.6).
Again, Iu’ﬁf_l,n will play the role of the central charge of
the nonlinear superalgebra, while the commutator
(Pl 1 s S“z‘f_l,n] will generate the second pair of the
supercharges ng_l_n. The exotic superalgebra of the
system (5.8) will have as a result a form similar to that
for the system (5.3).

Let us change index n for n 4 1 in (5.3) and take one of
the two limits

lim  Hyp i (x) = 1:12f,n(X; F Bri1)s (5.9)

—0,00

where the upper and lower signs on the rhs correspond,
respectively, to the 0 and oo cases. In such a limit, we get
the extended system described by the Hamiltonian,

~ H2f.n 0
HZK’,n = ( )v

- 5.10
0 H2f,n ( )

where Iilzf’n corresponds to one of the indicated limits,

Hyy,(x; F f3;,)- Here, we have used the definition of the
functions (4.1) and have taken into account that for the
function (2.6) the identity F(—x; ) = F(x;—f") is valid.
The initial subsystems H,,, and H,,,.; in (5.3) with n
changed for n + 1 are related by the first-order intertwining
operators Ay, . and A;f’n +1- Then, the pair of H,, ,(x)
and f]zm (x; F B,,1) in (5.10) is related by the first-order
intertwining operators

XZf,n(X; + ﬁ;-H) = c- 111’1}) OOAZf.nJr]

n+]_)
_ Warn (F (55 F i) d Waz
Wor dxWo, . (F(x;: F B1))
(5.11)

and X;f’n(x;q:ﬂ;rl), where W,,,(f(x)) = W(®, (1),
o ®_(26), FL(1)...F, (n), f(x)). The subsystems in
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(5.10) are completely isospectral, and the exotic super-
symmetry in this case has a structure similar to that of
the system (5.3). However, unlike (5.3), the system (5.10)
is characterized by the spontaneously broken exotic
supersymmetry, and this fact, as we shall see, is properly
reflected by the “fine structure” of the nonlinear
superalgebra.

Another interesting case that could be mentioned
corresponds to the limit

lim Hyppyq = _lilll _Hzf.n(XQ F ﬂ;+1) =Hyp .

w1 Pn n+1 " Pn

(5.12)

However, if we apply such a limit to the system (5.3) with
index n changed for n + 1, we obtain just a system of the
form ‘H,,, but with the permuted upper and lower
corresponding Hamiltonians.

B. Unbroken exotic supersymmetry

Consider now the simplest case of the extended systems
(5.3) with # =0, n = 1. Besides the first-order operators
Ay and A(TM, the pair of Hamiltonians H,, and H; is
intertwined by the differential operators of order 4, By =
Ap1Poo(x) and Bg_l. The systems H, and H; are also
characterized by the Lax-Novikov integrals Py (x) and
Po1(x) = AOJPO,O(x)AgJ. Besides the integrals of the
form (5.4) and (5.6), the extended matrix system is
characterized also by the pair of the supercharges

Q(1),1 = (

The fermionic integrals S§, and Qf, and the bosonic
integrals Pg; together with the Hamiltonian 7, ; generate
the nonlinear superalgebra

0
By,

BO,l

0), 02, —ic0h,.  (5.13)

{89, 8} =26 (H — &7),

PHYSICAL REVIEW D 90, 125041 (2014)

[P?, 89 = =2ie® (H — e7) 0",

[P2, 0% = =2ie®(H — 7)C3(H)S?,  (5.16)

[P, 09 =0, [P1, 5% =0, (5.17)
where C3(H) = H(H — k?)(H — 1), ¢* is the antisym-
metric tensor, €'> = 1, and for the sake of simplicity, we
omit the lower indices. The unique nondegenerate state
with energy £ = €] appearing in the spectrum of subsystem
H, is annihilated by the shifted Hamiltonian H — &} and
by all the integrals S¢, Q¢, and P“. This means that the
exotic supersymmetry of the extended Schrodinger system
is unbroken. The doubly degenerate energy values corre-
sponding to the edges of the allowed bands of the
subsystems are the zeros of the third-order polynomial
appearing in the superalgebra structure: C3(£) =0 for
& = 0, k%, 1. This reflects the property that the correspond-
ing edge states of the subsystems are detected by the fourth-
order supercharges Q¢ as well as by the bosonic integrals
P4; all these operators annihilate them. One can also show
that the physical eigenstates ¥§ and A, ; V¢ of the upper
and lower subsystems inside their valence and conduction
bands possessing the quasimomentum of the opposite sign
(they correspond to the different lower indices of the Bloch
states) are distinguished by the bosonic integrals P?.

The second relation [P!,$%] =0 from (5.17) can be
rewritten as a nonlinear differential equation for the super-
potential W, | (x) shown in Fig. 10, see Eq. (4.21). This
corresponds here to the first equation of the stationary
mKdV hierarchy, which can be associated with the
extended system with one nonperiodic soliton defect
introduced into the one-gap Lamé system. At the same
time, the equation [H, P'] = 0 can be presented in the form
of the nonlinear differential equations of the third order
for the potentials V. (x) = W§, £ W, + ¢]. These equa-
tions correspond to the first equation of the stationary KdV
hierarchy, which can be associated with the one-gap
Lamé system itself and with its deformation V_(x) pro-
duced by the one-soliton defect introduced into the periodic

{0, 0"} =26"(H - e7)C3(H), (5.14) background of the one-gap Lamé system.
. bl The generic case of the extended systems (5.3) and (5.8)
{8, 0%} =26"P", (5.15) is described by the exotic nonlinear superalgebras of the
Woa W2 Wa i
ﬂ [VMAMN W

O I |

FIG. 10 (color online).

J

Topological superpotentials in the form of the kink that incorporate one bound state into the spectrum. On the

x

et

left is shown the superpotential that relates the systems Hy o with H,, ;. The superpotential in the center corresponds to the pair of the
systems H,; and H,,, while that on the right corresponds to the pair of H,, and H, .
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same form. The unique difference is that the third-
order polynomial C3(H) appearing here will be changed
for the structure polynomials of the form (4.63), which
are associated with the square of the corresponding
Lax—Novikov integrals.

C. Spontaneously broken exotic supersymmetry

The case of the spontaneously broken exotic supersym-
metry realized in the one-gap systems with the nonper-
iodicity defects can be illustrated by the extended system
with the mutually displaced one-gap Lamé systems H o(x)
and I:IO,O(x; p~) = Hyo(x + 7). Though such systems are
periodic, all the principle features of the structure of the
exotic supersymmetry we observe in this case appear also
in the extended systems composed from the completely
isospectral systems with soliton defects.

The isospectral Hamiltonians Ho(x) and Hoo(x + f7)
are connected by the first-order differential operator

a1
dx F(x; )

d
=——+Ago(x;57)

Xoo(x;87) = F(x;67) P
(5.18)

and by its Hermitian conjugate operator, where

Boo(x.f7) = Z(x) = Z(x + ) + 2(p") (5.19)

is the superpotential shown in Fig. 11. To simplify
notations, in what follows in this subsection, we omit
lower indices in Hamiltonians, intertwining operators, and
corresponding Lax—Novikov integrals and put = = f.
Recall that 0 < g < K.

The operator (5.18) and its conjugate factorize the
Hamiltonians,

X' (x: )X (x: p) = H(x) — e(),

X(x:B)X"(x;8) = H(x + B) — e(B), (5.20)

and intertwine them,

AV

MWWV WWWV
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X(x; f)H(x) = H(x + p)X(x; B),

X'(x; p)H(x + B) = H(x)X' (x; B). (5.21)
where e(f) = E(B+ iK') = —cs?’.  These first-order
intertwining operators are related by X(x;p) =
—X(x+p;,—p), that follows from the identity
1/F(x;p) = F(x + p;—p) exp(—pz(f)), and corresponds
according to (5.11) to the limit C~ — oo of the first-order
operator Ag ;. In this limit, the topologically nontrivial
superpotential W, ; transforms into the topologically trivial
superpotential A, see Figs. 10 and 11. One can construct
the second intertwiner being the differential operator of the
order 2 by taking a composition of the two first-order
intertwiners (5.18),

Gx:p.p) = X(x + B p = B)X(x: p). (5.22)
G(x; p,p)H(x) = H(x + f)G(x; 5, '), where we assume
that ' # . The first factor on the rhs in (5.22) intertwines
the H(x) with the Hamiltonian of the virtual system
H(x+f'), and then this is intertwined by the second
factor with H(x + ). Notice also that G'(x;f, )
Gx+ Biff — B.—P).

One could think here that in this way intertwining
operators of the higher order n > 2 can be constructed,
but this is impossible because of the identity [22,47]

G . B) = G(x: 5", P) + G(B. 5. B") X (x: ),

from where it follows that the third-order differential
operator

(5.23)

X(x+pp-p)G9(x: ", p)
=—(H(x+p)—e(f = p))X(x: )
+GB.B".B)G(x: . ).
which intertwines H(x) and H(x + /), reduces effectively

to the first- and second-order intertwining operators
X(x;p) and G(x;/,p). Here, we used the notations

G(ﬂ’ﬂ/’ﬂ”) = g(ﬁ7 _ﬂl) - g(ﬂ’ _ﬂ”)7

(5.24)

Ag g

FIG. 11 (color online).

Ao
MW VWAV,
U x

Nontopological superpotentials that allow us to displace the periodic potential network of the Lamé system

as well as the nonperiodic defects in it. The nontrivial displacements of the defects correspond to a nonlinear interaction between
the soliton defects themselves and to their interaction with the periodic background (see Fig. 4). According to Fig. 10, these
superpotentials are obtained by sending the kink, and the associated ground state of the Hamiltonian (5.3), to minus infinity, which
generates the supersymmetry breaking. The shown superpotentials relate the following isospectral pairs: Hy o and H 0.0 (on the left), Hy

and H,; (in the center), and H,, and H,, (on the right).
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g(B.B)=nspnsfns(f+ )1 —cnfenfen(f+f)).
(5.25)

The relation (5.23) reflects effectively a kind of the
“gauge” nature of the parameter f, which appears in the
structure of G(x; /', ) and is associated with a virtual
system H(x+ f'). On the other hand, from the same
relation and definition (5.22), one finds that the second-
order operator

Y(x;8) = X(x + B3 = B)X(x: ') — g(B. =B X (x; B)
(5.26)

is invariant under the change f — f”. Thus, being a
certain linear combination of (5.18) and (5.22), Y(x; /)
is the “gauge-invariant” second-order intertwining oper-
ator, Y(x;B)H(x) = H(x + p)Y(x;f), which does not
depend on the value of the virtual parameter in spite
of its appearance on the rhs in (5.26). The conjugate
operator acts in the opposite direction, and similarly to
the first order intertwining operator, we have Y (x;8) =
Y(x+ B —p).

One can represent Y(x;4) in the explicitly p'-
independent form in terms of the superpotential (5.19)
and parameter . However, we do not need here such an
expression and will use the representation (5.26).

From the properties of X(x;f) and Y(x;f), it
follows that the third-order operators X'(x;5)Y(x;p)
and Y7 (x; )X (x;8) reduce, up to the additive constants,
to the third-order Lax—Novikov integral P(x) = Py q(x)
given by Eq. (4.24) and to P(x+ ), respectively.
Namely, we have

X' (x: )Y (x: ) = —iP(x) = No(B).

X(x: )Y (x: ) = iP(x + B) = No(B) (5.27)
and the pair of identity relations, which can be obtained
from (5.27) by the Hermitian conﬁjugation. The p-depen-
dent constant N(f) is given by

1d

No(f) =dnfenfns’f = Ed_ﬂg(ﬁ)'

(5.28)

Similarly to (5.21), the second-order intertwining oper-
ators generate the second-order polynomial in the isospec-
tral Hamiltonians,

®Notice here that, for the limit case = K, Ny(K) = 0.
Then, for the choice ' = K + iK/, the coefficient g in (5.26)
turns into zero, and the Hermitian conjugate form of the first
relation in (5.27) corresponds to factorization (4.27). Another
choice, for instance, ' = iK', gives a factorization Py (x) =
AI/SHXASHX/dHXAdHX'
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Yi(x: )Y (x;8) = Na(H(x), ).

Y(x:B)Y'(x: ) = No(H(x + B). ). (5.29)
where
N (H(x), p) = H?(x) + c1(B)H (x) + c2(B).  (5.30)
ci(B) = —k? —ns’p = e(p) — 1 - k2,
02(pB) = dn’pns’p = (e(B) — 1)(e(B) — k). (5.31)

Finally, for the products of the intertwining operators with
the Lax—Novikov integral, we obtain

—iX(x;)P(x) = N\ (H(x + ), )Y (x; ) + No(B) X (x: 8)
(5.32)

iP(x)X"(x;p) = Ny (H(x). )Y (x: ) + N o (B) X" (x: B),
(5.33)

iY (x: )P (x) =N, (H(x+ ). )X (x:8) + N o (B)Y (x:8).
(5.34)

—iP(x)Y"(x; ) = No(H(x), /)X (x; ) + No(B)Y' (x; )
(5.35)

and four other relations given by the Hermitian conjuga-
tion. Here, we introduce the notation

Ni(H(x),p) = H(x) — &(p). (5.36)
The operators X (x; 3) and Y (x; ) and their conjugate ones
intertwine the Lax—Novikov integrals P(x) and P(x + f3)
exactly in the same way as they do this with the corre-
sponding Hamiltonians.

Now, we are in a position to identify the superalgebra
of the extended Schrodinger system H = diag(H(x),
H(x + f)), which corresponds to (5.10) with £ =n =0
and lower component Hy o(x; 87 ). This extended system is
characterized by the two pairs of the fermion integrals
S“(x;) and Q“(x:f8.p), constructed from the first-,
X'(x;8), X(x;p), and second-order, Y'(x;p), Y(x;p),
intertwining operators in the form similar to that in
(5.4), and by the two boson integrals P! = diag(P(x),
P(x+p)) and P> = o;P'. These 2 x 2 matrix operators
generate the exotic nonlinear N' = 4 superalgebra,

{89, 8"} = 28N, (H. p).
{0, 0"} = 26 N,(H. ), (5.37)
(87, 0%} = —2e® P! — 25N (p), (5.38)
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[P?, 5] = =2iN' (H, )0 = 2iN o (B)5".

[P?, 0% = 2iN,(H., )8 + 2iNo(B) 0. (5.39)

[P'.Ql=0. [P'.8=0, (5.40)

where NV (H, ) and N, (H, ) are defined as above with
the operator argument H(x) changed for . The matrix
Hamiltonian operator H plays here, as well as in the
superalgebra we considered in the previous subsection,
the role of the central element. Note that the constants
appearing in the structure of N (H, ) and N, (H,p)
correspond to the energies of the doubly degenerate states
of the system at the edges of the allowed bands: € = 0, k2, 1.

The sub-superalgebra generated by the supercharges 54

and by the Hamiltonian H with 0 < # < K corresponds to
the case of the spontaneously broken linear (Lie) N =2
supersymmetry. The first-order supercharges do not anni-
hilate the two ground states ¥/, = (dnx,0) and VU’ =
(0,dn(x + f3)) being eigenstates of zero energy of the
extended system. This is obvious from the first relation
from (5.37) and Eq. (5.36). The quantity —¢(f) = cs?f > 0
defines here the scale of supersymmetry breaking. The
second relation from (5.37) and Eqgs. (5.30) and (5.31) show
that the second-order supercharges Q¢ also do not anni-
hilate these states. These edge states, however, as well as
the edge states of energies k> and 1, which correspond to
the two other doubly degenerate energy levels of H, are
zero modes of the bosonic generators P

The limit case # = K corresponding to € = 0 is special
here. At # = K, the coefficient NV, turns into zero, and the
indicated two ground states are zero modes of the first-
order supercharges. The structure of the nonlinear super-
algebra (5.37)—(5.40) essentially simplifies because of the
disappearance of the three terms in Egs. (5.38) and (5.39).
In this case, the second-order supercharges Q“ annihilate
the doubly degenerate states at the edges of the valence and
conduction bands of energies k> and 1. Since the second-
order supercharges Qa do not annihilate the degenerate pair
of the ground states in this case either, the extended system
H with p = K is characterized by the partially broken
exotic nonlinear N' = 4 supersymmetry.

Notice that, though at f = K the sub-supersymmetry
N = 2 generated by H and S¢ is unbroken, the subsystems
H(x) and H(x + ) are completely isospectral, and the
superextended system is characterized by the zero Witten
index [48]. This is a characteristic peculiarity of the
quantum supersymmetric systems composed from the
periodic completely isospectral pairs, which was noted
for the first time by Braden and Macfarlane [3] for the
particular case of the pair of one-gap periodic Lamé
systems shifted mutually for the half-period f =K
and later was discussed in a more broad context of
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“self-isospectrality” by Dunne and Feinberg [11]. In the
framework of the nonlinear “tri-supersymmetric” structure,
it was analyzed then in Refs. [19,42].

In the context of the breaking of the exotic supersym-
metry, it is worth noticing that, generally speaking, the
second-order supercharges are not defined uniquely here.
Instead of Q“, one can take linear combinations of Q“ and
59, for instance, O¢ = Q% + yS¢, where y is a real constant.
The particular choice y = dnf/snficnf gives then the
supercharges O, which satisfy the anticommutation
relations {Q% Q%) = 28““H(H + ¢(p)), where o(f) =
k2sc?p. Hence, for f§ # K, the supercharges Q¢ annihilate
the ground states of zero energy of the system H (while
other states from their kernels correspond to nonphysical
eigenstates of 7:[). In this case, the exotic supersymmetry
generated by ¢ Q¢ P?, and H should be interpreted as
partially broken. However, the second-order supercharges
0, unlike Q¢ are not defined for the limit case =K.
The supercharges Q¢ with the indicated choice of the
parameter y correspond to the second-order intertwining
generators (5.22) with g/ = K.

As in the case of the unbroken exotic supersymmetry we
considered in the previous subsection, the Lax—Novikov
matrix integral P! plays here the role of the bosonic central
charge, and the second relation in (5.40) corresponds to
the stationary equation of the mKdV hierarchy for the
topologically trivial superpotential A, (x, #). The relation

[ﬂ , 131] = 0 corresponds to the pair of stationary equations
of the KdV hierarchy for the functions V. (x)=
Aoo(x,B)?* £ Ay (x, B) + &(B), which represent the poten-
tials of the corresponding mutually shifted Schrodinger
systems.

The superalgebra (5.37)—(5.40) in comparison with that
of the unbroken exotic supersymmetry case (5.14)—(5.17)
contains the terms with the coefficient (/) in (5.38) and
(5.39), which are absent in (5.15) and (5.16). There are also
other obvious differences in these two forms of super-
algebras, which reflect properly the unbroken and sponta-
neously broken character of the exotic supersymmetries
and different topological nature of the corresponding
superpotentials. At the formal level, some of these
differences are associated with a nontrivial limit procedure
applied to the fourth-order intertwining operators By =
Ap.1Po.1(x) and B(T)’l, in terms of which the fourth-order
supercharges Q¢ were constructed in the previous sub-
section. In correspondence with the limit (5.11), we have
By — X(x; f)P(x), P(x) = Pyo(x). But according to the
relation (5.32), the fourth-order intertwining operator we
obtain in the limit is reducible, and, finally, instead of the
fourth-order intertwining operators, here we have the
second-order operators Y (x;) and YT (x; /), which inter-
twine the completely isospectral pair of the Schrodinger
systems H(x) = Hyo(x) and H(x + ) = Hoo(x + p).
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VI. DISCUSSION AND OUTLOOK

To conclude, we summarize shortly the results and point
out further possible research directions.

We showed how, by applying the Darboux—Crum trans-
formations to the quantum one-gap Lamé system, an
arbitrary countable number of bound states can be intro-
duced into the forbidden bands of its spectrum. These states
are trapped by localized perturbations of the periodic
potential background of the initial system. The nature of
the perturbations depends on whether they support discrete
energy levels in the lower forbidden band, or in the finite gap
separating the allowed valence and conduction bands. In the
first case, the perturbations have a nature of the smooth
soliton potential wells superimposed on the background of
the Lamé system, while the discrete energy levels in the gap
are supported by compression modulations of the periodic
background. Though both types of perturbations have a
soliton nature, to distinguish, we identify them here as the
W-type and M-type defects, respectively. The nature of the
bound states is essentially different in these two cases.
The n > 1 bound states trapped by the W-type defects are
described by the wave functions with finite number 0 < j <
n — 1 of nodes on the real line. In contrast, the bound states
supported by the M-type defects have an infinite number of
nodes and represent oscillating trapped pulses.

The obtained nonperiodic systems are reflectionless;
their physical states inside the valence and conduction
bands are described by the Darboux—Crum transformed
Bloch states of the Lamé system, just like the scattering
states of quantum systems with multisoliton potentials are
given by a Darboux—Crum transformation of free particle
plane waves. Similarly to the multisoliton reflectionless
potentials, which exponentially tend to a constant value
corresponding to the free particle case, here the asymptotics
of the perturbed potentials corresponds to the periodic one-
gap Lamé potential. We show that the net phase displace-
ment (defect) between x = 400 and x = —oo periodic
asymptotics of the potential are given by a simple sum
of the same parameters that determine, via the elliptic dn?
parametrization, the discrete energy levels.

The procedure for introducing the W- and the M-type
periodicity defects has some important differences. In the
first case, the order n of the Darboux—Crum transformation
corresponds exactly to the number of the introduced bound
states. In the second case, the same is true when the number
of discrete energy values is even. The odd number of the
discrete energy levels in the gap is obtained by sending
one of the already introduced 22 M-type defects to infinity.
The resulting potential with 22 — 1 M defects is related to
the initial Lamé system by 27-th-order Darboux—Crum
transformation. At the same time, it can be related by the
Darboux—Crum transformation of order 2 —1 with a
singular one-gap Treibich—Verdier system obtained by a
displacement of the regular Lamé system for one of its two
complex half-periods. The indicated complex displacement
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can itself be generated by the first-order Darboux trans-
formation. This explains the existence of two alternative
Darboux—Crum transformations whose orders differ by 1.

The procedure described in this article allows us to
construct the irreducible Lax—Novikov integrals of motion
for the perturbed systems H,,_,, , via the Darboux—Crum
dressing of the Lax—Novikov integral of the initial periodic
Lamé system H . This is similar, again, to the situation
with the transparent quantum systems described by multi-
soliton potentials, for which the Lax—Novikov integrals are
the Darboux—Crum dressed form of the momentum operator
of the free particle. The Lax—Novikov integrals here are
differential operators of order 2(n +2¢ — m) + 3 for the
system with n > 0 W-type and 2 —m >0, m = 0,1, M-
type defects. The condition of conservation of these integrals
generates a nonlinear differential equation of order 2(n +
2¢ —m) + 3 for the potential V,,_,,,(x). This ordinary
nonlinear differential equation of odd order in the highest
derivative belongs to the stationary KdV hierarchy.

For an extended system composed from an arbitrary pair
of the Hamiltonians Hy, _,, ,, and Hy. _,, ,, which
possess n; > 0, i = 1,2, discrete energy levels in the lower
forbidden band, and 2Z; — m; > 0, m; = 0, 1, bound states
in the gap, the presence of the Lax—Novikov integrals
has an essential consequence. The whole system is now
described not just by an N =2 linear or nonlinear
supersymmetry as would be expected in the case of a
Darboux—Crum related pair of ordinary, nontransparent, or
not periodic finite-gap, quantum Hamiltonians. Instead,
such a system is characterized by an exotic nonlinear
N =4 supersymmetry that, besides two pairs of the
fermion supercharges of odd and even differential orders,
involves two bosonic generators composed from the
Lax—Novikov integrals of the subsystems. We investigated
in more detail the most interesting, from the point of view
of physical applications, case in which two of the four
fermionic supercharges are matrix differential operators
of order 1. In this case, one of the matrix Lax—Novikov
bosonic integrals plays a role of central charge of a
nonlinear superalgebra, and its commutativity with first-
order supercharges generates a higher-order differential
equation for the superpotential that belongs to the sta-
tionary mKdV hierarchy. The second bosonic integral
generates rotations between the pair of first-order super-
charges and the pair of higher-order supercharges.

When the spectra of Schrodinger superpartners are
different only in the lowest discrete energy level present
in one of the two subsystems, which corresponds to the
almost isospectral case, the superpotential has a topologi-
cally nontrivial modulated crystalline kink-type nature.
This case is described by an unbroken exotic nonlinear
N =4 supersymmetry, in which the ground state is
annihilated by all four supercharges and two bosonic
integrals. On the other hand, in the completely isospectral
case, the pair of Schrodinger Hamiltonians is characterized
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by a superpotential of a topologically trivial, modulated
kink-antikink-type nature. Such pairs can be obtained from
the pairs of the almost isospectral case just by sending the W-
type defect associated with the lowest-energy discrete value
to infinity. The completely isospectral pairs are described by
a spontaneously broken exotic nonlinear N' = 4 supersym-
metry. Unlike the unbroken supersymmetry case, in such
systems, the two states corresponding to the lowest doubly
degenerate energy value are annihilated (in a generic case)
only by the bosonic Lax—Novikov integrals.

When one of the two first-order supercharges is reinter-
preted as the matrix Hamiltonian operator, we arrive at the
Bogoliubov—de Gennes system, in which the superpotential
will play the role of a scalar Dirac potential. The results
presented here allow us then, particularly, to obtain new
types of self-consistent condensates and associate with
them new solutions for the Gross—Neveu model, which
correspond to the kink- and kink-antikink-type configura-
tions in the crystalline background. We are going to
consider this problem elsewhere.

It is worth noticing that Dirac Hamiltonians with scalar
potential appear, in different physical context, in the
description of the low-energy charge carriers in graphene
and related carbon nanostructures. This fact opens potential
applications of the results in physics of condensed matter
systems, following the ideas of Refs. [49-51].

The discussed constructions can be generalized to the
case of the PT-symmetric one-gap potentials. To achieve
this, it is sufficient to apply the complex shift considered in
Sec. III to the described Hermitian systems with periodicity
defects. Such systems have an immediate application in
the context of the PT-symmetric quantum mechanics and
optics.

An interesting development of the presented results is to
“reconstruct” the time dependence for defects in a periodic
background of the one-gap Lamé system in correspondence
with dynamics illustrated, as an example, by Fig. 4. This
would provide us a new class of solutions for the KdV and
mKdV equations. At the same time, it is natural to consider
the generalization of the construction to the case of
quantum n-gap systems with n > 1. One can also wonder
if, somehow, both W-type and M-type defects are the result
of “shrinking” bands from a more generic finite-gap
Hamiltonian, under some special limit.

Finally, it would also be very interesting to look for the
(1 4 1)-dimensional field theories, in which nontrivial
solutions are controlled by a stability operator of the
Schrodinger type [52] with the potentials of the nature
considered here.
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APPENDIX: NON-SINGULARITY
OF POTENTIALS

We show here that the family of Hamiltonians

d2
Hyrn = Hopo — 2@(101‘% W, (1), 2_(2).....

Fy,(n)))

is given in terms of the nonsingular potentials, which
correspond to the soliton defects introduced into the
periodic background of the one-gap Lamé system. To
achieve this, we demonstrate successively that the
Wronskians appearing in the structure of H,, H,.,
and, finally, H,,, are nodeless on the real line. The
notations we employ are explained in the main text.

o_(2¢), F, (1), ..., (A1)

1. Lower prohibited band

To show that the potential of H|), is regular, i.e., has no
zeros on the real line, we will demonstrate that

n(n+1)

(=)= W(F (1), ...,]-"S”H(n +1))>0. (A2)
First, we define the two sets of functions,
F.(1),...F; (n
o= oy MR T T )
and
(x) = (=1)" W(F (1), N (n),]-"SM(n +2))
= WED. . Fom)
(A4)

which are nonphysical eigenstates of H,, with eigenvalues
€,,, and &, ,, respectively. We will check below that
fn(x) >0, while g, (x) has only one zero.

In correspondence with the definition Wy, = 1 intro-
duced in Eq. (4.21), for n = 0, we have f, = F_(1) > 0,
and gy = F_(2). The second function (plotted for a
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particular case with C, = 1 in Fig. 3) has one zero, which
we denote by x,. Thus, we have gy(x) > 0 for x < x; and
go(x) < 0 for x > xg.

For the case n = 1, we also define the functions

f)=W(FL(1).F-(2),  gl)=W(F.(1),F.3)),

(A5)
which appear in the numerators of (A3) and (A4). Taking

into account that F are solutions of the stationary
Schrodinger equation, it is straightforward to check that

f'(x) = (e — &) F (D F-(2), (A6)

g (x) = (e7 =&5) FL(DFL(3). (A7)

As & <e <0, we observe that sign(f'(x))=
sign(F_(2)). Then,

f(x0) = F 1 (x0: 87, C1) FL(x0: 7. C2) (A8)

since F_(x¢; 5, C,) = 0. From the Schrodinger equation,
we have also F_(xq; 5, C,) # 0, and from the definition
(4.1), it follows that F’ (xo;f;.C,) < 0. We have then
f(xg) <0, and hence sign(f’(x)) = sign(F_(2)). Thus,
the function f(x) increases monotonically from
f(—o0) = —o0, it takes a maximum negative value
f(xg) <0 at x = xy, and then it decreases again mono-
tonically to f(c0) = —oo. This means that f(x) < 0 and, as
a consequence,

_W(F.().F_(2)
Fi(1)

fi(x) = >0 (A9)

for all x.

The derivative ¢'(x) takes positive values and grows up
exponentially for x — +oo. Therefore, g(x) passes through
zero only once at some point x;. The function

_W(F.(1).F.03)
F. (1)

g1(x) = (A10)

has then only one zero at this point x; and takes positive
and negative values for x < x; and x > x;, respectively.
So, we see that the nonphysical eigenstates f, and f; of
Hy, and H,;, respectively, have no zeros, while their
eigenfunctions gy and g; have one zero, where their slope is
negative.

We extend now this result by induction for arbitrary n by
showing that f,(x) > 0 while g, has only one zero x, and
that g,(x) >0 and g,(x) <0 for x <x, and x > x,,
respectively, and so, ¢},(x,) < 0.

By using the Darboux—Crum construction, we can check
that functions f,(x) and g, (x) are nonphysical eigenstates
of the Schrodinger operator
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d2
Hy, = Hyo— 2W10g W(F (1), fs(”)) (A11)

with eigenvalues €, , and ¢, ,. For n + 1, we have

A W(FL), L Fy (0 +2))
Fra () = (=1) IW(]-'+(1),.. F. (n+1)

— _W(fmgn) (A12)

fn

W/(fnv gn) = <£;+l - €;+2)fngnv

(A13)

from where we obtain that signW’'(f,,g,) = signg,(x).
The zero x,, of g, corresponds therefore to the maximum of

W(f s Gn)»

W(fm gn)<xn) = g;1 (xn)fn(xn) <0. (A14)

Since signW’(f,,, g, ) = signg, (x), the function —W(f,,. g,,)
decreases for x < x,, and increases for x > x,, and then
—W(fus g,)(x,) > 0 for all x. From Eq. (A12), we con-
clude that f,,;(x) > 0 for all x.

Let us change f, ., by f,. 5 in the numerator of the
function f,(x) in (A3) and redefine the resulting function
as h,(x). This function takes positive values, h,(x) > 0,
and we obtain the following relations:

_ (oqpt W(F.(1),...F,,  (n+1),F, (n+3))
Int1 = W(F(1),.... Fy,_ (n+1))
W(f, hy)
= D wh) Al5
7 (A15)
W/(fnv hn) = (€;+1 - €;+3)fnhn > 0. (A16)

Consequently, W(f,, h,) increases exponentially from —oo
to +oo passing through one zero, which we call x,, , ;. Since
fa(x) > 01is aregular function, and g, has only one zero
at x,.;, we find that g, ,;(x) >0 for x <x,,; and
Gny1(x) <O for x > x,, 4.

Finally, from the definition (A3) of f,(x), we obtain

fnfn—l"'fler(l)

= (“D)ZEOW(F (1), o Fy, (4 1), (A17)

and since

fnfn—l‘”vflj:+(1) > 07

we demonstrate the necessary relation (A2).

(A18)

2. Upper prohibited band

To show that H,,  is nonsingular on the whole real line,
we show that the Wronskian is a regular nodeless function
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W@, (1),®_(2),...,2_(2¢)), where the functions
®, (21 —1) and ®_(21), [ = 1,2... correspond to a gener-
alization of those defined in (4.30) and (4.31) for 7 = 1.

Before, we showed that W(®,(1),P_(2)) <0 by
choosing parameters 0 < f#{ < 7 < K. This condition
means that 1 > ] > &5 > k”? for the eigenvalues of the
nonphysical eigenstates ®_, (1) and ®_(2) inside the
intermediate forbidden band of Hy .

To demonstrate the validity of the formulated statement
for the next case £ = 2, we define an eigenstate of the
one-gap Lamé system with the displaced argument,
x = x + f7 +iK/, in the following form:

W (x), @ (1))

Bl ) ===

. (A19)

This state has an infinite number of poles at the zeros of

\I//f (x). Between each pair of poles, ®[1](x, #]) does not
change the sign and takes nonzero values. Its sign is
inverted in the neighbor regions separated by poles.
From the theorem on zeros, the linearly independent state

W (x), ®_(2))

elisp) ===

(A20)

has also an infinite number of poles, but between each pair
of poles, it possesses one zero, which we denote as x;.
The function (A20) preserves the sign when the argument
passes through any pole.

Now, it is necessary to show that W(®[1], ®[2]) does not
have zeros. For this, we redefine the function ®[2] up to a
sign in such a way that its derivative in some x;, will be
positive. In the same way, we also redefine, up to a global
sign, the function ®[1](x) to have ®[1](x;) < 0. Thus,
we obtain that

v

W(R[1], ®[2])(x)) = @[1](x))®'[2](x;) <0,  (A21)

while

W(@[1]. B[2]) = (¢f - &5)@[1]D[2]. (A22)
The function W(®[1], ®[2]) has a local extremum at each
X;, and its derivative is positive for x < x; until a pole and is
negative for x > x; until the next pole since x; is a local

maximum of W(®[1], ®[2])(x). From here, we conclude

that W(®[1], ®[2])(x) does not have zeros and hence is of
one sign.
Because of the identity

W(, (1), ®_(2), W7 (x)) = W (x) W(B[1], [2]) (x: ),
(A23)
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the Wronskian W(<I>+(1),<I>_(2),\I//§(ix)) has exactly
the same zeros as \I/f (x). Note that we have
W@, (=xi pL1/C). @ (=3 i 1/Co). W (=) =
—W(=0, (1), @_(2). W (—x)) = — W(®,(1), B_(2),

—\Ili3+ (—x)). Using the Wronskian properties, it is easy to
see that W(a, b)(x) = —W(a,b)(—x) and W(a, b, c)(x) =
—W(a,b,c)(—x), but W(a,b,c,d)(x)=W(a,b,c,d)(—x).
Taking in account the above relations, we can write

signW(®[1], ®[2]) (x; 1) = signW(®[1], ®[2]) (=x: 7).
(A24)

Thus, the zeros of the nonphysical states of H,,

W@, (1), ¢_(2),2.(3))
W(®,(1),_(2))

W(P,(1).2_(2).2_(4))
W(@,(1).2.(2))
(A25)

are within the intervals Z,} (87) and Z, (5} ), respectively,
see Eq. (4.34), where Z,7(3) [ Z;,(4) = @. As a conse-
quence of the theorem on zeros, their zeros are alternated.

Next, we can check that under the condition
0 < B < By <pi <pi <K, the Wronskian

W<W(‘I>+(1)»<P—(2),‘I>+(3)) W(<P+(1)»<P—(2),‘1>—(4))>
W@ (1),¢.(2) °~ W@ (1).¢(2)
W@, (1), 2_(2),2.(3),P_(4)

= W@, ().0.2) (A26)

does not have zeros nor the function W(® (1),
D_(2), @,(3), 2_(4)).

This result can be generalized for the case of
the Wronskian of 27 states, W(®,(1),¥_(2),...,
D, (2¢—-1),9_(2¢)), under the condition 0 < g <
py <..<py, <K

Using the identity

W(®, (1), ... _(26), V" (x))

— WD, (1),....5_(26 —2), U (x))

x W(P[1,...,2¢ =1],®[1,...,2¢ = 2,2¢]), (A27)

we have

V2 (OW(B[1], 8[2]) x W(d[1,2.3], $[1,2.4]) x ...
x W(D[1,....,2¢ =2,2¢ = 1], ®[1,...,2¢ - 2,27))

— W@, (1),....D_(26), U (x)), (A28)

where
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<f>[1,...,l,1+r](x,ﬂ+)
LW (x0), @, (1), 0_(21).8,, (21+7))
a W (x), 8, (1).....0_(21))

(A29)

and r=1,2, [ =0,1,.... Having in mind all previous
demonstrations, it is clear that

[W(D[1,...,21 = 2,21 = 1], ®[1,...,21 = 2,21])| > 0,
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and the functions

W(D, (1), ....0_(26), &, (26 + 1))
W@, (1), ... 0_(2¢))
W(D,(1),....0_(26), B_(20 +2))

W@, (1),....0_(27))

and

(A31)

have alternating zeros in the intervals Z, (f;,,,) and

(A32)

(A30)  7.(pt,,,), respectively. Then,
|
(W@, @ (20). 8,26 + 1) W(@,(1)..... ®(20). 826 +2))) _ W(P(1)..... (27 +2))
( W@, (1),...,2_(20)) ' W@, (1),...,2_(20)) )_ W@, (1),...,2_(20))

is regular and has no zeros, which means that
W(®, (1),...,&_(2¢ +2)) is nonsinguar and nodeless if
and only if W(®,(1),...,®_(2¢)) is regular and has no
Zeros.

Besides, if the potentials of the systems H,,, are
nonsingular for all real x, by taking limits C; - oo or
C; — 0, the regularity is preserved, and we get a regular
Hamiltonians H,,_; with 2¢ — 1 states in the gap of the
Lamé system.

3. Mixed case
Finally, using the all previous demonstrations, we show
that the most general Hamiltonian

d2
Hypp = Hop — 2@(10g WP, (1), P_(2),...,

®_(26), F (1), ... F,, (n))) (A33)

has also a nonsingular potential. To this aim, we define

W(®, (1),....8_(2¢). F(x; 7))

For(x;p7) = W(®, (1),...,0_(27)) ’

(A34)

which is a nonphysical eigenstate of H,, o with eigenvalue
E(p~ + iK'). Using the Wronskian identity

W(dy,....,®,) = W(W(F,®,)/F,...,W(F,®)/F)
= W(F.,®,,....®)/F. (A35)
where & = W(F, ®)/F, we obtain
W@ (1), @ (20) .,
FarsB7) =@ 0 ) | )
= Gy (s f7)F(x; 7). (A36)

&3,» is the eigenstate of the displaced Lamé system
Hyo(x + ), with the properties similar to those as ;.

|
We have shown that W(®_ (1), ..., ®_(27)) is nodeless and
takes finite values of a definite sign. This implies that
W(®_(1),...,8_(2¢)) share the same properties. Hence,
function G, (x;4~) also possesses the same indicated
properties. Taking into account the properties of the
functions inside the Wronskian under the reflection
x — —x, it is not difficult to show that signG,,(x;57) =
signG,,(x; —f~). Having the identity F(—x;f57) =
F(x;—p), we find that

W(®, (1), ....B_(22), F . ()

P l) = = ) . 2l) 437
= CGop(x; f7)F(x; )
L G- (). (A38)

Cc

Since Gy, (x;£p7) take values of the same sign and
increase exponentially, the function F,, , has no zeros.
Then,

W(D, (1), ....0_(26), F_(p))

For(x:7) = W(®,(1),....8_(2¢)) (43
= CGoy(x; f)F(x: )
_ész(x; ~B)F(=x: ) (A40)

has only one zero. Here, the functions F,, , are linearly
independent eigenstates of the operator H,,o, with
eigenvalues &(f~ + iK’), which are analogous to the
eigenfunctions F . of the Lamé system H,; see (4.1).
Using the arguments presented in Appendix A 1, one can
show that

W(Fri (1), .. Fopy, (n+1)) (A41)
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has no zeros. From the Crum theorem,

d?
Hyy = Hypg —2W10g W<~7:2t’,+<1)’ "'v}-ZK,s,,<n))

2

d
=Hyo— 2——log Wor s

- (A42)

PHYSICAL REVIEW D 90, 125041 (2014)
and it follows that
WD, (1),P_(2),....,D_(20), F (1), ..., ]:Ayn(n)) (A43)

is a smooth and nodeless function.
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