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We derive the most general evolution equations describing in-medium (anti)neutrino propagation in the
mean-field approximation. In particular, we consider various types of neutrino-antineutrino mixing, for
both Dirac and Majorana fields, resulting either from nontrivial pair correlations or from helicity coherence
due to the nonvanishing neutrino masses. We show that, unless the medium is spatially homogeneous and
isotropic, these correlations are sourced by the usual neutrino and antineutrino densities. This may be of
importance in astrophysical environments such as core-collapse supernovae.
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I. INTRODUCTION

Neutrinos are connected to key open questions regarding
fundamental interactions and astrophysical observations.
Current research questions in neutrino physics include the
neutrino masses and mass ordering, the Dirac or Majorana
nature of neutrinos, the existence of sterile neutrinos, and
leptonic CP violation. It is yet to be established how (and
how much) neutrinos influence the gravitational explosion
of massive stars and the outcomes of stellar nucleosynthesis
processes such as the r-process. Identifying the answers to
this latter question requires the detailed investigation of
numerous astrophysical aspects, including an in-depth
understanding and accurate treatment of neutrino flavour
evolution in dense environments.
Steady progress has been made since the assessment

of the Mikheev-Smirnov-Wolfenstein (MSW) effect [1,2]
as a solution of the high-energy solar neutrino deficit
problem [3]. Neutrino self-interactions and dynamical
aspects—such as turbulence and the presence of shock
waves—have been shown to induce neutrino flavor
changes in the case of massive stars undergoing gravita-
tional core collapse (see, e.g., Ref. [4]).
It has long been speculated that neutrino flavor change in

matter could impact supernova dynamics. While the MSW
effect occurs in the outer layers of supernovae, the neutrino-
neutrino interaction introduces a nonlinear refraction index
[5] that produces a flavor change in deep regions near the
neutrinosphere. Assessing the impact of neutrino self-
interactions requires further investigation since their effects
might be diluted (or even suppressed) due to decoherence
effects in realistic simulations (see, e.g., Refs. [6,7] for
reviews and Ref. [8]). Quantitative evaluations of the
impact of neutrino flavor changes on shock waves seem
to indicate that the conversion occurs outside the gain
region and does not affect the explosion [9]. Moreover, the

neutrino self-interaction might impact the abundance of
heavy elements in neutrino-driven winds in supernovae
[10,11], in black hole accretion disks, or in neutron star–
neutron star mergers [12]. These studies and the predictions
for supernova neutrino signals are usually made by assum-
ing that the interaction of neutrinos within the star can be
accounted for by an effective Hamiltonian and evolution
equations that are valid in the mean-field approximation.
On the other hand, neutrino transport within the neutrino-
sphere is based on a Boltzmann treatment for particles
without mixings [13]. Exploring the validity of the mean-
field approximation is one of the necessary steps to put
investigations of neutrino flavor conversion and their
impact on solid ground. This requires studying the role
of two-body correlations from the high-density region,
where neutrinos are trapped, to the low-density regime,
where they start free-streaming.
Equations describing in-medium neutrino propagation

have been derived using various approaches either at the
mean-field level [14–17] or by including collisions
[18–21]. In the context of supernova physics, various
evolution equations beyond the mean-field approximation
have been obtained using different theoretical frameworks.
Reference [16] showed that the neutrino mean-field
equations—including the neutrino-matter and neutrino-
neutrino interactions—correspond to a saddle-point
approximation for the coherent state path integral repre-
sentation of the evolution operator. Implicit corrections
beyond the saddle-point approximation were also given.
References [22,23] used an algebraic approach to show that
the full many-body problem associated with the neutrino
self-interaction Hamiltonian (without the matter term) is
exactly solvable. This Hamiltonian is related to the
(reduced) one describing Bardeen-Cooper-Schrieffer
(BCS) superconductivity [22]. In Ref. [24] rescattered
neutrinos were considered in a schematic way to mimic
a few collisions outside the neutrinosphere, showing that a
small fraction of backscattered particles can produce
modified flavor patterns. Collisions were included in
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Ref. [21] where the two-particle-irreducible (2PI) effective
action formalism [25] was employed to derive evolution
equations for the two-point correlation function.
A different class of corrections to the standard mean-

field equations arises from considering various nontrivial
two-point correlations beyond the usual neutrino and
antineutrino density matrices in flavor space. Specific
particle-antiparticle correlations for Majorana neutrinos—
corresponding to quantum-mechanical coherence between
states of opposite helicities—can be present, e.g., due to the
coupling of a nonzero neutrino magnetic moment to intense
magnetic fields in supernovæ [26,27] or from the neutrino
masses. Numerical results show that the former can
modify the neutrino fluxes and produce neutrino-antineu-
trino conversion, even for a Standard Model magnetic
moment [27]. These correlations also naturally arise in
nonpolarized media when contributions from the nonzero
neutrino masses are taken into account, as was observed in
Refs. [21,28], where generalized kinetic equations imple-
menting helicity coherence were derived.
Contributions to the mean-field Hamiltonian propor-

tional to powers of the neutrino masses were first discussed
in Ref. [17], where the possible relevance of two-point
correlators arising from neutrino-antineutrino pairing cor-
relations was pointed out. These have been included in
extended mean-field equations using first-principle quan-
tum field-theoretical techniques based on systematic trun-
cations of the Born-Bogoliubov-Green-Kirkwood-Yvon
(BBGKY) hierarchy1 [30]. Contributions from the neutrino
mass to abnormal neutrino-antineutrino correlators were
also discussed. The linearized version of these extended
equations was derived in Ref. [31] using methods from the
theory of atomic nuclei and metallic clusters, establishing a
link between the collective stable and unstable modes
of these many-body systems and those of a gas of self-
interacting neutrinos in a dense medium.
Similar two-body pairing correlations play a nontrivial

role in various areas of physics, from atomic nuclei to
condensed matter and astrophysical systems such as
neutron stars. In strongly interacting systems, e.g., atomic
nuclei, pairings between equal like particles (protons or
neutrons) and unlike particles (neutrons and protons) are of
key importance in correctly determining the properties
of the ground state and of the excited states and in
describing nuclear dynamics. In the original BCS theory,
the long-range electron-phonon attractive interaction
produces the electron Cooper pairs responsible for super-
conductivity [32]. In relativistic theories, the possible
relevance of particle-antiparticle pairing correlations were
pointed out in the context of lepto-/baryogenesis in
Refs. [33,34].

In the present work, we derive the most general mean-
field equations for Dirac and Majorana neutrinos including
all possible types of two-point correlators. The correspond-
ing evolution equations involve nontrivial particle-
antiparticle mixing terms. We first give expressions that
are valid for a general inhomogeneous system of self-
interacting massive neutrinos. We then specify our equations
to the case of a spatially homogeneous system and we
discuss pairing correlations and helicity coherence terms
separately. We treat the former in the limit of ultrarelativistic
neutrinos. For the latter, we include nonrelativistic correc-
tions since they arise from the nonvanishing neutrinomasses.
We also discuss the conditions for nonvanishing neutrino-
antineutrino mixing contributions. In particular, this requires
spatial anisotropies of the matter and/or neutrino back-
grounds. We derive the mean-field Hamiltonian for a typical
astrophysical environment made of electrons, nucleons,
and (anti)neutrinos. In general, the latter depend on both
the neutrino and antineutrino densities and on the various
neutrino-antineutrino correlations. We compare our findings
with the previous results of Refs. [17,21,28].
The paper is structured as follows. Our procedure and

general mean-field equations for massive neutrinos in an
inhomogeneous background are given for Dirac and
Majorana fields in Sec. II. In Sec. III, we focus on the
role of pair correlations, specializing to spatially homo-
geneous systems with ultrarelativistic neutrinos, while
helicity coherence is investigated in Sec. IV. We conclude
in Sec. V. General equations combining pairing correlations
and helicity coherence are presented in Appendix A.

II. GENERAL MEAN-FIELD EQUATIONS

At any time, the (quantum) state of the system of
interest—here, the neutrino gas—can be fully characterized
by the values of equal-time correlators of field operators. In
general, the latter obey an infinite set of coupled evolution
equations, i.e., the quantum field theory generalization of
the BBGKY hierarchy [17,30]. Alternatively, these can be
obtained from unequal-time correlators, which also satisfy
an infinite set of coupled integrodifferential equations
known as the Kadanoff-Baym equations [35]. In any case,
lower-order correlators depend on higher-order ones and
one needs to close the hierarchy in one way or another.
Powerful systematic approximation schemes can be based
on 2PI functional techniques, where n-point correlation
functions are expressed in terms of the full propagator,
which is to be determined self-consistently [36]. In par-
ticular, this provides a convenient starting point to derive
kinetic (e.g., Boltzmann) equations when a gradient
expansion is justified [21,37].
The mean-field, or Hartree-Fock approximation is the

simplest nontrivial closure of such hierarchies. Physically,
it corresponds to the propagation of the (anti)particles
of interest in the averaged background field generated
by the particles of the medium (possibly including

1Note that such techniques allow one to consistently include
collision processes; see, e.g., Refs. [17,29].

JULIEN SERREAU AND CRISTINA VOLPE PHYSICAL REVIEW D 90, 125040 (2014)

125040-2



self-interactions). Technically, it amounts to replacing all
n-point correlators by their Gaussian expression in terms
of the two-point function. In the 2PI formalism this is
typically obtained as the lowest nontrivial order of a loop
expansion of the 2PI effective action. This neglects dis-
sipation due to direct collisions and memory effects [36]
and can be described by an effective bilinear Hamiltonian.
Here, we consider the evolution equations for the equal-

time two-point correlators of the (anti)neutrino system
corresponding to a general bilinear Hamiltonian, to be
specified later. We discuss the cases of Dirac and Majorana
neutrino fields separately.

A. Dirac neutrinos

We wish to obtain the evolution equations for the
neutrino two-point correlators in the case where the
effective Hamiltonian takes the general bilinear form (we
use ℏ ¼ c ¼ 1 units)

HeffðtÞ ¼
Z

d3x ψ̄ iðt; ~xÞΓijðt; ~xÞψ jðt; ~xÞ; ð1Þ

where ψ i denotes the ith component of the neutrino field in
the mass basis.2 The explicit expression of the kernel Γ is not
needed here and will be specified later. At each time the
spatial Fourier decomposition of a Dirac neutrino field reads

ψ iðt; ~xÞ ¼
Z
~p;s

ei ~p·~xψ iðt; ~p; sÞ; ð2Þ

with

ψ iðt; ~p; sÞ ¼ aiðt; ~p; sÞuið ~p; sÞ þ b†i ðt;− ~p; sÞvið− ~p; sÞ;
ð3Þ

where we note
R
~p ≡

R d3p
ð2πÞ3 and

R
~p;s≡

R
~p

P
s. Here,

aiðt; ~p; sÞ and biðt; ~p; sÞ are the standard particle and
antiparticle annihilation operators (in the Heisenberg picture)
for (anti)neutrinos of mass mi, momentum ~p, and helicity s.
The nonzero equal-time anticommutation relations read

faiðt; ~p; sÞ; a†jðt; ~p0; s0Þg ¼ ð2πÞ3δð3Þð ~p − ~p0Þδss0δij; ð4Þ

and similarly for the antiparticle operators. The Dirac spinors
corresponding to mass eigenstates i are normalized as (no
sum over i)

u†i ð ~p; sÞuið ~p; s0Þ ¼ v†i ð ~p; sÞvið ~p; s0Þ ¼ δss0 : ð5Þ

In the flavor basis, the field operator (possibly including
sterile neutrinos) is obtained as

ψαðt; ~xÞ ¼ Uαiψ iðt; ~xÞ; ð6Þ

where U is the Maki-Nakagawa-Sakata-Pontecorvo unitary
matrix [39]. In the three-flavor framework, the correspond-
ing neutrino mixing angles are precisely measured, while the
Dirac and two-Majorana CP-violating phases are still
unknown [40].
In the case of Dirac neutrinos, we neglect possible

lepton-number-violating correlators. The set of equal-time
two-point correlators is fully characterized by

ρijðt; ~q; h; ~q0; h0Þ ¼ ha†jðt; ~q0; h0Þaiðt; ~q; hÞi; ð7Þ

ρ̄ijðt; ~q; h; ~q0; h0Þ ¼ hb†i ðt; ~q; hÞbjðt; ~q0; h0Þi; ð8Þ

κijðt; ~q; h; ~q0; h0Þ ¼ hbjðt; ~q0; h0Þaiðt; ~q; hÞi; ð9Þ

κ†ijðt; ~q; h; ~q0; h0Þ ¼ ha†jðt; ~q0; h0Þb†i ðt; ~q; hÞi; ð10Þ

where the brackets denote the quantum and statistical
average over the medium through which the neutrinos
are propagating. Here, ρ and ρ̄ describe generalized particle
and antiparticle number densities,3 whereas κ and κ†

correspond to particle-antiparticle pair correlations. Note
that the particle and antiparticle correlators, ρ and ρ̄,
include normal densities with all possible helicity states,
including the “wrong” ones, e.g., ρijðt; ~q;þ; ~q0;þÞ or
ρ̄ijðt; ~q;−; ~q0;−Þ, as well as possible coherence terms such
as ρijðt; ~q;−; ~q0;þÞ. Our notation is such that the Hermitian
conjugation in Eq. (10) involves both mass indices and
space-time variables, i.e.,

κ†ijðt; ~q; h; ~q0; h0Þ ¼ κ�jiðt; ~q0; h0; ~q; hÞ: ð11Þ

Let us derive the general evolution equations for the
two-point correlators (7)–(10). To simplify the derivation
and presentation, it is useful to introduce some notations.
We first define the spinor products

Γνν
ij ðt; ~q; h; ~q0; h0Þ ¼ ūið~q; hÞ ~Γijðt; ~q − ~q0Þujð~q0; h0Þ; ð12Þ

Γν̄ ν̄
ij ðt; ~q; h; ~q0; h0Þ ¼ v̄ið~q; hÞ ~Γijðt;−~qþ ~q0Þvjð~q0; h0Þ;

ð13Þ

and

2We work here in the mass eigenstate basis, or propagation
basis in vacuum. Alternatively, one can write equivalent expres-
sions using the matter basis, which is the basis that instanta-
neously diagonalizes the total neutrino Hamiltonian (including
the neutrino-matter interaction and the self-interaction). Note that
in the flavor basis the (anti)neutrino creation and annihilation
operators do not satisfy the usual anticommutation relations,
unless neutrinos are relativistic [38].

3For ρ̄, we employ the same convention as in Ref. [19], and not
the one adopted in Ref. [17].
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Γνν̄
ij ðt; ~q; h; ~q0; h0Þ ¼ ūið~q; hÞ ~Γijðt; ~qþ ~q0Þvjð~q0; h0Þ; ð14Þ

Γν̄ν
ij ðt; ~q; h; ~q0; h0Þ ¼ v̄ið~q; hÞ ~Γijðt;−~q − ~q0Þujð~q0; h0Þ; ð15Þ

with the Fourier transform of the mean-field defined as

Γijðt; ~xÞ ¼
Z
~p
ei ~p·~x ~Γijðt; ~pÞ: ð16Þ

The effective Hamiltonian (1) can then be written as

HeffðtÞ ¼
Z
~p;s; ~p0;s0

½Γνν
ij ðt; ~p; s; ~p0; s0Þa†i ðt; ~p; sÞajðt; ~p0; s0Þ

þ Γν̄ ν̄
ij ðt; ~p; s; ~p0; s0Þbiðt; ~p; sÞb†jðt; ~p0; s0Þ

þ Γνν̄
ij ðt; ~p; s; ~p0; s0Þa†i ðt; ~p; sÞb†jðt; ~p0; s0Þ

þ Γν̄ν
ij ðt; ~p; s; ~p0; s0Þbiðt; ~p; sÞajðt; ~p0; s0Þ�:

ð17Þ

We use a matrix notation in both mass indices and space-
time variables in which, for instance, Γνν

ij ðt; ~q; h; ~q0; h0Þ is
the matrix element of ΓννðtÞ. The matrix product involves
both a sum over the discrete (mass/flavor and helicity)
indices and an integral over the continuous (momentum)
variables, i.e.,

½A · B�ijð~q; h; ~q0; h0Þ≡
Z
~p;s

Aikð~q; h; ~p; sÞBkjð ~p; s; ~q0; h0Þ:

ð18Þ
In this notation, the operators aðtÞ and bðtÞ are to be seen
as column vectors and ρðtÞ, ρ̄ðtÞ, and κðtÞ in Eqs. (7)–(10)
as well as the ΓðtÞ’s in Eqs. (12)–(15) as matrices. The
effective Hamiltonian (17) takes the compact form

HeffðtÞ ¼ a†ðtÞ · ΓννðtÞ · aðtÞ þ bðtÞ · Γν̄ ν̄ðtÞ · b†ðtÞ
þ a†ðtÞ · Γνν̄ðtÞ · b†ðtÞ þ bðtÞ · Γν̄νðtÞ · aðtÞ;

ð19Þ

and the equal-time anticommutation relations (4) read

faðtÞ; a†ðtÞg ¼ 1: ð20Þ
The Hermiticity of the effective Hamiltonian implies

½ΓννðtÞ�† ¼ ΓννðtÞ; ð21Þ

½Γν̄ ν̄ðtÞ�† ¼ Γν̄ ν̄ðtÞ; ð22Þ

½Γνν̄ðtÞ�† ¼ Γν̄νðtÞ: ð23Þ

The evolution equations for the correlator (7) can be
obtained as

i_ρijðt; ~q; h; ~q0; h0Þ ¼ h½a†jðt; ~q0; h0Þaiðt; ~q; hÞ; HeffðtÞ�i:
ð24Þ

Using Eq. (17) and the anticommutation relations (4),
one easily expresses the right-hand side in terms of the
two-point correlators (7)–(10):

i_ρijðt; ~q; h; ~q0; h0Þ ¼
Z
~p;s
½Γνν

ik ðt; ~q; h; ~p; sÞρkjðt; ~p; s; ~q0; h0Þ

− ρikðt; ~q; h; ~p; sÞΓνν
kjðt; ~p; s; ~q0; h0Þ

þ Γνν̄
ik ðt; ~q; h; ~p; sÞκ†kjðt; ~p; s; ~q0; h0Þ

− κikðt; ~q; h; ~p; sÞΓν̄ν
kjðt; ~p; s; ~q0; h0Þ�:

ð25Þ

Using the matrix notation introduced above, this takes the
compact form

i_ρðtÞ ¼ ΓννðtÞ · ρðtÞ − ρðtÞ · ΓννðtÞ
þ Γνν̄ðtÞ · κ†ðtÞ − κðtÞ · Γν̄νðtÞ: ð26Þ

The evolution equation for the antineutrino density (8) is
obtained along the same lines as

i _̄ρðtÞ ¼ Γν̄ ν̄ðtÞ · ρ̄ðtÞ − ρ̄ðtÞ · Γν̄ ν̄ðtÞ
− Γν̄νðtÞ · κðtÞ þ κ†ðtÞ · Γνν̄ðtÞ: ð27Þ

Finally, the evolution equation for the neutrino-antineutrino
pairing correlator reads

i_κðtÞ ¼ ΓννðtÞ · κðtÞ − κðtÞ · Γν̄ ν̄ðtÞ
− Γνν̄ðtÞ · ρ̄ðtÞ − ρðtÞ · Γνν̄ðtÞ þ Γνν̄ðtÞ; ð28Þ

and similarly for κ†ðtÞ.
We mention that these general evolution equations can

be gathered together by introducing a further level of matrix
notation. Following Ref. [17], we define

HðtÞ ¼
�
ΓννðtÞ Γνν̄ðtÞ
Γν̄νðtÞ Γν̄ ν̄ðtÞ

�
ð29Þ

and

RðtÞ ¼
�

ρðtÞ κðtÞ
κ†ðtÞ 1 − ρ̄ðtÞ

�
; ð30Þ

in terms of which Eqs. (26)–(28) can be rewritten as

i _RðtÞ ¼ ½HðtÞ;RðtÞ�: ð31Þ

Note that the conservation of the total lepton number,
defined as
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L ¼ tr½ρðtÞ − ρ̄ðtÞ�

¼
Z
~p;s

½ρiiðt; ~p; s; ~p; sÞ − ρ̄iiðt; ~p; s; ~p; sÞ�; ð32Þ

follows immediately from tr _RðtÞ ¼ 0.
We emphasize that the evolution equations (26)–(28)

include all possible correlators between the various helicity
states of both particles and antiparticles and encompass
all mean-field evolution equations discussed so far in the
literature for Dirac neutrinos. Let us now discuss the case of
Majorana neutrinos.

B. Majorana neutrinos

The general mean-field Hamiltonian for Majorana fields
reads4

HM
effðtÞ ¼

Z
d3x ψ̄M

i ðt; ~xÞΓijðt; ~xÞψM
j ðt; ~xÞ; ð33Þ

where

ψM
i ðt; ~xÞ ¼

Z
~p;s

ei ~p·~xψM
i ðt; ~p; sÞ; ð34Þ

with

ψM
i ðt; ~p; sÞ ¼ aiðt; ~p; sÞuið ~p; sÞ þ a†i ðt;− ~p; sÞvið− ~p; sÞ:

ð35Þ
The evolution equations for Majorana fields can be

formally obtained from those derived in the previous
section by replacing the antiparticle operators by particle
ones: b → a. Using the notation introduced above, Eq. (33)
can be written in the symmetric form

HM
effðtÞ ¼

1

2
½a†ðtÞ · Γνν

MðtÞ · aðtÞ þ aðtÞ · Γν̄ ν̄
M ðtÞ · a†ðtÞ

þ a†ðtÞ · Γνν̄
MðtÞ · a†ðtÞ þ aðtÞ · Γν̄ν

MðtÞ · aðtÞ�;
ð36Þ

where we defined

Γνν
MðtÞ ¼ ΓννðtÞ − ½Γν̄ ν̄ðtÞ�T; ð37Þ

Γν̄ ν̄
M ðtÞ ¼ Γν̄ ν̄ðtÞ − ½ΓννðtÞ�T; ð38Þ

Γνν̄
MðtÞ ¼ Γνν̄ðtÞ − ½Γνν̄ðtÞ�T; ð39Þ

Γν̄ν
MðtÞ ¼ Γν̄νðtÞ − ½Γν̄νðtÞ�T: ð40Þ

Note the relations

½Γνν
MðtÞ�T ¼ −Γν̄ ν̄

M ðtÞ; ð41Þ

½Γνν̄
MðtÞ�T ¼ −Γνν̄

MðtÞ; ð42Þ

½Γν̄ν
MðtÞ�T ¼ −Γν̄ν

MðtÞ; ð43Þ

where the superscript T stands for transposition in both
mass indices and space-time variables.
The most general set of equal-time two-point correlators

include generalized particle densities ρM ¼ ha†ai and
pair correlations κM ¼ haai. We define the latter as in
Eqs. (7)–(10), with the obvious relations

ρ̄MðtÞ ¼ ½ρMðtÞ�T and κMðtÞ ¼ −½κMðtÞ�T: ð44Þ
Although Majorana particles are their own antiparticles, it
is common practice to refer to negative- and positive-
helicity states as “particles” and “antiparticles.” As in the
Dirac case, the particle and pair correlators ρM and κM
include all possible helicity states. In particular, both the
usual “particle” and “antiparticle” densities are encoded
in ρM, as ρMij ðt; ~q;−; ~q0;−Þ and ρMij ðt; ~q;þ; ~q0;þÞ.
Equivalently, the latter is given by ρ̄Mji ðt; ~q0;þ; ~q;þÞ, using
Eq. (44). The other, nondiagonal helicity components of ρM
describe “particle-antiparticle” coherence of the type dis-
cussed in Refs. [21,26,27].
The pair correlations encoded in κM describe other

kinds of coherences of either of the “particle-antiparticle”
type, with κMij ðt; ~q;þ; ~q0;−Þ, or “particle-particle” and
“antiparticle-antiparticle” type, with κMij ðt; ~q;−; ~q0;−Þ and
κMij ðt; ~q;þ; ~q0;þÞ, respectively, as was first discussed in
Ref. [17]. Note that, in contrast to the Dirac case, the
Majorana pair correlations κM violate the total lepton
number.5

The general mean-field equations (26) and (28) derived
in the previous section for Dirac fields keep the very same
form for Majorana fields with the replacements Γ → ΓM,
ρ → ρM, and κ → κM. Specifically, by introducing

HMðtÞ ¼
�Γνν

MðtÞ Γνν̄
MðtÞ

Γν̄ν
MðtÞ −½Γνν

MðtÞ�T
�

ð45Þ

and

4We use the same notation as in the Dirac case for the kernel
Γ for simplicity, although one should keep in mind that the
respective vacuum (free) contributions differ by a factor of 1=2 to
account for the different number of degrees of freedom [40].

5There is no contradiction with the total lepton number
conservation discussed in Eq. (32), since in the Majorana case,
tr½ρMðtÞ − ρ̄MðtÞ� ¼ tr½ρMðtÞ − ρTMðtÞ� ¼ 0 is not to be intrer-
preted as the lepton number. We have, instead LMðtÞ ¼
trρMðtÞ, which is clearly not conserved in the presence
of the lepton-number violating pair correlations κM: i _LMðtÞ ¼
tr½Γνν̄

MðtÞ · κ†MðtÞ − κMðtÞ · Γν̄ν
MðtÞ�.
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RMðtÞ ¼
�
ρMðtÞ κMðtÞ
κ†MðtÞ 1 − ρTMðtÞ

�
; ð46Þ

one has

i _RMðtÞ ¼ ½HMðtÞ;RMðtÞ�: ð47Þ
One easily checks that the Dirac evolution equations in the
Dirac case reduce to those in the Majorana case when the
symmetry properties (41)–(44) are imposed. As a conse-
quence, the observation we made in the Dirac case holds
here too: nontrivial pair correlations κM may develop and
backreact on the evolution of the normal densities ρM
whenever Γνν̄

M ≠ 0.

III. PAIRING CORRELATIONS

We now focus on particle-antiparticle mixing resulting
from possible nonzero pairing correlations [17]. These are
discarded in most existing treatments of in-medium neu-
trino propagation (see, e.g., Refs. [19,21]), based on the
argument that, in the free theory, they undergo rapid
oscillations on a time scale ∼1=½ϵi;q þ ϵj;q�, where ϵi;q ¼
ðq2 þm2

i Þ1=2 is the (anti)particle energy, and thus they
average to zero on the typical time scales of interest for,
e.g., neutrino flavor conversion. As we shall see below, this
argument must be reconsidered in an interacting theory
since such pairs generally receive contributions from the
(anti)neutrino densities ρ and ρ̄. In particular, this occurs
when the medium with which neutrinos interact is inho-
mogeneous and/or anisotropic.
In the following, we consider the case of a spatially

homogeneous system and we take the ultrarelativistic
(massless) limit for neutrinos since the role of such
correlations is not controlled by the neutrino mass.
Nonrelativistic corrections are discussed in Appendix A.
We keep working in the mass basis although in this limit the
evolution equations are equally valid in the flavor basis
since the spinors appearing in Eqs. (12)–(15) do not depend
on the mass/flavor index. We first discuss the Dirac case
and give the necessary modifications for the Majorana case.

A. Evolution equations for homogeneous systems
in the ultrarelativistic limit

In the ultrarelativistic limit, and assuming Standard
Model V-A interactions, it is sufficient to restrict oneself
to the subset of two-point correlators in Eqs. (7)–(10)
involving negative-helicity particle or positive-helicity
antiparticle operators. For spatially homogeneous systems
these read

ρijðt; ~q;−; ~q0;−Þ ¼ ð2πÞ3δð3Þð~q − ~q0Þρijðt; ~qÞ; ð48Þ

ρ̄ijðt; ~q;þ; ~q0;þÞ ¼ ð2πÞ3δð3Þð~q − ~q0Þρ̄ijðt;−~qÞ; ð49Þ

κijðt; ~q;−; ~q0;þÞ ¼ ð2πÞ3δð3Þð~qþ ~q0Þκijðt; ~qÞ; ð50Þ

κ†ijðt; ~q;þ; ~q0;−Þ ¼ ð2πÞ3δð3Þð~qþ ~q0Þκ†ijðt;−~qÞ: ð51Þ

For later convenience, we define the density of particles
and antiparticles with momentum ~q as ρijðt; ~qÞ and
ρ̄ijðt;−~qÞ, respectively. Note also that Eq. (51) ensures
that κ†ijðt; ~qÞ ¼ κ�jiðt; ~qÞ. Spatial homogeneity also implies

~Γijðt; ~qÞ ¼ ð2πÞ3δð3Þð~qÞ ~ΓijðtÞ; ð52Þ

and we define, in accordance with Eqs. (48)–(51),

Γνν
ij ðt; ~q;−; ~q0;−Þ ¼ ð2πÞ3δð3Þð~q − ~q0ÞΓνν

ij ðt; ~qÞ; ð53Þ

Γν̄ ν̄
ij ðt; ~q;þ; ~q0;þÞ ¼ ð2πÞ3δð3Þð~q − ~q0ÞΓν̄ ν̄

ij ðt;−~qÞ; ð54Þ

Γνν̄
ij ðt; ~q;−; ~q0;þÞ ¼ ð2πÞ3δð3Þð~qþ ~q0ÞΓνν̄

ij ðt; ~qÞ; ð55Þ

Γν̄ν
ij ðt; ~q;þ; ~q0;−Þ ¼ ð2πÞ3δð3Þð~qþ ~q0ÞΓν̄ν

ij ðt;−~qÞ: ð56Þ

As emphasized above, the Dirac spinors do not depend on
the mass index in the ultrarelativistic limit. Writing uð ~pÞ≡
uið ~p;−Þ and vð ~pÞ≡ við ~p;þÞ, we have

Γνν
ij ðt; ~qÞ ¼ ūð~qÞ ~ΓijðtÞuð~qÞ; ð57Þ

Γν̄ ν̄
ij ðt; ~qÞ ¼ v̄ð−~qÞ ~ΓijðtÞvð−~qÞ; ð58Þ

Γνν̄
ij ðt; ~qÞ ¼ ūð~qÞ ~ΓijðtÞvð−~qÞ; ð59Þ

Γν̄ν
ij ðt; ~qÞ ¼ v̄ð−~qÞ ~ΓijðtÞuð~qÞ: ð60Þ

The evolution equations (26)–(28) reduce to

i_ρðt; ~qÞ ¼ ½Γννðt; ~qÞ; ρðt; ~qÞ�
þ Γνν̄ðt; ~qÞ · κ†ðt; ~qÞ − κðt; ~qÞ · Γν̄νðt; ~qÞ; ð61Þ

i _̄ρðt; ~qÞ ¼ ½Γν̄ ν̄ðt; ~qÞ; ρ̄ðt; ~qÞ�
− Γν̄νðt; ~qÞ · κðt; ~qÞ þ κ†ðt; ~qÞ · Γνν̄ðt; ~qÞ; ð62Þ

and

i_κðt; ~qÞ ¼ Γννðt; ~qÞ · κðt; ~qÞ − κðt; ~qÞ · Γν̄ ν̄ðt; ~qÞ
− Γνν̄ðt; ~qÞ · ρ̄ðt; ~qÞ − ρðt; ~qÞ · Γνν̄ðt; ~qÞ
þ Γνν̄ðt; ~qÞ; ð63Þ

where the dot now involves a simple matrix product in
mass/flavor indices, which we have left implicit here. Our
convention for the signs of momenta in Eqs. (48)–(56) is
such that all quantities appearing in the above evolution
equations involve the same momentum ~q.
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These equations can be conveniently rewritten in terms
of the 2Nf × 2Nf matrices

Hðt; ~qÞ ¼
�
Γννðt; ~qÞ Γνν̄ðt; ~qÞ
Γν̄νðt; ~qÞ Γν̄ ν̄ðt; ~qÞ

�
ð64Þ

and

Rðt; ~qÞ ¼
�

ρðt; ~qÞ κðt; ~qÞ
κ†ðt; ~qÞ 1 − ρ̄ðt; ~qÞ

�
ð65Þ

as6

i _Rðt; ~qÞ ¼ ½Hðt; ~qÞ;Rðt; ~qÞ�: ð66Þ

The corresponding evolution equations for Majorana
neutrinos can be readily obtained from the previous ones
following the discussion of Sec. II B. In the ultrarelativistic
limit considered here, with V-A interactions, one easily
checks that the components of the extended mean-field
Hamiltonians for Dirac and Majorana neutrinos coincide:
HMðt; ~qÞ ¼ Hðt; ~qÞ. The evolution equations for Majorana
neutrinos thus take the very same form as above with the
replacements ρðt; ~qÞ → ρMðt; ~qÞ, ρ̄ðt; ~qÞ → ρ̄Mðt; ~qÞ, and
κðt; ~qÞ → κMðt; ~qÞ. Here, ρM describes the density of
“particles” (negative-helicity states), ρ̄M the density of
“antiparticles” (positive-helicity states), and κM the “par-
ticle-antiparticle” pair correlations.
The first lines of both Eq. (61) and Eq. (62) correspond

to those usually considered in most existing treatments of
in-medium neutrino propagation, which neglect the pair
correlator κ. However, from Eq. (63) one observes that the
latter is sourced both by the particle and antiparticle
densities ρ and ρ̄ and by the off-diagonal component Γνν̄

of the mean-field Hamiltonian (64). One should thus
reconsider the usual argument described previously that
neglects the pair correlations since these source terms
have no reason to be rapidly oscillating. If the particle-
antiparticle coupling Γνν̄ is nonzero, pair correlations can
be generated through Eq. (63) and have a nontrivial
backreaction on the time evolution of the normal densities
ρ and ρ̄. We now discuss the explicit form of the mean-field

Hamiltonian (66) and the conditions for such a nontrivial
particle-antiparticle mixing term.

B. Mean-field Hamiltonian in a dense
anisotropic environment

We consider a typical astrophysical environment,
e.g., a core-collapse supernova, with a dense gas of self-
interacting (anti)neutrinos in a background of electrons and
nucleons.7 For the sake of the argument, we assume (local)
spatial homogeneity, although this idealization should be
relaxed for simulations in realistic geometries. We assume
an unpolarized and electrically neutral but otherwise
possibly anisotropic matter background, while we treat
the relativistic neutrino gas in full generality. Matter
anisotropies are important in multidimensional supernovae
simulations [13]. Neutrino anisotropies have been shown to
potentially play an important role in neutrino flavor
conversion [6].
A new ingredient of the present discussion is that,

contrary to previous treatments, we keep track of the
neutrino-antineutrino pair correlations in the expression
of the mean-field Hamiltonian [Eq. (1) or Eq. (33)]. To this
aim we consider a regime where an extended mean-field
approximation is still applicable and explicit collisions
are neglected. Strictly speaking, in the typical situation
of interest here—where the neutrino opacity is non-
negligible—one should also include collisions. However,
the mean-field approximation is simple enough to be
manageable, and it allows us to pinpoint the potential role
of neutrino-antineutrino pair correlations and the necessary
ingredients for their presence.

1. Vacuum and matter contributions

Let us first consider the contributions to the kernel

Γijðt; ~xÞ from the free Hamiltonian, i.e., ð−i~γ · ~∇þmiÞδij,
and from the neutral- and charged-current interactions with
the matter background. The former does not lead to any off-
diagonal particle-antiparticle mixing term in Eq. (64):
Γνν̄
vacðt; ~qÞ ¼ 0 and

Γνν
vacðt; ~qÞ ¼ −Γν̄ ν̄

vacðt; ~qÞ ¼ h0ðqÞ; ð67Þ

with h0ðqÞ ¼ diagðϵi;qÞ in the mass eigenstate basis.
The matter contribution only concerns active neutrino

species and is diagonal in the flavor basis. The neutral-
current interactions with the electron, proton, and neutron
backgrounds are flavor insensitive and give the mean-field
kernel

6Note that for spatially homogeneous systems in the mean-
field approximation there are infinitely many conserved quan-
tities, one for each Fourier mode, as follows from tr _Rðt; ~qÞ ¼ 0,
which implies that ρiiðt; ~qÞ − ρ̄iiðt; ~qÞ ¼ const. Such conserva-
tions laws are a particular feature of the mean-field dynamics, due
to the neglect of momentum-changing collision processes and are
not present in the exact theory. Note that they do not correspond
to individual lepton number in each mode since they involve
ρ̄iiðt; ~qÞ, the density of antiparticles with momentum − ~q, instead
of ρ̄iiðt;−~qÞ. However, these conservation laws are, of course,
compatible with total lepton number conservation since they
imply

R
~p ½ρiiðt; ~pÞ − ρ̄iiðt;− ~pÞ� ¼ const.

7One can generalize the present treatment to take into account
possible external (e.g., magnetic) fields, other type of particles in
the background, and/or nonstandard interactions.

NEUTRINO-ANTINEUTRINO CORRELATIONS IN DENSE … PHYSICAL REVIEW D 90, 125040 (2014)

125040-7



Γmat;NC
αβ ðt; ~xÞ ¼ GFffiffiffi

2
p δαβγ

μð1 − γ5Þ

×
X

f¼e;p;n

hϕ̄fðt; ~xÞγμðcfV − cfAγ5Þϕfðt; ~xÞi;
ð68Þ

where ϕf represents the field associated to the particle f
and where cfV and cfA are the corresponding vector and axial
coupling constants. Assuming an unpolarized background
with no antiparticles, the medium average in Eq. (68) is
easily computed as [40]

~Γmat;NC
αβ ðtÞ ¼ GFffiffiffi

2
p δαβγ

μð1 − γ5Þ
X

f¼e;p;n

cfVJ
f
μðtÞ; ð69Þ

where we defined the four-velocity density for the particle
of type f as

JμfðtÞ ¼ 2

Z
~p
vμfρfðt; ~pÞ; ð70Þ

with vμf ¼ pμ=Ef
p and Ef

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
. The assumption

of vanishing electric charge current, i.e., JeμðtÞ þ Jpμ ðtÞ ¼ 0,
guarantees that the contribution from protons and electrons
to the neutral-current mean-field Hamiltonian cancel each
other since ceV ¼ −cpV .
Finally, the charged-current contribution from electrons

is of the same form as Eq. (68) with cV ¼ cA ¼ 1 and
yields

~Γmat;CC
αβ ðtÞ ¼ GFffiffiffi

2
p δαβδαeγ

μð1 − γ5ÞJeμðtÞ: ð71Þ

Using cnA ¼ −1=2, the total contribution from the matter
background thus reads, in the flavor basis,

~Γmat
αβ ðtÞ ¼

GFffiffiffi
2

p δαβγ
μð1 − γ5Þ

�
JeμðtÞδαe −

1

2
JnμðtÞ

�
: ð72Þ

2. Neutrino self-interactions

The neutrino self-interaction mean-field Hamiltonian
can be obtained from the Standard Model neutral-current
interaction term in the contact interaction approximation,

Hself
int ¼ GF

4
ffiffiffi
2

p
X
α;β

Z
d3xjμαðt; ~xÞjβ;μðt; ~xÞ; ð73Þ

where jμαðt; ~xÞ ¼ ψ̄αðt; ~xÞγμð1 − γ5Þψαðt; ~xÞ. Note that,
thanks to the flavor sums in Eq. (73), the neutral-current
Hamiltonian takes the very same form in the mass eigen-
state basis. This is useful when one is interested in keeping
track of the neutrino masses in the mean-field evolution
equations; see Sec. IV and Appendix A. Although this is

unimportant in the present case, where we take the massless
limit, we keep working in the mass eigenstate basis for
notational consistency throughout the paper. The mean-
field approximation to Eq. (73) can be simply obtained by
replacing quadrilinear products of field operators with
bilinear ones using a Wick-like formula and using the
Fierz theorem to reorganize spinorial products [41]. This
leads to an expression of the form (1) with, in the mass
basis,8

Γself
ij ðt; ~xÞ ¼ GFffiffiffi

2
p γμð1 − γ5Þ½Tμ

ijðt; ~xÞ þ δijT
μ
kkðt; ~xÞ�; ð74Þ

where

Tμ
ijðt; ~xÞ ¼

1

2
hψ̄ jðt; ~xÞγμð1 − γ5Þψ iðt; ~xÞi: ð75Þ

The mean-field kernel (74) is easily expressed in terms
of the (anti)particle densities and pair correlations (7)–(10).
In the homogenous case, the relevant spinor products are

ūð ~pÞγμð1 − γ5Þuð ~pÞ ¼ v̄ð ~pÞγμð1 − γ5Þvð ~pÞ ¼ 2nμðp̂Þ
ð76Þ

and

v̄ð− ~pÞγμð1 − γ5Þuð ~pÞ ¼ 2ϵμðp̂Þ: ð77Þ

Here, we have introduced the light-like four-vectors

nμðp̂Þ ¼
�
1

p̂

�
and ϵμðp̂Þ ¼

�
0

ϵ̂p

�
; ð78Þ

where p̂ ¼ ~p=p denotes the unit vector in the direction
of ~p and the pair of complex vectors ðϵ̂p; ϵ̂�pÞ spans the
plane orthogonal to ~p, with9 ϵ̂p · ϵ̂p ¼ 0, ϵ̂p · ϵ̂�p ¼ 2. The
four-vectors (78) satisfy

nμðp̂Þnμðp̂Þ ¼ nμðp̂Þϵμðp̂Þ ¼ ϵμðp̂Þϵμðp̂Þ ¼ 0 ð79Þ

and

ϵμðp̂Þϵ�μðp̂Þ ¼ −2: ð80Þ

Note also that ϵμð−p̂Þ ¼ ϵ�μðp̂Þ. We thus obtain, for the
kernel (75), leaving the mass/flavor indices implicit,10

8The relation to the flavor basis is given by Γij ¼ U†
iαΓαβUβj.

9In terms of an oriented triad of real orthogonal unit vectors
ðp̂; p̂θ; p̂ϕÞ—for instance the standard unit vectors associated to
~p in spherical coordinates—one has ϵ̂p ¼ p̂θ − ip̂ϕ.

10We use the fact that, in the vacuum, h0jψ̄γμð1 − γ5Þψ j0i ¼R
~p v̄ð ~pÞγμð1 − γ5Þvð ~pÞ ¼ 0 by Lorentz symmetry (this requires a

Lorentz-invariant ultraviolet regulator).
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~ΓselfðtÞ ¼ GFffiffiffi
2

p γμð1 − γ5Þ½TμðtÞ þ 1trTμðtÞ�; ð81Þ

with

TμðtÞ ¼
Z
~p
fnμðp̂Þlðt; ~pÞ þ ϵμðp̂Þκðt; ~pÞ þ ϵ�μðp̂Þκ†ðt; ~pÞg;

ð82Þ

where we defined

lðt; ~qÞ ¼ ρðt; ~qÞ − ρ̄ðt;−~qÞ: ð83Þ

3. Total mean-field Hamiltonian

The components (57)–(60) of the total mean-field
Hamiltonian (64) are readily obtained using Eqs. (76)
and (77). Collecting the contributions from the previous
subsections, we finally get

Γννðt; ~qÞ ¼ Sðt; qÞ − q̂ · ~VðtÞ; ð84Þ

Γν̄ ν̄ðt; ~qÞ ¼ S̄ðt; qÞ þ q̂ · ~VðtÞ; ð85Þ

Γνν̄ðt; ~qÞ ¼ −ϵ̂�q · ~VðtÞ; ð86Þ

with the Nf × Nf scalar and vector matrices

Sðt; qÞ ¼ h0ðqÞ þ hmatðtÞ þ
ffiffiffi
2

p
GF½T0ðtÞ þ 1trT0ðtÞ�;

ð87Þ

S̄ðt; qÞ ¼ −h0ðqÞ þ hmatðtÞ þ
ffiffiffi
2

p
GF½T0ðtÞ þ 1trT0ðtÞ�;

ð88Þ

and

~VðtÞ ¼ ~VmatðtÞ þ
ffiffiffi
2

p
GF½ ~TðtÞ þ 1tr ~TðtÞ�; ð89Þ

where [see Eq. (82)]

T0ðtÞ ¼
Z
~p
lðt; ~pÞ ð90Þ

and

~TðtÞ ¼
Z
~p
fp̂lðt; ~pÞ þ ϵ̂pκðt; ~pÞ þ ϵ̂�pκ†ðt; ~pÞg: ð91Þ

The scalar and vector matter contributions in the active
neutrino sector read, in the flavor basis,

hmat
αβ ðtÞ ¼

ffiffiffi
2

p
GFδαβ

�
NeðtÞδαe −

1

2
NnðtÞ

�
; ð92Þ

~Vmat
αβ ðtÞ ¼

ffiffiffi
2

p
GFδαβ

�
~JeðtÞδαe −

1

2
~JnðtÞ

�
; ð93Þ

with the particle number and velocity densities (~vf ¼ ~p=Ef
p)

NfðtÞ ¼ 2

Z
~p
ρfðt; ~pÞ and ~JfðtÞ ¼ 2

Z
~p
~vfρfðt; ~pÞ:

ð94Þ
Our final expression for the mean-field Hamiltonian in

its 2Nf × 2Nf matrix form thus reads

Hðt; ~qÞ ¼
�
Sðt; qÞ − q̂ · ~VðtÞ −ϵ̂�q · ~VðtÞ

−ϵ̂q · ~VðtÞ S̄ðt; qÞ þ q̂ · ~VðtÞ

�
:

ð95Þ
This is one of the main results of the present paper.
We stress that nontrivial, off-diagonal particle-antiparticle

mixing occur whenever the matrix ~VðtÞ ≠ ~0. Clearly, this
requires anisotropic matter and/or neutrino backgrounds, as
we mentioned earlier.11 We note finally that both the trT0ðtÞ
contribution to Sðt; qÞ and S̄ðt; qÞ [Eqs. (87) and (88)] and
the NnðtÞ contribution to hmatðtÞ [Eq. (92)] give a term
proportional to 12Nf×2Nf

in the full mean-field Hamiltonian
(95) and can thus be discarded in the evolution equa-
tion (66). This is, however, not the case for the tr ~TðtÞ and
~JnðtÞ contributions to the anisotropic term ~VðtÞ [Eq. (89)],
which give a nonzero off-diagonal neutrino-antineutrino
coupling. It is easy to check explicitly that the correspond-
ing Hamiltonian for Majorana neutrinos in the ultrarela-
tivistic limit coincide with Eq. (95),HMðt; ~qÞ ¼ Hðt; ~qÞ, as
mentioned above.
We end this section by comparing Eq. (95) to the

standard evolution Hamiltonian employed in studies of
neutrino propagation in a supernova envelope. Assuming
outward propagation of both particles and antiparticles
from the neutrino sphere, such as in the bulb model [42],
it is justified12 to set κ → 0 and Γνν̄ → 0 in Eqs. (84)–(89).
Assuming an isotropic matter background such that
~JfðtÞ ¼ ~0, one recovers the usual Hamiltonian13

11An obvious consequence of isotropy is that the correlators
ρðt; ~qÞ, ρ̄ðt; ~qÞ, and κðt; ~qÞ only depend on q ¼ j~qj. Isotropy
further implies that κðt; qÞ ¼ −κ†ðt; qÞ. For instance, this is
needed to recover hψ̄ i ~γð1 − γ5Þψ ji ¼ ~0.

12It follows from the definitions (50) and (59) that both the
correlator κ and the particle-antiparticle mixing Γνν̄ require
particles and antiparticles with (nearly) opposite momenta. For
outward free-streaming, the spinors uð ~qÞ and vð ~qÞ in Eq. (59)
should be understood to be nonzero only for outward momenta.

13With our conventions the antineutrino number density matrix
is ρ̄ðt;−~qÞ and the corresponding Hamiltonian is thus obtained as
Γν̄ ν̄ðt;− ~qÞjκ→0 ¼ −h0ðqÞ þ hmatðtÞ þ hννðt; q̂Þ, in accordance
with known results [19,42].
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Γννðt; ~qÞjκ→0 ¼ h0ðqÞ þ hmatðtÞ þ hννðt; q̂Þ; ð96Þ

with14

hννðt; q̂Þ ¼
ffiffiffi
2

p
GF

Z
~p
ð1 − q̂ · p̂Þlðt; ~pÞ: ð97Þ

We emphasize again that when the neutrino opacity
cannot be neglected, simply assuming that κ → 0 is not a
consistent approximation. Indeed, in such cases the par-
ticle-antiparticle mixing term in Eq. (95) is nonzero:

Γνν̄ðt; ~qÞjκ→0 ¼ −
ffiffiffi
2

p
GF

Z
~p
ðϵ̂�q · p̂Þ½lðt; ~pÞ þ 1trlðt; ~pÞ�;

ð98Þ
from which it follows that nonzero pair correlations will be
generated, as discussed previously.
Pair correlations where first discussed in Refs. [17,31]

in the context of in-medium neutrino propagation.
However, the class of mean-field dynamics studied there
was not completely general in that it implemented particle
and antiparticle number conservation separately and
some terms included in the present general, fully rela-
tivistic treatment were missing. The evolution
Hamiltonians in the particle and antiparticle sectors
obtained in Refs. [17,31] are identical to Eqs. (96) and
(97), whereas the particle-antiparticle mixing term,
referred to as the pairing (or abnormal) mean-field Δ
in those articles, is given by15

Δðt; ~qÞ ¼ −
ffiffiffi
2

p
GF

Z
~p
ðϵ̂�q · ϵ̂pÞ½κðt; ~pÞ þ 1trκðt; ~pÞ�: ð99Þ

This corresponds to keeping only the third term in the
general mean-field expression (89).

IV. HELICITY COHERENCE

We now turn to the study of neutrino-antineutrino mixing
arising from nontrivial helicity coherence. These are
encoded in the nondiagonal helicity components of the
density correlators, e.g., ρ−þðt; ~qÞ or ρ̄þ−ðt; ~qÞ. Strictly
speaking, these are related to neutrino-antineutrino mixing
only in the case of Majorana neutrinos. For Dirac fields,
such correlators involve a sterile component. Diagonal and
nondiagonal helicity components are coupled through the
nonvanishing neutrino masses and we thus consider the
first nonrelativistic corrections to the evolution equations

discussed in the previous section. For simplicity, we focus
on helicity coherence throughout this section and set the
pair correlations κ → 0 and the corresponding mixing terms
in the evolution Hamiltonian Γνν̄ → 0. Nonrelativistic
corrections in the presence of pair correlations are dis-
cussed in Appendix A. As before, we first discuss the case
of Dirac neutrinos and give the necessary modifications for
the Majorana case.

A. Mass corrections to the evolution equations

In a general, spatially homogeneous system, the evolu-
tion equations for the equal-time two-point correlators
keep the general structure (61)–(63) where all quantities
are to be understood as 2Nf × 2Nf matrices in mass/flavor
and helicity space. For instance, keeping the mass/flavor
indices implicit, the generalized particle and antiparticle
densities have the following helicity structure16:

ρðt; ~qÞ →
�
ρ−−ðt; ~qÞ ρ−þðt; ~qÞ
ρþ−ðt; ~qÞ ρþþðt; ~qÞ

�

≡
�

ρðt; ~qÞ ζðt; ~qÞ
ζ†ðt; ~qÞ ~ρðt; ~qÞ

�
ð100Þ

and

ρ̄ðt; ~qÞ →
�
ρ̄−−ðt; ~qÞ ρ̄−þðt; ~qÞ
ρ̄þ−ðt; ~qÞ ρ̄þþðt; ~qÞ

�

≡
�
~̄ρðt; ~qÞ ζ̄†ðt; ~qÞ
ζ̄ðt; ~qÞ ρ̄ðt; ~qÞ

�
; ð101Þ

where the last equalities define our notation for the helicity
correlators. For completeness we recall the definitions

ρij;hh0 ðt; ~qÞ ¼ ha†jðt; ~q; h0Þaiðt; ~q; hÞi; ð102Þ

ρ̄ij;hh0 ðt;−~qÞ ¼ hb†i ðt; ~q; hÞbjðt; ~q; h0Þi: ð103Þ

For instance, the helicity coherence term in the particle
sector is ζijðt; ~qÞ ¼ ha†jðt; ~q;þÞaiðt; ~q;−Þi, etc. Note
that we use the same notation as in the previous section
for the correlators ρijðt; ~qÞ ¼ ha†jðt; ~q;−Þaiðt; ~q;−Þi and

ρ̄ijðt;−~qÞ ¼ hb†i ðt; ~q;þÞbjðt; ~q;þÞi.
Similarly, the helicity components of the mean-field

Hamiltonians in the particle and antiparticle sectors, i.e.,

Γνν
ij;hh0 ðt; ~qÞ ¼ ūið~q; hÞ ~ΓijðtÞujð~q; h0Þ; ð104Þ

14For Γνν̄ → 0, the particle and antiparticle sectors are de-
coupled and one can discard both the trT0ðtÞ and tr ~TðtÞ terms in
the particle and antiparticle Hamiltonians Γννðt; ~qÞ and Γν̄ ν̄ðt; ~qÞ.

15In particular, contrary to what happens in the general case
discussed here, the limit κ → 0 is a consistent solution of the
evolution equations derived in Refs. [17,31].

16The 2Nf × 2Nf matrix structure discussed here is to be
distinguished from that of the previous section.
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Γν̄ ν̄
ij;hh0 ðt; ~qÞ ¼ v̄ið−~q; hÞ ~ΓijðtÞvjð−~q; h0Þ; ð105Þ

can be gathered in a 2Nf × 2Nf matrix form as

Γννðt; ~qÞ →
� Γνν

−−ðt; ~qÞ Γνν
−þðt; ~qÞ

Γννþ−ðt; ~qÞ Γννþþðt; ~qÞ

�

≡
�

Hðt; ~qÞ Φðt; ~qÞ
Φ†ðt; ~qÞ ~Hðt; ~qÞ

�
ð106Þ

and

Γν̄ ν̄ðt; ~qÞ →
� Γν̄ ν̄

−−ðt; ~qÞ Γν̄ ν̄
−þðt; ~qÞ

Γν̄ ν̄þ−ðt; ~qÞ Γν̄ ν̄þþðt; ~qÞ

�

≡
� ~̄Hðt; ~qÞ Φ̄†ðt; ~qÞ
Φ̄ðt; ~qÞ H̄ðt; ~qÞ

�
; ð107Þ

where, again, the second equalities define our notations.
Discarding pair correlations, the evolution equations read

i_ρðt; ~qÞ ¼ ½Γννðt; ~qÞ; ρðt; ~qÞ�; ð108Þ

i _̄ρðt; ~qÞ ¼ ½Γν̄ ν̄ðt; ~qÞ; ρ̄ðt; ~qÞ�: ð109Þ

B. Mass corrections to the mean-field Hamiltonian

Now we compute the Oðm=qÞ corrections to the inter-
action part of the mean-field Hamiltonian. The matter
kernel (72) is the same as in the previous section, whereas
the contribution (74) from the neutrino self-interaction
receives corrections from the off-diagonal helicity
components of the various density matrices. A straightfor-
ward calculation of spinor products (see Appendix B)
yields

~ΓselfðtÞ ¼ GFffiffiffi
2

p γμð1 − γ5Þ½TμðtÞ þ 1trTμðtÞ�; ð110Þ

with

TμðtÞ ¼
Z
~p

�
nμðp̂Þlðt; ~pÞ − e−iϕpϵμðp̂ÞΩðt; ~pÞ

m
2p

−
m
2p

eiϕpϵ�μðp̂ÞΩ†ðt; ~pÞ
�
; ð111Þ

where ϕp is the polar angle of the vector p̂ in spherical
coordinates. Here, m denotes the neutrino mass matrix and
we introduced the combination

Ωðt; ~pÞ ¼ ζðt; ~pÞ þ ζ̄ðt;− ~pÞ: ð112Þ

Finally, we obtain, for the components of the mean-field
Hamiltonians (106) and (107) up to contributionsOðm2=q2Þ
for the interaction terms,17

Hðt; ~qÞ ¼ Sðt; qÞ − q̂ · ~VðtÞ − q̂ · ~VmðtÞ; ð113Þ

Φðt; ~qÞ ¼ eiϕq ϵ̂�q · ~VðtÞ
m
2q

; ð114Þ

~Hðt; ~qÞ ¼ h0ðqÞ; ð115Þ

and

H̄ðt; ~qÞ ¼ S̄ðt; qÞ þ q̂ · ~VðtÞ þ q̂ · ~VmðtÞ; ð116Þ

Φ̄ðt; ~qÞ ¼ eiϕq ϵ̂q · ~VðtÞ
m
2q

; ð117Þ

~̄Hðt; ~qÞ ¼ −h0ðqÞ; ð118Þ

where Sðt; qÞ, S̄ðt; qÞ, and ~VðtÞ have been defined in
Eqs. (87), (88), and (89), respectively,18 and where the mass
correction to the vector component of the mean-field reads

~VmðtÞ ¼
ffiffiffi
2

p
GF½ ~TmðtÞ þ 1tr ~TmðtÞ�; ð119Þ

with

~TmðtÞ ¼ −
Z
~p

�
e−iϕp ϵ̂pΩðt; ~pÞ

m
2p

þ H:c:

�
: ð120Þ

As expected, the off-diagonal terms in the particle and
antiparticle Hamiltonians, Φ and Φ̄, are proportional to the
neutrino masses and the different helicity sectors are
decoupled in the ultrarelativistic limit.

C. Majorana neutrinos

As before, the treatment of Majorana neutrinos closely
follows that of Dirac neutrinos. One introduces a similar
matrix in helicity as in Eqs. (100) and (106), where
~ρMðt; ~qÞ ¼ ρ̄TMðt;−~qÞ and ~HMðt; ~qÞ ¼ −H̄T

Mðt;−~qÞ; see
Eqs. (41) and (44). We thus write

17Here, we only keep the correctionsOðm=qÞ in the interaction
terms. The free contribution h0ðqÞ can be expanded independ-
ently: h0ðqÞ ≈ q1þm2=2q. Note that the leading-order kinetic
term does not contribute to the evolution equations (108) and
(109) and can thus be discarded. As noticed previously, this is not
possible when pair correlations are present.

18It is understood here that Eqs. (87), (88), and (89) are
evaluated at κ ¼ 0; see Appendix A for the generalization to
κ ≠ 0.
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ρMðt; ~qÞ →
�
ρMðt; ~qÞ ζMðt; ~qÞ
ζ†Mðt; ~qÞ ρ̄TMðt;−~qÞ

�
ð121Þ

and

Γνν
Mðt; ~qÞ →

�
HMðt; ~qÞ ΦMðt; ~qÞ
Φ†

Mðt; ~qÞ −H̄T
Mðt;−~qÞ

�
: ð122Þ

Using the results of the previous section together with
Eqs. (37)–(40), we obtain

HMðt; ~qÞ ¼ Sðt; qÞ − q̂ · ~VðtÞ − q̂ · ~VmðtÞ; ð123Þ

H̄Mðt; ~qÞ ¼ S̄ðt; qÞ þ q̂ · ~VðtÞ þ q̂ · ~VmðtÞ; ð124Þ

ΦMðt; ~qÞ ¼ eiϕq ϵ̂�q ·
�
~VðtÞ m

2q
þ m
2q

~VTðtÞ
�
: ð125Þ

We have explicitly checked that the evolution equations
derived here reproduce19 those obtained in Refs. [21,28],
except for the mass correction (119) to the diagonal helicity
components of the various evolution Hamiltonians, which
has only been given in an implicit form in those
references.20

V. CONCLUSIONS

Investigating neutrino flavor evolution in dense astrophysi-
cal environments has numerous fascinating facets. In the
present work, we have derived the most general mean-field
equations that are applicable in the case of inhomogeneous
and anisotropic neutrino and matter backgrounds, for either
massive Dirac or Majorana neutrinos. These encompass all
mean-field evolution equations derived previously.
We have emphasized the presence of pairing correlations

between neutrinos and antineutrinos and, for the Majorana
case, also between pairs of neutrinos or antineutrinos.
Such pair correlations—which correspond to the fermionic
analog of squeezed bosonic states—were first discussed in
the context of neutrino physics in Refs. [17,31]. Our results
generalize the evolution equation presented in those refer-
ences to the case of a completely general, fully relativistic
mean-field Hamiltonian.
We have also considered possible nontrivial helicity

correlations due to the nonvanishing neutrino masses.
These can be of either the normal or the pairing type.
The former case corresponds to helicity coherence terms,
which were discussed in Refs. [21,28,43], whereas the

latter were first pointed out in Ref. [17]. We have treated
such correlations by systematically including the first
nonrelativistic corrections to the general mean-field evo-
lution equations. When pair correlations are neglected,
our results reproduce the evolution equations of
Refs. [21,28]. The latter were implemented in a schematic
one-flavor calculation in Ref. [43], which showed that
helicity correlations can be of importance under specific
conditions.
Finally, we have considered the full nontrivial helicity

structure of the general mean-field equations, including pair
correlations, at leading order in the nonvanishing neutrino
masses. This couples the effects of helicity coherence
and pair correlations. Both effects may be of importance
in dense anisotropic environments with nonzero neutrino
opacity, e.g., the interior of the neutrinosphere in core-
collapse supernovae. Future numerical investigations either
in schematic models or in realistic simulations will reveal
whether the various types of neutrino-antineutrino mixings
can influence neutrino flavor evolution and possibly impact
the nucleosynthetic outcomes in stellar environments, or
the shock revival in supernovae.
Although mean-field calculations are an important step

in assessing the possible role of unusual correlations, a
more complete treatment of the dense astrophysical envi-
ronments of interest here would require one to include
collision terms. Formal kinetic equations including helicity
coherence for neutrinos in anisotropic environments were
discussed in Refs. [21,28], although the definite form of
the collision term still needs to be derived. On the other
hand, a general formalism to consistently derive kinetic
equations that takes proper account of pair correlations
was developed in Refs. [33,34] for isotropic systems.
This has been applied to a model system of fermionic
and scalar fields with a Yukawa interaction in the context
of lepto-/baryogenesis. It would be of interest to apply
these methods to neutrinos in situations of astrophysical
interest.

APPENDIX A: COMPLETE MEAN-FIELD
HAMILTONIAN AT Oðm=qÞ

Here we present the general mean-field equations for
spatially homogeneous systems with both pair correlations
and helicity coherence terms, including nonrelativistic cor-
rections to the interaction Hamiltonian at first order in the
neutrino masses. As explained in Sec. IV, the equations of
motion keep the same form as Eqs. (61)–(63), where each
term is a 2Nf × 2Nf matrix in mass/flavor and helicity
space. Equivalently, these can be written as Eq. (66) where
both the generalized density matrix (65) and Hamiltonian
(64) are 4Nf × 4Nf matrices. The diagonal blocks have
been discussed in Sec. IV; see Eqs. (100), (101), (106), and
(107). Similarly, we write the helicity structure of the
off-diagonal blocks as

19In terms of the four-vectors xμ1;2 introduced in Refs. [21,28],
we have e−iϕpϵμðp̂Þ ¼ xμ1 − ixμ2; see also Appendix A. In the
Dirac case, we find a different sign for the off-diagonal term Φ̄ of
the antiparticle Hamiltonian as compared to Ref. [28].

20The authors of Refs. [21,28] have privately confirmed that
their expressions agree with Eq. (119).
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κðt; ~qÞ →
�
κ−−ðt; ~qÞ κ−þðt; ~qÞ
κþ−ðt; ~qÞ κþþðt; ~qÞ

�

≡
�

ϰðt; ~qÞ κðt; ~qÞ
κ†ðt; ~qÞ ~ϰðt; ~qÞ

�
ðA1Þ

for pairing correlations (the second equality defines our
notation), and

Γνν̄ðt; ~qÞ →
� Γνν̄

−−ðt; ~qÞ Γνν̄
−þðt; ~qÞ

Γνν̄þ−ðt; ~qÞ Γνν̄þþðt; ~qÞ

�
ðA2Þ

for the particle-antiparticle mixing terms in the Hamiltonian.
To discuss the explicit form of the mean-field

Hamiltonian at Oðm=qÞ, we introduce the following
notation for the interaction part:

~ΓintðtÞ ¼ 1

2
γμð1 − γ5ÞΣμðtÞ; ðA3Þ

where the Nf × Nf matrices21 ΣμðtÞ can be decomposed
into a matter part Σmat

μ ðtÞ and a contribution from neutrino
self-interactions of the general form

ΣμðtÞ ¼ Σmat
μ ðtÞ þ

ffiffiffi
2

p
GF½TμðtÞ þ 1trTμðtÞ�; ðA4Þ

with

TμðtÞ ¼
Z
~p
fnμðp̂Þ½Rðt; ~pÞ − R̄ðt;− ~pÞ�

þϵμðp̂ÞKðt; ~pÞ þ ϵ�μðp̂ÞK†ðt; ~pÞg; ðA5Þ

where R, R̄, and K are combinations of the various
two-point correlators. The matter contribution has been
considered in Sec. III and reads, in the flavor basis,

Σmat
μ;αβðtÞ ¼

ffiffiffi
2

p
GFδαβ

�
JeμðtÞδαe þ

X
f¼e;p;n

cfVJ
f
μðtÞ

�
; ðA6Þ

where ceV ¼−cpV ¼2sin2θW−1=2 and cnV ¼ −1=2, where
θW is the Weinberg angle.
Using the spinor products recalled in Appendix B, a

straightforward calculation of the correlator in Eq. (74)
yields, at first nontrivial order in the neutrino mass
matrix m,

Rðt; ~pÞ ¼ ρðt; ~pÞ − e−iϕpϰðt; ~pÞ m
2p

−
m
2p

eiϕpϰ†ðt; ~pÞ;
ðA7Þ

R̄ðt; ~pÞ ¼ ρ̄ðt; ~pÞ þ e−iϕp ~ϰ†ðt; ~pÞ m
2p

þ m
2p

eiϕp ~ϰðt; ~pÞ;
ðA8Þ

Kðt; ~pÞ ¼ κðt; ~pÞ − e−iϕpΩðt; ~pÞ m
2p

; ðA9Þ

where Ωðt; ~pÞ has been defined in Eq. (112).

1. Dirac case

Using the spinor products of Appendix B again and
systematically retainingOðm=qÞ terms from the interaction
parts, we finally obtain the components of the mean-field
Hamiltonian as

Γνν
−−ðt; ~qÞ ¼ h0ðqÞ þ nμðq̂ÞΣμðtÞ; ðA10Þ

Γνν
−þðt; ~qÞ ¼ −eiϕqϵ�μðq̂ÞΣμ

0ðtÞ
m
2q

; ðA11Þ

Γννþ−ðt; ~qÞ ¼ −e−iϕq
m
2q

ϵμðq̂ÞΣμ
0ðtÞ; ðA12Þ

Γννþþðt; ~qÞ ¼ h0ðqÞ ðA13Þ

for the particle-particle sector,

Γν̄ ν̄
−−ðt; ~qÞ ¼ −h0ðqÞ; ðA14Þ

Γν̄ ν̄
−þðt; ~qÞ ¼ −e−iϕq

m
2q

ϵ�μðq̂ÞΣμ
0ðtÞ; ðA15Þ

Γν̄ ν̄þ−ðt; ~qÞ ¼ −eiϕqϵμðq̂ÞΣμ
0ðtÞ

m
2q

; ðA16Þ

Γν̄ ν̄þþðt; ~qÞ ¼ −h0ðqÞ þ nμð−q̂ÞΣμðtÞ ðA17Þ

for the antiparticle-antiparticle sector, and

Γνν̄
−−ðt; ~qÞ ¼ −eiϕqnμðq̂ÞΣμ

0ðtÞ
m
2q

; ðA18Þ

Γνν̄
−þðt; ~qÞ ¼ ϵ�μðq̂ÞΣμðtÞ; ðA19Þ

Γνν̄þ−ðt; ~qÞ ¼ 0; ðA20Þ

Γνν̄þþðt; ~qÞ ¼ −e−iϕq
m
2q

nμð−q̂ÞΣμ
0ðtÞ ðA21Þ

for the particle-antiparticle mixing terms. The components
of Γν̄ν are obtained from Eq. (22). Here Σμ

0ðtÞ is obtained
using Eq. (A4) evaluated at vanishing mass. This provides a
complete set of evolution equations up to (and including)
OðGFm=qÞ contributions, thus generalizing the equations
presented in Secs. III and IV.

21These are the right-handed vector components of the
neutrino self-energy in the mean-field approximation [21,28].
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2. Majorana case

We obtain the independent component of the mean-field
Hamiltonian for Majorana neutrinos from the results of the
previous subsection by means of Eqs. (37) and (39). With
our conventions (53)–(56) for the momentum assignments
in the case of spatially homogeneous systems, these
become

Γνν
Mðt; ~qÞ ¼ Γννðt; ~qÞ − ½Γν̄ ν̄ðt;−~qÞ�T; ðA22Þ

Γνν̄
Mðt; ~qÞ ¼ Γνν̄ðt; ~qÞ − ½Γνν̄ðt;−~qÞ�T; ðA23Þ

where the transposition acts on both mass/flavor and
helicity indices. Keeping in mind the different normaliza-
tion of the free contribution to the Hamiltonian in the
Majorana case, i.e., h0ðqÞ → h0ðqÞ=2, we obtain

Γνν
M;−−ðt; ~qÞ ¼ h0ðqÞ þ nμðq̂ÞΣμðtÞ; ðA24Þ

Γνν
M;−þðt; ~qÞ ¼ −eiϕqϵμðq̂Þ

�
Σ0μðtÞ

m
2q

þ m
2q

ΣT
0μðtÞ

�
; ðA25Þ

Γνν
M;þ−ðt; ~qÞ ¼ −e−iϕqϵμðq̂Þ

�
m
2q

Σ0μðtÞ þ ΣT
0μðtÞ

m
2q

�
;

ðA26Þ

Γνν
M;þþðt; ~qÞ ¼ h0ðqÞ − nμðq̂ÞΣT

μ ðtÞ; ðA27Þ

and

Γνν̄
M;−−ðt; ~qÞ ¼ −eiϕq

�
nμðq̂ÞΣμ

0ðtÞ
m
2q

þ m
2q

nμð−q̂ÞΣT
0μðtÞ

�
;

ðA28Þ

Γνν̄
M;−þðt; ~qÞ ¼ ϵ�μðq̂ÞΣμðtÞ; ðA29Þ

Γνν̄
M;þ−ðt; ~qÞ ¼ −ϵμðq̂ÞΣT

μ ðtÞ; ðA30Þ

Γνν̄
M;þþðt; ~qÞ ¼ −e−iϕq

�
m
2q

nμð−q̂ÞΣμ
0ðtÞ þ nμðq̂ÞΣT

0μðtÞ
m
2q

�
:

ðA31Þ

APPENDIX B: SPINOR PRODUCTS

We use the following representation for Dirac bispinors
in the chiral representation [40]:

uið ~p; hÞ ¼
�−N i

p;−hχ
hðp̂Þ

N i
p;hχ

hðp̂Þ

�
; ðB1Þ

við ~p; hÞ ¼ −h
� N i

p;hχ
−hðp̂Þ

N i
p;−hχ

−hðp̂Þ

�
; ðB2Þ

with the standard two-component helicity spinors

χþðp̂Þ ¼
�

cos θp
2

eiϕp sin θp
2

�
; χ−ðp̂Þ ¼

�−e−iϕp sin θp
2

cos θp
2

�
;

ðB3Þ

and where we have defined (εi;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
)

N i
p;h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εi;p − hp

2εi;p

s
¼ δh− þ mi

2p
δhþ þOðm2

i =p
2Þ:

ðB4Þ

Introducing the notation

γμL ¼ γμ
1 − γ5
2

; ðB5Þ

the relevant bispinor products read

ūjð ~p; hÞγμLuið ~p; hÞ ¼ N j
p;hN

i
p;hn

μð−hp̂Þ ≈ nμðp̂Þδh−;
ðB6Þ

v̄jð− ~p;−hÞγμLuið ~p; hÞ ¼ N j
p;hN

i
p;hϵ

μð−hp̂Þ ≈ ϵμðp̂Þδh−;
ðB7Þ

and

ūjð ~p;−hÞγμLuið ~p; hÞ ¼ −N j
p;−hN

i
p;he

ihϕpϵμð−hp̂Þ
≈ −

mj

2p
e−iϕpϵμðp̂Þδh−

−
mi

2p
eiϕpϵμðp̂Þδhþ; ðB8Þ

v̄jð− ~p; hÞγμLuið ~p; hÞ ¼ −N j
p;−hN

i
p;he

ihϕpnμð−hp̂Þ
≈ −

mj

2p
e−iϕpnμðp̂Þδh−

−
mi

2p
eiϕpnμð−p̂Þδhþ; ðB9Þ

where the approximate expressions are valid up to relative
corrections of order m2=p2. The other bispinor products
needed in the text can be obtained from the relations

v̄jð ~p; hÞγμLvið ~p; h0Þ ¼ hh0ūjð ~p;−hÞγμLuið ~p;−h0Þ
ðB10Þ

and

ūjð ~p; hÞγμLvið− ~p; h0Þ ¼ ½v̄ið− ~p; h0ÞγμLujð ~p; hÞ��:
ðB11Þ
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